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1 IntroductionIn a time of constantly growing world-wide interdependence of trade and ware 
ow, lo-gistics and the planning of freight transports are of crucial relevance both for economicaland ecological reasons. The problems of vehicle routing and order scheduling are farfrom being satisfactorily solved in practice [Florian 93]. Moreover, in European shippingcompanies, factually no intelligent software support is available to the human scheduler.There exist e�cient algorithms for solving static scheduling problems; however, classicalcomputer science, Operations Research (OR), and also classical centralised AI have sofar failed to provide adequate methodologies and algorithms to cope with open dynamicscheduling problems (see also [Bargl 92]). Unfortunately, virtually any problem of practi-cal interest falls into the latter category. For example, one out of three trucks on Europe'sroads drives empty; the average capacity utilisation in freight tra�c is only about 55 %[Rittmann 91]. The process of political and economic integration in Europe and the abol-ishment of federal regulations on freight transportation services has led to a dramaticallyincreased competition in the logistics business. Thus, new technologies are required tokeep with the complexity and the dynamics of the domain.The Mars1 simulation testbed (cf. [Kuhn et al. 93a]) constitutes a multiagent ap-proach to these problems: a scenario of geographically distributed transportation com-panies is described. The companies have to carry out transportation orders which arrivedynamically. For this purpose, they have a set of trucks at their disposal. The globalbehaviour of the system is evaluated as follows: the quality measure are the costs forcarrying out the orders. What is extraordinary about our approach is that the companiesthemselves do not have facilities for scheduling orders; it is the trucks that maintain localplans, and the actual solution to the global order scheduling problem emerges from thelocal decision-making of the agents. Thus, one very complex plan is replaced by severalsmaller and simpler plans, allowing to react quickly and without global replanning tounforeseen events, such as tra�c jams or new transportation orders.What is it that makes the transportation domain especially suitable for using tech-niques from (Distributed) AI ([Bond & Gasser 88], [Chaib-Draa et al. 92])? One reasonis the complexity of the scheduling problem, which makes it very attractive for AI re-search (see Appendix B for a complexity-theoretic analysis of the domain). Howeverthere are more pragmatic reasons: Commonsense knowledge (e.g. taxonomic, topological,temporal, or expert knowledge) is necessary to solve the scheduling problems e�ectively.Local knowledge about the capabilities of the transportation company as well as knowledgeabout competitive (and maybe cooperative) companies massively in
uences the solutions.Moreover, since a global view is impossible (because of the complexity), there is a needto operate from a local point of view and thus to deal with incomplete knowledge with allits consequences. The last aspect leads to the DAI arguments:� The domain is inherently distributed. Hence it is very natural to look at it as amulti-agent system. However, instead of tackling the problem from the point of viewof the entities which are to be modelled and then relying on the emergence of theglobal solution, the classical approach to the problem is an (arti�cially) centralisedone.1Modeling Autonomous CoopeRating Shipping Companies1



� There is a high degree of dynamics in the process of planning (new orders can begiven to the system asynchronously) and execution (unforeseen events may occur,such as tra�c jams). A recent direction in research on planning deals with exactlythis class of problems (see e.g. [Haddawy & Hanks 90, Russell & Zilberstein 91,Kushmerick et al. 93, Boddy & Dean 94]). Architectures allowing agents to reactto dynamics in execution while at the same time trying to achieve their longer-termgoals have been provided by research in planning and DAI (e.g. [Cohen et al. 89,Firby 92, Ferguson 92, Lyons & Hendriks 92, M�uller & Pischel 94a]).� The task of a centrally maintaining and processing the knowledge about the shippingcompanies, their vehicles, and behaviour is very complex. Moreover, knowledge isoften not even centrally available (real-life company are not willing to share all theirlocal information with other companies). Therefore, modelling the companies asindependent and autonomous units seems the only acceptable way to proceed.� The existence of cooperative processes in the real transportation business makesthe domain especially suitable for using DAI techniques such as task decompositionand task allocation [Davis & Smith 83, Kuhn et al. 93b, Decker & Lesser 94], de-centralised planning[Ephrati & Rosenschein 93, M�uller 94], and negotiation amongagents [Zlotkin & Rosenschein 93, Rosenschein & Zlotkin 94].The paper is organised as follows: We start with an overview of our multiagent systemdevelopment environment and the underlying agent architecture in Section 2. In Section3, the transportation domain is presented and analysed. Section 4 de�nes the multiagentapproach for task decomposition, task allocation, and negotiation underlying the Marssystem. An extension of the simulation system by a model for tra�c jams is describedin Section 5. Section 6 provides an auction-based mechanism for schedule optimisationand dynamic replanning in order to cope with the types of unforeseen events introducedin Section 5. Empirical results that have been obtained by running a series of schedulingbenchmarks are reported in Section 7. Related work is described in Section 8. The paperends with a discussion of the practical usefulness of the results presented so far.2 The General FrameworkBefore describing theMars system, we would like to sketch brie
y the framework under-lying our multiagent applications.2.1 The AGenDA TestbedThe AGenDA testbed [Fischer et al. 95] serves as the development platform for our ap-plications. The testbed consists of two di�erent levels: the architectural level describesa methodology for designing agents in a sense that it provides several important func-tionalities an agent should have; thus it supports a general template for agents that hasto be �lled by the designer of a DAI system with the domain-speci�c instantiation. Thesystem development level provides the basic knowledge representation formalism, generalinference mechanisms (such as forward and backward reasoning) which are used by thedecision-making modules of the architectural layer, as well as a simulation toolbox sup-porting visualisation and monitoring of agents, and the gathering of performance statistics2



(see [Hanks et al. 93] for a well-written discussion of properties, problems, and bene�tsof and examples for testbeds). The interrelationship between the two testbed levels isillustrated in �gure 1.
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Figure 1: The AGenDA TestbedThe architectural level in the AGenDA Testbed is provided by the InteRRaP agentarchitecture [M�uller & Pischel 94a, M�uller & Pischel 94b]. It de�nes the control withinan agent as a hierarchical process, mapping di�erent classes of situations to di�erentreactive, deliberative, or cooperative execution mechanisms. The system developmentlevel is covered by the MAGSY system [Fischer 93]. MAGSY provides a frame-basedknowledge representation formalism and a set of general purpose inference mechanisms.Moreover, it provides tools supporting the construction, visualisation, evaluation, anddebugging of DAI scenarios, including the lower layers of communication, on top of whichmore complex protocols such as the contract net or bargaining protocols can be de�ned.Two applications have been implemented using the AGENDA framework: the �rstsystem is FORKS, an interacting robots application. FORKS describes an automatedloading dock, where forklift robots load and unload trucks, while avoiding potential andresolving existing con
icts, and exploiting possibilities to collaborate. The main require-ment imposed on the testbed by this application was that it had to support reactivityand deliberation in the decision-making of an individual agent as well as perception andmanipulation of the physical world. The second system isMars, which is the topic of thisarticle. In the case of the Mars system, the main challenge for our testbed was to pro-vide di�erent cooperation methods based on negotiation, leading to di�erent schedulingmechanisms, and to experimentally evaluate these mechanisms.An autonomous agent acting and interacting in a dynamic environment has to havecertain properties, which should be re
ected in its underlying design architecture. Firstly,agents are to behave in a situated manner, i.e. they have to perceive unexpected events3



and to react appropriately to them (see e.g. [Brooks 86]). Secondly, they are to act ina goal-directed fashion in order to achieve their goals. In AI, this is normally achievedby devising plans for certain goals (see e.g. [McDermott 91]). Thirdly, they are to solvetheir tasks e�ciently and often have to satisfy real-time constraints. This requires accessto a set of \hard-wired" procedures [George� & Lansky 86] with guaranteed executionproperties. Fourthly, they are to cope with the presence of other agents. Whereas certaintypes of interactions can often be performed by employing local mechanisms (e.g. ob-stacle or collision avoidance in a robot scenario, see [Latombe 92, M�uller & Pischel 94a,M�uller & Pischel 94b]), others (e.g. collaboration) require the adoption of joint goals, thegeneration and execution of joint plans, the exchange of relevant information (i.e. aboutgoals and plans) (see e.g. [Kinny et al. 92]), and thus the explicit representation of mod-els of other agents in terms of beliefs, goals, plans, and intentions [Rao & George� 91].Finally, agents are to be adaptive, i.e. they must learn in order to improve their perfor-mance and to survive even if the environment changes. These requirements have led tothe development of the agent architecture InteRRaP, a layered architecture describingthe individual agent.2.2 The InteRRaP Agent ArchitectureThe main idea of InteRRaP is to de�ne an agent by a set of functional layers, linkedby a communication-based control structure and a shared hierarchical knowledge base.The basic design elements of the agent are (1) its world interface facilities, (2) patternsof behaviour (PoB), as well as (3) local plans and (4) joint, multiagent plans.Figure 2 shows the components of the InteRRaP agent model and their interplay.It consists of �ve basic parts: the World Interface (WIF), the Behaviour-Based Compo-nent (BBC), the Plan-Based Component (PBC), the Cooperation Component (CC), andthe agent knowledge-base. The world interface holds the agent's facilities for perception,action, and communication. The BBC implements the reactive behaviour and the proce-dural knowledge of the agent. Basic building blocks of the BBC are patterns of behaviourwhich can be divided in two groups: reactor patterns and procedure patterns. Reactivityis obtained by providing a set of reactor patterns specifying hard-wired condition-actionpairs. These are triggered by exogenous events. Procedural knowledge is contained inso-called procedure patterns which are activated by the plan-based component; these pro-cedures are basically compiled plans which can be executed by the agent in order toperform some routine tasks.The PBC contains a planning mechanism which is able to devise local single-agentplans. Depending on the requirements imposed by the application, the PBC may be in-stantiated with a suitable planning formalism. However, the interface de�nition betweenBBC and PBC requires that the latter can activate PoB, which are primitive actionsfrom the perspective of the planner. The di�erence to classical AI planning systemsis that PoB may be rather complex procedures (cf. [Firby 92]) incorporating a certaindegree of execution intelligence (e.g. for dealing with di�erent types of failures with-out explicit replanning). Finally, the CC contains a mechanism for devising joint plans(see [Kinny et al. 92, M�uller 94]). It has access to protocols, and a multiagent planningmechanism which can access knowledge about other agents and about communicationstrategies. CC, PBC, and BBC establish the control of the agent. Their interaction (seee.g. [M�uller & Pischel 94b]) de�nes the agent's overall behaviour.4
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Figure 2: The InteRRaP Agent ArchitectureThe knowledge base is structured hierarchically. It consists of three layers which ba-sically correspond to the structure of the agent control. The lowest layer contains factsrepresenting the world model of the agent as well as representations of primitive actionsand patterns of behaviour. The second layer contains the agent's mental model, i.e. rep-resentation of knowledge the agent has about its goals, skills, and plans. Finally, layerthree comprises the agent's social model, i.e. knowledge of and strategies for cooperation,e.g. beliefs about other agents' goals. The basic idea is to restrict the information accessand thus to reduce the practical complexity of reasoning in the lower (more reactive)system layers. For example, the plan-based component can access information about theworld model, whereas the behaviour-based component does not have access to planningor cooperation information. This is supported by employing di�erent reasoning mecha-nisms provided by MAGSY in di�erent InteRRaP layers, namely data-driven forwardreasoning in the BBC and goal-driven backward reasoning in the PBC and CC.3 The Transportation DomainIn this section, the application domain of the Mars system is described and analysed.Some of the properties are derived that make dealing with this domain so di�cult.The application domain for theMars system is the planning and scheduling of trans-portation orders as performed by dispatchers in shipping companies. Many of the prob-lems which must be solved in this area, such as the Travelling Salesman and relatedscheduling problems, are known to be NP-hard (see Appendix B for a formal analysis).As we have argued in the introduction, the domain is highly dynamic, and decisions haveto be made under a high degree of uncertainty and incompleteness.Cooperation and coordination are two very important processes that may help to over-5
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Figure 3: MARS: The Domain of Applicationcome the problems sketched above. Indeed, they are of increasing importance even in thehighly competitive transportation business of today. Using the Mars system, several co-operation types such as the announcement of unbooked legs, order brokering, and di�erentstrategies for information exchange have been evaluated (see also [Fischer et al. 93]).Corresponding to the physical entities in the domain, there are two basic types ofagents in Mars, which are designed according to the InteRRaP agent architecture:transportation companies and trucks. Companies can communicate with their trucks andamong each other. The user may dynamically allocate transportation orders to speci�ccompanies. Looking upon trucks as agents allows us to delegate problem-solving skills tothem (such as route-planning and local plan optimisation).The shipping company agent (SCA) has to allocate orders to her2 truck agents (TAs),while trying to satisfy the constraints provided by the user as well as local optimalitycriteria (costs). An SCA also may decide to cooperate with another company instead ofhaving an order executed by her own trucks. The functionality of an SCA is modelled inthe InteRRaP architecture as follows:� The BBC of a company is rather simple. It provides patterns of behaviour forrecognising that a transportation order has been received, and for activating thecommunication primitives de�ned by the communication protocols (see section 4).� Since an SCA does no scheduling on its own, the function of the PBC reduces to analgorithm that synthesises a plan for an order based on the partial bids received bythe trucks.� The CC contains the main part of the functionality of the SCA. The protocols fortask allocation and negotiation (see Section 4) are represented as meta joint plansin a plan library (see [M�uller 94]) and are executed by a plan interpreter.Each TA is associated with a particular shipping company from which he receivesorders of the form "Load amount s of good g1 at location l1 and transport it to2We use 'she' to refer to shipping companies and 'he' to refer to trucks to resolve ambiguities.6



location l2 while satisfying time constraints fct1 ; : : : ; ctng". A TA is modelled asan InteRRaP agent as follows:� The BBC of a truck agent contains PoB for checking the existence of new orders,for deciding when to begin the execution of a plan step based on the temporalinformation kept in the plan, for performing the actual plan execution, and forrecognising tra�c jams based on data received by the travel information service (seeSection 5). The primitive actions the TA is able to perform are driving, loading,unloading, as well as communicating with his company.� A truck's PBC contains the local planning algorithm, which is a polynomial heuristicinsertion algorithm; additionally, in order to compute a bit for an order, the TA hasto evaluate the cost of his plan (see [Fischer et al. 94]).� The CC of a truck contains the de�nition of the protocols used for communicationwith his SCA (see Section 4).Interaction of the agents within one shipping company (called vertical cooperation)is totally cooperative. This means that a speci�c TA will accept deals (i.e. results ofnegotiation processes) with his SCA even if they are not locally pro�table for him. Wecall such a setting an instance of a cooperative task-oriented domain (cf. [Fischer 94]).In the cooperation between SCAs we investigate in both a totally cooperative and acompetitive setting (we call the latter setting an instance of a competitive task-orienteddomain). If we assume a cooperative task-oriented domain, we are purely interested inthe quality of the overall schedule which is emerging from the local problem solving donein the SCAs and TAs. A practical example for this setting is the cooperation amongdi�erent, geographically distributed branches of one shipping company. On the otherhand, in a competitive task-oriented domain among the SCAs, the overall schedule whichis computed will be far from optimal. In this setting we investigate how a single SCA canmaximise her pro�ts and how she can avoid being tricked by other agents.4 The Mars Simulation System: A Multiagent ApproachIn this section, we describe the multiagent approach underlying the Mars system; start-ing from the standard Contract Net protocol (Section 4.1), we de�ne a framework thatprovides more powerful tools for task decomposition and task allocation (Section 4.2). Amodel for peer-to-peer negotiation among di�erent SCAs is outlined in Section 4.3.4.1 Vertical Cooperation: Task Decomposition and Task AllocationIf an order o is announced to an SCA by a customer (which can also be another SCA),she has to compute a bid for executing the order. In order to determine the costs, sheforwards the order to her TAs. Each TA a computes a bid(a; cost(Ta � o)� cost(Ta); w);where Ta is the current tour of a and w is the amount of the order a is able to transport.cost(Ta � o) denotes the additional costs for a when executing o given Ta. Let Oa =foa1; : : : ; oang; n 2 IN be the current set of orders for a. A constraint net is derived from the7



information which is speci�ed with the orders. Each solution to this constraint solvingproblem is a valid tour which ful�ls all constraints speci�ed by Oa. Then, a tries to �ndthe best tour forOa using a constraint solving and constraint optimisation procedure. Ourimplementation is based on the Oz [Schulte et al. 94] system which was developed at DFKIin Saarbr�ucken and which provides powerful mechanisms for optimisation procedures incase the search space is de�ned by a constraint net.
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Figure 4: Hierarchical organisation of the agents in Mars.For each order o announced by an SCA to her TAs, she receives a set of bidsB = f(a1; c1; w1); : : : ; (an; cn; wn)g; n 2 INwhere ci speci�es the costs truck ai will produce when executing amount wi of order o,1 � i � n. The SCA selects(amin; cmin; wmin) 2 B with 8(a; c; w) 2 B : cminwmin � cwand sends a grant to the TA amin, notifying him that he will be granted the amount aminprovided that the SCA itself will actually receive a grant for o by the customer.The procedure described so far is the well known Contract Net protocol (CNP)[Davis & Smith 83]. Because the CNP provides time-out mechanisms it is easy to turn thiscommunication protocol into an anytime algorithm (see for instance [Boddy & Dean 94,Russell & Zilberstein 93]), i.e. the system will produce a solution (if there is one) withina speci�ed time t0. The quality of the solution may be increased if more time for compu-tation is available (see also Section 4.2). 8



4.2 The Extended Contract Net ProtocolThe pure contract net protocol as described so far runs into problems if the tasks exceedthe capacity of a single truck, i.e.amin < amount-to-transport(o)In this case, the manager of the task, i.e. the SCA, has to solve a knapsack problem,which for itself is in general NP-hard. To overcome this problem, we decentralised taskdecomposition by developing and implementing an extension of the CNP, which is calledthe ECNP protocol. ECNP is available as a standard protocol in Mars. In ECNP,the two speech acts grant and reject are replaced by four new speech acts: temporalgrant, temporal reject, de�nitive grant, and de�nitive reject. The ECNP is a natural,straightforward solution of the task decomposition problem.
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Figure 5: The ECNP from the point of view of a manager (a) and a bidder (b).A 
ow chart representation is used to represent the negotiation protocols providedby the Mars testbed. The protocols describe the roles of the individual agents in thenegotiation process. Figure 5 shows the 
ow charts for the ECNP protocol, from (a) themanager's and (b) the bidders' point of view. The main di�erence to the CNP is thatnow the bidders, i.e. the TAs, are allowed to bid for only parts of an order.In the ECNP the manager (SCA) announces an order o to its TAs. She then receivesbids for the order and selects the best one as speci�ed above. The best TA is sent atemporal grant. All others receive temporal rejects. If the best bid does not cover thewhole amount of an order, the remaining part of the order is reannounced by the SCA.This procedure is repeated until there is a set of bids that cover the total amount of theoriginal order o. From this set of bids the SCA computes a bid which is passed to the9



customer. Based on the answer of the customer, the SCA sends a de�nitive grant (orde�nitive reject, respectively) to all TAs which got temporal grants before. It is possibleto prove that in general all but the last bid selected are locally optimal choices for theSCA [Fischer et al. 94].When a TA receives a temporal grant for the �rst time, he has to store a copy of hislocal situation, i.e. the currently valid plan, because he must be able to restore this situ-ation in case he obtains a de�nitive reject. All subsequent temporal grants and temporalrejects are handled like the grants and rejects in the pure CNP. If a TA is sent a de�nitivegrant for an order, he removes the copy created above and switches to the new plan. If aTA gets a de�nitive reject, he restores the situation before the �rst temporal grant.In our framework, the ECNP is used to obtain a fairly good initial solution (see section7 for a quanti�cation of this claim) for the contract net protocol. Having a quick algorithmto determine a rather good upper bound for the costs induced by an order is important forthe agent since it provides a basis for its future decisions. However, because the situationchanges if new orders arrive and because the TAs will stick to decisions made in the past,the solution found is not even guaranteed to be pareto-optimal [Wellman 92].There are di�erent ways to optimise the ECNP solution. Currently, the SimulatedTrading algorithm which is described in section 6 as a solution of the dynamic replanningproblem is also used to optimise the order exchange among trucks. By coupling ECNP andSimulated Trading, we obtain an anytime algorithm [Boddy & Dean 88] At0 with a lowesttime bound t0 de�ned by the runtime of the ECNP process. I.e., At0 is an interruptibleanytime algorithm [Russell & Zilberstein 91] for each t � t0. Since the individual trucksemploy a polynomial insertion algorithms for computing their bids within the ECNP, thetime bound t0 for the ECNP is polynomial.4.3 Horizontal Cooperation: NegotiationOptimising the utilisation of transport capacities is the foremost goal for an SCA. Due tothe spatial and temporal distribution of incoming orders, cooperation with other SCAs(so-called horizontal cooperation) may be a bene�cial operation. For example, companiesmay exchange orders and information about free loading capacities, and they may applyfor orders o�ered by other companies. However, in contrast to the coordination betweenan SCA and her trucks, cooperation between companies is a peer-to-peer process wherea solution (e.g. a price to be paid for an o�er) can only be found if all the participantsagree, and where the conditions of the solution have to be negotiated among the compa-nies. It is this peer-to-peer negotiation what we call horizontal cooperation and whoseimplementation is described in the sequel.Negotiation Protocol: AGenDA supports the modelling of horizontal cooperation byproviding a parametrised bargaining protocol which can be instantiated with the speci�cconditions of a negotiation. Figure 6 illustrates the protocol by means of a 
ow chart.It shows both the types of messages exchanged between the companies as well asthe connection between local reasoning within a company (represented by local decisionnodes and by the connection to the vertical cooperation protocol with her trucks) andcooperative reasoning in the course of the negotiation. A company (company 1, or c1,in the example) may decide to announce free transport capacity to another company, letus say, company 2, or c2. This decision can be made based on information about free10
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endFigure 6: A Bargaining Protocol for Horizontal Cooperationcapacities c1 has received by her trucks. Based on its local state, c2 decides whether shewants to take up the announcement, and, if so, sends an order to c1. This instantiatesa bargaining protocol where c1 takes the role of the o�ering agent, c2 takes the roleof the orderer. c1 will start by sending an o�er (bid) to c2; c2 will decide whether toaccept, reject, or to modify the bid by making a countero�er. The bargaining processcontinues either until both parties have agreed on a common solution or until it becomesclear that no compromise can be found. The other communication acts shown in �gure 6such as last bid, to outbid, to surpass are special purpose features enabling an auction-likenegotiation between more than two agents.Decision-Making: The decision-making of the companies during the negotiation pro-cess is based on information they obtain by their trucks, e.g. information about freecapacities and costs. Whereas the costs of an order were the decision criterion for theTAs, the SCAs make their decisions based on the utility of an order, which is computedas the di�erence between the worth (which is obtained from the customer or from othercompanies) and the costs. Based upon this information, a company determines in how farcooperation will lead to an increase of its local utility, and thus determines its range of ne-gotiation. Another important issue for decision-making is partner modelling; for example,if all the agents had complete knowledge about the decision criteria of all other agents,each agent could locally compute whether there is a solution accepted by all the partners.In the case where all the agents have the same decision criteria, two agents could directlyagree on the mean value of the �rst bid and the �rst countero�er, since negotiation is toconverge to this value. However, in reality, agents do not have complete knowledge abouteach other; this makes the bargaining process interesting. In the current system, partnermodelling is restricted to agents making simple assumptions on the parameters of other11



agents; future research will aim at enhancing this model. There are several con�gurableparameters that can be used to vary the decision-making behaviour of an agent, e.g.:!d desired pro�t in per cent for an order.!m minimal pro�t in per cent accepted by an agent.� function determining the amount to which an agent's next o�er is modi�ed givenits current o�er p; it can be set to either constant k or max(k; (!d�!m)�pn ). n is ascaling factor determining the speed of convergence; the max function guaranteestermination of the negotiation independent of the size of n.�c threshold denoting the agent's cooperation sensitivity (which is a measure for howuneconomic an order has to be for an agent to be o�ered to another agent); �c 2[0; 1].So far, we have described methods for task decomposition and task allocation imple-mented in the Mars system which allow us to deal with dynamics and uncertainty inplanning; in the sequel, we will extend this framework to mechanisms allowing us to dealwith dynamics in plan execution, too.5 Introducing Execution DynamicsIn order to be able to explore methods for dealing with problems occurring due to unfore-seen events happening during plan execution, the concept of tra�c congestions has beenintegrated into the Mars system. It is described in the sequel. Firstly, the simulationenvironment is outlined in Section 5.1. Section 5.2 deals with how adequate cost functionscan be de�ned. In Section 5.3, a probabilistic model for the generation of tra�c jams isintroduced.5.1 The Simulation FrameworkThe enhanced Mars simulation environment can be divided in two parts: the simulationworld and the agent society. The agent society has been described in Section 3. Thesimulation world consists of three parts: the world simulator module, the tra�c jam gen-erator, and the travel information service. The actual world simulator module maintainsthe state of the world, i.e. current positions of TAs and goods, the road map which ismaintained as a graph G = (V; E), state of tra�c, time etc. The tra�c jam generatorincorporates a statistical model for tra�c jams. Its output is given as a function� : T � E 7! [0; 1];where T is the set of time instants. Thus, � computes for each connection between twocities of the road map at a time instant ti the degree of tra�c disturbance that ranges from�! 0 (tra�c jam) to 1 (no disturbance). In the sequel, we write �tij for the disturbancefactor �(t; eij) on the edge connecting nodes i; j 2 V at a given time instant t. Sensorydata about the tra�c density is provided to the third module of the simulation world,the travel information service (TIS). TIS information can be accessed from the TAs; it isused by them in order to compute the best route for a given situation (see Section 5.2).
12
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Figure 7: The Simulation Environment5.2 Cost FunctionsThere are two di�erent levels for describing how the TAs make their plans: the roughplanning level maintaining which tasks to perform and in what order to perform them,and the �ne planning level describing the actual route taken to perform a speci�c order.Since the rough planning takes place several hours before the start of a journey, it makesno sense to take into account an extensive amount of information regarding the tra�csituation during that phase, because the situation is very likely to have changed by thetime the order execution actually starts.In the enhanced model which we present in the sequel, distances and disturbancefactors �tij on an edge connecting nodes i and j are considered for the �ne planning.�tij ranges over [0; 1], where � = 0 means tra�c jam and 1 means no disturbance. Theobjective function which is to be minimised is to be de�ned via costs. Criteria which haveto be considered for this purpose are e.g. transportation time dur and distance d. Thee�ect of the disturbance factor in our model is that it increases transportation time. Thecriteria are evaluated using factor prices. A model assumption is that the �xed costs C�xare the same for all TAs and SCAs3. In the following, we set Cfix = 0 to simplify themodel further. In this model, assuming the state of the world at time t, the time durij aTA needs to get from a place i to a place j is given asdurij =  dijvij! � 1�tij (1)3Changing this assumption solely means shifting the calculated costs along the X-axis.13



where� dij is the distance [km] between i and j,� vij is the average speed [km=h] of a TA under optimal conditions, and� �tij is the value of the disturbance factor for the edge connecting nodes i and j attime t.In the following, let x1; : : : ; xk be the set of factors relevant for decision-making. Inour case, k = 2: both the time needed and the distance travelled are considered as factorsin the cost function. Now, for time t, given a tour Tt, we can de�ne the objective function,cost(Tt) = nPi=1 nPj=1 �durij � p1 + dij � p2� � yij= nPi=1 nPj=1 dij � � p1�tij �vij + p2� � yij ! minwhereyij = ( 1 : if eij 2 Tt0 : otherwisep1 = costs per hour, p2 = costs per km.Using this formula, the current route as well as alternative routes to bypass a tra�cjam are evaluated. For di�erent types of disturbances, the evaluation can lead to di�er-ent replanning strategies, which include either local replanning or global reallocation asdescribed in Section 6.5.3 A Model For Tra�c Jam GenerationIn the sequel, the disturbance variable � which is used in order to generate and to simulatetra�c jams is de�ned by means of a probabilistic model. Based on �, the TAs thenevaluate alternative routes according to the cost function de�ned in Section 5.2. For thedisturbance variable �tij on an edge between i and j at time t, we have
�tij = 8>>>>>>>><>>>>>>>>:

1 : no disturbance[0.6{1[ : little disturbance[0.4{0.6[ : medium disturbance[0.2{0.4[ : heavy disturbance]0{0.2 : stop and go tra�c0 : total jamThe tra�c density ztij is used to compute �tij. ztij denotes the number of vehicles goingon edge eij at time t. For an assumed speed v a vehicle is allowed to go on edge eij, ztijreaches its maximum value svij. Note that for calculating the maximum value svij for ztijwhich allows a TA to go with speed v (in this case �tij > 0 holds), the reaction time tr(v)of the truck driver has to be considered when computing the average distance distvcars. Incase of a tra�c jam at edge eij (�tij ! 0), ztij reaches the maximum value s0ij. In a simpleapproximation, svij is computed as 14



svij = len(eij)lencars + distvcars ; (2)where lencars is the average length of a vehicle, distvcars is the average distance betweentwo vehicles going at speed v, len(eij) is the length of edge eij. The tra�c density ztij onlya�ects the disturbance variable �tij if the TA cannot drive the planned average speed onthis segment. For ztij � svij, there is �tij = 1, i.e. no disturbance. We capture this by afunction svij with svij(z) = ( svij; : if 0 � z < svij;z; : if svij � z � s0ij (3)Based on this, the disturbance factor �tij can be de�ned as follows:�tij = �(t; eij) = svij � (s0ij � svij(Z(t; eij)))svij(Z(t; eij)) � (s0ij � svij)where v is a global constant; Z(t; eij) is a random variable specifying the number ofvehicles on edge eij which is computed by the formula:Z(t; eij) = P (") � svij � �+ (1� �) � Z(t� 1; eij):P (") is a random variable with a normal distribution and a mathematical expectedvalue of ". " is time-dependent (e.g. rush hours). � determines the in
uence of randomvariable P (") on Z(t; eij).Up to now, we have described how jam information is generated and how it is inte-grated into the cost functions of the TAs, allowing them to derive information neededfor decision-making. Section 6 describes a mechanism that allows the agents to react tounforeseen situations caused by the occurrence of tra�c jams by initiating a dynamicreallocation process.6 Simulated Trading: An Auction Mechanism for Dynamic TaskReallocationThe Simulated Trading (ST) [Bachem et al. 93] procedure which is presented in this sec-tion can be used for two di�erent purposes:� Dynamic replanning: if a TA realises that he cannot satisfy the time constraint ofan order because of an unforeseen tra�c jam, he can initiate an ST process leadingto an order reallocation satisfying the time constraints.� Iterative optimisation: starting from the initial ECNP solution (see section 4.2),ST may be initiated to yield a better order allocation. The experimental results inSection 7 demonstrate the usefulness of ST as an optimisation technique.In the following, the principle of ST and its application in theMars system are explained.15



6.1 Principles of STIn [Bachem et al. 92], Bachem, Hochst�attler and Malich present a parallel improvementheuristic for solving vehicle routing problems with side constraints. Their approach dealswith the problem that n customers order di�erent amounts of goods which are locatedat a central depot. The task of the dispatcher is to cluster the orders and to attach thedi�erent clusters to trucks which then in turn determine a tour to deliver the clusterallocated to them.
1 2 3 4 5 n

AAAA
AAAA

A
A
A

AAA
AAA
AAA

AA
AA
AA

AAAA
AAAA
AAAA

A
A
A

AAA
AAA
AAA

AAA
AAA
AAA

AAAAA
Depot

1 2

3

4

5

n

A
A
A

AA
AA
AA

AA
AA
AAA

AAA
AAA
AAA

AAA
AAA
AAA

AAA
AAA
AAA

Customers

Orders

Vehicles

Routing

Clustering

Figure 8: The Standard Vehicle Routing ProblemThe solution to this problem is constructed using the Simulated Trading procedure. Itstarts with a set of feasible tours T1; : : : ; Tt0 which may e.g. be obtained by a conventionalheuristic which is applicable to this domain. The tours are represented as an ordered listof costumers that have to be visited. Parallelism is achieved by that the data of eachtour Ti can be assigned to a single processor i (the tour manager) of a parallel (MultipleInstruction Multiple Data, MIMD) computer. To guide the improvement of the initialsolution, an additional processor, the stock manager is added to the system. The task ofthe stock manager is to coordinate the exchange of costumers orders between the di�erentprocessors. To do this, it collects o�ers for buying and selling orders coming from theprocessors in the system.A price system is introduced providing a quality criterion for order exchanges to thestock manager: If processor p sells an order i (i.e., an order from the depot to customeri), its cost should decrease. This saving of costs is associated as the price Pr to i, wherePr def= cost(Tp)� cost(Tp 	 fig)Tp def= Tp 	 fig.Here, the term Tp	fig denotes the tour that evolves from Tp if customer i (or order i,respectively) is deleted from processor p's tour list. Accordingly, the price Pr for processorp buying a customer i is computed as the di�erence of costs for the old tour Tp and thecosts for the new tour Tp � fig, which evolves from the insertion of costumer i in Tp, i.e.16



Pr def= cost(Tp � fig)� cost(Tp)Tp def= Tp � fig.
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6.2 Adapting ST for the Mars SystemThe main idea is to let the SCA simulate a stock exchange where her TA can o�er theircurrent orders at some speci�c \saving price" and may buy orders at an \insert price".While getting sell and buy o�ers form her TAs the SCA maintains the trading graph andtries to �nd an order exchange that optimises the global solution. A global interchangeof k customers between all of the current tours of the TA corresponds to a matching inthe trading graph. The weight of the matching is de�ned by the pro�t of this globalinterchange. Searching for a trading matching is done by a complete enumeration of thetrading graph. Though this requires exponential time in the worst case, it turned out tobe feasible in practice since the trading graph normally does not have too many branches.Whereas we allowed the splitting of orders into suborders in the ECNP, we forbid it inthe simulated trading process, to restrict combinatorial explosion.Important for the ST procedure are the decision criteria for the TA to decide whichorders to sell or buy. This is done using heuristics like \buy nearest" and \sell farthest"combined with randomisation techniques.Note that simulated trading can only be active during a period of time when nonew orders arrive at the SCA. Nevertheless, while the ST process is active the systemmaintains a valid solution because ST is done using a copy of the current plan of a TAand the current plan is replaced by the new one computed via the simulated tradingprocedure only if that was successful, i.e. a trading matching was found which led to anew optimum. Thus, reactivity is ensured: when a new order arrives, the TA always usesthe consistent original plan to compute a bid for the ECNP. If a new order occurs whilesimulated trading is active, the procedure has to be aborted, unless the order �ts into theTA's plan used for the ST process.6.3 Using ST for Dynamic ReplanningAn important feature of the Mars system is that TAs do not only compute plans: whentime is up, they actually start executing the orders. Executing an order includes the stepsof loading, driving, and unloading. Note, that even after the TA already has started theexecution of his local plan, it is possible for him to participate in the ECNP protocol.However, in the ST process the TA is not allowed to sell orders he has already loaded.A problem in plan execution is that planning is done on statistical data which may betoo optimistic. For instance, when the plan is actually executed the TA may get stuck in atra�c jam (see Section 5). Therefore, replanning might be necessary because the TA mayrun into problems with respect to the time constraints which are speci�ed with the orders.Fortunately, this situation can be nicely handled in our framework. We distinguish twocases:Firstly, there are disturbances that can be resolved using local replanning. In somecases, the TA can do this by selecting an alternative route to the next city where he hasto deliver orders. This is done by computing the shortest path in a dynamically changinggraph using Dijkstra's algorithm. In other cases, this can force the TA to completelyrecompute his local plan using his local planning procedure. Even if the TA is able tosuccessfully derive a new plan which satis�es all constraints, the quality of the plan maydrop and thus, some orders may be sold within the next ST process. Therefore, restrictedglobal rescheduling may occur already in this case.18



Secondly, if the TA cannot �x the problem by local replanning, the procedure dependson whether the order is already loaded on the TA or if it is not. In the latter case, theTA initiates a simulated trading process to sell the orders that he is no longer able toexecute. If a trading matching is found, this is a solution to the problem. If the simulatedtrading process does not �nd a valid solution for the situation, the TA has to report theproblem and return the respective orders to his SCA. In this case the SCA herself candecide whether to sell the order to another SCA (see below) or to contact the customer,report the problem, and try to negotiate about the violated constraints. In the worstcase, the company has to pay a penalty fee.If the orders that are causing trouble are already loaded on the TA, it is not possibleto just return the order to the SCA or to sell it in a simulated trading process. In thiscase, the only chance for the TA is to report the problem to the SCA which then has to�nd a solution by contacting the client, trying to relax the constraints of the order. If aTA runs into this situation he is paralysed in the sense that he cannot participate in theECNP or in the simulated trading process until he receives instructions from his SCA.Fortunately, the ECNP and the simulated trading procedure can deal with this situationbecause they do not require participation of all TAs.7 Experimental ResultsIn order to evaluate the in
uence of the strategies presented so far on the solution ofthe global scheduling problem, we ran benchmarks developed by [Desrochers et al. 92],consisting of 12 test sets �a 100 orders describing instances of the vehicle routing problemwith time windows. This is a static scheduling problem that does not challenge the fullexpressiveness of Mars:� There is only one depot from where a set of clients has to be served.� In each example there are 100 orders for 100 clients where no client occurs twice.� In the test data, it is assumed that only unloading at the location of the client doesneed time. There are no time restrictions speci�ed for the process of loading a truck.� There is only a single company modelled.� It is assumed that there is always a direct line connection between two cities.However, despite these restrictions, optimal solutions are known for only a small portionof the examples.In general, optimal solutions can only be computed if a problem is treated as a closedplanning problem. In this case, when the planning processes is started all input data mustbe known. Throughout the planning process the input data is not allowed to be changed.It is clear that there exist special purpose algorithms which perform more e�cient thanour system for this speci�c problem, but these algorithms are not able to deal with themore general problem solved by Mars.The parameters to be observed are the distance needed by the trucks (the primaryquality criterion in the benchmark) and the number of trucks required by the solution(which is an important criterion from an economic point of view). The parameters varied19



were the number of orders (25, 50, and 100, respectively), the percentage of orders withtime constraints (25, 50, 75, and 100 %), the strategy (pure ECNP or ST) and thestructure of the input set (random or pre-sorted by the earliest start time). The latterparameter is of special importance: randomness simulates dynamics in a sense that theagent has no knowledge about the temporal ordering of transportation orders. Since nobenchmark for a dynamic problem was available, this helps us to evaluate how gracefulthe performance of our strategies degrades in the dynamic (non-ordered) case with respectto the static (ordered) case.Figure 10 shows the results from a class of experiments comparing the relative per-formance of our solution before and after the optimisation using ST with the optimalsolution for some examples where this solution is known (assuming a sorted input set). Itshows that the ECNP solution is between 3% and 74 % worse than the optimal solutionand thus is comparable to heuristic OR algorithms; in our experiments ST improves thissolution by an average of ca. 12%.
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greedy, contract-net-like algorithms; however, this speculation still needs being con�rmedby further theoretical and empirical results. For results comparing di�erent horizontalcooperation settings at the SCA layer, we refer to [Fischer et al. 93].8 Related WorkThe problem of delivering a set of orders is often regarded as a scheduling or a routingtask, or a combination of both (see [Bodin et al. 83]). The di�erence between routing andscheduling tasks is that routing problems have no restriction on delivery time nor are thereprecedence relationships between stops. Hence, routing problems focus exclusively on thespatial or geometrical aspects of the problem. On the other hand, scheduling focussesexclusively on the time constraints of the problem. Combined routing and schedulingproblems incorporate both spatial and temporal characteristics.Compared to the large number of investigations dealing with static scheduling orrouting problems, the dynamic problem instance, where new orders are allowed to beinput into the system at any point in time, is only weakly explored. Particular attentionhas been given to dynamic aspects at the \Centre for Transportation Studies" at MITwhere solutions to this problem have been developed since the mid seventies. An overviewof several of these approaches is contained e.g. in [Bodin et al. 83].Most of the MIT approaches rely on applying OR-based methods. However, it turnsout that problems arise when the number of constraints to deal with grows or when real-time response of the system is required, e.g. in case system support should be given to adispatcher who has to tell customers an estimated cost of an order at the phone. For thisclass of problems often knowledge-based approaches are used as those of Bagchi and Nag([Bagchi & Nag 91]). They deal with the problem that a vehicle scheduler at a centralisedfacility receives customer requests for truck capacities at speci�c dates and times. Thescheduler has to assign these loads to trucks obtained from contract carriers. Based on astudy of the concepts of a human scheduler Bagchi and Nag have derived a set of ruleswhich are used to build up a plan incrementally and to do some repairing if necessary. Toimplement these rules and to develop their dynamic load scheduling system EXLOAD theydecided to use a rule-based expert system shell. Within their system, global optimisationis reduced to assigning a new shipment to a contract with minimal incremental cost causedby that insertion. This is based on a result of Psaraftis ([Psaraftis 88]) who shows thatin a dynamic scheduling environment global minimisation over a period of time is bestachieved by minimising the incremental cost of each assignment.In contrast to our approach, Bagchi and Nag o�er a centralised solution conceptthat covers only the problem solving for one dispatcher in a single shipping company.Marsextends this approach by providing an inter-company perspective that could becombined with Bagchi and Nag's solution to model the intra-company situation.OR-based approaches have been applied successfully to solve static instances of theVehicle Routing Problem. However, in order to be used in a dynamic environment thesemethods have to be enhanced with mechanisms providing a real-time behaviour of the cor-responding algorithms. Furthermore, usually OR-based methods are di�cult to use if thenumber of constraints is high (see [Golden & Assad 83, Psaraftis 88, Bagchi & Nag 91]).Falk, Spieck, and Mertens (cf. [Falk et al. 93]) pursue an approach based on the in-tegration of knowledge-based mechanisms and OR algorithms. This combination of twomethodologies is expressed by the term Partial Intelligent Agents (PIAs) used to denote22



components of distributed, cooperating systems having a hybrid structure, i.e. modulesthat include a "conventional" (usually OR-based) and a knowledge-based part. Eachagency is represented by a dispatching PIA that is responsible for the allocation of theorders of its agency to the trucks. The dispatcher knows the current location of its trucksand it bases its decision on this knowledge. Its objective function considers maximisingthe utilisation of the trucks' capacity, minimising the idle time and rides without carriage,and minimising the length of the route for a single order.The process of cooperative planning for a new order is basically handled by the Con-tract Net Protocol as proposed in [Davis & Smith 83]. Falk et al. do not only use theContract Net for the task allocation process but also for task decomposition.Compared to our modelling the approach described above considers an instance ofour domain, namely a single company which is geographically distributed. Thus, thedispatching agents are willing to exchange all the information (in this case, the completeroute plans) in a cooperation process. A further di�erence to our approach is that Falket al. do not allow the actual transportation resources to take an active role by modellingthem as agents. Doing this allows us to parallelise the scheduling process and thus, toreduce the practical problem complexity (see Section 3).9 Conclusion and OutlookIn this paper, we have presented a multiagent approach to the design of the transportationproblem. Techniques developed in Distributed AI, such as task decomposition and taskallocation, decentralised planning, and negotiation have been applied to the scheduling oftransportation orders among an agent society consisting of shipping companies and theirtrucks. The applicability and suitability of these techniques for the real-world applica-tion of transportation scheduling in medium-size and large shipping companies has beendemonstrated by developing the simulation system Mars.The paper provides experimental results indicating that the multiagent approach toscheduling achieves acceptable solutions that are comparable to those of heuristic searchOperation Research algorithms. Moreover, the multiagent approach as implemented inthe Mars system has some fundamental advantages over standard OR algorithms: Itprovides increased 
exibility, since it allows to vary dynamically the number of agents,even during the simulation. Moreover, whereas the scope of the available OperationsResearch techniques is limited to static scheduling problems, the multiagent approachresults in an on-line system, which can cope with open, dynamic scheduling problems andwith the dynamics in plan execution. Especially the latter argument makes DAI tools fortask decomposition, task allocation, planning, and negotiation a powerful and promisingalternative for solving industrial scheduling problems.The current enormous advances in telecommunication and sensor technology estab-lish the necessary preconditions to put DAI concepts into practice in the transportationdomain over the next few years: trucks are equipped with board computers which { viawireless modem (see e.g. MODACOM [Preissner-Polte 93]) { maintain the connection totheir company, and which allow the truck to obtain tra�c information recorded by sensorsinstalled along the roads. A decision-support system for the driver computes the currentlyoptimal route to go based on this sensor information and on information it receives fromthe driver's company. Thus, new transportation orders can be allocated very 
exibly and23



quickly to the appropriate resource; tools based on concepts such as the ECNP can beused to assist the human dispatcher in its allocation decisions.An extension of the Mars system allowing the use of the methods presented in thispaper for order dispatching tasks in a real shipping company is an important medium-termgoal of our research.As regards theoretical aspects of our research, an important issue for future workare decision-theoretic problems: Using the concepts presented in this paper as a basisfor decision-making, the SCAs will start negotiation processes among each others. Inthis negotiation processes, strategies must be found that guarantee that agents will notbene�t e.g. from lying. Preliminary work published in [Fischer 94] shows that the generalresults presented by Zlotkin and Rosenschein [Zlotkin & Rosenschein 93] for task-orienteddomains are not fully applicable to the transportation domain as presented in this paper.A more detailed treatment of this issue will be subject to future work.AcknowledgementsWe would like to thank Norbert Kuhn for intensive discussions and helpful comments onearlier drafts of this paper. Darius Schier implemented the Simulated Trading algorithm.Martin Malich (University of Cologne) helped us obtaining the benchmark data and wasvery cooperative in all matters concerning Simulated Trading. We thank the anonymousreviewers of the International Journal of Applied Arti�cial Intelligence for comments thatcontributed to improving the quality and the readability of the paper.
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A Benchmark ResultsLegend for table 1:TS Number of test set #O Number of ordersE ECNP solution S Simulated Trading solutionO Optimal solution Dist. Distance travelledWT waiting time Std. sorted?T Total time needed (incl. waiting time)
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B Computational Complexity of Transportation ProblemsIn this Section, we summarise basic complexity results showing that the transportationproblems tackled by our research are NP-hard.The class of problems we are interested in is characterised by the fact that orders maybe entered into the system at any time, and thus de�nes an open routing or schedulingproblem. Usually, this problem instance is called the Dynamic Vehicle Routing Prob-lem (DVRP). We will now formalise the intuitive notion of the transportation problemdescribed so far.De�nition 1 The Routing Decision Problem RDP:INSTANCE:Graph G = (V;E),Length l(e) 2 Z+0 for each e 2 E,Set of orders O = f oi=(si,di,wi) j i = 1, . . . , m, with si 2 E being the startingpoint of oi, di 2 E being the target point of oi, and wi 2 Z+ giving the weight (orvolume) of oi g,Trucks A = fa1, . . . , am g,Function Capacity: A! Z+ giving the capacity of each truck, andBound B 2 Z+.QUESTION:Is there a disposition function D: O ! A and a routing of the trucks ai 2 A, suchthat all orders are delivered and that the sum of the length of the route of the trucksis at most B?Note that the Routing Decision Problem RDP is only a simpli�ed version of the problemwhich we actually deal with, since there are no precedences between orders, nor are timewindows speci�ed. However, the following theorem 1 states that already this problem isNP complete.Theorem 1 RDP is NP -complete.We refer to [Fischer & Kuhn 93] for the proof of theorem 1. It is done in two steps. Firstly,a polynomial time reduction of the Modi�ed Rural Postman Problem which is known tobe NP -complete (cf. [Garey & Johnson 79]) to the RDP is given. This shows that theRouting Decision Problem is at leastNP -hard. Then, a nondeterministic polynomial-timealgorithm for RDP is provided, showing that RDP itself belongs to NP . 2Finally, theorem 2 states that the RDP is NP complete even if there is only a singletruck, and if the length of each edge e in the graph G is equal to one.Theorem 2 The RDP is NP complete even if jAj = 1 and l(e) = 1 for all e 2 E.The theoretical results obtained so far show that the scheduling problems in the trans-portation domain are intractable, i.e. we should not hope to �nd complete algorithmsrunning in less than exponential time. Therefore, there is a need for using heuristic al-gorithms, new methodologies, and new techniques for dealing with the transportationproblems. In the sequel, we present a heuristic approach to a solution of these problemsbased on the multi-agent paradigm. 30



TS #O # Trucks Dist. T WT Std.E S O E S O E S E SR101 25 9 8 8 768.5 665.3 617.1 1464.5 1365.8 44.6 450.5 yR101 50 15 13 12 1483.2 1150.4 1035.2 2664.1 2282.0 68.1 631.5 yR101 100 22 22 18 1959.9 1833.9 1607.7 3891.2 3887.5 931.2 1053.5 yR101 100 22 21 - 2327.4 1835.4 - 4514.7 3891.0 1187.2 1055.5 nR102 25 7 7 7 566.0 566.0 547.1 1243.3 1243.3 427.2 427.2 yR102 50 10 10 11 1041.7 1041.7 904.6 1917.7 1917.7 375.9 375.9 yR102 100 20 20 17 1655.1 1655.1 1434.0 3617.1 3617.1 962.0 962.0 yR102 100 22 20 - 2116.1 1922.6 - 4141.6 3652.2 980.3 729.6 nR103 25 4 4 5 494.1 494.1 454.4 840.5 840.5 96.4 96.4 yR103 50 8 8 9 935.3 935.3 772.5 1655.9 1655.9 220.5 220.5 yR103 100 14 14 - 1544.1 1544.1 - 2937.7 2937.7 393.6 393.6 yR103 100 17 16 - 1907.3 1436.6 - 3497.9 3116.6 590.5 679.9 nR104 25 4 4 4 447.1 447.1 416.9 826.7 826.7 129.6 129.6 yR104 50 7 6 - 842.4 826.2 - 1363.0 1351.4 20.5 25.1 yR104 100 11 11 - 1449.1 1333.9 - 2461.9 2442.3 12.7 108.4 yR104 100 15 12 - 1824.3 1275.7 - 3280.5 2512.9 456.2 237.2 nR105 25 7 6 6 645.7 593.8 530.5 1185.5 1036.8 289.7 193.0 yR105 50 10 9 9 1159.7 1027.9 891.7 1846.2 1674.9 186.4 147.0 yR105 100 19 17 - 1850.0 1682.5 - 3421.2 3130.2 570.7 447.6 yR105 100 20 16 - 2269.7 1630.9 - 3665.6 2948.1 395.9 317.2 nR106 25 6 6 5 519.5 511.8 467.4 1094.3 1070.8 324.8 309.0 yR106 50 8 8 8 953.6 953.5 785.2 1607.3 1601.0 153.6 147.5 yR106 100 17 15 - 1677.4 1489.6 - 3108.2 2845.2 430.8 355.5 yR106 100 19 14 - 2279.6 1371.1 - 3736.8 2782.1 457.1 410.9 nR107 25 5 4 4 664.0 515.7 423.0 1046.4 857.9 132.4 92.2 yR107 50 7 7 7 977.2 977.2 703.2 1539.8 1539.8 62.6 62.6 yR107 100 12 13 - 1629.7 1544.3 - 2668.6 2692.9 38.9 148.5 yR107 100 17 12 - 2040.4 1207.2 - 3471.9 2551.3 431.4 344.0 nR108 25 4 4 4 652.0 441.4 396.2 971.1 823.6 69.1 132.2 yR108 50 6 6 - 798.0 785.3 - 1312.9 1308.1 149.3 22.8 yR108 100 13 12 - 1729.1 1296.0 - 2729.5 2487.1 0.4 191.1 yR108 100 14 12 - 2015.5 1388.8 - 3123.6 2461.6 108.1 72.7 nR109 25 6 6 5 658.9 658.9 441.3 1104.5 1104.5 195.6 195.6 yR109 50 10 9 - 1232.8 900.6 - 1883.6 1620.6 150.8 219.9 yR109 100 18 15 - 2141.8 1490.4 - 3443.4 2792.2 301.6 301.7 yR109 100 19 16 - 2349.7 1641.0 - 3614.3 2930.4 264.6 289.3 nR110 25 5 5 4 632.9 531.4 429.5 1016.9 927.9 134.0 146.4 yR110 50 9 9 7 1275.2 932.5 697.0 1845.1 1698.5 69.8 265.9 yR110 100 14 13 - 1980.9 1316.1 - 3099.6 2617.3 118.6 301.1 yR110 100 18 17 - 2233.8 1821.7 - 3517.3 2985.7 283.4 164.0 nR111 25 4 4 4 599.5 541.7 428.8 886.1 838.3 36.6 46.5 yR111 50 8 7 - 1085.6 941.7 - 1620.7 1459.2 35.1 17.4 yR111 100 14 13 - 1860.6 1480.1 - 3136.3 2809.4 275.6 329.2 yR111 100 17 14 - 2064.7 1211.1 - 3399.1 2676.5 334.4 465.3 nR112 25 5 5 4 683.7 572.6 393.0 1075.0 963.9 141.2 141.2 yR112 50 9 7 - 1381.7 803.9 - 1924.6 1380.7 42.9 76.8 yR112 100 15 12 - 1978.7 1205.8 - 3091.8 2333.6 113.0 127.8 yR112 100 15 12 - 1988.1 1139.7 - 3101.8 2338.7 113.1 199.0 nTable 1: Benchmark Results for ECNP and ST Algorithms
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