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Abstract

A novel combined diagnostic capable of measuring multiscale density
fluctuations that extend from magnetohydrodynamic (MHD) scales to
the lower bound of the electron temperature gradient (ETG) mode has
been designed, installed, and operated at the DIII-D tokamak. The
combined diagnostic was constructed by adding a heterodyne inter-
ferometer to the pre-existing phase contrast imaging (PCI) system,
both of which measure line-integrated electron-density fluctuations.
The port-space footprint is minimized by using a single 10.6µm CO2

laser and a single beampath. With temporal bandwidths in excess of
1MHz, the PCI measures high-k (1.5 cm−1 < |k| 6 25 cm−1) fluctua-
tions with sensitivity 3⇥ 1013 m-2/

p
kHz, while the interferometer

simultaneously measures low-k (|k| < 5cm−1) fluctuations with sen-
sitivity 3⇥ 1014 m-2/

p
kHz. The intentional mid-k overlap has been

empirically verified with sound-wave calibrations and should allow
quantitative investigation of the cross-scale coupling predicted to be
significant in the reactor-relevant Te ⇡ Ti regime.

The combined PCI-interferometer was operated during an experi-
ment in which the ETG drive a/LTe

and the ion temperature gradi-
ent (ITG) drive a/LTi

were locally modified in an attempt to elicit
a multiscale turbulent response. Numerous turbulent branches are
observed. In particular, the interferometer measures a low-k electro-
magnetic mode driven unstable by collisionality, properties consistent
with the micro-tearing mode (MTM), and the PCI measures a turbu-
lent mode that exhibits distinct “spectral flattening” when increasing
a/LTe

relative to a/LTi
, hypothesized to be a tell-tale signature of in-

creased cross-scale coupling. Linear-stability analysis and quasilinear-
transport modeling are performed with the trapped gyro-Landau fluid
code TGLF, and qualitative agreement with the PCI-measured spectral
flattening is obtained.
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Further, via toroidal correlation with DIII-D’s primary interferome-
ter, the measurement of core-localized MHD toroidal mode numbers
has been demonstrated. Where comparisons can be made with mag-
netic probes, the interferometer-measured toroidal mode numbers are
typically in good agreement. Unfortunately, the 4 cm major-radial off-
set between the interferometer beam centers in DIII-D can bias the
mode-number measurement, limiting widespread use of this capabil-
ity until a robust compensation technique is developed.

Thesis Supervisor: Miklos Porkolab
Professor of Physics
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1
I N T R O D U C T I O N

1.1 fusion energy

Fusion is the energy of the Sun and stars, and, for the better part of
the last century, thousands of scientists and engineers have striven to
replicate this process in a controlled manner here on Earth for a source
of safe, clean, and virtually inexhaustible energy. The core principle
is simple: combine (i.e. “fuse”) the nuclei of two light elements to
make the nucleus of a heavier element, with the total mass of the
resulting products being slightly less than that of the reactants; this
mass difference m is converted into an enormous amount of energy
E via Einstein’s famed E = mc2, where c is the speed of light in
vacuum [1, Ch. 14].

Practically speaking, however, fusion in the laboratory is extremely
difficult. Even for deuterium (D) and tritium (T), the most reactive of
nuclei, the probability of fusing (quantified by the reaction cross sec-
tion) is orders-of-magnitude smaller than the probability of the posi-
tively charged nuclei repelling and scattering off of each other (quan-
tified by the Coulomb cross section) [2, Sec. 9.3.4]. This relatively
small fusion cross section explains why beam-target or beam-beam fu-
sion are incapable of producing net energy. Instead of using a highly
directed beam that is far from thermal equilibrium, an alternative ap-
proach is to employ the thermal energy of a material at or near thermal
equilibrium to overcome the Coulomb barrier; because of its reliance
on the thermal energy, such an approach is referred to as thermonu-
clear fusion [1, Ch. 14].

The temperatures required to initiate thermonuclear fusion dictate
that the fuel exists as a hot, ionized gas referred to as plasma. Initially,
the plasma must be externally heated to reach fusion-relevant condi-
tions, but it is envisioned that at some threshold, much like the Sun,
the fusion reactions will become self-sustaining; this threshold is re-
ferred to as ignition. Now, in addition to the thermal energy required
to overcome the Coulomb barrier, the plasma must also be sufficiently
dense and sufficiently well-confined to reach ignition. The threshold
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22 introduction

for ignition in a D-T plasma is often quantified by the fusion triple
product

niTi⌧E > 5⇥ 1021m-3 · keV · s = 8 atm · s, (1.1)

where ni is the peak ion density, Ti is the peak ion temperature, and
⌧E is the energy confinement time [3, Sec. 1.1]. This condition could be
reached, for example, at ni = 1020m−3, Ti = 20 keV , and ⌧E = 2.5 s.

It should be emphasized that Ti = 20 keV corresponds to approx-
imately 200 million degrees Celsius, approximately ten times hotter
than the core of the Sun [4, Sec. 4.3]. No conventional container can
confine such a plasma. While numerous confinement schemes exist,
the only strategy considered in this thesis is that of tokamak magnetic
confinement, briefly summarized in Section 1.1.1. While the tokamak’s
magnetic fields prevent the hot, core plasma from contacting any ma-
terial walls, the outermost portions of the plasma (i.e. “the edge”) do
contact the reactor walls. To prevent damage to the reactor walls, the
plasma temperature and density must decrease to tolerable levels at
the edge; the resulting gradients in density and temperature provide
free energy for numerous coherent and broadband instabilities, some
of which are measured and characterized in this thesis.

1.1.1 The tokamak approach to fusion

The tokamak [3] is currently the leading configuration for a magnetic-
confinement fusion reactor. The tokamak is an axisymmetric toroidal
device characterized by a strong toroidal magnetic field B⇣ and a
toroidal plasma current I⇣. The toroidal plasma current produces a
poloidal magnetic field B✓, resulting in a total magnetic field B =
B⇣⇣̂ + B✓✓̂ that wraps helically around the torus in a barber pole-
like fashion. The magnetic force of this helical field balances the
plasma pressure, allowing the establishment of an equilibrium; the
large toroidal field B⇣ provides stability. Wesson provides a concise
historical overview of tokamak research [3, Sec. 1.10]. Since the initial
success of the USSR’s T-3 tokamak in the 1960s, hundreds of tokamaks
of numerous shapes, sizes, and field strengths have been built all over
the world [3, Ch. 11,12] [5].

The work reported in this thesis was conducted at the DIII-D toka-
mak in San Diego, CA [3, Sec. 12.5]. DIII-D is a mid-size (R = 1.67m,
a = 0.67m) diverted tokamak with maximum toroidal field B⇣ 6 2.2 T
and a maximum achieved plasma current of I⇣ 6 3MA. Up to 20MW

of deuterium neutral beam injection (NBI) and 6MW of electron cy-
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clotron resonance heating (ECH) are available for auxiliary plasma
heating. DIII-D is perhaps the best-diagnosed tokamak in the world,
with an extensive suite of equilibrium and fluctuation diagnostics.

1.1.2 Fluctuation-induced transport in tokamak plasmas

As hinted at above, the gradients in a fusion plasma can drive instabil-
ity. These instabilities may be broadband or coherent in nature, and
they may be beneficial, benign, or detrimental to confinement. The
brief discussion below is not a thorough or exhaustive survey of these
instabilities but is instead intended to provide a fusion-energy context
to the diagnostic development pursued in this thesis.

The radial transport of particles, heat, and momentum in a tokamak
plasma is often larger than that predicted by collisional (i.e. neoclassi-
cal) theory. There is strong evidence that this “anomalous” transport
results from drift-wave turbulence driven by the free energy in the
plasma gradients [6, 7]. Due to the relatively large size of its eddies,
ion-scale (k✓⇢i . 1) turbulence is often considered to be the most detri-
mental to confinement, but electron-scale (k✓⇢e . 1) turbulence may
be capable of forming radially elongated “streamers” [8] capable of
driving experimentally relevant electron heat transport [9]. Here, k✓
is a typical poloidal wavenumber of the turbulent mode, ⇢j = vtj/|⌦j|

is the gyroradius of species j, vtj =
p

Tj/mj is the thermal speed
of species j, and ⌦j = qjB/mj is the angular cyclotron frequency of
species j. For the reactor-relevant scenario Te ⇠ Ti, the characteristic
length scale of ion-scale turbulence is a factor (mD/me)1/2 ⇡ 60 larger
than the characteristic length scale of electron-scale turbulence, where
mD is the deuteron mass. Until the very recent work of Howard et
al. [10, 11, 12, 13, 14], self-consistently and simultaneously simulating
both ion- and electron-scale turbulence with realistic mass ratios was
computationally intractable. By exploiting the latest advances in high-
performance computing, Howard et al.’s multiscale simulations indi-
cate that cross-scale coupling can drive experimentally relevant levels
of electron heat flux [10, 14] and that this cross-scale coupling becomes
stronger as the drive for the electron-scale turbulence increases relative
to that for the ion-scale turbulence [11, 12].

In addition to broadband turbulence, coherent fluctuations can also
drive transport in a tokamak plasma. Of note are Alfvén waves that
are driven unstable by resonant interactions with superthermal ener-
getic particles [3, 15]. Such energetic particles sit in the tail of the
plasma’s distribution function, and they are generated, for example,
from the ionization of injected neutral-beam particles, the acceleration
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of ions by intense radio-frequency fields, or the fusion of two fuel ions.
Nonlinearly, the Alfvén instability results in the loss of energetic par-
ticles from the plasma, decreasing the fusion rate; further, these lost
particles may damage components inside the reactor. (As an interest-
ing aside, Alfvén spectroscopy is an effective diagnostic for measuring
the minimum value of the plasma’s safety factor, qmin [3, 16, 17]). Of
much practical interest to stable tokamak operation is the neoclassi-
cal tearing mode [3, Sec. 7.3], which can “lock” to the vessel wall [3,
Sec. 7.10] and result in “disruption”, an abrupt, violent termination of
the plasma discharge [3, Sec. 7.7-7.9].

1.2 optical interferometry

Following its invention by Michelson in the 1880s [18], optical inter-
ferometry has had a long and illustrious history in fundamental and
applied sciences, ranging from the famed Michelson-Morley experi-
ment disproving the existence of a luminiferous ether [19], to Zernike’s
phase-contrast method for imaging phase objects of wide importance
in biology [20], to the recent observation of gravitational waves by
the LIGO collaboration [21, 22]. The brief discussion of interferom-
etry below is intended to provide an instrumentation context to the
diagnostic development pursued in this thesis and to equip the reader
with a foundation for the more detailed discussion in Chapter 2.

Interferometry exploits the interference of light to measure varia-
tions in optical path length, where optical path length is defined as
the product of the geometric path length l and the index of refraction
N of the intervening medium. The phase �� acquired by light prop-
agating through optical path length �(Nl) is �� = k�(NL), where k

is the in-medium wavenumber of the light; integrating over the ge-
ometric path yields the total acquired phase, �. Thus, an incident
electric field E0 will be phase shifted as E0e

i� after transiting such
an optical path. Note that this phase shift does not alter the field
intensity I / |E0e

i�|2 = |E0|
2; as most detectors are square-law, in-

tensity detectors, such naive detection of the phase-shifted radiation
provides no information about the phase � or the underlying optical
path. However, by interfering the phase-shifted field with a reference
field ER = E0e

i�R of known amplitude E0 and known phase �R, the
total field becomes

Etot = ER + E0e
i� = E0

�
ei�R + ei�

�
, (1.2)
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with corresponding intensity (averaged over an optical cycle)

I / |Etot|
2 = 2E2

0 [1+ cos (�-�R)] . (1.3)

Now, the measurable intensity I is a function of the phase �. The
specification of the reference field ER determines the interferometric
method. Below, two interferometric methods — heterodyne interfer-
ometry and phase contrast imaging (PCI) — are briefly discussed.

1.2.1 Heterodyne interferometry

Heterodyne interferometry [23] uses an external reference beam whose
angular frequency has been shifted by �!0 (i.e. the reference field is
ER = E0e

-i�!0t) to produce measurable intensity variations (aver-
aged over an optical cycle)

Ihet / 2E2
0 [1+ cos (�!0t+�)] . (1.4)

Note that the desired baseband phase information � is shifted to an
intermediate frequency �!0; quadrature heterodyne detection can
then be used to extract an absolute measurement of � [24]. The
technical complications of converting to and from the intermediate
frequency are often justified by the resulting ability to overcome the
shortcomings of homodyne interferometry [23, 25]. Heterodyne inter-
ferometry is an established technique for measuring both the bulk and
the fluctuating components of plasma density in contemporary toka-
maks [24, 26, 27, 28] and is expected to provide similar capabilities in
ITER [29] and other next-step devices.

1.2.2 Phase contrast imaging (PCI)

To motivate the development of phase contrast imaging (PCI), con-
sider a phase � that consists of a uniform, bulk contribution � and a
small, spatially fluctuating contribution e� ⌧ 1 such that � = �+ e�.
To lowest order in e�, the heterodyne intensity (1.4) becomes

Ihet / 2E2
0

⌦
1+

h
cos
�
�!0t+�

�
- e� sin

�
�!0t+�

�i↵
. (1.5)

As e� ⌧ 1, the component of the intensity corresponding to the fluc-
tuation e� is only a small fraction of the total intensity. Because every
physical detector has a maximum tolerable intensity Imax, this implies
that the fluctuation-induced component of the signal will only occupy
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a small fraction of the detector’s dynamic range, establishing a funda-
mental limit on the fluctuation sensitivity of a heterodyne interferom-
eter.

If measurement of the fluctuation e� is of primary importance, the
interference scheme can be reconfigured to provide better sensitivity
to fluctuations. Examine the phase-shifted field

E0e
i� = E0e

i(�+e�) ⇡ E0e
i�
⇣
1+ ie�

⌘
, (1.6)

where only the lowest-order term in e� has been retained. In the right-
most expression, the unity term corresponds to the bulk-phase contri-
bution, while the ie� term corresponds to the fluctuating-phase contri-
bution. Now, imagine prescribing a reference field

ER = -E0e
i� (1- i

p
⌘) (1.7)

for 0 < ⌘ 6 1 such that the total field becomes

Etot = ER + E0e
i� ⇡ iE0e

i�
⇣p
⌘+ e�

⌘
, (1.8)

with corresponding intensity (averaged over an optical cycle)

IPCI / |Etot|
2 ⇡ E2

0

⇣
⌘+ 2

p
⌘e�
⌘

, (1.9)

where only the lowest-order terms in e� have been retained in the
expressions for both Etot and IPCI. For a given fluctuation e� and a
given detector, such an interference scheme has an amplitude sensitiv-
ity to fluctuations that is 2⇡

p
2/⌘ better than that of a comparable

heterodyne interferometer (here, the power loss in the heterodyne-
interferometer signal that necessarily results from the intermediate
frequency-to-baseband conversion has been accounted for). Note, how-
ever, that information about the bulk phase � is lost.

While prescription of the above reference field may seem rather aca-
demic, this is precisely the means by which PCI operates, as may be
guessed from the suggestive notation IPCI. PCI “prescribes” such a
reference field by spatially filtering the radiation pattern E0e

i� in the
focal plane of a focusing optic. Typically, the spatial filtering is per-
formed with a “phase plate”, an optical element that selectively ap-
plies (due to its geometry and its location at the focal plane) an ap-
propriate phase delay and attenuation to the component of the field
corresponding to the bulk phase �. Thus, in contrast to the hetero-
dyne interferometry, PCI uses an internal reference beam. Because
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diffraction limits the focal-plane spot size, this spatial filtering neces-
sarily involves a low-k cutoff, which in the ideal, diffraction-limited
case corresponds to kPCI

min = 2/w, where w is the 1/e electric-field ra-
dius of the probe beam [30]. The principles of PCI will be discussed
in more detail in Section 2.5.

PCI is an established technique for measuring plasma density fluctu-
ations in contemporary tokamaks [31, 32, 33]. PCI measurements have
characterized fluctuations in numerous high-performance regimes [34,
35, 36, 37, 38], constrained the q-profile evolution between sawteeth [16],
and provided validation of gyrokinetic [39, 40, 41] and RF simula-
tions [42]. While not pursued in this thesis, additional spatial filtering
can provide some degree of spatial localization to the line-integrated
PCI measurement [30, 43].

1.2.3 Heterodyne interferometry vs. PCI

Colloquially, heterodyne interferometry is considered a “low-k” tech-
nique, and PCI is considered a “high-k” technique. It is worth pausing
here to note that, for the same probe beam and the same fluctuation
e�, the laser-plasma interaction is identical for both techniques. Further,
the high-k optical capabilities of both systems are governed by the size
of the collection optics and finite sampling-volume effects [44]. Thus,
there is nothing that intrinsically limits heterodyne interferometry to
low-k measurements — a heterodyne interferometer’s high-k limit can
be just as high, if not higher, than that of a given PCI system. However,
as outlined in Section 1.2.2, PCI is more sensitive to fluctuations than a
comparable heterodyne interferometer, and, assuming a Kolmogorov-
like fluctuation spectrum S(k) / k-p for some positive p, PCI’s supe-
rior sensitivity may allow it to detect high-k fluctuations that are too
weak to be seen by a heterodyne interferometer. In practice, measure-
ment of the high-frequency heterodyne signal often requires the use of
faster, noisier detectors than are required for measurement of the PCI
signal, further increasing PCI’s sensitivity relative to heterodyne inter-
ferometry. At the low-k side of the spectrum, PCI is diffraction-limited
to k > 2/w, where w is the 1/e electric-field radius of the probe beam
[30], whereas the heterodyne interferometer’s external reference beam
allows detection even at k = 0.

1.3 motivation for a combined pci–interferometer

This thesis details the design, construction, and operation of a com-
bined PCI–interferometer on the DIII-D tokamak. This first-of-a-kind
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Parameter PCI Interferometer

probe beam single CO2 beam single CO2 beam

�f 10 kHz < f < 2MHz 10 kHz < f < 1MHz

�k 1.5 cm−1 < k 6 25 cm−1 0 cm−1 6 k < 5 cm−1

sensitivity 3⇥ 1013m-2/
p
kHz 3⇥ 1014m-2/

p
kHz

Table 1.1: PCI and interferometry have compatible probe beams, comparable
temporal bandwidths �f, and complementary spatial bandwidths �k. All parameters
are for DIII-D’s currently implemented combined PCI–interferometer system.

system uses a single 10.6µm CO2 probe beam, two interference schemes,
and two detectors to measure electron density fluctuations at large spa-
tiotemporal bandwidth [45]. The parameters of this combined system
are shown in Table 1.1. The motivations for this work are threefold:

• DIII-D’s pre-existing PCI system has a low-k cutoff kPCI
min = 1.5 cm−1.

For a 1 keV temperature typical of DIII-D’s pedestal, this corre-
sponds to k✓⇢i & 0.25, with larger values in the higher-temperature
core. The addition of a heterodyne interferometer extends the
minimum detectable wavenumber to k = 0, allowing simultane-
ous measurement of ion- and electron-scale instabilities. Such
a capability could provide direct experimental validation of the
significant cross-scale coupling predicted by Howard et al. [10,
11].

• Correlating measurements from the interferometer channel with
those from DIII-D’s pre-existing, toroidally separated (�⇣ = 45�)
interferometer provides a direct toroidal-mode-number (n) mea-
surement of low-n magnetohydrodynamic (MHD) modes. This
technique is capable of measuring mode numbers of core-localized
MHD that is invisible to the external magnetic probes.

• ITER and other next-step devices are expected to have harsh
neutron environments and limited port space. While such de-
vices will almost certainly rely on heterodyne interferometry for
density control and measurement of Alfvén instabilities [29], the
allocation of port space for a PCI system is less clear. It is ex-
pected that these next-step devices will operate in strongly ↵-
heated regimes (i.e. at or near ignition), which may be subject
to novel turbulent regimes. This first-of-a-kind combined PCI–
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interferometer demonstrates that simultaneous interferometric
and PCI measurements can be made with a single probe beam
and a set of ports, potentially paving the way for sensitive PCI
measurements with similar combined systems on ITER and other
next-step devices.

1.4 thesis outline

The remainder of this thesis is organized as follows:

• Chapter 2 discusses the optical foundations of interferometry
and phase contrast imaging (PCI), with an emphasis on sensi-
tivity and spatiotemporal bandwidths.

• Chapter 3 provides an exhaustive set of design considerations
for a heterodyne interferometer.

• Chapter 4 details the addition of a heterodyne interferometer to
the pre-existing PCI system on the DIII-D tokamak; both systems
operate simultaneously, sharing a single 10.6µm probe beam
through the plasma.

• Chapter 5 discusses the measurement of multiscale turbulent
fluctuations with the combined PCI-interferometer; linear-stability
analysis and quasilinear-transport modeling are performed to
help interpret these measurements.

• Chapter 6 demonstrates toroidal mode-number measurement of
core-localized MHD via correlation of the newly installed inter-
ferometer with DIII-D’s toroidally separated, pre-existing V2 in-
terferometer.

• Chapter 7 concludes the thesis with a summary of the primary
results and suggestions for future work.

1.5 units

Unless explicitly stated, all formulas in this thesis are written in SI
units. The one notable exception, of course, is the suppression of the
Boltzmann constant in favor of expressing temperatures in units of
energy (i.e. eV).





B I B L I O G R A P H Y

[1] K. S. Krane. Introductory Nuclear Physics. John Wiley & Sons, Inc.,
Hoboken, New Jersey, USA, 1988.

[2] J. Freidberg. Plasma Physics and Fusion Energy. Cambridge Uni-
versity Press, Cambridge, UK, 2007.

[3] J. Wesson. Tokamaks. Oxford University Press, Oxford, UK, 4th
edition, 2011.

[4] A. R. Choudhuri. Astrophysics for Physicists. Cambridge Univer-
sity Press, Cambridge, United Kingdom, 2010.

[5] All-the-world’s tokamaks. http://www.tokamak.info/. Ac-
cessed: 2017-09-29.

[6] W. Horton. Drift waves and transport. Rev. Mod. Phys., 71(3):735–
778, 1999.

[7] G. R. Tynan, A. Fujisawa and G. McKee. A review of exper-
imental drift turbulence studies. Plasma Phys. Control. Fusion,
51(11):113001, 2009.

[8] W. Dorland, F. Jenko, M. Kotschenreuther and B. N. Rogers.
Electron temperature gradient turbulence. Phys. Rev. Lett.,
85(26):5579–5582, 2000.

[9] F. Jenko and W. Dorland. Prediction of significant tokamak turbu-
lence at electron gyroradius scales. Phys. Rev. Lett., 89(22):225001,
2002.

[10] N. T. Howard, C. Holland, A. E. White, M. Greenwald and
J. Candy. Synergistic cross-scale coupling of turbulence in a toka-
mak plasma. Phys. Plasmas, 21(11):112510, 2014.

[11] N.T. Howard, C. Holland, A.E. White, M. Greenwald and
J. Candy. Multi-scale gyrokinetic simulation of tokamak plasmas:
enhanced heat loss due to cross-scale coupling of plasma turbu-
lence. Nucl. Fusion, 56(1):014004, 2016.

[12] N. T. Howard, C. Holland, A. E. White, M. Greenwald, J. Candy
et al. Multi-scale gyrokinetic simulations: comparison with exper-
iment and implications for predicting turbulence and transport.
Phys. Plasmas, 23(5):056109, 2016.

31

http://www.tokamak.info/
http://dx.doi.org/10.1103/RevModPhys.71.735
http://stacks.iop.org/0741-3335/51/i=11/a=113001
http://stacks.iop.org/0741-3335/51/i=11/a=113001
http://dx.doi.org/10.1103/PhysRevLett.85.5579
http://dx.doi.org/10.1103/PhysRevLett.89.225001
http://dx.doi.org/10.1103/PhysRevLett.89.225001
http://dx.doi.org/10.1063/1.4902366
http://dx.doi.org/10.1063/1.4902366
https://doi.org/10.1088/0029-5515/56/1/014004
https://doi.org/10.1088/0029-5515/56/1/014004
https://doi.org/10.1088/0029-5515/56/1/014004
http://dx.doi.org/10.1063/1.4946028
http://dx.doi.org/10.1063/1.4946028


32 Bibliography

[13] C. Holland, N.T. Howard and B.A. Grierson. Gyrokinetic predic-
tions of multiscale transport in a DIII-D ITER baseline discharge.
Nucl. Fusion, 57(6):066043, 2017.

[14] N T Howard, C Holland, A E White, M Greenwald, P Rodriguez-
Fernandez et al. Multi-scale gyrokinetic simulations of an Alca-
tor C-Mod, ELM-y H-mode plasma. Plasma Phys. Control. Fusion,
60(1):014034, 2018.

[15] W. W. Heidbrink. Basic physics of Alfvén instabilities driven by
energetic particles in toroidally confined plasmas. Phys. Plasmas,
15(5):055501, 2008.

[16] E. M. Edlund, M. Porkolab, G. J. Kramer, L. Lin, Y. Lin et al.
Observation of reversed shear Alfvén eigenmodes between saw-
tooth crashes in the Alcator C-Mod tokamak. Phys. Rev. Lett.,
102(16):165003, 2009.

[17] B. N. Breizman, M. S. Pekker and S. E. Sharapov. Plasma
pressure effect on Alfvén cascade eigenmodes. Phys. Plasmas,
12(11):112506, 2005.

[18] The Nobel Prize in Physics 1907. https://www.nobelprize.org/
nobel_prizes/physics/laureates/1907/. Accessed: 2017-09-
30.

[19] A. A. Michelson and E. W. Morley. On the relative motion of
the Earth and the luminiferous ether. Am. J. Sci., 34(203):333–345,
1887.

[20] The Nobel Prize in Physics 1953. https://www.nobelprize.org/
nobel_prizes/physics/laureates/1953/. Accessed: 2017-09-
30.

[21] B. P. Abbott, R. Abbott, T. D. Abbott, M. R. Abernathy, F. Acernese
et al. Observation of gravitational waves from a binary black hole
merger. Phys. Rev. Lett., 116(6):061102, 2016.

[22] The Nobel Prize in Physics 2017. https://www.nobelprize.org/
nobel_prizes/physics/laureates/2017/. Accessed: 2017-10-
03.

[23] I. H. Hutchinson. Principles of Plasma Diagnostics. Cambridge
University Press, Cambridge, United Kingdom, 2nd edition, 2002.

[24] T. N. Carlstrom, D. R. Ahlgren and J. Crosbie. Real-time,
vibration-compensated CO2 interferometer operation on the DIII-
D tokamak. Rev. Sci. Instrum., 59(7):1063–1066, 1988.

http://dx.doi.org/10.1088/1741-4326/aa6c16
http://dx.doi.org/10.1088/1741-4326/aa6c16
http://stacks.iop.org/0741-3335/60/i=1/a=014034
http://stacks.iop.org/0741-3335/60/i=1/a=014034
http://dx.doi.org/10.1063/1.2838239
http://dx.doi.org/10.1063/1.2838239
http://dx.doi.org/10.1103/PhysRevLett.102.165003
http://dx.doi.org/10.1103/PhysRevLett.102.165003
http://dx.doi.org/10.1063/1.2130692
http://dx.doi.org/10.1063/1.2130692
https://www.nobelprize.org/nobel_prizes/physics/laureates/1907/
https://www.nobelprize.org/nobel_prizes/physics/laureates/1907/
http://dx.doi.org/10.2475/ajs.s3-34.203.333
http://dx.doi.org/10.2475/ajs.s3-34.203.333
https://www.nobelprize.org/nobel_prizes/physics/laureates/1953/
https://www.nobelprize.org/nobel_prizes/physics/laureates/1953/
http://dx.doi.org/10.1103/PhysRevLett.116.061102
http://dx.doi.org/10.1103/PhysRevLett.116.061102
https://www.nobelprize.org/nobel_prizes/physics/laureates/2017/
https://www.nobelprize.org/nobel_prizes/physics/laureates/2017/
http://dx.doi.org/10.1063/1.1139726
http://dx.doi.org/10.1063/1.1139726
http://dx.doi.org/10.1063/1.1139726


Bibliography 33

[25] R. Nazikian and L. E. Sharp. CO2 laser scintillation interferom-
eter for the measurement of density fluctuations in plasma con-
finement devices. Rev. Sci. Instrum., 58(11):2086–2091, 1987.

[26] M. A. Van Zeeland, G. J. Kramer, R. Nazikian, H. L. Berk, T. N.
Carlstrom et al. Alfvén eigenmode observations on DIII-D via
two-colour CO2 interferometry. Plasma Phys. Control. Fusion,
47(9):L31, 2005.

[27] A. Mlynek, G. Pautasso, M. Maraschek, H. Eixenberger and
the ASDEX Upgrade Team. Infrared interferometry with submi-
crosecond time resolution in massive gas injection experiments
on ASDEX Upgrade. Fusion Sci. Tech., 61(4):290–300, 2012.

[28] C. P. Kasten, J. H. Irby, R. Murray, A. E. White and D. C. Pace. A
new interferometry-based electron density fluctuation diagnostic
on Alcator C-Mod. Rev. Sci. Instrum., 83(10):10E301, 2012.

[29] M. A. Van Zeeland, R. L. Boivin, D. L. Brower, T. N. Carlstrom,
J. A. Chavez et al. Conceptual design of the tangentially viewing
combined interferometer-polarimeter for ITER density measure-
ments. Rev. Sci. Instrum., 84(4):043501, 2013.

[30] J. R. Dorris, J. C. Rost and M. Porkolab. Localized measurement
of short wavelength plasma fluctuations with the DIII-D phase
contrast imaging diagnostic. Rev. Sci. Instrum., 80(2):023503, 2009.

[31] S. Coda. An experimental study of turbulence by phase contrast imag-
ing in the DIII-D tokamak. PhD thesis, MIT, 1997.

[32] A. Mazurenko. Phase contrast imaging on the Alcator C-Mod tokamak.
PhD thesis, MIT, 2001.

[33] A. Marinoni. Plasma fluctuation studies in the TCV tokamak: mod-
eling of shaping effects and advanced diagnostic development. PhD
thesis, EPFL, 2009.

[34] S Coda, M Porkolab and K.H Burrell. Decorrelation of
edge plasma turbulence at the transition from low- to high-
confinement mode in the DIII–D tokamak. Phys. Lett. A,
273(1):125 – 131, 2000.

[35] S. Coda, M. Porkolab and K.H. Burrell. Characterization of den-
sity fluctuations during elms in the diii-d tokamak. Nucl. Fusion,
41(12):1885, 2001.

http://dx.doi.org/10.1063/1.1139468
http://dx.doi.org/10.1063/1.1139468
http://dx.doi.org/10.1063/1.1139468
http://dx.doi.org/10.1088/0741-3335/47/9/L01
http://dx.doi.org/10.1088/0741-3335/47/9/L01
http://www.ans.org/pubs/journals/fst/a_13582
http://www.ans.org/pubs/journals/fst/a_13582
http://www.ans.org/pubs/journals/fst/a_13582
http://dx.doi.org/10.1063/1.4728090
http://dx.doi.org/10.1063/1.4728090
http://dx.doi.org/10.1063/1.4728090
http://dx.doi.org/10.1063/1.4798602
http://dx.doi.org/10.1063/1.4798602
http://dx.doi.org/10.1063/1.4798602
http://dx.doi.org/10.1063/1.3065094
http://dx.doi.org/10.1063/1.3065094
http://dx.doi.org/10.1063/1.3065094
http://www.sciencedirect.com/science/article/pii/S0375960100004606
http://www.sciencedirect.com/science/article/pii/S0375960100004606
http://www.sciencedirect.com/science/article/pii/S0375960100004606
http://stacks.iop.org/0029-5515/41/i=12/a=316
http://stacks.iop.org/0029-5515/41/i=12/a=316


34 Bibliography

[36] J. C. Rost, M. Porkolab, J. Dorris and K. H. Burrell. Short wave-
length turbulence generated by shear in the quiescent H-mode
edge on DIII–D. Phys. Plasmas, 21(6):062306, 2014.

[37] A. Marinoni, J.C. Rost, M. Porkolab, A.E. Hubbard, T.H. Os-
borne et al. Characterization of density fluctuations during the
search for an I-mode regime on the DIII-D tokamak. Nucl. Fusion,
55(9):093019, 2015.

[38] A. Mazurenko, M. Porkolab, D. Mossessian, J. A. Snipes, X. Q. Xu
et al. Experimental and theoretical study of quasicoherent fluctu-
ations in enhanced D↵ plasmas in the Alcator C-Mod tokamak.
Phys. Rev. Lett., 89(22):225004, 2002.

[39] L. Lin, M. Porkolab, E. M. Edlund, J. C. Rost, C. L. Fiore et al.
Studies of turbulence and transport in Alcator C-Mod H-mode
plasmas with phase contrast imaging and comparisons with
GYRO. Phys. Plasmas, 16(1):012502, 2009.

[40] J. C. Rost, L. Lin and M. Porkolab. Development of a synthetic
phase contrast imaging diagnostic. Phys. Plasmas, 17(6):062506,
2010.

[41] P. Ennever, M. Porkolab, J. Candy, G. Staebler, M. L. Reinke et al.
The effects of dilution on turbulence and transport in C-Mod
ohmic plasmas and comparisons with gyrokinetic simulations.
Phys. Plasmas, 22(7):072507, 2015.

[42] N. Tsujii, M. Porkolab, P. T. Bonoli, E. M. Edlund, P. C. Ennever
et al. Validation of full-wave simulations for mode conversion
of waves in the ion cyclotron range of frequencies with phase
contrast imaging in Alcator C-Mod. Phys. Plasmas, 22(8):082502,
2015.

[43] L. Lin, E. M. Edlund, M. Porkolab, Y. Lin and S. J. Wukitch. Ver-
tical localization of phase contrast imaging diagnostic in Alcator
C-Mod. Rev. Sci. Instrum., 77(10):10E918, 2006.

[44] R. V. Bravenec and A. J. Wootton. Effects of limited spatial reso-
lution on fluctuation measurements (invited). Rev. Sci. Instrum.,
66(1):802–805, 1995.

[45] E. M. Davis, J. C. Rost, M. Porkolab, A. Marinoni and M. A.
Van Zeeland. A phase contrast imaging–interferometer system
for detection of multiscale electron density fluctuations on DIII-
D. Rev. Sci. Instrum., 87(11):11E117, 2016.

http://dx.doi.org/10.1063/1.4883135
http://dx.doi.org/10.1063/1.4883135
http://dx.doi.org/10.1063/1.4883135
http://stacks.iop.org/0029-5515/55/i=9/a=093019
http://stacks.iop.org/0029-5515/55/i=9/a=093019
http://dx.doi.org/10.1103/PhysRevLett.89.225004
http://dx.doi.org/10.1103/PhysRevLett.89.225004
http://dx.doi.org/10.1063/1.3057420
http://dx.doi.org/10.1063/1.3057420
http://dx.doi.org/10.1063/1.3057420
http://dx.doi.org/10.1063/1.3435217
http://dx.doi.org/10.1063/1.3435217
http://dx.doi.org/10.1063/1.4926518
http://dx.doi.org/10.1063/1.4926518
http://dx.doi.org/10.1063/1.4927912
http://dx.doi.org/10.1063/1.4927912
http://dx.doi.org/10.1063/1.4927912
http://dx.doi.org/10.1063/1.2228623
http://dx.doi.org/10.1063/1.2228623
http://dx.doi.org/10.1063/1.2228623
http://dx.doi.org/10.1063/1.1146226
http://dx.doi.org/10.1063/1.1146226
http://dx.doi.org/10.1063/1.4960727
http://dx.doi.org/10.1063/1.4960727
http://dx.doi.org/10.1063/1.4960727


2
I N T E R F E R O M E T R I C M E T H O D S F O R
T O K A M A K - P L A S M A F L U C T U AT I O N S

Interferometric methods exploit the interaction of electromagnetic waves
with a plasma to ascertain properties of the plasma’s density. Because
surveying every flavor of interferometric method exceeds the scope
of this work, only the interferometric methods of direct relevance to
this work — external reference-beam interferometry and phase con-
trast imaging (PCI) — are discussed in detail. Further, the emphasis is
diagnosis of the plasma’s density fluctuations rather than its equilib-
rium density. The overview of optical interferometry in Section 1.2 is
mandatory background for this chapter. While Section 1.2 cavalierly
assumes various forms for the interfering radiation fields, this chapter
provides first-principles descriptions of the laser-plasma interaction
and optical systems needed to produce these radiation fields.

Below, Section 2.1 examines the propagation of electromagnetic waves
through a “cold” plasma and derives an expression for the plasma-
induced phase delay. Section 2.2 reveals that plasma-density fluctua-
tions weakly upscatter and downscatter an incident Gaussian probe
beam, while Section 2.3 describes how an imaging system manipu-
lates these scattered beams. Section 2.4 shows that interfering the im-
aged probe radiation with an external reference beam is an effective
technique for diagnosing plasma-density fluctuations and discusses
the relative merits of homodyne versus heterodyne detection. Sec-
tion 2.5 details the principles of phase contrast imaging (PCI), which
does away with an external reference beam and instead spatially fil-
ters the scattered and unscattered beams to produce an informative
interference signal. Section 2.6 concludes the chapter by synthesizing
the preceding results and discussing the strengths and limitations of
each interferometric technique.

2.1 electromagnetic waves in a plasma

A great deal can be learned about a plasma by probing it with electro-
magnetic waves. Sections 2.1.1— 2.1.3 derive the index of refraction N

for a cold, homogeneous plasma. Section 2.1.4 extends these results
to inhomogeneous plasmas via the WKB approximation and assesses
the validity of this approach for a CO2 probe beam in a typical toka-

35
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mak plasma, and Section 2.1.5 computes the resulting plasma-induced
phase delay.

2.1.1 Derivation of the wave equation

The electric field E and the magnetic field B of an electromagnetic
wave are coupled via Faraday’s law

r⇥E = -
@B

@t
(2.1)

and Ampere’s law

r⇥B = µ0J + µ0✏0
@E

@t
, (2.2)

where ✏0 is the permittivity of free space, µ0 is the permeability of
free space, and J is the current density [1, Sec. I.1]. Note that (2.1)
and (2.2) are the vacuum formulations of Faraday’s law and Ampere’s
law; however, they can still be used to describe an electromagnetic
wave’s propagation through a medium if that medium’s electromag-
netic properties are explicitly accounted for in the current density J

[1, Sec. I.4][2, Sec. 4.1]. Now, taking the curl of Faraday’s law and then
using Ampere’s law to eliminate B yields the electric field’s wave
equation

r2E -
1

c2
@2E

@t2
= r(r ·E) + µ0

@J

@t
. (2.3)

2.1.2 Wave equation in a homogeneous medium

Fourier decomposing the electric field and the current density

E(r, t) =
1

(2⇡)4

Z
E(k 0,! 0)ei(k

0·r-! 0t)dk0 d! 0, (2.4)

J(r, t) =
1

(2⇡)4

Z
J(k 0,! 0)ei(k

0·r-! 0t)dk0 d! 0. (2.5)

reduces the wave equation (2.3) to an algebraic equation for each
Fourier component. In particular, for the Fourier mode described
by E0e

i(k·r-!t) and J0e
i(k·r-!t), the derivative operators become

r ! ik and @/@t ! -i!, and the wave equation reduces to

�
NN -N2I + I

�
·E0 = -

iJ0

"0!
, (2.6)
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where

N ⌘ ck

!
(2.7)

is the index of refraction seen by the given Fourier mode and I is
the identity matrix. Now, assume that the medium is homogeneous
in space and time [3, Sec. 3-2] such that the current density is easily
related to the electric field via Ohm’s law

J(k,!) = �(k,!) ·E(k,!), (2.8)

where � is the conductivity of the surrounding medium [1, Sec. I.4].
Substituting the Ohm’s law current density (2.8) into the Fourier de-
composed wave equation (2.6) yields the eigenvalue equation


NN -N2I +

✓
I +

i�

"0!

◆�
·E0 = 0. (2.9)

To proceed further, a model is needed for the medium’s conductivity.

2.1.3 The cold-plasma index of refraction

Although plasmas in contemporary fusion devices routinely approach
temperatures . 100 million degrees Celsius (⇠ 10⇥ the temperature of
the core of the sun!), the thermal velocities of the constituent particles
are still far below the speed of light. The lightest, and consequently
the fastest, of such a plasma’s constituent particles are its electrons,
which have thermal velocities . 0.1c. In contrast, as will be shown
shortly, the electromagnetic waves used to make interferometric mea-
surements in such plasmas have phase velocities very close to the
speed of light. Thus, in the context of the wave-plasma interaction,
the unperturbed plasma can be modeled as a collection of motionless
(i.e. zero-temperature or “cold”) charged particles. Consequently, the
pressure of this model plasma is zero. For the present application, it
is also appropriate to neglect the perturbed motion of the ions, whose
inertia greatly exceeds that of the electrons, and to neglect collisions,
which are relatively rare in fusion plasmas. The electron-fluid momen-
tum equation for such a plasma is

mene
dve
dt

= -ene (E + ve ⇥B) , (2.10)

where ne is the electron density, ve is the perturbed electron-fluid
velocity, and d/dt = @/@t+ (ve ·r) is the advective time derivative.
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Linearizing and Fourier analyzing the electron-fluid momentum equa-
tion (2.10) yields

i!meve = e (E + ve ⇥B0) , (2.11)

where B0 is the equilibrium magnetic field. Let B0 = B0ẑ. Then, the
perturbed electron-fluid velocity ve is easily found to be [2, Sec. 4.1.2]

ve,x =
-ie

!me

1

1-⌦2
e/!

2

✓
Ex - i

⌦e

!
Ey

◆
, (2.12)

ve,y =
-ie

!me

1

1-⌦2
e/!

2

✓
i
⌦e

!
Ex + Ey

◆
, (2.13)

ve,z =
-ie

!me
Ez, (2.14)

where

⌦e ⌘ eB0

me
(2.15)

is the electron cyclotron frequency. Having neglected the ion’s motion,
the current density is simply

J = -eneve. (2.16)

Equating the current densities from (2.8) and (2.16) and substituting
the solution for ve yields the plasma’s conductivity [2, Sec. 4.1.2]

� =
inee

2

me!

1

1-⌦2
e/!

2

0

BB@

1 -i⌦e/! 0

i⌦e/! 1 0

0 0 1-⌦2
e/!

2

1

CCA . (2.17)

Choose axes such that

k = k(sin ✓ŷ + cos ✓ẑ). (2.18)

Then, substituting the cold-plasma conductivity (2.17) into the electric
field’s eigenvalue equation (2.9) and solving for the corresponding
eigenvalues yields the well-known Appleton-Hartree formula for the
plasma’s index of refraction [2, Sec. 4.1.2]

N2 = 1-
X(1-X)

1-X- 1
2Y

2 sin2 ✓±�
, (2.19)
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where

X ⌘
!2

pe

!2
, (2.20)

Y ⌘ ⌦e

!
, (2.21)

� =

"✓
1

2
Y2 sin2 ✓

◆2

+ (1-X)2Y2 cos2 ✓

#1/2
, (2.22)

!2
pe ⌘ nee

2

me"0
; (2.23)

here, !pe is referred to as the angular electron plasma frequency.
The refractive index formula can be dramatically simplified for high-

frequency electromagnetic waves propagating in typical tokamak plas-
mas. For example, a CO2 beam (! = 2⇡ · 28.3 THz) propagating in a
typical DIII-D plasma sees

ne . 1020m−3 ) X . 10-5,

B . 2 T ) Y . 2⇥ 10-3.

Now, the smallness of X and Y can be exploited to approximate the
Appleton-Hartree index of refraction (2.19) by retaining only the terms
that are linear in X or linear in Y; this yields N2 ⇡ 1- X or, equiva-
lently,

N ⇡ 1-
X

2
. (2.24)

Note that the corresponding phase velocity is vph = c/N ⇡ c. Thus,
the cold-plasma assumption that the wave’s phase velocity is much
larger than the thermal velocities (. 0.1c) of the plasma’s constituent
particles is valid.

It is enlightening to also examine the corresponding electric-field
eigenvectors. Substituting the index of refraction (2.24) into the corre-
sponding eigenvalue equation (2.9) and solving to lowest order for the
corresponding eigenvector yields

E0 ⇡ E0,xx̂+ E0,yz(k̂⇥ x̂), (2.25)

where k̂ = k/|k| is the unit vector corresponing to the wavector de-
fined in (2.18), and E0,x and E0,yz are arbitrary, uncoupled constants
that are independent of the plasma’s properties. Thus, to lowest order,
a CO2 beam in a tokamak plasma propagates as a transverse electro-
magnetic wave (k ·E0 ⇡ 0) with near-constant polarization.
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Finally, it should be noted for completeness that while cold-plasma
theory is adequate for the current purposes, finite-temperature and
relativistic effects will affect the interpretation of refractive index mea-
surements in a fusion reactor. For example, the thermal correction
to the cold-plasma interferometric phase in a Te ⇡ 10 keV plasma is
-3%, with slightly more substantial corrections for polarimetric mea-
surements [4].

2.1.4 Wave propagation in an inhomogeneous medium

No physical plasma is truly homogeneous in space. While the above
Fourier approach can still be employed, the inhomogeneities tend to
couple the various modes together, greatly complicating the analysis.
However, if the plasma varies sufficiently slowly, the plasma can be
treated as locally uniform, and the wave field can be “stitched” to-
gether as the wave propagates from initial position r(i) to position r

via the WKB approximation [3, Ch. 13][5, Ch. 8]

E(r, t) ⇡ E0 exp

i

✓Zr

r(i)
k(r 0) · dl 0 -!t

◆�
. (2.26)

Here, k(r 0) is the local wavevector and the integration is performed
along the wave’s trajectory. Note that the amplitude variation and the
reflected wave that are characteristic of the WKB approximation have
been neglected because densities in a tokamak plasma are much less
than a CO2 beam’s ⇠ 1025m−3 density cutoff.

What exactly is meant by “sufficiently slowly”, though? To approx-
imate the plasma as locally uniform, the change in the wavenumber
�k over one wavelength � should be small relative to the wavenum-
ber k. Note that the change in wavenumber over one wavelength is
�k = rk ·� = 2⇡rk/k. Thus, the WKB validity criterion that �k/k ⌧ 1

becomes

|rk|

k2
⌧ 1

2⇡
. (2.27)

Now, using the definition of N from (2.7), the cold-plasma index of
refraction in (2.24) can be rewritten as k = (!/c)(1 - X/2), and, to
lowest order,

rk ⇡ -

✓
2⇡ re

k

◆
rne, (2.28)
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where

re =
e2

4⇡"0mec2
= 2.8⇥ 10-15m (2.29)

is the classical electron radius. The most extreme density gradients in
a tokamak often occur in the so-called “pedestal”, where the density
changes by �ne . 1020m−3 over a scale length �r & 1 cm; for a CO2

laser beam (k = 5.9⇥ 105m−1) propagating through such a pedestal,

|rk|

k2
=

✓
2⇡ re

k3

◆
|rne| . 10-9

such that the criterion for WKB validity (2.27) is very well-satisfied.
The WKB validity criterion can also be evaluated for a CO2 beam prop-
agating through plasma-density fluctuations; assuming ene/ne ⇠ 10-3,
ne . 1020m−3, and density-fluctuation wavenumbers . 30 cm−1, |rk|/k2 .
2⇥10-11 such that the WKB validity criterion is also very well-satisfied
for typical plasma-density fluctuations.

2.1.5 Plasma-induced phase delay

The WKB field solution (2.26) indicates that the wave’s phase at a
given point in space and time is determined by the properties of the
medium that the wave has passed through. In particular, a CO2 laser
beam propagating through a tokamak plasma will acquire a phase
shift � relative to vacuum given by

� =

Z h
k(r)-

!

c

i
dl

=
!

c

Z
[N(r)- 1]dl

⇡ !

c

Z ✓
1-

X

2

◆
- 1

�
dl

= -re�0

Z
nedl, (2.30)

where the index of refraction has been approximated via (2.24), �0 =
2⇡c/! = 10.6µm is the CO2 beam’s vacuum wavelength, and re is
again the classical electron radius defined in (2.29). Now, if the plasma
fluctuates about its equilibrium density ne as ne = ne + ene, the phase
will similarly fluctuate about its equilibrium as � = �+ e� where

e� = -re�0

Z
enedl. (2.31)
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It is precisely the intent of Section 2.2 to determine how such den-
sity fluctuations interact with an incident Gaussian probe beam. As
a final note before leaving this section, accurate interpretation of very
rapid phase-fluctuation measurements (such as those resulting from
RF-wave perturbations) may require accounting for the beam’s finite
transit time through the plasma to the point of measurement [6, Sec. 3.1].

2.2 diffraction of a gaussian probe beam

Lasers are almost always well-collimated enough that they are amenable
to analysis in the paraxial limit. Gaussian beams are exact solutions to
the paraxial wave equation in free space, and they are very good ap-
proximations to the eigenmodes observed in real lasers [7, Ch. 16]. For
this reason, it is reasonable to investigate the interaction of a Gaussian
probe beam with a plasma-density fluctuation.

2.2.1 Definition of a Gaussian beam

A Gaussian beam of angular frequency !0 propagating along the z-
axis in a medium with index of refraction N has an electric field

EG(r, t) = EG(r)e-i!0t (2.32)

with spatial dependence [7, Ch. 17]

EG(r) = E0
w0

w(z)
exp


-⇢2

w(z)2

�

⇥ exp
�
i


Nk0z+

Nk0⇢
2

2R(z)
- (z)

��
.

(2.33)

Here, ⇢ = (x2 + y2)1/2 is the transverse distance from the z-axis (i.e.
the beam’s “symmetry axis”), w0 is the radius of the beam’s waist,
and k0 = !0/c = 2⇡/�0 is the beam’s vacuum wavenumber. The
beam’s width w(z), radius of curvature R(z), and Gouy phase  (z)
are defined as

w(z) = w0

"

1+

✓
z

zR

◆2
#1/2

, (2.34)

R(z) = z


1+

⇣zR
z

⌘2�
, (2.35)

 (z) = tan-1

✓
z

zR

◆
, (2.36)
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where the Rayleigh range

zR ⌘
✓
⇡w2

0

�0

◆
N (2.37)

is the nominal division between the beam’s near-field (|z| ⌧ zR) and
far-field (|z| � zR) behaviors. Note that the beam’s waist sits at z = 0.

From a Fourier perspective, a Gaussian beam can be decomposed
into a set of infinite plane waves traveling in slightly different direc-
tions [7, Ch. 16.7]. The plane waves with the beam’s nominal wavevec-
tor k0 = k0ẑ propagate along the beam’s symmetry axis, while the
plane waves with non-zero transverse wavevectors produce beam di-
vergence (i.e. free-space diffraction of the beam). This behavior can be
understood as an uncertainty principle, with the beam’s finite trans-
verse dimensions necessarily requiring a finite spread in transverse
wavevectors.

2.2.2 Diffraction of a Gaussian beam from plasma-density fluctuations

As discussed in the text surrounding (2.25), a CO2 probe beam in
a tokamak plasma propagates as a transverse electromagnetic wave
with near-constant polarization (any small changes to the beam po-
larization are of little practical interest to the present work). Thus, a
scalar diffraction theory is sufficient to describe the relevant aspects of
the beam-plasma interaction; the details of this theory are provided in
Appendix A, and the relevant results are summarized below.

A Gaussian CO2 probe beam propagating through a tokamak plasma
acquires a plasma-induced phase delay �(⇢ 0, t) given by (2.30), where
⇢ 0 corresponds to the beam’s transverse dimensions. Explicitly divid-
ing � into bulk �(t) and spatially varying e�(⇢ 0, t) components, the
plasma-induced phase delay becomes

�(⇢ 0, t) = �(t) + e�(⇢ 0, t). (2.38)

Typically, e� varies on much faster time scales than �, but this is not
required. The spatial variation of the plasma-induced phase delay
contributes to the diffraction of the incident Gaussian probe beam.

The response functions of the diagnostics investigated in Sections 2.4
and 2.5 will be shown to be linear in their regimes of relevance, so it is
sufficient to examine diffraction from phase fluctuations e� consisting
of a single Fourier mode

e�(⇢ 0, t) = e�0 cos(kx 0 -!t). (2.39)
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Here, without loss of generality, it is assumed that the CO2 probe
beam is propagating in the +z-direction, and the density fluctuation
corresponding to e� is propagating in the x-direction. Then, following
the formalism pioneered by Raman and Nath [8, 9] and detailed in
Appendix A, the diffracted electric field can be written (see (A.21)) as
a discrete sum of scattered beams

E(r, t) ⇡ ei�
1X

m=-1

im
h
Jm(e�0)

i
EG(rm)e-i(!0+m!)t, (2.40)

where Jm is the mth Bessel function of the first kind and EG(rm) is
the spatial dependence of the mth scattered beam. Note that rm =
[R(✓m)]r is the native coordinate system of the mth scattered beam
expressed in lab-frame coordinates; here, ✓m ⇡ mk/k0 is the angle
at which the mth scattered beam propagates relative to the lab-frame
optical axis, and

R(✓) =

0

BB@

cos ✓ 0 - sin ✓
0 1 0

sin ✓ 0 cos ✓

1

CCA (2.41)

is the rotation matrix that rotates the (x, z)-plane about the y-axis by
angle ✓.

It is worth pausing to discuss the physical significance of the diffracted
electric field (2.40). The assumed sinusoidal phase modulation (2.39)
diffracts an incident Gaussian beam predominantly into downscat-
tered (m = -1), unscattered (m = 0), and upscattered (m = 1) Gaus-
sian beams. The incident beam is coupled into the mth scattered beam
with strength Jm(e�0). The mth scattered beam is Doppler shifted rel-
ative to the incident beam by m! and propagates at an angle ✓m ⇡
mk/k0 relative to the lab-frame optical axis. The scattering is very
nearly elastic (i.e. !/!0 . 1GHz/28.3 THz ⇠ 10-5), so |k0,m| = k0
is a very good approximation. This constraint of elasticity coupled
with knowledge of the scattering angle ✓m allows determination of
the scattered wavevector

k0,m = (mk)x̂+ k0

"

1-

✓
mk

k0

◆2
#1/2

ẑ. (2.42)

Finally, note that the simultaneous presence of both the upscattered
and downscattered beams (a key prediction of the Raman-Nath for-
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malism) under typical experimental conditions has been demonstrated
empirically [10, Sec. 2.1].

2.2.3 Wavenumber filtering of the diffracted field

Some interferometric techniques, such as phase contrast imaging (PCI;
discussed in Section 2.5), filter the Fourier wavenumber content of the
diffracted electric field (2.40). The mathematical formalism for such
filtering is detailed in Appendix A, but the relevant results are briefly
summarized here. Assume that the filtering can be described by a
transfer function T(kx), where kx is the wavevector component in the
lab-frame x-direction. Then, the filtered electric field can be written
(see (A.36)) as

E(r, t) ⇡ ei�
1X

m=-1

im
h
Jm(e�0)

i
ET (rm)e-i(!0+m!)t, (2.43)

where

ET (rm) ⇡ EG(0,ym, zm) · E(rm,k), (2.44)

is the mth scattered beam following the wavenumber-filtering transfor-
mation, and

E(rm,k) =
e-imkxm

2⇡

⇥
Z
dx 0 exp


-x 02

w(zm)2

�
exp

�
i


mkx 0 +

k0x
02

2R(zm)

��

⇥
Z
dkx T(kx)e

ikx(xm-x 0)

(2.45)

is a complex-valued function that describes the amplitude and phase
transformations that result from filtering the mth scattered beam by
T(kx). When there is no wavenumber filtering (i.e. T(kx) = 1), the mth

transformed beam (2.44) readily reduces to the mth scattered Gaussian
beam (i.e. ET (rm) = EG(rm)), in agreement with expectations.

2.3 imaging of the diffracted field

It is often desirable to image the above diffracted field in order to deter-
mine the spatiotemporal aspects of the responsible phase fluctuations.
Below, the relevant aspects of imaging systems are briefly reviewed.
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The imaged field is then computed and examined under typical exper-
imental limits.

2.3.1 Imaging systems

Appendix B details the geometric optics and Gaussian-beam transfor-
mations of relevance to imaging systems; here, the directly applicable
aspects are briefly summarized.

Let the optical axis of an arbitrary optical system lie along the z-axis,
and let all optical rays lie in a plane with the optical axis. At a given
position zj, an optical ray is fully described by its transverse distance ⇢
to the optical axis and its slope d⇢/dz [7, Ch. 15]. An imaging system
I, by definition, redirects all rays emanating from transverse position
⇢O in the object plane SO to intersect at transverse position

⇢I = M⇢O (2.46)

in the image plane SI. Here, M is the magnification of the imaging
system, and M < 0 implies that the image is inverted relative to the
object. Because the symmetry axis of a Gaussian beam behaves as a
ray in the geometric-optics sense [11], the symmetry axes of the unscat-
tered and scattered beams intersect in the image plane. Then, varying
inversely with the spatial scale, the wavenumber k of the object-plane
phase fluctuation (2.39) is imaged as

kI ⌘ k

M
. (2.47)

The native coordinate systems of the mth scattered beam and the un-
scattered beam do not align in the image plane (i.e. rm,I 6= rI). Con-
siderations from geometric and Gaussian-beam optics show that the
image-plane coordinate systems are related as

0

BB@

xm,I

ym,I

zm,I

1

CCA =

0

BB@

xI cos
⇣
✓m
M

⌘

yI

zI + xI sin
⇣
✓m
M

⌘

1

CCA ⇡

0

BB@

xI

yI

zI + xI

⇣
✓m
M

⌘

1

CCA , (2.48)

where the approximation is valid to first order in ✓m/M.



2.3 imaging of the diffracted field 47

2.3.2 The imaged field

Let I image the object plane SO such that the diffracted field (2.43) is
imaged as

E(rI, t) = I[E(rO, t)]

= ei�
1X

m=-1

�
im
h
Jm(e�0)

i

⇥ I[ET (rm,O)]e
-i(!0+m!)t

�
,

(2.49)

where the I operator has been brought within the summation because
the scattered beams obey the superposition principle when propagat-
ing through the imaging system (it is assumed that typical beam in-
tensities are far from any nonlinear thresholds in the imaging-system
materials). The effect of I is to propagate each scattered beam from
its object-plane coordinates rm,O to its corresponding image-plane co-
ordinates rm,I. Thus, referencing the definition of ET (rm) in (2.44), it
readily follows that

I[ET (rm,O)] = I[EG(0,ym,O, zm,O) · E(rm,O,k)]
= EG(0,ym,I, zm,I) · E(rm,I,kI)

⇡ EG(0,yI, zI)eimkIxI · E(rm,I,kI), (2.50)

where the last step naturally follows from the image-plane coordinate
transformation (2.48) and the following approximations: w(zm,I) ⇡
w(zI), R(zm,I) ⇡ R(zI), and  (zm,I) ⇡  (zI). Thus, the imaged field
(2.49) becomes

E(rI, t) = EG(0,yI, zI, t)ei�

⇥
1X

m=-1

im
h
Jm(e�0)

i
E(rm,I,kI)eim⌫,

(2.51)

where

⌫ = kIxI -!t (2.52)

and EG(0,yI, zI, t) = EG(0,yI, zI)e-i!0t.
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2.3.3 The weak-coupling limit

Typically, the phase-fluctuation amplitude is very small (e�0 ⌧ 1), and
the Bessel function’s small-argument limiting form [12] can be used

lim
z!0

Jm(z) ⇠

8
<

:

1
�(m+1)

�
z
2

�m , m = 0, 1, 2, 3, · · · ,
1

�(|m|+1)

�
-z
2

�|m| , m = -1,-2,-3, · · · .
(2.53)

Here, � is the gamma function, and �(m+ 1) = m! for positive integer
m. Introducing the notational shorthand Em ⌘ E(rm,I,kI), the imaged
field to first order in e�0 (2.51) becomes

E(rI, t) ⇡ EG(0,yI, zI, t)ei�

⇥
�
E0 + i

e�0

2

⇥
E1e

i⌫ + E-1e
-i⌫
⇤�

.
(2.54)

When there is no wavenumber filtering of the diffracted field (i.e.
T(kx) = 1), the imaged field (2.54) readily reduces to

E(rI, t) ⇡ EG(rI, t)ei�
h
1+ ie�0 cos⌫

i
, (2.55)

which follows naturally from the image-plane coordinate transforma-
tion (2.48) and the following approximations: w(zm,I) ⇡ w(zI) and
R(zm,I) ⇡ R(zI). Note that (2.55) is linear in the imaged phase fluctua-
tion e�0 cos⌫. By the principle of linear superposition, then, (2.55) can
be readily generalized to

E(rI, t) ⇡ EG(rI, t)ei�
h
1+ ie�(xI, t)

i
, (2.56)

where e�(x, t) is a real-valued but otherwise arbitrary phase fluctua-
tion.

2.3.4 The need for a reference beam

Assume that there is no wavenumber filtering of the diffracted field
such that (2.56) yields the imaged field. Now, most detectors of in-
terest are square-law detectors in that they produce a response pro-
portional to the square (i.e. intensity) of the impinging field. If such
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a detector is placed at the image plane, the local intensity (averaged
over an optical cycle) is

I(rI, t) ⌘ c"0
2

|E(rI, t)|2

= IG(rI)


1+O

✓h
e�(xI, t)

i2◆�
, (2.57)

where

IG(rI) =
c"0|EG(rI)|2

2
(2.58)

is the intensity profile (averaged over an optical cycle) of the unscat-
tered Gaussian beam. Thus, for the typical |e�(xI, t)| ⌧ 1 limit, the
measured response will be very weak if the detector is only exposed
to the imaged radiation. Physically, this is attributable to the m = ±1

beams being ⇡/2 out of phase with the unscattered m = 0 beam. As
will be shown in Sections 2.4 and 2.5, the system response can be sub-
stantially improved by interfering the scattered beams with a reference
beam. The generation of such a reference beam, then, is the trait that
differentiates one interferometric method from another.

2.4 external reference-beam interferometry

In external reference-beam interferometry, there is no wavenumber
filtering of the diffracted field such that (2.56) yields the imaged field.
Thus, the probe radiation in the image plane is given as

EP(rI, t) ⇡ EG(rI, t)ei�
h
1+ ie�(xI, t)

i
. (2.59)

Now, assume that the imaged probe radiation is interfered with a ref-
erence beam of known phase �R

ER(rI, t) = EG(rI, t)ei�R . (2.60)

The total field impinging on the detector is then

E(rI, t) = EG(rI, t)
⌦
ei�R + ei�

h
1+ ie�(xI, t)

i↵
, (2.61)

and, to first order in e�(xI, t), the corresponding intensity (averaged
over an optical cycle) is

I(rI, t) = 2IG(rI)
h
1+ cos(�R -�) + e�(xI, t) sin(�R -�)

i
, (2.62)
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where IG(rI) is the intensity profile of the unscattered Gaussian beam
on the detector as defined in (2.58). Reference-beam generation pre-
scribes �R and consequently dictates the method of interferometric
detection.

2.4.1 Homodyne detection

Homodyne detection results from using a reference phase �R that is
constant (or nearly constant) in time such that the resulting intensity
is

Ihom(rI, t) = 2IG(rI)
⇥
1+ cos(�R -�)

+ e�(xI, t) sin(�R -�)
⇤
.

(2.63)

The homodyne optical intensity can be explicitly separated into equi-
librium and fluctuating components as Ihom = Ihom +eIhom, where

Ihom(rI, t) = 2IG(rI)
⇥
1+ cos(�R -�)]

⇤
, (2.64)

eIhom(rI, t) = 2IG(rI) · sin(�R -�) · e�(xI, t). (2.65)

Note that both Ihom and eIhom are functions of the phase difference
�R -�. If measurement of the fluctuation e� is of primary importance,
|eIhom| should be maximized, which occurs when �R -� = ⇡/2+m⇡

for integer m. For concreteness in the following discussion, take
�R - � = ⇡/2. Physically, �R - � = ⇡/2 means that the reference
beam is out-of-phase with the unscattered beam but in-phase with the
scattered beams. Note that interfering the scattered beams with this
in-phase reference beam produces an intensity linear in e�(xI, t); this
should be contrasted with the weak, quadratic intensity variation of
(2.57) that occurs in the absence of a reference beam.

Now, a typical engineering constraint of such an interferometer is
the saturation intensity of the detector elements. Beyond the linear
saturation intensity Isat, the detector’s response ceases to be a linear
function of the incident optical power. To make an “apples-to-apples”
comparison of different interference schemes, it is useful to examine
the ratio of the fluctuating intensityeIhom to the saturation intensity Isat.
Because |e�(xI, t)| ⌧ 1

Ihom(rI, t) ⇡ Ihom(rI, t) 6 2IG(0) when �R -� =
⇡

2
,
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where IG(0) = IG(⇢I = 0, zI) is convenient shorthand for the peak
intensity of the unscattered Gaussian probe beam at the detector. To
obtain optimal performance, select IG(0) such that

Isat = 2IG(0).

Then, the fraction of the detector’s dynamic range occupied by the
fluctuating signal is

eIhom(rI, t)
Isat

=
IG(rI)

IG(0)
· Thom · e�(xI, t), (2.66)

where

Thom ⌘ 1 when �R -� =
⇡

2
(2.67)

is the homodyne interferometer’s transfer function. As presented
here, Thom is independent of the fluctuation wavenumber; however, the
finite sampling-volume effects that accompany any real-world mea-
surement introduce a wavenumber dependence, as discussed in Sec-
tion 3.1.4.

The above derivation of the homodyne interferometer’s transfer func-
tion requires �R - � = ⇡/2. Practically speaking, however, it can
be difficult to keep �R - � fixed at ⇡/2. First, a CO2 beam passing
through ⇠ 1m of plasma with a density ne ⇠ 1020m−3 will experience
a bulk phase delay � ⇠ ⇡; thus, for constant �R, it will be impos-
sible to operate the interferometer at �R - � = ⇡/2 as the density
evolves across the discharge. Second, fusion experiments are often
characterized by large, pulsed electromagnets whose vibrations can
change the path lengths of the interferometer’s arms. A path-length
change �l produces �(�R - �) = k0�l, where k0 is the wavenumber
of the probe radiation. For a 10.6µm CO2 probe beam, a path-length
variation ⇠ 2.5µm is sufficient to produce �(�R -�) ⇠ ⇡/2, pushing
the homodyne interferometer from its configuration of peak fluctua-
tion sensitivity into one of its nulls. Even vacuum-pump vibrations
can provide such a push! On small fusion devices, actively controlled
mirrors have been used in an attempt to account for the evolution of
the equilibrium phase and to cancel vibrational path-length changes,
minimizing excursions from �R -� ⇡ ⇡/2 [13], but such an approach
has not found application on larger (and presumably more vibration-
prone) fusion experiments.

In addition to its variable sensitivity, the homodyne interferome-
ter does not make an absolute measurement of the phase fluctuation
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amplitude e�0 [2, Sec. 4.2.2]. For example, vibration-induced misalign-
ment or power fluctuations at the beam source can alter the intensity
IG(rI). As a result, there are three potentially dynamic quantities:
{�R -�, e�(xI, t), IG(rI)}, but there are only two measured quantities:
the equilibrium and fluctuating homodyne powers. Thus, it is gen-
erally impossible to distinguish whether changes in the amplitude of
the fluctuating power are attributable to real changes in e�(xI, t) or are
simply an artifact of the system alignment or radiation source.

2.4.2 Heterodyne detection

To avoid the above-mentioned challenges of homodyne interferometry,
the reference phase can be linearly ramped in time as �R = -�!0t

such that the intensity (2.62) becomes

Ihet(rI, t) = 2IG(rI)
⇥
1+ cos(�!0t+�)

- e�(xI, t) sin(�!0t+�)
⇤
.

(2.68)

This approach is known as heterodyne interferometry, as the desired
baseband phase information is shifted to an intermediate frequency
�!0 satisfying !max ⌧ �!0 ⌧ !0, where !max is the maximum
angular frequency in e�(xI, t). Note that the dominant Fourier compo-
nents of Ihet sit at the intermediate frequency ±�!0 but that the phase-
fluctuation term e�(xI, t) sin(�!0t+�) produces sidebands about ±�!0;
sideband production for a sinusoidal phase fluctuation of angular fre-
quency ! is sketched in Figure 2.1. Practically, the �R ramp is accom-
plished by modestly Doppler shifting the reference beam relative to
the plasma beam. (Note that �R = -�!0t corresponds to a Doppler
upshifted reference beam; i.e. the reference beam’s temporal evolution
is given by e-i!0t+i�R = e-i(!0+�!0)t).

The heterodyne interference signal must be demodulated in order
to retrieve the baseband phase-fluctuation information. Practically
speaking, dedicated analog or digital electronics are used to demod-
ulate the heterodyne signal; however, for the pedagogical purposes
of this section, it is sufficient to consider the “equivalent optical in-
tensities” corresponding to the demodulated signals. The so-called
in-phase (I) and quadrature (Q) signals are obtained by mixing Ihet
with (2

p
2/⇡) · Re(e-i�!0t) and (2

p
2/⇡) · Im(e-i�!0t), respectively,

and low-pass filtering the resulting signals; here, the normalization of
the complex exponential is motivated by and is consistent with the
physical processes that occur in a typical ring-diode double-balanced
mixer, as discussed in Section 3.5.2, and, for simplicity, low-pass fil-
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|� [Ihom(t)](�)| |� [Ihet(t)](�)|(a) (b)

Figure 2.1: Schematic of (a) homodyne vs. (b) heterodyne signals in frequency space.
A homodyne signal is predominantly DC, and a sinusoidal fluctuation with angular
frequency ! produces sidebands at ±!. In contrast, the power in a heterodyne
signal is shifted to the intermediate frequencies ±�!0, and a sinusoidal fluctuation
with angular frequency ! produces sidebands at �!0 ±! and -�!0 ±!.

tering is implemented by averaging over a cycle of the intermediate
frequency. Thus, the equivalent I and Q optical intensities are defined
as

II(rI, t) + i · IQ(rI, t) =
2
p
2

⇡
he-i�!0t · Ihet(rI, t)i�!0

=
2
p
2

⇡
IG(rI)e

i�
h
1+ ie�(xI, t)

i
, (2.69)

where hqi�!0
denotes the average of quantity q over an intermediate-

frequency cycle as

hqi�!0
⌘ �!0

2⇡

Z�!0/2⇡

0

q(t)dt. (2.70)

In contrast to the homodyne interferometer, the heterodyne inter-
ferometer makes an absolute measurement of the phase-fluctuation
amplitude e�0. To see this, note that II and IQ (the real and imaginary
components of (2.69), respectively) can be separated into equilibrium
and fluctuating components as

II(rI, t) =
2
p
2

⇡
IG(rI) cos�, (2.71)

IQ(rI, t) =
2
p
2

⇡
IG(rI) sin�, (2.72)

eII(rI, t) = -
2
p
2

⇡
IG(rI) sin� · e�(xI, t), (2.73)

eIQ(rI, t) =
2
p
2

⇡
IG(rI) cos� · e�(xI, t). (2.74)
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As is the case for the homodyne interferometer, there are three poten-
tially dynamic quantities: {�, e�(xI, t), IG(rI)}; however, in contrast to
the homodyne interferometer, there are now four measured quantities:
{II, IQ, eII, eIQ}. Therefore, the number of measured quantities is suf-
ficient to unambiguously determine {�, e�(xI, t), IG(rI)} in absolute
units.

Finally, it is useful to characterize the heterodyne interferometer’s
performance relative to the saturation limits of a given detector. Be-
cause |e�(xI, t)| ⌧ 1, the heterodyne intensity (2.68) can be approxi-
mated as

Ihet(rI, t) ⇡ 2IG(rI)[1+ cos(�!0t+�)]

6 4IG(0),

where IG(0) = IG(⇢I = 0, zI) is convenient shorthand for the peak
intensity of the unscattered Gaussian probe beam at the detector. To
obtain optimal performance, select IG(0) such that

Isat = 4IG(0).

Further, define the total fluctuating intensity in the demodulated sig-
nals to be

eIIQ(rI, t) ⌘
⌦
[eII(rI, t)]2 + [eIQ(rI, t)]2

↵1/2

=
2
p
2

⇡
IG(rI) · e�(xI, t) (2.75)

such that the fraction of the detector’s dynamic range occupied by the
fluctuating component in the demodulated signal is

eIIQ(rI, t)
Isat

=
IG(rI)

IG(0)
· Thet · e�(xI, t), (2.76)

where

Thet ⌘
1p
2 · ⇡

(2.77)

is the heterodyne interferometer’s transfer function. As presented
here, Thet is independent of the fluctuation wavenumber; however, the
finite sampling-volume effects that accompany any real-world mea-
surement introduce a wavenumber dependence, as discussed in Sec-
tion 3.1.4.
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In contrast to the homodyne interferometer, the heterodyne inter-
ferometer’s wavenumber transfer function is not a function of �R -�.
Thus, the heterodyne interferometer always operates at its peak sensi-
tivity, regardless of the bulk plasma phase or path-length vibrations.
Robust sensitivity comes at a cost, however. Note that

Thet

Thom
=

1p
2 · ⇡

for homodyne operation at �R -� = ⇡/2.

Thus, for a given detector, a heterodyne interferometer will be (
p
2 ·⇡)

times less sensitive than a homodyne interferometer operated in its
optimal configuration (�R -� = ⇡/2). There are two physical origins
of the heterodyne interferometer’s sensitivity deficit. First, the detec-
tor of a homodyne interferometer with �R -� = ⇡/2 only sees small
fluctuations about a DC offset, while the detector of a heterodyne in-
terferometer sees the full sinusoidal waveform of the intermediate fre-
quency; to ensure the detector is always within its saturation limits,
the heterodyne interferometer must necessarily be operated with a
mean intensity at the detector that is a factor of two lower than that
for the homodyne interferometer. Second, a fraction of the power in
the heterodyne interferometer’s fluctuating signal (and its equilibrium
signal) is lost during demodulation.

2.5 phase contrast imaging (pci)

As discussed in Section 2.3.4, imaging the probe radiation on a square-
law detector produces a very weak response because the unscattered
and scattered beams are ⇡/2 out of phase with each other. To produce
a measurable response, a traditional interferometer interferes the im-
aged radiation with an external reference beam. If the phase of the un-
scattered beam could be manipulated, though, the external reference
beam would no longer be needed. This is the approach employed in
phase contrast imaging (PCI). A typical PCI system is shown schemat-
ically in Figure 2.2.

2.5.1 Reference-beam generation with a phase plate

PCI uses an optical element known as a phase plate to delay the unscat-
tered beam by ⇡/2 relative to the scattered beams. The phase plate
is typically a reflective optical element with a groove that is precisely
fabricated to have a depth of �0/8; the unscattered beam reflects off of
this groove, and the corresponding �0/4-increase in path length phase
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laser
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Figure 2.2: Schematic overview of a typical PCI system. A plasma-density
fluctuation weakly scatters an incident probe beam, and an off-axis parabolic mirror
focuses the scattered and unscattered beams. An optical element known as a phase
plate is placed at the focal plane of the parabolic mirror. The phase plate has a
narrow groove of depth �0/8 that imparts phase delay ⇡/2 to the unscattered beam,
effectively converting the unscattered beam into an “internal” reference beam
against which the scattered beams can be interfered. A lens, whose object plane sits
at the plasma midplane, is then used to image the resulting radiation onto a detector
array.

delays the unscattered beam by ⇡/2 relative to the scattered beams,
which reflect off of the non-grooved portions (i.e. the “face”) of the
phase plate. To boost the relative size of the fluctuating signal, the
phase groove typically reflects only a fraction ⌘ < 1 of the incident
unscattered beam power, while the phase-plate face reflects all of the
scattered beam power. Thus, by the action of the phase plate, 1 ! i

p
⌘

in the imaged electric field (2.55) such that

EPCI(rI, t) = iEG(rI, t)ei�
hp
⌘+ e�0 cos⌫

i
, (2.78)

and the corresponding intensity, averaged over an optical cycle and to
first order in e�0, is

IPCI(rI, t) = IG(rI)
h
⌘+ 2

p
⌘e�0 cos⌫

i
. (2.79)

Here, EG(rI) and IG(rI) are the field and intensity profiles of the un-
scattered Gaussian beam on the detector in the absence of the phase
plate, with IG(rI) being explicitly defined in (2.58). Equation (2.79)
should be contrasted with (2.57), which gives the image-plane inten-
sity in the absence of the phase plate. Thus, the phase plate converts
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the unscattered probe beam into an effective reference beam for the
scattered beams.

2.5.2 Focal-plane separation of scattered beams

Implicit in the use of the phase plate is that the scattered and unscat-
tered beams are well-separated in space such that the phase groove
only affects the unscattered beam. The 1

st-order scattered beams are
angularly separated from the unscattered beam by ✓ = k/k0, and, in
the far field (z � zR), the center of the scattered beam will fall outside
of the unscattered beam’s 1/e E radius if

|k| > 2

w0
. (2.80)

However, CO2 laser beams used to probe tokamak plasmas often have
zR � 10m, so the beam’s far field is not easily accessible in typical
lab settings. Fortunately, the far-field diffraction pattern can be equiv-
alently accessed in the focal plane of a focusing optic [14, Ch. 8].

The focal-plane location, beam size, and beam separation can be
easily determined. Let the Gaussian probe beam have an in-vessel 1/e
E waist radius of w0, and place a focusing optic of focal length f a
distance s downstream from the in-vessel beam waist. Then, the waist
of the focused beam will be located a distance s 0 downstream of the
focusing optic and will have 1/e E radius w 0

0 given as

s 0 = f

✓
1+

s- f

zR

◆
, (2.81)

w 0
0 =

w0|f|
⇥
(s- f)2 + z2R

⇤1/2 , (2.82)

where zR is the in-vessel Rayleigh length [15]. When |s- f| ⌧ zR, as is
typical for PCI, the expressions for s 0 and w 0

0 reduce to

s 0 ⇡ f, (2.83)

w 0
0 ⇡ 2|f|

k0w0
. (2.84)

The spatial separation � of the scattered and unscattered beams in the
focal plane is found by applying the appropriate ABCD ray matrices
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from Table B.1 to a ray scattered in the plasma midplane by angle ✓,
i.e.

 
�

✓pp

!

=

 
1 s 0

0 1

! 
1 0

-1/f 1

! 
1 s

0 1

! 
0

✓

!

,

which, upon substitution of of the focal plane location from (2.83) and
the scattering angle ✓ = k/k0, simplifies to

� ⇡ kf

k0
. (2.85)

2.5.3 Low-k cutoff of phase plate

Now, let the phase-plate groove have a width d, as is shown in Fig-
ure 2.3. Finite PCI response requires that (most of) the scattered beams
fall outside of the phase groove (i.e. |�| > d/2). Application of the
phase-plate beam-separation formula (2.85) then shows that there will
be finite PCI response for |k| > kg, where

kg ⌘ k0d

2f
. (2.86)

Here, the subscript g is in reference to the groove of the phase plate.
Further, to provide the strongest phase contrast, the unscattered beam
should fall wholly within the phase groove (i.e. 2w 0

0 6 d); substituting
(2.84) for w 0

0 then yields a constraint on the phase groove width

d > 4f

k0w0
, (2.87)

and inserting (2.87) into (2.86) yields

kg > 2

w0
. (2.88)

As finite response requires that |k| > kg, it follows that (2.88) is equiv-
alent to (2.80), which was derived by considering the far-field separa-
tion of the scattered and unscattered beams. Thus, PCI’s low-k cutoff
is ultimately constrained by the in-vessel beam size w0, with diffrac-
tion being the constraining physical mechanism.
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Figure 2.3: Transverse phase-plate dimensions. The unscattered beam is shown in
red, while the scattered beams are shown in blue.

2.5.4 High-k cutoff of phase plate

Let the phase plate have a diameter D, as is shown in Figure 2.3. De-
tection of the scattered radiation requires that (most of) the scattered
beam reflect from the face of the phase plate (e.g. � 6 D/2). Appli-
cation of the phase-plate beam-separation formula (2.85) then shows
that there will be finite PCI response for |k| 6 kD where

kD ⌘ k0D

2f
. (2.89)

2.5.5 Effect of phase plate on mth scattered beam

The effect of the PCI phase plate on the mth scattered beam is given
by the complex-valued function E(rm,k), which is derived and thor-
oughly discussed in Appendix C. The relevant results are briefly sum-
marized here for completeness. Eq. (C.32) shows that PCI’s image-
plane E(rm,k) readily reduces to

E(rm,I,kI) = e-[xm,I/w(zm,I)]
2

eimkIxI

⇥ [F(rm,I,kI) +G(rm,I,kI)] ,
(2.90)

where the phase-plate face acts on the mth scattered beam via F, and
the phase-plate groove acts on the mth scattered beam via G. F and
G are themselves defined in (C.33) and (C.34). Of particular note, F is
Hermitian with respect to m

F(r-m,I,kI) = F⇤(rm,I,kI), (2.91)
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while G is anti-Hermitian with respect to m

G(r-m,I,kI) = -G⇤(rm,I,kI). (2.92)

These symmetries imply that F(r0,I,kI) is purely real and that G(r0,I,kI)
is purely imaginary.

2.5.6 The imaged field and its intensity

Introducing the notational shorthand Fm ⌘ F(rm,I,kI) and Gm ⌘
G(rm,I,kI), the weak-coupling (e�0 ⌧ 1), image-plane electric field
from (2.54) readily reduces to

E(rI, t) ⇡ EG(rI, t)ei�
�
F0 +G0 + i

e�0

2


(F1 +G1)e

i⌫

+ (F-1 +G-1)e
-i⌫

��
,

(2.93)

where the approximation w(zm) ⇡ w(z) has been used, ⌫ is defined
in (2.52), and EG(rI, t) would be the image-plane electric field of the
unscattered beam in the absence of the phase plate. Now, recall that
F is Hermitian such that F-1 = F⇤1 and F0 = Re(F0) and that G is
anti-Hermitian such that G-1 = -G⇤

1 and G0 = i · Im(G0); using these
substitutions, the field further reduces to

E(rI, t) = EG(rI, t)ei�
�

Re(F0)- e�0Im(G1e
i⌫)

+ i
h
Im(G0) + e�0Re(F1ei⌫)

i�
,

(2.94)

and the corresponding intensity, averaged over an optical cycle and to
first order in e�0, is

Ipci(rI, t) = IG(rI)

�
|F0|

2 + |G0|
2

+ 2e�0

⇥
Im(G0)Re(F1ei⌫)- Re(F0)Im(G1e

i⌫)
⇤�

,
(2.95)

where IG(rI) would be the intensity profile (averaged over an optical
cycle) of the unscattered beam in the absence of the phase plate. Using
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the fact that ei⌫ = cos⌫+ i sin⌫, F1 = Re(F1) + i · Im(F1), and G1 =
Re(G1) + i · Im(G1), the image-plane intensity further reduces to

Ipci(rI, t) = IG(rI)

�
|F0|

2 + |G0|
2

+ 2e�0 [Im(G0)Re(F1)- Re(F0)Im(G1)] cos⌫

- 2e�0 [Im(G0)Im(F1) + Re(F0)Re(G1)] sin⌫
�

.

(2.96)

Note that the linear combination AI cos⌫-AQ sin⌫ for real AI, AQ,
and ⌫ can be rewritten as

AI cos⌫-AQ sin⌫ = A cos(⌫+ ✓), (2.97)

where A = (A2
I +A2

Q)1/2, ✓ = atan2(AQ,AI), and atan2(AQ,AI) is
the arctangent function of two arguments, which uses the signs of AQ

and AI to correctly determine the quadrant corresponding to a tangent
of AQ/AI. Note that the notation is mnemonic: AI is the amplitude
of the “in-phase” (I) component (i.e. proportional to the image of the
assumed cosine phase fluctuation e�(x, t) from (2.39)), and AQ is the
amplitude of the corresponding “quadrature” (Q) component.

As was the case for external reference-beam interferometry, it is use-
ful to characterize PCI’s performance relative to the saturation limits
of a given detector. Because e�0 ⌧ 1, the PCI optical intensity (2.96)
satisfies

Ipci(rI, t) . IG(0)
�
|F0|

2 + |G0|
2
�

,

where IG(0) = IG(⇢I = 0, zI) is convenient shorthand for the peak
intensity of the unscattered Gaussian probe beam at the detector in
the absence of the phase plate. To obtain optimal performance, select
IG(0) such that

Isat = IG(0)
�
|F0|

2 + |G0|
2
�

,

where Isat is the detector’s linear saturation intensity. Then, taking in-
spiration from (2.97), the image-plane PCI intensity fluctuations from
(2.96) can be rewritten as

eIpci(rI, t)
Isat

=
IG(rI)

IG(0)
·Apci(kI, xI) · e�0 cos

⇥
⌫+ ✓pci(kI, xI)

⇤
, (2.98)
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where

Apci(kI, xI) ⌘
2A(kI, xI)
|F0|2 + |G0|2

, (2.99)

✓pci(kI, xI) ⌘ atan2(AQ,AI), (2.100)

and

A(kI, xI) ⌘ (A2
I +A2

Q)1/2, (2.101)
AI(kI, xI) ⌘ Im(G0)Re(F1)- Re(F0)Im(G1), (2.102)
AQ(kI, xI) ⌘ Im(G0)Im(F1) + Re(F0)Re(G1). (2.103)

Thus, the action of the phase plate results in both an amplitude
response Apci(kI, xI) and a phase response ✓pci(kI, xI) in PCI’s image-
plane intensity. The on-axis responses Apci(kI, xI = 0) and ✓pci(kI, xI =
0) = 0 are consistent with previous derivations at xI = 0, such as [16,
Eq. 2.141] and [17, Eq. 20]. The present work, however, explicitly ac-
counts for the spatial variation in the amplitude and phase responses
across the face of the detector. Note that PCI operates as a nonlin-
ear system if there are substantial spatial variations in either Apci or
✓pci. The amplitude and phase responses can be easily evaluated nu-
merically, and the results for typical system parameters are shown in
Figure 2.4. As is colloquially understood, the amplitude response Apci
drops precipitously for |k| . kg. (Additionally, the spatial variation
in the amplitude response is minimal). However, perhaps less well
known, is the fact that the phase response ✓pci exhibits dramatic spatial
variation for |k| . kg. This spatial variation biases the PCI-measured
wavenumber kmeas away from the true wavenumber k, as shown in
Figure 2.5. The physical explanation for this effect is relatively simple:
a Gaussian beam can be decomposed into a set of infinite plane waves
with a finite spread in transverse wavevectors (see Section 2.2.1), and
only the components of the scattered beam with transverse lab-frame
wavenumbers |k| > kg are reflected from the phase-plate face and pro-
duce measurable interference on the PCI detector.

Thus, for |k| . kg, PCI operates as a nonlinear system that cannot
be described via a transfer function. Practically speaking, PCI’s non-
linear low-k operation prevents it from measuring the wavenumbers
of low-k fluctuations, such as MHD and some ion-scale instabilities.
(Of course, because the PCI amplitude response Apci drops precipi-
tously for |k| . kg, such low-k fluctuations may be altogether invisible
to PCI anyways). For |k| & kg, however, a transfer function can be
defined. Specifically, for |k| & kg, the phase-plate face reflects the scat-
tered beam (F1 ! 1), while the phase-plate groove minimally affects
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Figure 2.4: PCI amplitude response Apci(k, x) and phase response ✓pci(k, x) in
object-plane coordinates. Spatial coordinates x and wavenumbers k are normalized
to the 1/e E radius of the in-vessel probe beam, w0. The system magnification is
M = 0.5, a fairly typical value. The dashed horizontal lines indicate the low-k cutoff
of the PCI phase-plate groove, kg; here, kg = 2/w0, which is the minimum value
allowed by diffraction, as discussed in (2.88). The phase-plate high-k cutoff, kD, is
taken to be infinite. The reflectivity of the phase groove is ⌘ = 0.17, which is
characteristic of the ZnSe typically employed in 10.6µm optics. Note that the low-k
phase response ✓pci exhibits dramatic spatial variation, which results in nonlinear
PCI operation for |k| . kg.

the scattered beam (G1 ! 0). Further, assuming the majority of the un-
scattered beam falls within the phase groove (i.e. constraint (2.87)), the
phase-plate groove attenuates and phase shifts the unscattered beam
(G0 ! i

p
⌘), while the phase-plate face minimally affects the unscat-

tered beam (F0 ! 0). Thus, ✓pci ! 0 and Apci ! 2/
p
⌘ such that the

PCI transfer function can be defined as

Tpci(k) =

8
><

>:

2
p
⌘

, |k| & kg

undefined, otherwise
. (2.104)

As presented here, for |k| & kg, Tpci is independent of the fluctuation
wavenumber; however, the finite sampling-volume effects that accom-
pany any real-world measurement introduce a wavenumber depen-
dence, as discussed in Section 3.1.4.
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Figure 2.5: PCI-measured wavenumber kmeas vs. true wavenumber k. Wavenumbers
are normalized to the 1/e E radius of the in-vessel probe beam, w0. The system
magnification is M = 0.5, a fairly typical value. The dashed vertical lines indicate the
low-k cutoff of the PCI phase-plate groove, kg; here, kg = 2/w0, which is the
minimum value allowed by diffraction, as discussed in (2.88). For |k| & kg, kmeas has
a 1 : 1 linear relationship with k; however, for |k| . kg, kmeas is not linearly related to
k. Thus, a transfer-function description of the PCI operation is only appropriate for
wavenumbers above the low-k cutoff (|k| & kg).

As is the case with the homodyne interferometer, the PCI technique
does not make an absolute measurement of the phase-fluctuation am-
plitude e�0. To see this, note that the PCI amplitude response Apci
depends very sensitively on the system alignment, with slight excur-
sions of the unscattered beam from the partially reflective phase-plate
groove onto the fully reflective phase-plate face resulting in macro-
scopic changes to the power reaching the detector. Further, power
fluctuations at the beam source can alter IG(rI). Thus, there are three
potentially dynamic quantities: {e�0, IG(rI),Apci}, but there are only
two potentially measurable quantities: the equilibrium and fluctuat-
ing powers. PCI systems on large, vibration-prone fusion devices typ-
ically employ feedback stabilization (see e.g. [16, Ch. 3.5]) in order to
dynamically maintain the unscattered beam’s alignment on the phase-
plate groove, minimizing vibrational contamination of the PCI signal.
It is then possible, after measuring a calibration constant, to estimate
the phase-fluctuation amplitude e�0 with PCI.
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2.6 selecting an interferometric technique

Sections 2.4 and 2.5 detail external reference-beam interferometry and
phase contrast imaging (PCI), respectively. The intent of this section is
to synthesize these results and to discuss the strengths and limitations
of these interferometric techniques so that a suitable method can be
selected for a given application.

2.6.1 Sensitivity

The transfer functions in Sections 2.4 and 2.5 specify the fraction of
a given detector’s dynamic range that is occupied by the fluctuating
signal. If identical detectors are used for each interferometric method,
then an “apples-to-apples” comparison of fluctuation sensitivities can
be made by examining the amplitudes of the corresponding transfer
functions. (See Section 2.6.3 for practical considerations regarding
detector selection). Just such a comparison is shown in Figure 2.6.
Clearly, for a given fluctuation (|k| & kg) and a given detector, PCI
has the best sensitivity. Specifically, PCI is Tpci/Thom = 2/

p
⌘ more

sensitive than a comparable homodyne interferometer (�R -� = ⇡/2)
and Tpci/Thet = 2⇡

p
2/⌘ more sensitive than a comparable heterodyne

interferometer. Relative to homodyne interferometry, PCI’s enhanced
sensitivity is wholly attributable to the partial reflectivity (⌘ < 1) of
the phase-plate groove: the decreased power in the unscattered beam
increases the fraction of the detector’s dynamic range occupied by the
fluctuating signal. The sensitivity deficit of heterodyne interferometry
relative to homodyne interferometry has two physical origins: first,
the heterodyne interferometer must capture the full sinusoidal wave-
form of the heterodyne interference signal, which mandates reduction
of the mean optical intensity (and, correspondingly, the fluctuating op-
tical intensity) at the detector by a factor of two relative to that of the
homodyne interferometer; second, demodulation of the heterodyne
interference signal additionally attenuates the fluctuating signal.

The enhanced sensitivity of PCI and homodyne interferometry rel-
ative to that of heterodyne interferometry comes with several costs,
however. First, as previously discussed, neither PCI nor homodyne
interferometry measure the absolute scale of phase fluctuations, while
heterodyne interferometry does. Second, PCI depends sensitively on
the position of the unscattered beam relative to the phase-plate groove,
and homodyne interferometry depends sensitively on �R - �; often,
feedback stabilization is required to dynamically maintain the opti-
mal configuration [16, Ch. 3.5][13]. While feedback stabilization is an
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Figure 2.6: A comparison of the transfer functions for PCI (2.104), heterodyne
interferometry (2.77), and homodyne interferometry (2.67, in the optimal fluctuation
configuration with �R -� = ⇡/2). Object-plane wavenumbers k are normalized to
the 1/e E radius of the in-vessel probe beam, w0. The magnification of each system
is taken to be |M| = 0.5, which is a representative “typical” value. The vertical,
dashed lines indicate the low-k cutoff of the PCI phase-plate groove, kg; here,
kg = 2/w0, which is the minimum value allowed by diffraction, as discussed in
(2.88). The phase-plate high-k cutoff, kD, is taken to be infinite. The reflectivity of
the PCI phase groove is ⌘ = 0.17, which is characteristic of the ZnSe typically
employed in 10.6µm optics. Because the PCI transfer function is not defined for
|k| . kg, the low-k PCI amplitude response (2.99) is indicated by the dash-dot curves
instead.

added technical complication, it should be noted that such feedback is
expected to become more commonplace for laser diagnostics on large
fusion devices, such as ITER’s heterodyne interferometer [18]. Finally,
PCI cannot measure the equilibrium phase �. This makes intuitive
sense: � uniformly affects both the scattered and unscattered beams,
the PCI phase delays the unscattered beam to generate an “internal”
reference beam, and the � information cancels in the resulting interfer-
ence. A homodyne interferometer operated with �R -� = ⇡/2 is sim-
ilarly unable to measure �. In contrast, a heterodyne interferometer
can always measure both the equilibrium phase � and the fluctuating
phase e�.
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2.6.2 Spatial bandwidth

PCI’s sensitivity comes at the additional expense of spatial bandwidth.
Specifically, the creation of an “internal” reference beam via spatial
filtering produces a low-k cutoff in the PCI response, as shown in Fig-
ure 2.6. The minimum size of this cutoff is set by diffraction of the
in-vessel probe beam (2.88), but it is not uncommon for the realized
cutoff (2.86) to be ⇠ 2- 3⇥ larger than the diffraction limit. As shown
in Figures 2.4 and 2.5, PCI operates as a nonlinear system below its
low-k cutoff, preventing a transfer-function description of its low-k be-
havior. In contrast, by using an external reference beam, homodyne
and heterodyne interferometers operate as linear systems over the en-
tire wavenumber spectrum and are even capable of making measure-
ments at k = 0.

Now, colloquially, interferometry is considered a “low-k” technique,
and PCI is considered a “high-k” technique. However, as detailed
in Section 2.2.2, for a given probe beam and a given fluctuation e�,
the laser-plasma interaction is identical for both interferometry and
PCI. Further, the high-k optical capabilities of interferometry and PCI
are governed by the size of the collection optics and finite sampling-
volume effects [19]. Thus, there is nothing that intrinsically limits inter-
ferometry to low-k measurements — an interferometer’s high-k limit
can be just as high, if not higher, than that of a given PCI system. How-
ever, as discussed in Section 2.6.1, PCI is more sensitive to fluctuations
than a comparable interferometer, and, assuming a Kolmogorov-like
fluctuation spectrum S(k) / k-p for some positive p, PCI’s superior
sensitivity may allow it to detect high-k fluctuations that are too weak
to be seen by an interferometer.

2.6.3 Temporal bandwidth

Detector bandwidth is often the dominant constraint of an interfero-
metric system’s temporal bandwidth. Homodyne interferometry and
PCI require

!det > !, homodyne interferometry, PCI, (2.105)

where !det is the angular cutoff frequency of the detector and ! is
the angular frequency of the fluctuation. Heterodyne interferometry,
however, requires

!det > �!0 +!, heterodyne interferometry, (2.106)
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where �!0 is the (angular) intermediate frequency. Further, proper re-
construction of the baseband signal from the heterodyne interference
signal requires ! < �!0.

Thus, for a given fluctuation ! ⌧ �!0, heterodyne interferometry
requires a much faster detector than homodyne interferometry or PCI.
For the HgCdTe detectors typically used at 10.6µm, cooling the active
element of the detector reduces detector noise and increases the detec-
tor response at the expense of reduced !det. Thus, for low–bandwidth
applications (! ⌧ �!0), homodyne interferometry and PCI may be
able to use slower, cooled detectors that are less noisy than the compa-
rable faster, warmer detectors required for heterodyne interferometry.
The use of less noisy detectors may produce sensitivity gains for PCI
and homodyne interferometry relative to heterodyne interferometry.
Although use of a “slow” detector prevents measurements of broad-
band fluctuations beyond the detector cutoff, it is possible to measure
coherent, high-frequency fluctuations well beyond the detector cutoff
(! � !det) by rapidly modulating the intensity of the probe beam [6,
Sec. 3.3.1].
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3
D E S I G N C O N S I D E R AT I O N S F O R A H E T E R O D Y N E
I N T E R F E R O M E T E R

While Chapter 2 discusses the optical foundations for various inter-
ferometric methods, most real-world optical diagnostics are complex,
integrated systems requiring precise interplay between various com-
ponents, such as lasers, optics, detectors, and electronics. Optimizing
the performance of a given diagnostic requires careful consideration
of each component and its role in the measurement. Some of these
considerations are generic, and some of them are diagnostic specific.

This chapter examines numerous design considerations that are rele-
vant to heterodyne interferometry. The sections are arranged in roughly
sequential order, beginning with the interference signal at the detec-
tor and proceeding through successive downstream components until
reaching the system’s digitizer. In particular, Section 3.1 discusses the
geometric effects that affect the magnitude of the heterodyne signal
and set the wavenumber response of the interferometer. Section 3.2
explores heterodyne measurements made beyond the saturation inten-
sity of a given detector. Sections 3.3 and 3.4 reveal how phase noise
and amplitude noise, respectively, can creep into the interferometer’s
measurements. Section 3.5 describes demodulation of the heterodyne
interference signal and the distortion of the baseband phase signal
that results from demodulator imperfections. Section 3.6 discusses
the signal quantization that necessarily occurs when generating a dig-
ital record. Finally, for ease of reference, Section 3.7 provides a concise
summary of the discussed design considerations. These design consid-
erations will be referenced extensively in Chapter 4, which describes
the addition of a heterodyne interferometer to the pre-existing phase
contrast imaging (PCI) diagnostic on the DIII-D tokamak.

3.1 geometric considerations

Several geometric effects substantially influence the performance of a
heterodyne interferometer. Section 3.1.1 provides a minimum thresh-
old on the radii of components in the optical train, while Section 3.1.2
derives the required degree of coalignment between the probe beam
and the reference beam. Section 3.1.3 discusses the implications of mis-
matches between the spatial structures of the probe beam and the refer-
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ence beam and develops a criterion for the required level of matching.
Section 3.1.4 reveals how the imaging system’s magnification M and
the detector’s size and shape influence the interferometer’s wavenum-
ber response. Finally, Section 3.1.5 examines the depth-of-focus effects
that become manifest when the detector is displaced from the actual
image plane.

3.1.1 Aperture diffraction

Diffraction from finite-aperture optics was neglected in Chapter 2’s
transfer-function derivations. For a propagating Gaussian beam, this
neglect of aperture diffraction is a reasonable approximation if

aeff >
3

2
w(z), (3.1)

for each aperture, where aeff is the effective aperture radius and w(z)
is the beam’s 1/e E radius at the aperture location [1, 2]. For a circular
aperture of radius a, the effective aperture radius is simply aeff = a for
a beam propagating along the optical axis (e.g. the unscattered beam
from Sec. 2.2.2); however, for a beam located ⇢(z) away from the opti-
cal axis (e.g. the upscattered or downscattered beam from Sec. 2.2.2),
the effective aperture radius is aeff = a- |⇢(z)|.

3.1.2 Beam coalignment

For the moment, assume a plane-wave representation for both the ref-
erence beam and the unscattered probe beam. Specifically, let the ref-
erence beam be given by

ER(r) = E0x̂ · ei[k0z-(!0+�!0)t], (3.2)

and let the unscattered probe beam be misaligned with the reference
beam by angle ✓ ⌧ 1 such that, to lowest order in ✓, the unscattered
probe beam is

EP(r) ⇡ E0x̂ · ei[k0(z+✓x)-!0t]. (3.3)

The total intensity (averaged over an optical cycle) is then

I =
c"0
2

|ER +EP |
2 ⇡ 2I0 [1+ cos(�!0t+ k0✓x)] , (3.4)
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where I0 = c"0E
2
0/2 is the corresponding intensity of a single beam.

Here, the cosine term corresponds to the interference between the two
beams, and the unity term corresponds to the intensity of each indi-
vidual beam. Optimizing the interference signal requires alignment of
the beam polarizations and minimization of the misalignment angle ✓.
If the interference is measured by a detector with an extent sx in the
x-direction, the misalignment-induced phase k0✓x should change by
much less than 2⇡ across the detector face; i.e. |k0✓sx| ⌧ 2⇡ or

|✓| ⌧ �0
sx

⇡ 0.6�, (3.5)

where �0 = 2⇡/k0 is the beam wavelength, and �0 = 10.6µm and sx =
1mm have been used for the evaluation. While coalignment constraint
(3.5) is relatively easy to satisfy during a system alignment, it does
have design implications for CO2 interferometers that are built for
magnetic fusion experiments, which are often characterized by large,
pulsed electromagnets whose operation may contort the machine and
produce vibrations, potentially destroying the beam coalignment.

3.1.3 Mismatch between beam spatial structures

The external reference-beam interferometry derivations in Section 2.4
assumed that the reference beam was exactly matched in both am-
plitude and spatial structure to the unscattered probe beam. This is
obviously an idealization that, at best, can only be approximately met
in experiment. This section discusses the geometric effects of such
imperfections in beam matching.

The derivation of the heterodyne intensity (2.68) can be easily gener-
alized to account for the geometric effects of unmatched reference and
probe beams. Namely, let the image-plane probe radiation be given by
(2.59) as

EP(rI, t) ⇡ EG,P(rI, t)ei�
h
1+ ie�(xI, t)

i
, (3.6)

and let the corresponding reference beam be given by

ER(rR, t) = EG,R(rR, t)e-i�!0t, (3.7)

where rI = (xI,yI, zI),

rR = rI + (0, 0, zR - zI), (3.8)
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and EG,j is a Gaussian beam with angular frequency !0, waist am-
plitude E0,j, and waist 1/e E radius w0,j. If zR 6= zI, the reference
beam’s waist sits at a different location than that of the unscattered
probe beam. Under these circumstances and to first order in e�, the
heterodyne intensity (averaged over an optical cycle) becomes

Ihet(rI, zR, t) = IDC + IAC cos(�!0t+�eff)

- IACe�(xI, t) sin(�!0t+�eff),
(3.9)

where

IDC = IG,P(rI) + IG,R(rR), (3.10)

IAC = 2
q
IG,P(rI) · IG,R(rR) (3.11)

are the DC and AC components of the heterodyne intensity, respec-
tively,

IG,j(r) =
c"0|EG,j(r)|2

2
(3.12)

is the intensity profile (averaged over an optical cycle) of Gaussian
beam j 2 {P,R},

�eff = �+
⇥
�G,P(rI)-�G,R(rR)

⇤
(3.13)

is the effective bulk phase, and

�G,j(r) = k0z+
k0⇢

2

2Rj(z)
- j(z) (3.14)

is the phase of Gaussian beam j 2 {P,R} (i.e. EG,j(r) = |EG,j(r)|ei�G,j(r)).
Note that (3.9) readily reduces to (2.68) if EG,R(rR) = EG,P(rI).

It is worth discussing the implications of heterodyne intensity (3.9).
First, repeating the derivation between (2.69) and (2.77) with this mod-
ified heterodyne intensity, one readily finds that the heterodyne inter-
ferometer’s wavenumber transfer function (2.77) should be multiplied
by the factor 2IAC/(IDC + IAC). It is then easy to show that the transfer
function is maximized when IDC = IAC, i.e. when the probe beam and
reference beam have identical spatial structures and powers. Second,
note that the effective bulk phase �eff is dependent on the geometry
of the reference beam and the unscattered probe beam. Specifically, in
the context of measuring the plasma-induced bulk phase �, note that

�eff(⇢I = 0) = �+ k0(zI - zR)- [ P(zI)- R(zR)] . (3.15)
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If zI and zR are fixed, then the beam-geometry contributions to �eff(⇢I =
0) constitute an unimportant DC offset that can be removed via base-
line subtraction; however, experiments are typically plagued by vibra-
tions, and even small changes to zI and zR can make significant time-
dependent contributions to �eff(⇢I = 0) at CO2 probe wavelengths. As
such, deconvolving the plasma-induced and vibration-induced contri-
butions to �eff(⇢I = 0) requires interferometric measurements at two
distinct wavelengths (i.e. two-color interferometry) [3]. However, such
vibrations occur on slow time-scales (e.g. fvib . 5 kHz), and phase
measurements at a single wavelength are sufficient to quantify plasma-
induced phase fluctuations at frequencies above fvib [4]. Finally, note
that the beam geometry also imparts a spatially dependent, curvature-
induced phase shift

��(⇢I) = �eff(⇢I)-�eff(⇢I = 0)

=
k0⇢

2
I

2


1

RP(zI)
-

1

RR(zR)

�
, (3.16)

which can result in signal loss and distortion of the measured wavenum-
ber. To see this, assume that the radiation is interfered on a detector
array, as shown in Figure 3.1. As a detector element produces a sig-
nal proportional to the average intensity across its face, there will be
substantial signal loss if there are large curvature-induced phase shifts
across the element’s face (i.e. ��(sx/2) & ⇡ or ��(sy/2) & ⇡). Fur-
ther, if there are large curvature-induced phase shifts across the length
of the detector array, the spatial structure of the intensity will not cor-
respond to the spatial structure of the plasma fluctuation. The latter
is the more conservative constraint on the curvature-induced phase
shift. Assuming that the detector array shown in Figure 3.1 consists of
Nel detector elements and that the inter-element spacing is negligible
(�x ⌧ sx), the criterion for negligible curvature-induced phase shifts
max(��) = ��(⇢I,max) ⌧ ⇡ becomes

max(��) =
k0
8

⇥
(Nelsx)

2 + s2y
⇤ ����

1

RP(zI)
-

1

RR(zR)

����⌧ ⇡. (3.17)

3.1.4 Finite sampling-volume effects

Practically speaking, detection is always effected via detector elements
of finite size, with the output of each detector element corresponding
to the incident intensity averaged over the element’s active area. This



76 design considerations for a heterodyne interferometer

x0 x1 x2 xjx-1 ... ......
sy

sx �x

y=0

jth detector 
element, Dj

IG(x)

x

intensity profile of
unscattered beam

Figure 3.1: The probe radiation and the reference beam are interfered on a detector
array. The array consists of numerous detector elements, each of size sx ⇥ sy and
with interelement spacing �x. The unscattered beam is centered on x = x0 and y = 0,
and its intensity profile varies only weakly over any given element. The finite size of
each detector element tends to attenuate short wavelength components of the
incident optical signal.

averaging acts as a low-pass filter in the spatial domain and is referred
to as the finite sampling-volume effect [5].

Finite sampling-volume effects dictate a heterodyne interferometer’s
wavenumber response [6]. To see this, assume that measurements are
made with the array of rectangular detector elements shown in Fig-
ure 3.1 (for circular elements, see Coda’s discussion [7, Sec. 3.7]). Let
the jth detector element Dj be centered on xI,j and yI = 0. Integrat-
ing the optical intensity eIIQ(rI, t) corresponding to fluctuations in the
baseband signal from (2.75) over the face of detector element Dj yields
the corresponding optical power

ePIQ,j(t) =

Z

Dj

eIIQ(rI, t)dA

⇡ 2
p
2

⇡
IG(rI,j)sy

ZxI,j+sx/2

xI,j-sx/2

e�(xI, t)dxI; (3.18)

here, the intensity profile IG(rI) has been assumed to be approxi-
mately constant over the face of the detector element. Because (3.18)
is linear in e�, it is suitable to consider a single Fourier mode

e�(xI, t) = e�0 cos(kIxI -!t) (3.19)

for which (3.18) reduces to

ePIQ,j(t) =
2
p
2

⇡
IG(rI,j)A · Tfsv(kI) · e�0 cos(kIxI -!t), (3.20)
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where A = sxsy is the area of the detector element,

Tfsv(kI) ⌘ sinc
✓

kI
kfsv,I

◆
(3.21)

is the finite sampling-volume transfer function,

sinc(x) =
sin(⇡x)
⇡x

(3.22)

is the normalized sinc function, and

kfsv,I =
2⇡

sx
(3.23)

is the first zero of Tfsv(kI). Recalling that an object-plane wavenum-
ber k is imaged as kI = k/M in a magnification-M imaging system,
the corresponding object-plane finite sampling-volume wavenumber
cutoff is

kfsv =
2⇡|M|

sx
. (3.24)

Now, as in Section 2.4.2, select the central intensity of the unscattered
beam at the detector to be IG(0) = Isat/4, where Isat is the detector’s
linear saturation intensity, such that

ePIQ,j(t)

IsatA
=

IG(rI,j)

IG(0)
· Thet(kI) · e�0 cos(kIxI -!t), (3.25)

where

Thet(kI) =
1p
2 · ⇡

· Tfsv(kI) (3.26)

is the heterodyne interferometer’s wavenumber transfer function. In
the limit sx ! 0, Tfsv ! 1 and the heterodyne interferometer’s wavenum-
ber transfer function reduces to (2.77). Thus, finite sampling-volume
effects introduce a wavenumber dependence into Thet, as shown in
Figure 3.2. Note that finite sampling-volume effects introduce similar
wavenumber dependencies into the transfer functions of the homo-
dyne interferometer and PCI.

3.1.5 Depth of focus

The derivations in Sections 2.3 through 2.5 assumed that the detector
sits exactly at the image plane. Empirically, however, uncertainties in
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Figure 3.2: The wavenumber transfer function for a heterodyne interferometer with
finite sampling-volume effects and without finite sampling-volume effects.

distances and focal lengths produce a corresponding uncertainty in
the image-plane location. The axial distance by which the detector
location may deviate from the image plane is referred to as the depth
of focus. Even if all components are perfectly positioned and all focal
lengths are equal to their nominal values, the image plane still only
maps to the tokamak midplane, and images from points above and
below the tokamak midplane will be “out of focus”; such depth-of-
field considerations are closely related an imaging system’s depth of
focus.

In order to investigate a heterodyne interferometer’s depth of focus,
it is necessary to generalize the derivation of the imaged electric field
from Section 2.3. In particular, let the detector be located an axial
distance �zI downstream of the image plane (i.e. zdet = zI + �zI such
that positive �zI implies that the detector is downstream of the image
plane, and negative �zI implies that the detector is upstream of the im-
age plane). Referencing the detector-plane coordinate transformation
(B.14), the imaged field at the detector (2.55) readily generalizes to

E(rdet, t) ⇡ EG(rdet, t)ei�
h
1+ ie-iµ(e�0 cos⌫ 0)

i
, (3.27)
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where

µ =

✓
k2I
2k0

◆
�zI, (3.28)

⌫ 0 =

�
1-

�zI
R(zdet)

�
kI

�
xdet -!t, (3.29)

kI = k/M is the image of wavenumber k in a magnification-M imag-
ing system, and xdet and �zI are assumed to be small relative to the
radius of curvature R(zdet) of the probe beam at the detector. Rela-
tive to the image-plane field (2.55), the detector-plane field (3.27) has a
wavenumber distortion {1- [�zI/R(zdet)]}. Additionally, the detector-
plane field has a wavenumber-dependent phase shift µ, which results
from the “out-of-focus” interference of the upscattered beam with
the downscattered beam; it has been empirically demonstrated that
blocking one of these scattered beams eliminates this wavenumber-
dependent phase shift [8, Sec. 2.1], albeit at the expense of reducing
the amplitude of the fluctuating signal by a factor of two.

Heterodyne detection is implemented by interfering the detector-
plane field (3.27) with a frequency-shifted reference beam. In particu-
lar, assume a reference beam of the form EG(rdet, t)e-i�!0t such that
intensity (averaged over an optical cycle) becomes

Ihet(rdet, t) = 2IG(rdet)
⇥
1+ cos(�!0t+�)

- e�0 cos⌫ 0 sin(�!0t+�- µ)
⇤
.

(3.30)

Demodulating this heterodyne intensity via the program in Section 2.4,
one obtains the equilibrium and fluctuating components of the in-
phase and quadrature intensities

II(rdet, t) =
2
p
2

⇡
IG(rdet) cos�, (3.31)

IQ(rdet, t) =
2
p
2

⇡
IG(rdet) sin�, (3.32)

eII(rdet, t) = -
2
p
2

⇡
IG(rdet) sin

�
�- µ

�
· e�0 cos⌫ 0, (3.33)

eIQ(rdet, t) =
2
p
2

⇡
IG(rdet) cos

�
�- µ

�
· e�0 cos⌫ 0. (3.34)

It is possible to compute the autospectral density of the phase fluctua-
tions by summing the autospectral densities ofeII andeIQ and then nor-
malizing by (I

2
I + I

2
Q), which fortuitously eliminates the µ-dependence.

However, it is not readily apparent how to extend this method to the
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computation of e.g. cross-spectral densities [9, Sec. 5.2] and bispec-
tral densities [10], for which the actual phase signal e�(x, t) is needed.
For this reason, the phase is often computed via the inverse-tangent
method discussed in Section 3.5.1. Unfortunately, this inverse-tangent
method has reduced response when µ 6= 0. To see this, first consider
the case when µ = 0: II and IQ map out a circle, and the fluctuation
e�0 cos⌫ 0 produces perturbations eII and eIQ that are always tangent to
this circle, producing angular deviations in the (I,Q)-plane that can be
quantified by the inverse-tangent calculation. Now, if µ 6= 0, the per-
turbations eII and eIQ are no longer tangent to the circle mapped out
by II and IQ; in the extreme that µ = (2m+ 1)⇡/2 for integer m, the
fluctuations become purely radial in the (I,Q)-plane, and the inverse-
tangent calculation, sensitive only to angular displacements, fails to
detect the fluctuations.

3.2 intensity considerations

Ideally, a photovoltaic detector produces an output voltage

V(t) = R0 · I(t), (3.35)

where R0 is the detector responsivity and I(t) is the incident optical
intensity. However, every real-world detector has a saturation inten-
sity Isat beyond which the output voltage ceases to be a linear function
of the incident optical intensity; that is, the detector responsivity has
an intensity dependence R(I), and the detector voltage can be more
generally written as

V(t) = R (I(t)) · I(t). (3.36)

Here, R(I) is an arbitrary monotonically increasing function of the
incident optical intensity I. Despite the potentially nonlinear response,
the detector voltage remains periodic in 2⇡/�!0 and can be expanded
in a Fourier series as

V(t) = V0 +
1X

n=1

Vn cos (n�!0t+ ✓n) , (3.37)

where Vn and ✓n are the amplitude and phase, respectively, of the nth

harmonic. Thus, a nonlinear detector response produces higher-order
harmonics in the signal. In general, Vn and ✓n can vary in time, pro-
ducing sidebands about each harmonic. Provided the bandwidth of
these fluctuations is sufficiently low, there will be no spectral overlap
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Figure 3.3: Heterodyne detection beyond the saturation intensity with
�!0 = 2⇡ · 30MHz and ! = 2⇡ · 16MHz. (Top panel): Various detector saturation
models. The linear model exhibits no saturation, the hard saturation model limits
the output voltage to Vsat when the incident optical intensity exceeds Isat, and the
arctangent saturation model exhibits 1 dB compression when the incident optical
intensity is Isat. (2nd panel): The intermediate frequency (IF) waveforms
corresponding to each saturation model when Imax = 10 Isat. The arctangent and
hard saturation models distort the IF waveform, producing numerous higher-order
harmonics. (3rd panel): Autospectral densities of the IF waveforms. The IF
waveforms all exhibit peaks at the 30MHz fundamental and its corresponding
sidebands at 30MHz± 16MHz. However, the saturated IF waveforms also exhibit
peaks at the second harmonic (60MHz) and its corresponding sidebands
(60MHz± 16MHz). (Bottom panel): Autospectral densities of the demodulated
phase. Note that the 16MHz fluctuation is correctly identified when demodulating
all of the IF waveforms. However, the saturated IF waveforms also produce a
spurious 14MHz fluctuation, which is attributable to the overlap of the 30MHz and
60MHz sidebands.
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between the sidebands of adjacent harmonics, and bandpass filtering
the detector signal about �!0 yields

V(t) ⇡ V1 cos[�!0t+ ✓1(t)] (3.38)

with ✓1(t) = �(t), where �(t) is the optical phase shift between the
plasma and reference arms of the interferometer. However, for fluc-
tuations with sufficiently high bandwidth (e.g. ! ⇠ �!0/2), the side-
bands of adjacent harmonics begin to overlap, potentially corrupting
the phase measurement, as demonstrated by the example in Figure 3.3.
By processing the bandpass-filtered voltage (3.38) via a procedure sim-
ilar to that outlined between (2.69) and (2.77), one readily finds that
the heterodyne interferometer’s wavenumber transfer function (2.77)
should be multiplied by the factor [V1/V1(Imax = Isat)], where V1 is the
amplitude of the bandpass-filtered voltage (3.38), and V1(Imax = Isat)
is the amplitude of the corresponding bandpass-filtered voltage when
the system’s maximum intensity is scaled to the saturation intensity
(the AC and DC fractions of the incident intensity are not altered dur-
ing this scaling; to account for changing the AC and DC fractions, see
the discussion in Section 3.1.3).

3.3 phase noise : sources & effects

Heterodyne interferometry at 10.6µm relies on both an optical oscilla-
tor (the laser) and a radio-frequency oscillator (usually referred to as
the local oscillator (LO)). These oscillators, like all real-world oscilla-
tors, exhibit phase noise. The spectral properties and implications of
oscillator phase noise are reviewed in Appendix D. Below, Section 3.3.1
shows that a mismatch between the optical path lengths of the probe
beam and the reference beam injects the laser’s phase noise into the
heterodyne interferometer’s measurements, while Section 3.3.2 shows
that finite coupling time in the Doppler-shifting modulator injects the
LO’s phase noise into the heterodyne interferometer’s measurements.

3.3.1 Unmatched optical path lengths & laser phase noise

The external reference-beam interferometry derivations in Section 2.4
assumed that the laser’s angular frequency was fixed at its nominal
value !0. However, the angular frequency of any real laser will ex-
hibit small fluctuations in time, much like any other real-world os-
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cillator [11, Sec. 1.7]. The electric field of such a Gaussian beam is
well-described by

EG(r, t) = EG(r)e-i[!0t+�!0
(t)], (3.39)

where �!0
(t) is a zero-mean, stationary, random process known as

the laser’s phase deviation whose temporal variation causes the laser’s
instantaneous angular frequency to wander about its nominal value
!0.

Now, if the interferometer’s probe beam and reference beam tra-
verse different optical path lengths, the laser’s phase deviation will
inject phase noise into the measured signal. To see this, assume that
the optical path length of the probe beam exceeds that of the reference
arm by L. Then, if the reference beam impinging on the detector at
time t is

ER(rI, t) = EG(rI)e
-i[(!0+�!0)t+�!0

(t)], (3.40)

the corresponding imaged probe radiation from (2.59) becomes

EP(rI, t) = EG(rI)e
-i[!0(t-⌧)+�!0

(t-⌧)]ei�
h
1+ ie�(xI, t)

i
, (3.41)

where ⌧ = L/c is the time delay associated with the optical path-length
difference L. The resulting intensity (averaged over an optical cycle)
of the interfering radiation is

Ihet(rI, t) ⇡ 2IG(rI)
⇥
1+ cos(�!0t+�eff)

- e�m(xI, t) sin(�!0t+�eff)
⇤
,

(3.42)

where

�eff = �+!0⌧, (3.43)
e�m(xI, t) = e�(xI, t) + ��!0

(t- ⌧, ⌧), (3.44)
��!0

(t, ⌧) = �!0
(t+ ⌧)-�!0

(t). (3.45)

The quantity ��!0
(t, ⌧) is referred to as the “instrumental phase noise”,

and it is produced by the optical path-length difference L and the
laser’s phase deviation �!0

(t). Typically, |��!0
(t, ⌧)| ⌧ 1, and only

terms to first order in ��!0
and e� were retained in the heterodyne

intensity (3.42). Comparing (3.42) with (2.68), one readily sees that the
measured phase fluctuation is e�m defined in (3.44); that is, the fluctuat-
ing signal is contaminated by the instrumental phase noise. The spec-
tral properties of ��!0

(t, ⌧) are thoroughly discussed in Appendix D.
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As ��!0
(t, ⌧) and e�(xI, t) are uncorrelated, the one-sided autospectral

density of the measured phase fluctuations is

Ge�m,e�m
(f) = Ge�,e�(f) + 8 sin2(⇡f⌧)L!0

(f), (3.46)

where Ge�,e�(f) is the true one-sided autospectral density of the phase
fluctuation e� and L!0

(f) is the phase noise of the laser, as defined in
Appendix D.

3.3.2 Modulator’s finite coupling time & LO phase noise

Heterodyne detection is effected by modestly Doppler shifting the ref-
erence beam relative to the plasma beam. It is easy to Doppler shift
10.6µm radiation by tens of MHz with a Germanium acousto-optic
modulator (AOM). The operation of a typical AOM is sketched in Fig-
ure 3.4. A piezo-actuator drives sound waves of angular frequency
�!0 through the Germanium crystal, and the sound waves act as
a diffraction grating that propagates at the crystal’s sound speed cs.
When a beam of vacuum wavelength �0 impinges upon the crystal at
the Bragg angle

✓B =
�0 ·�!0

4⇡cs
, (3.47)

a portion of the beam is deflected and Doppler shifted by angular
frequency �!0 [12, Sec. 20.1]. The power in the deflected beam is
controlled by the intensity of the sound waves.

The coupling of the AOM’s drive signal to the deflected beam oc-
curs on the crystal’s sound-wave timescale. If the sound waves must
propagate a distance d from the piezo-actuator to the AOM’s opti-
cally active region, the drive signal is coupled to the deflected beam
only after time delay ⌧ = d/cs. The sound speed in Germanium is
cs = 5400m · s−1 such that a distance d = 1 cm is accompanied by
a time delay ⌧ = 1.85µs. Note that this is large compared to many
other timescales typically considered in interferometry; for example,
light propagates through 1m of air in only 3.33ns, and an RF signal
propagates through 1m of RG-58 coaxial cable (for which the index of
refraction is ⇠ 3/2) in only 5ns.

In the presence of LO phase noise, an AOM’s finite coupling time
can degrade the performance of a heterodyne interferometer. A local
oscillator with phase noise is well-described by

VLO(t) = V0e
-i[�!0t+��!0

(t)], (3.48)
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Figure 3.4: An illustration of AOM operation in a heterodyne interferometer. A
piezo-actuator drives sound waves of angular frequency �!0 through a crystal
(usually Germanium for 10.6µm light), and these sound waves deflect and Doppler
shift light that is incident upon the crystal at the Bragg angle ✓B. The sound waves
propagate from the piezo-actuator to the AOM’s optically active region over finite
time ⌧ = d/cs. The RF waveform that drives the piezo-actuator is sampled and used
to demodulate the heterodyne interference signal. Note that for simplicity the
refraction of the beam as it enters and exits the crystal is not depicted.

where ��!0
(t) is a zero-mean, stationary, random process known as

the LO’s phase deviation whose temporal variation causes the LO’s
instantaneous angular frequency to wander about its nominal value
�!0. Then, to account for the AOM’s finite coupling time and the LO
phase noise, take �!0t ! [�!0(t- ⌧) + ��!0

(t- ⌧)] in the hetero-
dyne intensity (2.68). Neglecting finite sampling-volume effects, the
heterodyne output voltage from a given detector element is simply
proportional to the local intensity, i.e.

Vhet(t) = 2V0

�
1+ cos

⇥
�!0t+�eff +��!0

(t- ⌧)
⇤

- e�(xI, t) sin
⇥
�!0t+�eff +��!0

(t- ⌧)
⇤ 

,
(3.49)

where �eff = � - �!0⌧. Then, taking inspiration from the demod-
ulated optical intensities (2.69), the demodulated in-phase (VI) and
quadrature (VQ) voltages are defined as

VI(t) + i · VQ(t) =
1

V0
hVLO(t) · Vhet(t)i�!0

= V0e
i�eff

h
1+ ie�m(xI, t)

i
, (3.50)

where

e�m(xI, t) = e�(xI, t) + ���!0
(t,-⌧), (3.51)

���!0
(t, ⌧) = ��!0

(t+ ⌧)-��!0
(t). (3.52)
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The quantity ���!0
(t, ⌧) is referred to as the “instrumental phase

noise”, and it is produced by the modulator’s finite coupling time
⌧ and the LO’s phase deviation ��!0

(t). Typically, |���!0
(t, ⌧)| ⌧ 1,

and only terms to first order in ��!0
and e� were retained in the de-

modulated voltages (3.50). Comparing (3.50) with the demodulated in-
tensities (2.69), one readily sees that the measured phase fluctuation is
e�m defined in (3.51); that is, the fluctuating signal is contaminated by
the instrumental phase noise. The spectral properties of ���!0

(t, ⌧)
are thoroughly discussed in Appendix D. As ��!0

(t, ⌧) and e�(xI, t)
are uncorrelated, the one-sided autospectral density of the measured
phase fluctuations is

Ge�m,e�m
(f) = Ge�,e�(f) + 8 sin2(⇡f⌧)L�!0

(f), (3.53)

where Ge�,e�(f) is the true one-sided autospectral density of the phase
fluctuation e� and L�!0

(f) is the phase noise of the LO, as defined in
Appendix D.

3.4 amplitude noise : sources & effects

Detector noise and optical shot noise are omnipresent contributors to
amplitude noise in the heterodyne interference signal, while a noisy
amplifier can degrade the signal-to-noise ratio. The demodulation of
such amplitude noise is throughly discussed by Rakhmanov in [13].
While Rakhmanov does not explicitly consider quadrature heterodyne
detection, his results can be naturally applied to quadrature hetero-
dyne detection, as is done below.

3.4.1 Detector noise

Real-world detector operation is associated with intrinsic noise. This
noise results from, among other things, Johnson thermal noise in the
detector and shot noise in the background radiation flux [14]. A detec-
tor’s noise is often characterized by its noise-equivalent power (NEP):
when the power of the incident optical signal is equal to the NEP, the
signal-to-noise ratio is unity. Consider optical power �P(t) that, when
incident upon a detector, produces a signal that emulates the statistical
properties of the detector noise (e.g. �P(t) is a real-valued, zero-mean,
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stationary, random process). Then, the NEP corresponds to the root
mean square (RMS) of �P(t), and

(NEP)2 =

Z

�f

G�P,�P(f)df, (3.54)

where G�P,�P(f) is the one-sided autospectral density of �P(t) and
the integral is performed over the temporal bandwidth �f of the de-
sired measurement. Note that G�P,�P(f) depends on both extensive
(e.g. element area) and intensive (e.g. element material) properties of
the detector. To more easily compare detectors of different sizes and
materials, the NEP of a given detector is often parameterized as

NEP =

p
A ·�f
D⇤ , (3.55)

where A is the effective area of the detector element, �f is the tempo-
ral bandwidth of the desired measurement, and D⇤ is the detector’s
specific detectivity [15]. Note that larger D⇤ corresponds to increased
detector sensitivity. If G�P,�P(f) is approximately constant over the
bandwidth �f, then equating (3.54) to the square of (3.55) yields

G�P,�P(f) =
A

(D⇤)2
. (3.56)

It is now shown shown that signal demodulation pushes detector
noise near the heterodyne angular frequency �!0 into the baseband
signal. Taking inspiration from the demodulated optical intensities
(2.69), define the total NEP contamination of the in-phase (I) and
quadrature (Q) signals to be

�PIQ(t) =
2
p
2

⇡
e-i�!0t · �P(t). (3.57)

Here, the demodulated noise has not yet been low-pass filtered. The
autocorrelation function of the demodulated noise is

R�PIQ,�PIQ
(⌧) = E

⇥
�PIQ(t) · �P⇤

IQ(t+ ⌧)
⇤

=
8

⇡2
· ei�!0⌧ · R�P,�P(⌧), (3.58)
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where z⇤ indicates the complex conjugate of z and R�P,�P(⌧) is the
autocorrelation function of the NEP. The autospectral density of the
demodulated noise is then

S�PIQ,�PIQ
(f) = F

⇥
R�PIQ,�PIQ

(⌧)
⇤
(f)

=
8

⇡2
· F
⇥
ei2⇡�f0⌧ · R�P,�P(⌧)

⇤
(f)

=
8

⇡2
· S�P,�P(f+�f0), (3.59)

where �f0 = �!0/(2⇡) is the heterodyne frequency and S�P,�P(f) is
the autospectral density of the NEP. The demodulated signals are
typically low-pass filtered such that only the desired information at
|f| ⌧ �f0 survives

S�PIQ,�PIQ
(f)
��
|f|⌧�f0

⇡ 8

⇡2
· S�P,�P(�f0). (3.60)

Thus, the NEP at the heterodyne frequency �f0 is pushed into the
baseband signal via the demodulation process. Note that the au-
tospectral density of the demodulated detector noise (3.60) is in agree-
ment with the literature (e.g. see Rakhmanov’s Eq. (47) in [13] with
d1 = 2/⇡ for demodulation against the first harmonic of a zero-mean
square wave with frequency �f0 and peak-to-peak amplitude of two;
see Section 3.5.2 for the physical significance of demodulation against
such a square wave). The corresponding one-sided autospectral den-
sity of the demodulated detector noise is

G�PIQ,�PIQ
(f)
��
|f|⌧�f0

⇡ 8

⇡2
·G�P,�P(�f0).

=
8

⇡2
· A

(D⇤)2
, (3.61)

where the last line follows from (3.56) and the assumption that D⇤ is
the specific detectivity for frequencies f in the neighborhood of the
heterodyne frequency �f0.

Note that comparing the spectral density of the demodulated de-
tector noise to the spectral density of the measured phase (with the
phase having units of radians) requires converting (3.61) from units
of W2 ·Hz−1 to the corresponding angular equivalent. This unit con-
version is accomplished by dividing (3.61) by the square of the total
demodulated power in the I and Q signals. Assuming that the probe
beam and the reference beam vary weakly over the face of the detec-
tor element, this squared power is P2

IQ ⇡ (8/⇡2)PPPR, where PP is the
optical power of the probe beam impinging on the detector, and PR
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is the optical power of the reference beam impinging on the detector.
Thus, the one-sided autospectral density of the demodulated detector
noise (in angular units of rad2 ·Hz−1) is

G�PIQ,�PIQ
(f)
��
|f|⌧�f0

=
A

PPPR(D⇤)2
. (3.62)

3.4.2 Optical shot noise

The discrete nature of the arriving photons results in shot noise. Well-
modeled as a Poisson process, the optical shot noise increases as N1/2

� ,
where N� is the number of incident photons. Because the incident
optical power (and hence the number of incident photons) in the het-
erodyne optical signal is modulated as a function of time, the corre-
sponding shot noise is inherently nonstationary. Surprisingly, how-
ever, the demodulated shot noise is stationary (e.g. see Rakhmanov’s
Eq. (59) in [13]). Note that Rakhmanov only considers one of the de-
modulated signals, and maximizing the signal-to-noise ratio in the
demodulated signal requires careful selection of the local oscillator’s
phase relative to that of the heterodyne signal (he terms this the “de-
modulation phase” and represents it via �). However, by employing
quadrature heterodyne detection [3], in which �Q = �I+⇡/2, the total
shot-noise contamination �PIQ of the in-phase (I) and quadrature (Q)
signals (with �PIQ as defined in (3.57), but with �P now correspond-
ing to the shot-noise optical power) is independent of the demodulation
phase, i.e.

S�PIQ,�PIQ
(f)
��
|f|⌧�f0

=
8

⇡2
· hf0P0, (3.63)

where h is the Planck constant, f0 is the frequency of the incident
photons, and P0 is the DC optical power impinging upon the detector.
The corresponding one-sided autospectral density is

G�PIQ,�PIQ
(f)
��
|f|⌧�f0

=
16

⇡2
· hf0P0. (3.64)

Rakhmanov notes that (3.64) corresponds to the well-known Schottky
formula.

Note that comparing the spectral density of the demodulated opti-
cal shot noise to the spectral density of the measured phase (with the
phase having units of radians) requires converting (3.64) from units
of W2 ·Hz−1 to the corresponding angular equivalent. This unit con-
version is accomplished by dividing (3.61) by the square of the total
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demodulated power in the I and Q signals. Assuming that the probe
beam and the reference beam vary weakly over the face of the detec-
tor element, this squared power is P2

IQ ⇡ (8/⇡2)PPPR, where PP is
the optical power of the probe beam impinging on the detector, and
PR is the optical power of the reference beam impinging on the detec-
tor. Additionally, the DC optical power impinging upon the detector
is P0 = PP + PR. Thus, the one-sided autospectral density of the de-
modulated optical shot noise (in angular units of rad2 ·Hz−1) is

G�PIQ,�PIQ
(f)
��
|f|⌧�f0

= 2hf0

✓
PP + PR
PPPR

◆
. (3.65)

3.4.3 Amplifier noise

The noise factor F of an RF amplifier is defined as the ratio of the signal-
to-noise ratio at the device’s input (SNRin) to the signal-to-noise ratio
at the device’s output (SNRout)

F =
SNRin

SNRout
; (3.66)

often, the noise factor F is given in terms of the noise figure NF [16]

NF = 10 log10 F. (3.67)

If several amplifiers are cascaded, the total noise factor of the ampli-
fier chain can be computed using the well-known Friis noise-factor
formula. Note that the noise factor is only defined in the context of a
signal-to-noise ratio, so it is not conventional to write down the corre-
sponding autospectral density of the amplifier noise in absolute units.

3.5 demodulation

The heterodyne interferometer’s intermediate frequency (IF) signal
must be demodulated in order to recover the baseband phase infor-
mation. Demodulation is typically described as an analog process in
which the IF signal is mixed with a local oscillator (LO), but demodula-
tion can also be performed digitally [17, 18] or with non-mixer-based
analog electronics [19]. The focus here, however, is on the analog,
mixer-based approach. Section 3.5.1 describes ideal analog demodula-
tion. Sections 3.5.2 and 3.5.3 discuss nonideal aspects of analog mixers
and demodulators, and Section 3.5.4 analyzes the implications of these
imperfections in the context of fluctuation measurements.
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3.5.1 Ideal demodulation

A typical analog I&Q demodulator consists of a 90� splitter, two double-
balanced mixers, and a 0� splitter [20], as shown in Figure 3.5(a). The
90� splitter divides the incident local oscillator (LO) signal

LO(t) =
4
p
2

⇡
cos(�!0t) (3.68)

into an “in-phase” copy of the LO

LO0(t) =
4

⇡
cos(�!0t) (3.69)

and a ⇡/2 phase-advanced copy of the LO

LO⇡/2(t) =
4

⇡
cos
⇣
�!0t+

⇡

2

⌘
= -

4

⇡
sin(�!0t). (3.70)

Note that the power (i.e. the mean-square value) in the incident LO
signal is split evenly between LO0(t) and LO⇡/2(t). Further, the nor-
malization of LO0(t) and LO⇡/2(t) is motivated by and is consistent
with the physical processes that occur in a typical ring-diode double-
balanced mixer, as discussed in Section 3.5.2. The 0� splitter divides
the intermediate frequency (IF) signal

IF(t) = AIF cos(�!0t+�) (3.71)

into two identical copies of the IF

IF0(t) =
AIFp
2

cos(�!0t+�). (3.72)

Like the LO signal, the power in the incident IF signal is split evenly
between the two copies. The signal at the demodulator’s in-phase (I)
port then corresponds to the product of IF0(t) with the in-phase LO
signal LO0(t):

LO0(t) · IF0(t) =

p
2AIF

⇡
[cos(�) + cos(2�!0t+�)] . (3.73)

Such signal multiplication is often referred to as “mixing”. Low-pass
filtering the signal exiting the demodulator’s I port yields the base-
band in-phase signal

I =

p
2AIF

⇡
cos�. (3.74)
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Similar reasoning regarding the product LO⇡/2(t) · IF0(t) at the de-
modulator’s quadrature (Q) port yields the baseband quadrature sig-
nal

Q =

p
2AIF

⇡
sin�. (3.75)

Note that the total power I2+Q2 in the I&Q signals is 4 dB lower than
the power in the incident IF signal. This is known as the conversion loss
of the demodulator; real-world demodulators will have larger conver-
sion losses due to dissipation and other nonideal effects. An absolute
phase measurement �m is then obtained via

�m = atan2 (Q, I) , (3.76)

where atan2 (Q, I) is the arctangent function of two arguments, which
uses the signs of Q and I to correctly determine the quadrant corre-
sponding to the tangent of Q/I. Note that in the ideal case the mea-
sured phase is equal to the true phase, i.e. �m = �, and that �m is
independent of the power in the incident IF signal.

3.5.2 Nonideal mixing

In Section 3.5.1, mixing was idealized as the multiplication of the IF
signal by a sinusoidal LO signal. However, in practice, more complex
processes are used to maximize the mixer’s linear dynamic range and
minimize its noise figure [21, 22].

For example, a typical ring-diode double-balanced mixer [21] is
shown in Figure 3.5(b). The balun transformers T1 and T2 isolate the
baseband port from the LO and IF ports. Typically, the LO power
is ⇠ 20 dB larger than the IF power. As a result, the LO alone is re-
sponsible for biasing the mixer’s diodes into conduction. Note that
the diodes are not all simultaneously biased into conduction. Instead,
when Va > Vc (neglecting the diode drops), diodes D1 and D2 are
forced into conduction such that Vb acts as a virtual ground for the IF
signal coupled through transformer T2. Then, when the LO changes
sign such that Va < Vc, diodes D1 and D2 stop conducting, and
diodes D3 and D4 begin to conduct, forcing the virtual ground to
jump from Vb to Vd. Thus, the ring diode acts as a switch for the
polarization of the coupled IF signal, with the switching governed by
the sign and frequency of the LO. Low-pass filtering the polarization-
modulated IF, of course, yields the desired baseband signal. Note
that the diode switching time should be minimized for optimal mod-
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(a) analog I&Q demodulator (b) double-balanced mixer
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LO0(t) LO� / 2(t)

IF0(t) IF0(t)

Figure 3.5: (a) A typical analog I&Q demodulator and (b) a typical diode-ring
double-balanced mixer.

ulation, explaining why some manufacturers advocate the use of a
square, rather than a sinusoidal, LO [23].

This polarization modulation can alter the baseband spectrum. To
see this, note that the sign of the in-phase LO signal is simply a zero-
mean square wave with even symmetry about the origin, as shown in
the lower pane of Figure 3.6. The Fourier series of such a square wave
consists of a sum over all of the LO’s odd harmonics:

sgn (LO0(t)) =
4

⇡

1X

n=1

(-1)n-1

2n- 1
cos[(2n- 1)�!0t] (3.77)

=
4

⇡


cos(�!0t)-

1

3
cos(3�!0t) + · · ·

�
.

Now, if the IF signal is a perfect sinusoid as in (3.71), following Sec-
tion 3.5.1’s program of mixing the LO with the IF and low-pass filter-
ing yields the desired in-phase baseband signal, e.g.

I =
⇥
sgn (LO0(t)) · IF0(t)

⇤����
|!|⌧�!0

=

p
2AIF

⇡
cos� (3.78)

However, if the path from the mixer’s IF port to its baseband port is
not wholly linear (and every real-world device exhibits some degree of
nonlinearity), the IF signal will contain contributions from its higher-
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Figure 3.6: The LO switching functions. The top panel displays the incident
sinusoidal LO signal, while the bottom panel shows the sign of the in-phase (LO0)
and the ⇡/2 phase-advanced (LO⇡/2) copies of the LO signals.

order harmonics. If this nonlinearity depends only on the magnitude
of the IF (e.g. double-sided saturation/clipping of the signal), only
the odd harmonics of the fundamental will contribute, i.e.

IF0(t) =
1p
2

1X

n=1

A2n-1 cos [(2n- 1)(�!0t+�)] , (3.79)

where An/
p
2 is the Fourier coefficient of the nth harmonic (note that

this unconventional normalization facilitates comparison with the pre-
vious, ideal definition of IF0(t) (3.72)). Typically, An decreases as n

increases, but raising the IF amplitude drives more nonlinear interac-
tions and increases the power in the higher order harmonics relative
to the fundamental. Then, following Section 3.5.1’s program of mixing
the LO with the IF and low-pass filtering yields

I =
⇥
sgn (LO0(t)) · IF0(t)

⇤����
|!|⌧�!0

=

p
2A1

⇡


cos�-

1

3

✓
A3

A1

◆
cos 3�+ · · ·

�
. (3.80)
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That is, the higher order harmonics of the IF signal interact with the
corresponding higher order harmonics of the LO switching function to
produce harmonics in the baseband signal. The coefficient An/(n ·A1)
gives the suppression of the nth harmonic, and it is typically expressed
in decibels referenced to the power of the carrier, or dBc, as

suppression of nth harmonic [dBc] = 20 log10

✓
An

n ·A1

◆
. (3.81)

Noting that sgn(LO⇡/2(t)) is an inverted, zero-mean square wave with
odd symmetry about the origin, as shown in the lower pane of Fig-
ure 3.6, a similar path of reasoning to that used above shows that the
quadrature baseband signal is

Q =
⇥
sgn

�
LO⇡/2(t)

�
· IF0(t)

⇤����
!⌧�!0

=

p
2A1

⇡


sin�+

1

3

✓
A3

A1

◆
sin 3�+ · · ·

�
. (3.82)

Additional distortion of the baseband signal results if the IF power
becomes comparable the LO power, say within 10 dB, as the IF signal
begins to contribute to the modulation of the diode conduction.

Finally, the diodes of the mixers should be matched as closely as
possible. If, for example, diodes D1 and D2 have slightly different
voltage drops than diodes D3 and D4, the virtual grounds at Vb and
Vd are not equivalent when referenced to ground, and the resulting
baseband signal will have a DC offset. With precision fabrication, how-
ever, it is not uncommon for the DC offset to be smaller than 1% of
the amplitude of the baseband fundamental harmonic.

3.5.3 Demodulator imbalances

In addition to two double-balanced mixers, an analog I&Q demodula-
tor also relies on a 90� splitter and a 0� splitter. Imbalances between
any of these components can result in imbalances in the baseband I&Q

signals. For example, unequal power division in the splitters produces
amplitude imbalances in the baseband I&Q signals, while deviations
from the nominal splitter phasings produces phase imbalances in the
baseband I&Q signals. As discussed in Section 3.5.2, each double-
balanced mixer can produce spectral distortion and DC offsets in the
baseband signal; in addition, differences between the two mixers can
exacerbate amplitude and phase imbalances in the baseband I&Q sig-
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nals. Taken all together, then, the most general form for the baseband
I&Q signals is

I = I1

�
cos�-

I3
3I1

cos (3�) + · · ·
�
+ �I, (3.83)

Q = Q1

�
sin (�+ �) +

Q3

3Q1
sin [3 (�+ �)] + · · ·

�
+ �Q, (3.84)

where I1 is the amplitude of the in-phase signal’s fundamental har-
monic, I3 is the amplitude of the in-phase signal’s third harmonic, and
�I is the in-phase signal’s DC offset. Similar nomenclature applies to
the quadrature signal. The phase imbalance of the demodulator is �.
Amplitude imbalances occur when I1 6= Q1. The harmonic suppres-
sions are typically comparable, e.g. |I3/I1| ⇡ |Q3/Q1|. Note that (3.83)
and (3.84) generalize previous forms for the I&Q signals [24].

3.5.4 Effects of demodulator imperfections

Demodulator imperfections produce systematic errors in the measured
phase [24, 25]. Specifically, if the I&Q signals suffer from imbalances
and nonlinearities, as shown in (3.83) and (3.84), then the measured
phase �m computed via the inverse tangent formula (3.76) will not
correspond to the true phase �, i.e.

�m = �+ ��, (3.85)

where �� is the error in the measured phase. The phase error is a
complicated, periodic function of the true phase, i.e. �� = ��(�) [24].
For small phase fluctuations |e�| ⌧ 1 about an equilibrium phase �,
the error �e� in the measured fluctuating phase is simply the change in
the total phase error between � and �+ e� [25]:

�e� = ��(�+ e�)- ��(�) ⇡
"
d(��)

d�

����
�

#
e�. (3.86)

Thus, the relative error in the measured fluctuating phase is

�e�
e�

=
d(��)

d�

����
�

. (3.87)

Synthetic I&Q Lissajous curves and the relative errors in the measured
fluctuating phase that result from various demodulator imperfections
are displayed in Figure 3.7. Obviously, each demodulator imperfection
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Figure 3.7: Demodulator imperfections produce errors in the measured phase. The
left column displays the Lissajous curves that result from plotting synthetic
quadrature Q vs. in-phase I signals, while the right column plots the relative error
�e�/e� in the measured fluctuating phase as a function of the equilibrium phase �.
Each row examines a different demodulator imperfection.

should be minimized in order to minimize the relative error in the
measured fluctuating phase.

3.6 quantization noise

Efficient conversion of an analog signal to a digital record requires
quantization of the signal magnitude and temporal sampling of these
quantized magnitudes [26]. This analog-to-digital conversion is per-
formed by an instrument known as a digitizer. If a digitizer has bit
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depth Nb and a peak-to-peak input-voltage range Vin, then its quan-
tum of voltage �V is

�V =
Vin

2Nb - 1
⇡ Vin

2Nb
, (3.88)

where the approximation is well-satisfied for typical digitizer bit depths.
At each sampling time, the analog signal’s magnitude is approximated
by the closest quantized value, whose separation from the true, analog
value will be less than or equal to �V/2.

In general, then, the quantized signal will differ from the analog
signal. This error ✏ is known as quantization noise. The mean square
error (i.e. variance) attributable to quantization is simply

✏2 =
(�V)2

12
, (3.89)

where �V is the digitizer’s quantum of voltage, as given by (3.88) [26]
[9, Sec. 10.2.4]. For a uniformly sampled record with sampling rate fs,
sufficiently fine quantization �V ensures that the quantization noise is
white [26, Th. 1] [27, Ch. 20]; that is, the one-sided autospectral density
of the quantization noise is

G✏,✏(f) =
✏2

fs/2
=

(�V)2

6fs
, 0 6 f 6 fs

2
. (3.90)

In practice, however, aperture error, jitter, and nonlinearities may re-
duce the effective bit depth by one or two bits [9, Sec. 10.2.4], increas-
ing the realized quantization noise relative to that expected from (3.89)
and (3.90).

Quantization noise can be significant when attempting to measure
absolute phase fluctuations with a heterodyne interferometer. Recall
from the discussion of heterodyne interferometric detection in Sec-
tion 2.4.2 that measurement of the absolute phase requires capturing
the full dynamics of the large, slowly varying equilibrium phase � in
addition to measuring the fluctuating phase e�. Because e� ⌧ � in
typical situations, the fluctuations only occupy a small portion of the
digitizer’s input-voltage range; that is, fluctuations effectively see a
bit depth that is substantially smaller than the digitizer’s nominal bit
depth. Thus, to minimize the effect of quantization noise, it is abso-
lutely imperative to utilize the full input-voltage range of the digitizer.

The measured phase �m is computed from the in-phase (I) and
quadrature (Q) signals via (3.76). If needed for feedback control, the
phase can be calculated in real time with analog or digital electronics.
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If the real-time phase is not needed, it is sufficient to digitize the I

and Q signals individually; later, offline, the phase can be computed
in software. In the offline approach, software may additionally com-
pensate demodulator imperfections (discussed in Section 3.5) prior to
computing the phase. Of course, the offline approach subjects both
the I and the Q signal to quantization noise. The quantization error "I
of I and the quantization error "Q of Q are uncorrelated, so the total
one-sided autospectral density of the quantization noise is simply the
sum of the individual one-sided autospectral densities, i.e.

G✏I,✏I(f) +G✏Q,✏Q(f) =
(�V)2

3fs
, 0 6 f 6 fs

2
. (3.91)

Note that comparing the spectral density of the quantization noise to
the spectral density of the measured phase (with the phase having
units of radians) requires converting (3.91) from units of V2 ·Hz−1 to
the corresponding angular equivalent. This unit conversion is accom-
plished by dividing (3.91) by the squared radius of the I&Q Lissajous
curve. Let the I and Q signals occupy a fraction ⌘dyn 6 1 of the digi-
tizer’s full input-voltage range Vin such that the squared radius of the
Lissajous curve is I2 +Q2 = (⌘dynVin/2)2, and the total quantization
noise (in angular units of rad2 ·Hz−1) is

G✏I,✏I(f) +G✏Q,✏Q(f) ⇡
1

3
⇥
22(Nb-1)

⇤
⌘2dynfs

, 0 6 f 6 fs

2
, (3.92)

where the definition of the voltage quantum (3.88) has been utilized.

3.7 summary

For ease of reference, this section provides a concise summary of the
design considerations discussed in this chapter. If more details are
desired regarding any given design consideration, the summary also
points to the appropriate section in the text.

3.7.1 Geometric considerations

The measurements of a heterodyne interferometer are influenced by
several geometric effects, which are summarized below:

• Aperture diffraction can alter the propagation of the unscattered
and scattered Gaussian beams that formed the basis of the anal-
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ysis in Chapter 2. Aperture diffraction of a Gaussian beam is
minimal if

aeff >
3

2
w(z), (3.93)

for each aperture, where aeff is the effective aperture radius and
w(z) is the beam’s 1/e E radius at the aperture location. For a
beam located transverse distance ⇢(z) away from the optical axis,
a circular aperture of radius a has an effective aperture radius
aeff = a- |⇢(z)|. See Section 3.1.1 for more details.

• Beam coalignment affects the size of the interference signal. If the
reference beam and the unscattered probe beam are misaligned
by angle ✓, then obtaining a finite interference signal from a de-
tector element of length sx requires that

|✓| ⌧ �0
sx

⇡ 0.6�, (3.94)

where �0 = 2⇡/k0 is the beam wavelength, and the typical values
�0 = 10.6µm and sx = 1mm have been used for the evaluation.
See Section 3.1.2 for more details.

• Differences in the radii of curvature between the reference beam and
the probe beam can alter the interference pattern at the detector,
potentially decreasing the size of the interference signal and dis-
torting the imaged wavenumbers. These detrimental curvature
effects are negligible if

max(��) =
k0
8

⇥
(Nelsx)

2 + s2y
⇤ ����

1

RP(zI)
-

1

RR(zR)

����⌧ ⇡. (3.95)

where RP(zI) is the radius of curvature of the probe beam at
the detector location, RR(zR) is the radius of curvature of the
reference beam at the detector location, k0 is the wavenumber
of the probe radiation, sx and sy are the linear dimensions of a
single detector element in the x- and y-dimensions, respectively,
and Nel is the number of such detector elements (arranged in
the x-direction with negligible inter-element spacing). See Sec-
tion 3.1.3 for more details.

• The finite sampling-volume effect introduces a wavenumber depen-
dence into the transfer function of a heterodyne interferometer.
See Section 3.7.2 for a summary of this effect; see Section 3.1.4
for additional details.
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• The depth of focus is the axial distance by which the detector lo-
cation may deviate from the image plane. If �zI is the axial
displacement of the detector from the image plane (i.e. zdet =
zI + �zI), a heterodyne interferometer will measure wavenum-
bers kmeas that are biased away from their true values k by

kmeas =


1-

�zI
R(zdet)

�
k, (3.96)

where R(zdet) is the radius of curvature of the probe beam at
the detector. Additionally, the “out-of-focus” interference of the
upscattered and downscattered beams produces a wavenumber-
dependent phase shift

µ =

✓
k2

2M2k0

◆
�zI, (3.97)

where M is the magnification of the imaging system and k0 is
the wavenumber of the probe radiation. Autospectral densities
of the phase fluctuations can be computed independent of µ,
but it is less clear how to compute e.g. cross-spectral densities or
bispectral densities in a µ-independent manner. An imaging sys-
tem should be designed such that reasonable uncertainties in �zI
produce negligible wavenumber distortion (i.e. |�zI/R(zdet)| ⌧ 1)
and negligible wavenumber-dependent phase shifts (i.e. |µ| ⌧ 1).
See Section 3.1.5 for more details.

3.7.2 Wavenumber transfer function

The heterodyne interferometer’s basic wavenumber transfer function
(derived in Chapter 2) is modified by several design decisions, becom-
ing

Thet(k) =
1p
2⇡

· 2IAC

IDC + IAC
· V1

V1(Imax = Isat)
· Tfsv(k), (3.98)

where

• The first term 1/(
p
2 · ⇡) corresponds to the heterodyne inter-

ferometer’s basic wavenumber transfer function (2.77). See Sec-
tion 2.4.2 for more details.

• The second term 2IAC/(IDC + IAC) specifies the ratio of peak-
to-peak AC intensity to the maximum intensity in the hetero-
dyne interference signal, where the DC intensity IDC is defined
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by (3.10) and the AC intensity IAC is defined by (3.11). This mod-
ification to the transfer function is maximized when IDC = IAC,
i.e. when there is full-depth modulation of the heterodyne in-
tensity, which occurs when the probe beam and reference beam
have identical spatial structures and powers. See Section 3.1.3
for more details.

• The third term V1/V1(Imax = Isat) specifies the ratio of the real-
ized amplitude (in volts) V1 of the IF signal’s fundamental har-
monic relative to the corresponding amplitude V1(Imax = Isat)
when the maximum incident intensity Imax is scaled to the de-
tector’s saturation intensity Isat (the AC and DC fractions of the
incident intensity are not altered during this scaling; to account
for changing the AC and DC fractions, see the transfer func-
tion’s second term, 2IAC/(IDC + IAC)). Thus, operation above
the saturation intensity may increase the heterodyne interferom-
eter’s wavenumber transfer function (i.e. if V1 > V1(Imax =
Isat), where V1 depends sensitively on the detector’s saturation
physics). Similarly, operating below the saturation intensity will
decrease the heterodyne interferometer’s wavenumber transfer
function. (i.e. V1 < V1(Imax = Isat)). See Section 3.2 for more
details.

• The fourth and final term Tfsv(k) quantifies the effect of sampling
the interfering radiation field with detector elements of finite size.
The output of each detector element corresponds to the incident
intensity averaged over the element’s active area, and this averag-
ing acts as a low-pass filter in the spatial domain. This is referred
to as the finite sampling-volume effect, and a square detector of lin-
ear dimension sx placed in the image plane of a magnification
M imaging system has the corresponding transfer function

Tfsv(k) = sinc
✓

k

kfsv

◆
, (3.99)

where

sinc(x) =
sin(⇡x)
⇡x

(3.100)

is the normalized sinc function, and

kfsv =
2⇡|M|

sx
(3.101)



3.7 summary 103

is the first zero of Tfsv(k). Wavenumbers |k| . kfsv are measur-
able, while wavenumbers |k| & kfsv are not measurable. See
Section 3.1.4 for more details. The finite sampling-volume effect
is exploited in Chapter 4 to provide an overlap in the wavenum-
ber sensitivities of DIII-D’s pre-existing phase contrast imaging
(PCI) system and its newly installed heterodyne interferometer.

3.7.3 The measured phase

An absolute phase measurement �m is computed from a heterodyne
interferometer’s demodulated in-phase (I) and quadrature (Q) signals
via

�m = atan2 (Q, I) , (3.102)

where atan2 (Q, I) is the arctangent function of two arguments, which
uses the signs of Q and I to correctly determine the quadrant corre-
sponding to the tangent of Q/I. Demodulator imperfections produce
a systematic error �� in the measured phase, i.e.

�m = �+ ��, (3.103)

where � is the true phase. This systematic error is a complicated,
periodic function of the true phase, i.e. �� = ��(�). For small phase
fluctuations |e�| ⌧ 1 about an equilibrium phase �, the relative error in
the measured fluctuating phase is

�e�
e�

=
d(��)

d�

����
�

. (3.104)

See Section 3.5 for more details.

3.7.4 Noise sources & their spectral densities

The phase measurements of a heterodyne interferometer can be cor-
rupted by oscillator phase noise, optical shot noise, electrical noise,
and quantization noise. The origins and the spectral densities of these
noise sources are summarized below:

• Laser phase noise L!0
(f) injects noise into a heterodyne interfer-

ometer’s measurements. The one-sided autospectral density of
this noise is

G(f) = 8 sin2(⇡f⌧)L!0
(f), f > 0, (3.105)
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where ⌧ = L/c is the time delay associated with the optical path-
length difference L between the interferometer’s probe arm and
reference arm. See Section 3.3.1 for more details.

• Local oscillator (LO) phase noise L�!0
(f) injects noise into a hetero-

dyne interferometer’s measurements. The one-sided autospec-
tral density of this noise is

G(f) = 8 sin2(⇡f⌧)L�!0
(f), f > 0, (3.106)

where ⌧ is the time required to couple the LO signal to the in-
terferometer’s Doppler-shifted beam. See Section 3.3.2 for more
details.

• Detector noise near the intermediate frequency �f0 is demodu-
lated and contaminates a heterodyne interferometer’s measure-
ments. The one-sided autospectral density of the demodulated
detector noise (in angular units of rad2 ·Hz−1) is

G(f) =
A

PPPR(D⇤)2
, 0 6 f ⌧ �f0, (3.107)

where A is the area of the detector element, PP is the optical
power of the probe beam impinging on the detector element, PR
is the optical power of the reference beam impinging on the de-
tector element, and D⇤ is the specific detectivity of the detector
near �f0. Here, it is assumed that the probe beam and the ref-
erence beam vary weakly over the face of the detector element.
See Section 3.4.1 for more details.

• Optical shot noise is demodulated and contaminates a heterodyne
interferometer’s measurements. The one-sided autospectral den-
sity of the demodulated optical shot noise (in angular units of
rad2 ·Hz−1) is

G(f) = 2hf0

✓
PP + PR
PPPR

◆
, 0 6 f ⌧ �f0, (3.108)

where h is the Planck constant, f0 is the frequency of the incident
photons, PP is the optical power of the probe beam impinging
on the detector element, PR is the optical power of the reference
beam impinging on the detector element, and �f0 is the inter-
mediate frequency of the heterodyne signal. Here, it is assumed
that the probe beam and the reference beam vary weakly over
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the face of the detector element. See Section 3.4.2 for more de-
tails.

• Amplifier noise is characterized via a noise figure (NF), which
quantifies the degradation in signal-to-noise ratio (SNR) after
passing through the amplifier. See Section 3.4.3 for more details.

• Quantization noise is produced by the creation of a digital record.
Assuming that the I and Q signals of a heterodyne interferom-
eter are individually digitized with bit depth Nb and sample
rate fs (in Hz), the one-sided autospectral density of the total
quantization noise (in angular units of rad2 · Hz−1) is

G(f) ⇡ 1

3
⇥
22(Nb-1)

⇤
⌘2dynfs

, 0 6 f 6 fs

2
, (3.109)

where ⌘dyn 6 1 is the fraction of the digitizers’s peak-to-peak
input-voltage range Vin occupied by the I and Q signals, i.e.

⌘dyn =
max(I)- min(I)

Vin
=

max(Q)- min(Q)

Vin
. (3.110)

See Section 3.6 for more details.
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4
I M P L E M E N TAT I O N O F A C O M B I N E D
P C I - I N T E R F E R O M E T E R O N D I I I - D

The optical foundations in Chapter 2 revealed that heterodyne inter-
ferometry and PCI have complementary wavenumber capabilities, mo-
tivating the addition of a heterodyne interferometer to DIII-D’s pre-
existing PCI system. With the intent of constructing a heterodyne in-
terferometer, Chapter 3 extensively discussed the relevant design con-
siderations. Heavily referencing both Chapters 2 and 3, this chapter
details the physical implementation of the heterodyne interferometer
and its integration into DIII-D’s pre-existing PCI system.

Below, Section 4.1 briefly reviews optical-diagnostic access on DIII-D,
and Section 4.2 discusses the relevant hardware and capabilities of the
pre-existing PCI system. Section 4.3 then examines the heterodyne-
interferometer optical layout, which sets the interferometer’s wavenum-
ber response and influences the interferometer’s sensitivity to vibration-
induced misalignment and small uncertainties in component place-
ment. Next, Section 4.4 develops a simple model to investigate the
distribution of the laser’s finite optical power between the PCI and
heterodyne-interferometer systems. While the PCI and heterodyne
interferometer share several components, such as the CO2 laser, the
beam-delivery and beam-collection optics, and the digitizer, numer-
ous other components are exclusively dedicated to the operation of the
heterodyne interferometer; Section 4.5 details this dedicated hardware.
Section 4.6 then describes the digital signal processing that is typically
applied to the heterodyne interferometer’s digital records prior to per-
forming spectral analysis. Section 4.7 provides a detailed examina-
tion of the debilitating local-oscillator (LO) phase noise that initially
plagued the heterodyne interferometer’s measurements — identify-
ing this noise source was singularly the most time-consuming and
difficult aspect of the diagnostic development pursued in this work.
Ultimately, this noise was eliminated with the procurement and instal-
lation of a low phase-noise LO. Section 4.7 also characterizes the pre-
dicted and measured noise in the heterodyne interferometer (after the
LO upgrade) and compares the resulting noise floor to typical plasma-
fluctuation spectra. Finally, Section 4.8 empirically verifies the pre-
dicted response of the heterodyne interferometer and cross-calibrates
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the PCI against the absolute phase measurements of the heterodyne
interferometer.

The robust response of the combined PCI-interferometer across the
calibration wavenumber range demonstrates the complementary na-
ture of the interferometer and PCI measurements and confirms the
ability of the combined system to simultaneously monitor low-k and
high-k instabilities.

4.1 optical-diagnostic access on diii-d

DIII-D provides optical access to its plasmas through a number of
ports, as indicated in Figure 4.1. The ports are labeled according to
their toroidal positions and their sightlines, and an experimentalist
should have at least a rough familiarity with these conventions. The
toroidal location of a port is given in degrees clockwise from “ma-
chine north” when viewing the machine from above (note that ma-
chine north does not correspond to geographic or magnetic north).
The angular separation of adjacent toroidal ports is 15�. Port sightlines
can be vertical or radial. Ports with vertical (V) sightlines are labeled
sequentially in terms of increasing major radius, with V1 having the
smallest major radius and V3 having the largest major radius. Radial
ports (R) have sightlines that are roughly aligned with the plasma’s
minor radius, and they are labeled according to their positions rela-
tive to the plasma midplane: R0 sits at the plasma midplane, R+1 and
R+2 are the first and second ports above the plasma midplane, respec-
tively, and R-1 and R-2 are the first and second ports below the plasma
midplane, respectively.

4.2 diii-d’s pre-existing pci system

The DIII-D PCI system is thoroughly described elsewhere [1, 2], but
the system components of relevance to this work are briefly summa-
rized below for completeness.

4.2.1 CO2 laser

The PCI CO2 laser [3, Sec. 3.3] has been in service since the incep-
tion of the DIII-D PCI project in the mid-1990s. Lasing occurs via
high-voltage, DC excitation inside a 2m-long, sealed-off glass tube
to produce a TEM00 (Gaussian) mode with linear polarization. The
beam waist occurs at the output coupler, and the corresponding 1/e
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(b) DIII-D cross section(a) DIII-D top-down view
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Figure 4.1: (a) View of DIII-D from above, indicating the toroidal-labeling
convention. (b) View of DIII-D cross section, indicating the labeling convention for
vertical (V) and radial (R) sightlines. The PCI beam enters the vessel through the
285� R+2 port, propagates vertically downwards through the plasma at a major
radius of R = 1.98m, and exits the vessel through the 285� R-2 port.

E radius is w0 = 1.25mm. Historically, the laser power has been
relatively constant at Ps = 14W, but the power has declined in the
last year. The manufacturer’s specifications state that the laser has a
“short-term” (0.1 s) peak-to-peak frequency variation . 300 kHz and
a “long-term” (103 s) peak-to-peak frequency variation . 3MHz; un-
fortunately, without knowledge of the corresponding bandwidth, it is
impossible to characterize the laser’s phase noise. A ceiling on the
laser phase noise is empirically established in Section 4.7.2.

4.2.2 System geometry

The system is currently configured in the “Phase II” geometry [1],
with the probe beam propagating vertically downwards from the 285�

R+2 port to the 285� R-2 port. The beam center sits at major radius
R = 1.98 m. Both the toroidal and major radial positions of the PCI
beam are shown in Figure 4.1. Because it is a line-integrated measure-
ment, only fluctuations propagating perpendicular to the beam path
are detected, as fluctuations propagating parallel to the beam path
are effectively averaged out of the signal. Additionally, electrostatic
drift-wave turbulence (e.g. ITG, ETG) tends to be field-aligned such
that k? � k|| [4, 5], where the ? and || subscripts are used here to
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indicate orientations that are perpendicular to and parallel to the local
magnetic field, respectively. To lowest order, then, electrostatic fluc-
tuations propagate perpendicular to a tokamak’s toroidal field. PCI’s
vertical beam path and the field-aligned constraint of electrostatic tur-
bulence imply that PCI is sensitive to fluctuations with kZ = 0 and
finite major-radial wavenumber kR. (For a more exacting discussion
of the wavevectors that PCI is sensitive to, see Section 5.4.3). Thus,
PCI’s 32-element, 1-dimensional detector array is oriented in the im-
age plane such that each detector element corresponds to a unique ma-
jor radius in the plasma. In some situations, spatially filtering “masks”
[1, 2, 6] or 2-dimensional detector arrays [7, 8] can be used to local-
ize measurements by exploiting the spatial variation in the magnetic
field’s orientation along the beam path. These localization techniques
typically work best for high-k measurements.

4.2.3 Spatial bandwidth

Several critical wavenumbers were defined in Section 2.5 that charac-
terize the spatial bandwidth of a PCI system. The goal of this section
is to evaluate each of these wavenumbers with the relevant parameters
from the DIII-D PCI system.

PCI’s low-k cutoff, kg, is physically constrained by the free-space
diffraction of the in-vessel probe beam. This constraint was derived
both by examining the far-field overlap of the scattered and unscat-
tered beams as in (2.80) and by matching the focal-plane spot size of
the unscattered beam with the width of the phase-plate groove as in
(2.88). Both approaches yield the identical constraint that kmin

g = 2/w0,
where w0 is the 1/e E radius of the in-vessel probe beam. The max-
imum value of w0 is set by the aperture diffraction criterion (3.93).
After beam expansion and collimation, the 4"-diameter 285� R+2 port
window is the smallest aperture seen by the beam prior to its interac-
tion with the plasma. To satisfy the aperture diffraction criterion (3.93)
with this 4"-diameter window, the expansion optics are configured to
produce a collimated beam with w0 = 4/3" ⇡ 3.4 cm, corresponding
to

kmin
g ⇡ 0.6 cm−1. (4.1)

PCI’s realized low-k cutoff, however, is typically ⇠ 2- 3⇥ larger than
the diffraction-limited kmin

g . This occurs if the width of the phase-
plate groove is oversized relative to the unscattered beam’s focal-plane
spot size. In such situations the realized low-k cutoff is given by
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(2.86). Despite sacrificing some of the system’s low-k range, operat-
ing with an oversized phase-groove width can be advantageous on
large, vibration-prone fusion experiments. To see this, recall that the
phase groove typically reflects only a fraction ⌘ < 1 of the incident un-
scattered beam power (the forward-facing surface of the DIII-D phase-
plate groove is uncoated ZnSe, which has ⌘ = 0.17 at 10.6µm); if
vibration-induced misalignments push the unscattered beam out of
the phase groove, there will be large power modulations on the PCI de-
tector that are not attributable to plasma fluctuations and that push the
detector beyond its saturation limits. While DIII-D’s PCI system has
an elaborate feedback control system that dynamically centers the un-
scattered beam on the phase-plate groove [3, Sec. 3.5], operating with
an oversized phase-groove width gives the feedback system some lee-
way. As such, the groove width of the DIII-D phase plate is d = 1mm,
and the probe radiation is focused onto the phase plate by an off-axis
parabolic mirror of focal length f = 80.7" such that the realized low-k
cutoff (2.86) is

kg ⇡ 1.5 cm−1, (4.2)

approximately 2.5⇥ larger than the diffraction-limited minimum in
(4.1). Now, for a 2 T magnetic field and a 1 keV temperature typical of
DIII-D’s pedestal, a deuteron has a gyroradius ⇢i ⇡ 0.3 cm; assuming
that the PCI beam and the local flux surface intersect at an angle ↵ ⇠

45�, (4.2) corresponds to detection of fluctuations from the pedestal
with k✓⇢i & 0.25. The higher-temperature core has larger ⇢i but also
typically has smaller ↵, so the corresponding k✓⇢i cutoff in the core
depends on the details of the temperature profile and the magnetic
equilibrium.

PCI’s high-k limits are dictated by finite collection-optic size and
system magnification. The DIII-D phase plate has a diameter D = 2"
such that the phase plate’s high-k cutoff (2.89) is

kD ⇡ 75 cm−1. (4.3)

Although the 5" diameter 285� R-2 exit window and the subsequent
12" diameter steering mirrors are large enough to accommodate beams
scattered from fluctuations with wavenumbers |k| ⇠ kD, apertures in
the imaging optics only allow beams scattered from fluctuations with
|k| . 30 cm−1 to reach the PCI detector unclipped. Upon reaching
the detector, the measured PCI signal is subject to finite sampling-
volume effects, which result from spatial averaging over the face of a
detector element. The PCI’s 32-element, 1-dimensional detector array
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has elements of height 1mm and width s
pci
x = 0.5mm. Coupled with

the system’s magnification |Mpci| = 0.45, the finite sampling-volume
cutoff (3.24) of the PCI is

k
pci
fsv ⇡ 55 cm−1. (4.4)

Further, the center-to-center element spacing of adjacent detector ele-
ments is �x = 0.55mm such that the corresponding Nyquist wavenum-
ber is

kNy =
⇡|Mpci|

�x
⇡ 25 cm−1; (4.5)

the measured wavenumber is aliased if |k| > kNy.

4.2.4 Temporal bandwidth

PCI’s detector (MCT-16-32, Infrared Associates; Stuart, FL USA) and
its associated preamplifiers (also through Infrared Associates) are the
dominant constraint on the system’s temporal bandwidth. The HgCdTe
detector array operates in the photoconductive regime and is cooled by
liquid nitrogen; the liquid-nitrogen cooling reduces noise and boosts
the response such that the detector-preamplifier combination has a
specific detectivity D⇤ ⇡ 2⇥ 1010 cm

p
Hz/W and a 500V ·W−1 re-

sponsivity to incident 10.6µm light (note that the detector also has
a saturation intensity Isat ⇠ 1mW ·mm−2). The benefits of cooling,
however, come at the expense of reduced bandwidth: the detector-
preamplifier combination has a high-frequency, 2-pole cutoff at ⇠ 800 kHz [9].
As the DC PCI signal is of little interest, the detector-preamplifier com-
bination also has a low-frequency, 1-pole cutoff at ⇠ 2 kHz [9].

The components downstream of the detector and preamplifiers have
a small impact on the system bandwidth, but they are briefly summa-
rized below for completeness. The Variable Gain and Filter (VGAF) cir-
cuits [2, Sec. 3.3.3] are located immediately downstream of the pream-
plifiers and have a low-frequency, 1-pole cutoff that can be easily
switched between 10 kHz and 100 kHz; the VGAFs are typically op-
erated in the 10 kHz configuration. Following the VGAFs, fiber optic
links (732 T/R-2.5-33k, Analog Modules; Longwood, FL USA) with
an analog bandwidth of DC to 10MHz transmit the signal from the
DIII-D pit to the annex for digitization.
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4.2.5 Digitizer

Upon reaching the annex, the PCI signals are digitized with two ACQ216CPCI
boards (D-tAcq Solutions Ltd.; Glasgow, Scotland UK). The digitizer
boards have bit depth Nb = 14, 8V peak-to-peak input voltage range,
and input impedance Zin = 50⌦. The digitizer sampling rate is typi-
cally fs = 4 mega-samples/second (MSPS).

4.3 optical layout of heterodyne interferometer

The optical layout of a heterodyne interferometer sets the interfer-
ometer’s wavenumber response, governs the injection of laser phase
noise into the interferometer’s measurements, and influences the inter-
ferometer’s sensitivity to vibration-induced misalignment and small
uncertainties in component placement. Having reviewed the spatial
bandwidth of the pre-existing PCI system in Section 4.2.3, a comple-
mentary spatial bandwidth is selected for the heterodyne interferom-
eter in Section 4.3.1, and the resulting imaging-system requirements
are discussed in 4.3.2. Section 4.3.3 demonstrates that a carefully de-
signed imaging system and the PCI focal-plane feedback system can
synergistically act to dynamically maintain the coalignment of the in-
terferometer beams in the presence of machine vibrations. Finally,
Sections 4.3.4 and 4.3.5 discuss the generation of the interferometer’s
reference beam and probe beam and examine the sensitivity of the re-
sulting interference signal to small uncertainties in the placement of
the imaging optics.

4.3.1 Desired spatial bandwidth

Because of its external reference beam, a heterodyne interferometer
has a minimum detectable wavenumber of k = 0. This ability to detect
fluctuations below the PCI low-k cutoff (4.2) was one of the primary
motivations for the addition of a heterodyne interferometer to DIII-D’s
pre-existing PCI system. Assuming negligible aperture diffraction (cri-
terion (3.93)), finite sampling-volume effects govern the wavenumber
dependence of a heterodyne interferometer’s transfer function (3.98),
producing the finite sampling-volume cutoff (3.101). Through careful
selection of both the linear size sx of the detector element and the
magnification M of the imaging system, the finite sampling-volume
cutoff can be engineered to provide any desired degree of overlap
with the PCI wavenumber domain. Producing a reasonable degree
of overlap with the PCI and ensuring that the finite sampling-volume
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Figure 4.2: The design-point wavenumber transfer function of the heterodyne
interferometer relative to that of the pre-existing PCI system. The heterodyne
interferometer can detect fluctuations from k = 0 up to its finite sampling-volume
cutoff (4.6). The vertical, dashed lines indicate the low-k cutoff of the PCI
phase-plate groove, kg from (4.2); the phase-plate high-k cutoff (4.3) and the PCI
finite sampling-volume cutoff (4.4) are sufficiently large to negligibly affect the PCI
transfer function over the depicted wavenumber domain. The reflectivity of the PCI
phase groove is ⌘ = 0.17. Because the PCI transfer function is not defined for
|k| . kg, the low-k PCI amplitude response (2.99) is indicated by the dash-dot curves
instead. The depicted transfer functions should be compared to those without finite
sampling-volume effects in Figure 2.6.

effect (rather than aperture diffraction) governs the high-k response
leads naturally to the design point for the heterodyne interferometer’s
finite sampling-volume cutoff

khet
fsv = 5 cm−1. (4.6)

Figure 4.2 displays the desired wavenumber transfer function of the
heterodyne interferometer relative to that of the pre-existing PCI sys-
tem.

4.3.2 Detector-element size

The heterodyne interferometer’s design-point finite sampling-volume
cutoff (4.6) fixes the ratio of the imaging system’s (absolute) magnifi-
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cation |M| to the detector element’s linear size sx. Commercially avail-
able detector elements for use at 10.6µm range in linear size from
fractions of a millimeter to several millimeters [10]. Smaller linear ele-
ment size sx eases both the beam-coalignment constraint (3.94) and the
curvature-matching constraint (3.95). The variation of detector noise
and optical shot noise with sx (but fixed |M|/sx) can also be examined.
To proceed, assume that the interferometer image plane sits in the cor-
responding Rayleigh range (i.e. |zI| ⌧ zR) such that w(zI) ⇡ |M|wO,
where w(zI) is the 1/e E radius of the probe beam at the image plane,
and wO is the 1/e E radius of the probe beam at the object plane. For
any given beam power, the probe-beam optical power PP impinging
on the detector element is a function of the element size relative to the
beam size, i.e. PP = PP(sx/w(zI)) ⇡ PP(sx/(|M|wO)); because |M|/sx
is fixed by the design-point finite sampling-volume cutoff (4.6), PP is
also approximately fixed. The optical power in the reference beam
impinging on the detector element, however, is independent of the
magnification and proportional to the element area A, i.e. PR / A.
Thus, the one-sided autospectral density of the demodulated detec-
tor noise (3.107) is independent of the element size. The one-sided au-
tospectral density of the demodulated optical shot noise (3.108) is, in
general, a function of the element size; in the extreme PR � PP, the
spectral density is independent of the element size; in the opposite ex-
treme PR ⌧ PP, the spectral density varies inversely with element area
A. In light of the above considerations, a square detector element of
intermediate linear size

sx = 1mm (4.7)

was chosen. Referencing the definition of the finite sampling-volume
cutoff (3.101) and the interferometer’s corresponding design-point fi-
nite sampling-volume cutoff (4.6), it naturally follows that the interfer-
ometer imaging system must have magnification

|M| = 0.08. (4.8)

4.3.3 Beam coalignment in presence of machine vibrations

DIII-D’s PCI system has an elaborate feedback control system that dy-
namically centers the unscattered beam on the phase-plate groove [3,
Sec. 3.5]. Coda has extensively characterized the effect of this feedback
system on the lateral position of the PCI image [3, Sec. 3.5(f)]. This sec-
tion extends Coda’s analysis by examining the effect of the feedback
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system on the misalignment angle ✓ between the unscattered probe
beam and the image-plane optical axis. It readily follows from this
discussion that, for certain imaging systems, the PCI feedback system
can dynamically maintain the beam coalignment (constraint (3.94)) of
a heterodyne interferometer in the presence of machine vibrations.

First, consider the situation without feedback. Let the probe beam
propagate a distance l from the plasma midplane to a focusing op-
tic with focal length f, and let the focused beam come to a waist a
distance l 0 from the focusing optic. Now, let a single mirror, located
a distance d upstream from the focusing optic, be tilted away from
its nominal position (e.g. from machine vibrations), deflecting the un-
scattered beam by angle �1 relative to the nominal optical axis. The
resulting focal-plane position and orientation of this beam are incor-
rect (i.e. the beam does not lie on the optical axis, but it should). This
misalignment is depicted by the solid line in Figure 4.3(a). In a per-
fectly aligned system, the focal-plane position and orientation of this
beam would correspond to the “effective” beam path depicted by the
dashed line in Figure 4.3(a). The imaging optics image the object-plane
ray corresponding to this effective beam path.

Imaging systems are discussed in Appendix B, but the relevant de-
tails are briefly summarized here. The symmetry axis of a Gaussian
beam behaves as a ray in the geometric-optics sense, where a ray is
fully described by its transverse distance ⇢ to the optical axis and its
angular orientation ✓ relative to the optical axis. Ray propagation
through a magnification-M imaging system is well-characterized by
an ABCD ray matrix of the form (B.3). Specifically,

⇢I = M⇢O, (4.9)

✓I =
✓O
M

+C⇢O, (4.10)

where O indicates object-plane quantities, I indicates image-plane quan-
tities, and C is constant determined by the particulars of the imaging
system. In a perfectly aligned system, the unscattered beam’s object-
plane ray (⇢O = 0 and ✓O = 0) is correctly imaged as ⇢I = 0 and
✓I = 0. However, in a misaligned system, the unscattered beam’s ef-
fective object-plane ray (⇢O 6= 0 and ✓O 6= 0) is imaged as ⇢I 6= 0 and
✓I 6= 0. Thus, without feedback, a tilted mirror produces errors in both
the image-plane position and orientation of the unscattered beam.

Now, add a steering mirror a distance d 0 downstream of the fo-
cusing optic. This steering mirror is tasked with compensating for
the titled mirror by returning the unscattered beam’s focal-plane po-
sition to the nominal optical axis, as depicted in Figure 4.3(b). In the
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from focal plane through perfectly aligned system)
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Figure 4.3: Effect of a tilted mirror (a) without focal-plane feedback and (b) with
focal-plane feedback on the actual and effective paths of a Gaussian beam. An
imaging system images the object-plane ray corresponding to the effective beam
path. Without focal-plane feedback, both the transverse distance and the angular
orientation of the effective object-plane ray are incorrect, producing errors in the
corresponding image-plane quantities. With focal-plane feedback, however, the
angular orientation of the effective object-plane ray is corrected (i.e. the ray is
parallel to the optical axis, albeit laterally displaced); then, if the imaging system is
engineered such that C = 0 in the ABCD ray matrix, the feedback will dynamically
maintain the correct angular orientation of the corresponding image-plane ray.

geometric-optics limit, a ray passing through the intersection of the op-
tical axis and the focal plane corresponds to a collimated beam (✓ = 0)
upstream of the focusing optic. Thus, in a perfectly aligned system,
the focal-plane position and orientation of the feedback-compensated
beam would correspond to the “effective” beam path, depicted by the
dashed line in Figure 4.3(b). Thus, upstream of the focusing optic, the
effective beam path is displaced from but parallel to the nominal op-
tical axis. As is the case without feedback, the imaging optics image
the object-plane ray (⇢O 6= 0, ✓O = 0) corresponding to this effective
beam path, i.e. ⇢I = M⇢O and ✓I = C⇢O. Thus, for imaging sys-
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tems with C = 0, the PCI feedback system will dynamically maintain
the correct angular orientation of the image-plane unscattered beam
(i.e. ✓I = 0); an obvious application is satisfying the heterodyne inter-
ferometer’s coalignment constraint (3.94) in the presence of machine
vibrations. Of course, the lateral image location shifts in accordance
with the discussion by Coda [3, Sec. 3.5(f)].

4.3.4 Reference-beam generation

A heterodyne interferometer interferes the imaged probe radiation
with a frequency-shifted reference beam to make an absolute phase
measurement, as discussed in Section 2.4.2. It is easy to Doppler
shift 10.6µm radiation by tens of MHz with an acousto-optic mod-
ulator (AOM). The operation of a typical AOM is described in in Sec-
tion 3.3.2.

The heterodyne interferometer’s reference beam is generated with a
Gooch & Housego (Ilminster, UK) 37027-5 Germanium AOM, pictured
in Figure 4.4. The resonant frequency of the AOM’s piezo-actuator is
27.12MHz, but the AOM’s deflection efficiency varies negligibly be-
tween 25MHz and 30MHz. For reasons discussed in Section 4.7.1, the
AOM is operated at �f0 = 30MHz. At this frequency, the deflected
beam is separated from the undeflected beam by 2✓B = 59mrad,
where ✓B is the Bragg angle from (3.47). Deflection efficiency scales
roughly linearly with RF power, and deflection efficiencies in excess of
75% can be obtained at the maximum-rated RF power of 30W. The RF
power is CW such that the AOM simply deflects and Doppler shifts
a fraction of the incident optical beam. (In contrast, rapidly varying
the RF power modulates the optical powers in the deflected and un-
deflected beams, but such modulation is not desirable in a heterodyne
interferometer). The AOM’s static optical insertion loss is measured
to be ⇠ 10%, and the incident optical intensity should be limited to
6 5W ·mm−2 to avoid thermal lensing of the beam. The diameter of
the piezo-driven acoustic beam is ⇠ 5mm. Satisfying both the AOM’s
peak-intensity constraint and the aperture-diffraction constraint (3.93,
with the acoustic beam providing an “effective aperture”) requires
placement of the AOM ⇠ 15" downstream of the laser’s beam waist.

Due to space constraints, the reference-beam path length is not matched
to the probe-beam path length. This path-length discrepancy (⇠ 10m)
injects the laser’s phase noise into the heterodyne interferometer’s
measurements, as quantified by (3.105). However, as shown in Sec-
tion 4.7.2, the laser’s phase noise negligibly contributes to the hetero-
dyne interferometer’s noise floor.
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Figure 4.4: The heterodyne interferometer’s Germanium acousto-optic modulator
(AOM). The AOM deflects and Doppler shifts (�f0 = 30MHz) a fraction of the
incident CO2 beam (f0 = 28.3 THz) to produce a reference beam. The 30MHz RF
signal is coupled to the AOM through the upper-left BNC jack, and the resulting
sound waves propagate through the Germanium crystal from left to right. The CO2

beam enters through the aperture on the AOM’s face and exits through a similar
aperture on the AOM’s rear. The twin Swagelock fittings on the AOM’s right
provide an inlet and outlet for water cooling, while the lower-left SMC jack connects
to a normally closed, creep-action PEPI N thermostat that provides a thermal
interlock to the AOM’s RF driver. The AOM is mounted on a “Bragg mount”, which
allows easy optimization of the beam’s angle of incidence (via the mount’s
adjustment screw, seen in black at the middle-right).

Allowing such a “modest” path-length discrepancy substantially
simplifies the optical design of the reference arm. Following its gener-
ation at the AOM, the reference beam is directed to the interferometer
detector with four broadband metallic mirrors (ER.2 protected-silver
coated from Newport Corporation; Irvine, CA, USA) and is combined
with the probe beam via a 50% reflective, polarization-independent
ZnSe beam splitter (II-VI Infrared; Saxonburg, PA, USA). No lenses
are used to condition the reference beam. However, a multiple-order
10.6µm half-waveplate (also from II-VI Infrared) sits between the AOM
and the polarization-independent beam splitter. As the probe beam
is not confined to a single plane, out-of-plane mirror reflections can
rotate the probe-beam polarization; the half-waveplate allows one to
easily align the polarization of the reference beam with that of the
probe beam, thereby maximizing the interference signal. From source
to detector, the reference beam propagates a total distance 59-3/8".



124 implementation of a combined pci-interferometer on diii-d

to vessel
(~10 W)

electronics box

from vessel
(~2 W)

14 W CO2 laser

AOM

P1

P2

PP
SM

L0

D1

D2

S1

S2

L1L2BC

�/2 RM

D3

~20
0 m

W

~500 mW
~100 mW

Figure 4.5: Combined PCI-interferometer optical table. Salmon: shared probe beam;
green: interferometer plasma arm; blue: interferometer reference arm; fuchsia: PCI
beam; yellow: feedback beam. AOM: Ge acousto-optic modulator. BC: beam
combiner. D1: LN2-cooled PCI detector array; D2: room-temperature quadrant
detector for beam steering; D3: thermoelectrically-cooled interferometer detector. L0,
L1, L2: ZnSe lenses. P1, P2: off-axis parabolic mirrors. PP: phase plate. RM: rotatable
mask. S1, S2: ZnSe beam splitters. SM: steering mirrors. �/2: half-wave plate.

4.3.5 Probe-beam generation & imaging

A schematic of the combined-PCI interferometer optical table is shown
in Figure 4.5. The interferometer and PCI share the in-vessel probe
beam. The only modification to the beam-generation optics was the
addition of the AOM, discussed extensively in Section 4.3.4. The AOM
insertion loss and the diversion of some of the laser power to the refer-
ence arm reduce the power in the probe beam relative to the PCI-only
configuration.

As in the PCI system, the probe arm of the heterodyne interferom-
eter is configured to image the probe radiation from the tokamak mid-
plane. The heterodyne interferometer and PCI imaging optics share
the focusing f = 80.7" off-axis parabolic mirror and the feedback steer-
ing mirrors [3, Sec. 3.5]. Because the phase plate’s spatial filtering
produces the PCI’s low-k cutoff, a 2" diameter S-polarization ZnSe
splitter (II-VI Infrared; Saxonburg, PA, USA) located 5-1/8" upstream
of the phase plate diverts a fraction of the probe radiation to dedicated
heterodyne-interferometer optics. (The selection of the splitter reflec-
tivity is discussed in Section 4.4.5. This beam splitter also diverts a
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portion of the unscattered probe beam to the feedback system’s quad-
rant detector; the heterodyne-interferometer probe beam and the feed-
back beam are separated with an additional 2" diameter S-polarization
ZnSe splitter). Four broadband metallic mirrors (ER.2 protected-silver
coated from Newport Corporation; Irvine, CA, USA) direct the probe
radiation through the remainder of the heterodyne interferometer’s
imaging optics, which consist of two plano-convex ZnSe lenses (also
from II-VI Infrared). The first lens L1 has a 7.5" focal length and a
2" diameter, and the second lens L2 has a 7.5" focal length and a 1.5"
diameter. Then, under the constraint of imaging the plasma midplane,
the remaining design parameters are the distance dP2,L1 between the
focusing off-axis parabolic mirror and L1 and the distance dL1,L2 be-
tween L1 and L2.

The sensitivity of the heterodyne-interferometer optical layout to
dP2,L1 and dL1,L2 is shown in Figure 4.6, and the resulting implica-
tions are discussed here in detail. The top-left panel of Figure 4.6 dis-
plays the distance from L2 to the image plane I. The image-plane loca-
tion is a strong function of dL1,L2 and a weak function of dP2,L2. The
top-right panel of Figure 4.6 displays the imaging system’s magnifica-
tion M, with the design point in accord with (4.8). The magnification
is a strong function of dL1,L2. The middle-left panel of Figure 4.6 dis-
plays the C parameter of the imaging system’s ABCD ray matrix. As
discussed in Section 4.3.3, the PCI feedback system will dynamically
maintain the coalignment of the heterodyne interferometer’s beams if
C = 0. The C parameter is a strong function of both dP2,L1 and dL1,L2,
and experimental uncertainties in distances and focal lengths make it
difficult to enforce C = 0. (Indeed, the amplitude of the interference
signal from the realized system does vary with vibrations, indicating
that C 6= 0 and/or the action of the feedback system is not sufficient
to maintain coalignment). The middle-right panel of Figure 4.6 dis-
plays the maximum curvature-induced phase shift (3.95) for a single,
1mm2 square detector. The design point satisfies max(��) ⌧ 1 such
that curvature-induced phase shifts minimally reduce the interference
power and negligibly distort the imaged wavenumbers. The bottom-
left panel of Figure 4.6 displays the axial distance z from the waist
of the probe beam to the image plane (this is the usual axial param-
eter used to characterize Gaussian beams, with z > 0 indicating that
the waist is upstream of the image plane and z < 0 indicating that
the waist is downstream of the image plane). There is only a very
narrow strip where the image plane and the beam waist coincide (i.e.
where z = 0); note that this strip closely resembles the C = 0 curve
of the middle-left panel. This is no coincidence: as discussed in the
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Figure 4.6: Sensitivity of heterodyne-interferometer optical design to the placement
of lenses L1 and L2. The distance between the focusing off-axis parabolic mirror P2
and the first lens L1 of the imaging system is denoted by dP2,L1 (along the x-axis),
and the distance between L1 and the second lens L2 is denoted by dL1,L2 (along the
y-axis). The design point is marked with a burgundy diamond.

text surrounding (B.9), the image plane and the beam waist coincide
only if |C| ⌧ 1/|MqO|, where qO is the object-plane complex beam pa-
rameter and M is the imaging-system magnification; the 10.6µm PCI
probe beam, with in-vessel 1/e E radius w0 ⇡ 3.4 cm, has qO ⇡ 340m.
Thus, for moderate magnifications, the large size of qO couples the
C = 0 and the z = 0 curves to each other. Finally, the bottom right
panel of Figure 4.6 displays the Rayleigh range zR of the image-plane
probe beam. The discussion of detector noise and optical shot noise in
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Figure 4.7: The wavenumber-dependent phase shift µ that occurs when the
upscattered and downscattered 10.6µm beams interfere a distance �zI away from
the image plane of an M = 0.08 imaging system; |µ| ⌧ 1 is desirable.

Section 4.3.2 assumed that the image plane sits in the Rayleigh range
(i.e. |z| . zR), and the design point satisfies this assumption. Further,
the depth-of-focus criterion (3.96) states that there will be minimal
wavenumber distortion if the detector is |�zI| ⌧ R(zdet) within the
image plane. As a Gaussian beam has minimum radius of curvature
min(R(z)) = 2zR 6 R(zdet), this depth-of-focus criterion simply re-
duces to |�zI| ⌧ 2zR. Within the neighborhood of the design point,
zR > 10 cm such that wavenumber distortion is minimal as long as
the detector is well within ±20 cm ⇡ ±8" of the image plane, which is
relatively easy to satisfy experimentally.

The imaging system’s depth of focus is additionally constrained
by the “out-of-focus” interference of the upscattered and downscat-
tered beams, which produces the wavenumber-dependent phase shift
µ from (3.97). Because a heterodyne interferometer exhibits nulls in
its response when µ = (2m + 1)⇡/2 for integer m, it is desirable to
have |µ| ⌧ 1 over the system’s full wavenumber range. Figure 4.7
displays |µ| for 10.6µm probe radiation and the design-point magnifi-
cation M = 0.08 from (4.8). Clearly, the power loss from this “out-of-
focus” interference effect will be small for |k| . 5 cm−1 if the detector
is within ±0.5" of the image plane.

Axial profiles of the unscattered beam and a scattered beam in the
design-point imaging system are shown in Figure 4.8. Because scat-
tering from density fluctuations with larger wavenumbers produces



128 implementation of a combined pci-interferometer on diii-d

Figure 4.8: Axial beam profiles in interferometer probe arm as a function of distance
dO from the tokamak midplane (i.e. the object plane). For a given beam, the central
ray corresponds to the symmetry axis of the beam, while the other two rays
correspond to the 1/e E radius of the beam. The interferometer detector sits at the
second image plane, approximately 395" downstream of the tokamak midplane.

larger transverse deviations from the optical axis, the scattered beam
plotted in Figure 4.8 corresponds to a k = 5 cm−1 fluctuation, which
is the maximum measurable wavenumber (4.6) of the interferometer.
Note that the diameter of each focusing optic is accurately depicted (if
an optic touches the horizontal axes, the optical diameter exceeds the
plotted dimensions) and that the aperture diffraction criterion (3.93)
is met for both the scattered and unscattered beams at each focusing
optic. For simplicity, planar mirrors are not depicted, but they sim-
ilarly satisfy the aperture diffraction criterion. The probe radiation
is combined with the reference beam and interfered on a detector lo-
cated at the second image plane, approximately 395" downstream of
the tokamak midplane.

4.4 distribution of optical power

Having identified a suitable heterodyne-interferometer optical layout
in Section 4.3, the finite power of the 10.6µm laser must be distributed
between the PCI and interferometer systems. Section 4.4.1 reviews the
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experimentally relevant relations between a Gaussian beam’s global
properties (e.g. total beam power) and local properties (e.g. peak, on-
axis intensity). Sections 4.4.2 through 4.4.4 develop approximate ex-
pressions for the total power in the beam(s) at each detector location;
significantly, two design parameters, ⌘R and ⌘P, control the power
distribution in the combined PCI-interferometer. Finally, Section 4.4.5
identifies a suitable operational point in (⌘R,⌘P)-space.

4.4.1 Gaussian-beam intensity & power

The Gaussian-beam electric field (2.33) produces the optical intensity
(averaged over an optical cycle)

I(⇢, z) =
c"0
2

|EG(r)|2 = I(0, z) exp

-2⇢2

w(z)2

�
, (4.11)

where

I(0, z) =
c"0
2


E0w0

w(z)

�2
(4.12)

is the peak, on-axis intensity of the Gaussian beam at axial distance z

from the beam waist. The optical power within ⇢0 of the symmetry
axis is

P(⇢ 6 ⇢0) = P

�
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
-2⇢20
w(z)2

��
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where

P =
⇡[w(z)]2

2
· I(0, z) (4.14)

is the total optical power in the beam. Similarly, the optical power
within a square of side length s and centered on the optical axis is

P = P


erf
✓

sp
2w(z)

◆�2
, (4.15)

where P is again the total optical power (4.14) in the beam and

erf(z) =
2p
⇡

Zz

0

e-t2dt (4.16)

is the error function.
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4.4.2 PCI beam

Prior to the heterodyne-interferometer upgrade, the total beam power
at the PCI detector was Ppci,0 ⇠ 300mW. The placement of the AOM
in the expansion optics produces a static ⇠ 10% optical insertion loss,
and driving the AOM with RF power deflects an additional fraction ⌘R
of the beam power to the reference arm of the interferometer. Further,
upstream of the phase plate, a fraction ⌘P of the beam power is di-
verted to the probe arm of the interferometer. Thus, after the upgrade,
the total beam power at the PCI detector is

Ppci = 0.9(1- ⌘R)(1- ⌘P)Ppci,0. (4.17)

To prevent substantial performance degradation of the PCI, the crite-
rion Ppci/Ppci,0 & 2/3 is enforced.

4.4.3 Interferometer probe beam

Upstream of the phase plate, a fraction ⌘P of the beam power is di-
verted to the probe arm of the interferometer. Recall that the phase-
plate groove is uncoated ZnSe, which reflects only 17% of the unscat-
tered probe beam. Additionally, 50% of the probe beam’s power is
lost at the beam combiner that combines the probe beam and the ref-
erence beam. Thus, the total probe-beam power PP at the heterodyne-
interferometer detector is given through power conservation as

Ppci +

✓
0.17
0.5

◆
PP = Ppci,0. (4.18)

(Of course, some of the beam power is also diverted to the feedback
system’s quadrant detector, but the power in this feedback beam was
negligibly altered by the upgrade). Using the probe-beam optical lay-
out discussed in Section 4.3.5, the 1/e E radius of the probe beam at
the heterodyne-interferometer detector is

wP = 2.7mm. (4.19)

4.4.4 Interferometer reference beam

The AOM produces a static ⇠ 10% optical insertion loss and deflects a
fraction ⌘R of the remaining beam power to the reference arm of the
interferometer. Additionally, 50% of the reference beam’s power is lost
at the beam combiner that combines the probe beam and the reference
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beam. Thus, the total reference-beam power PR at the heterodyne-
interferometer detector is

PR =

✓
0.9
2

◆
⌘RPS, (4.20)

where PS ⇡ 14W is the total beam power at the laser source. Using
the reference-beam optical layout discussed in Section 4.3.4, the 1/e E

radius of the probe beam at the heterodyne-interferometer detector is

wR = 4.3mm. (4.21)

4.4.5 Constraining the distribution of optical power

Suitably distributing the optical power in the combined PCI and in-
terferometer system is an exercise in constrained optimization. The
objective function is the optical power in the heterodyne-interference
signal, while the constraints are the operational limits of the interfer-
ometer detector and the minimum required power in the PCI beam
(Ppci/Ppci,0 & 2/3). Because the PCI constraint is somewhat “soft”,
a graphical exploration of the design space is appropriate; such a
graphical exploration is shown in Figure 4.9. The top-left panel of Fig-
ure 4.9 displays the AC-to-DC multiplicative factor 2IAC/(IDC + IAC)
from the heterodyne-interferometer transfer function (3.98). The AC-
to-DC multiplicative factor attains a maximum value of unity when
the AC and DC intensities of the heterodyne interference signal are
equal (i.e. when IAC = IDC). Clearly, the AC-to-DC multiplicative
factor is a strong function of ⌘R, and the design point achieves a rea-
sonable balance between the AC and DC components of the hetero-
dyne signal. A large value of 2IAC/(IDC + IAC) alone does not guar-
antee optimal performance; the normalizing peak intensity IDC + IAC
should also be maximized. The top-right panel of Figure 4.9 displays
this peak intensity. The photovoltaic HgCdTe detectors that are of-
ten employed for 10.6µm heterodyne interferometry typically have
a saturation intensity Isat = 100mW ·mm−2 and a damage intensity
Idam = 1W ·mm−2. Note that IDC + IAC is a strong function of ⌘R and
that IDC + IAC ⇠ Isat at the design point. Depending on the saturation
physics of the detector, operating above Isat (but below Idam) may im-
prove the system performance, as quantified by the V1/V1(Imax = Isat)
multiplicative factor in the heterodyne-interferometer transfer func-
tion (3.98). However, as the bottom-left panel of Figure 4.9 shows, the
constraint Ppci & (2/3)Ppci,0 ⇠ 200mW prevents operating the het-
erodyne interferometer with intensities above Isat. This inability to
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Figure 4.9: Constraints on the distribution of optical power in the combined
PCI-interferometer. The AOM deflection efficiency, which governs the fraction ⌘R of
beam power diverted to the interferometer reference arm, is displayed along the
x-axis. The fraction ⌘P of probe-beam power (immediately upstream of the phase
plate) diverted to the interferometer probe arm is displayed along the y-axis. All
intensities correspond to peak, on-axis values. The design point is marked with a
burgundy diamond; note that ⌘P = 0.25 is fixed for the installed splitter, but varying
the AOM RF power readily changes ⌘R, allowing easy movement along the
horizontal dashed line. See text for discussion.

operate above Isat can be compensated by actively cooling the detector
to improve its sensitivity. The interferometer described in this thesis
uses two-stage thermoelectric cooling to cool the detector to T ⇠ 230K,
boosting the specific detectivity D⇤ by an order of magnitude; the cool-
ing capacity is limited to Qheat . 75mW. Because the total power in
the probe beam and the reference beam greatly exceeds this cooling
capacity, a circular aperture of radius a = 0.75mm is positioned im-
mediately upstream of the detector; the power of a Gaussian beam
passing through such an aperture is given by (4.13) such that the heat
that must be dissipated reduces to

Qheat = PP


1- exp

✓
-2a2

w2
P

◆�
+PR


1- exp

✓
-2a2

w2
R

◆�
. (4.22)
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The bottom-right panel of Figure 4.9 displays Qheat. Now, in practice,
⌘P is fixed by the reflectivity of the ZnSe splitter located upstream of
the phase plate (with 25% reflectivity being a common, off-the-shelf
value); then, during an alignment, ⌘R is increased slowly until the
cooling capacity of the detector is reached.

4.5 dedicated heterodyne-interferometer hardware

Utilizing a shared in-vessel probe beam implies that the PCI and the
heterodyne interferometer share several components, including the
CO2 laser, the beam-expansion optics, and the beam-delivery and
beam-collection optics. The two systems also share a digitizer. Nu-
merous other components, however, are exclusively dedicated to the
operation of the heterodyne interferometer. Some of these components
have been discussed in previous sections (i.e. the reference-beam op-
tics in Section 4.3.4 and the probe-beam imaging optics in Section 4.3.5).
This section details the remainder of the heterodyne interferometer’s
dedicated hardware.

4.5.1 Oven-controlled crystal oscillator (OCXO)

Placing a crystal oscillator (XO) in a constant-temperature thermal
bath substantially improves the XO stability, dramatically reducing the
XO phase noise. For technical reasons, ovens operated tens of degrees
above the ambient temperature provide the most robust constant-temperature
thermal baths. The stability of such an oven-controlled crystal oscilla-
tor (OCXO) is typically enhanced by a factor > 103 relative to that of
a comparable XO [11, Table 7.2].

The local oscillator (LO) of the heterodyne interferometer is derived
from an OCXO. The OCXO was procured from Wenzel Associates,
Inc. (Austin, TX, USA) and is enclosed in their Sprinter packaging.
The OCXO has a 5-minute warm-up time, during which it draws a
maximum power of 5W; after warming up, it draws 2.2W. The OCXO
output is a 13 dBm sinusoidal wave at a frequency of 30MHz (i.e. in
the notation of Chapters 2 and 3, �!0 = 2⇡ · 30MHz). The OCXO
phase noise is

L�!0
(f) = -165 dBc, f > 10 kHz. (4.23)

The conversion between dBc and rad2 ·Hz−1 is discussed in Appendix D.
A custom, rack-mounted module was built to house the OCXO. The

module housing protects the OCXO from rough handling and encloses
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Figure 4.10: Schematic for OCXO rack-mounted module.

additional electronics that facilitate the OCXO integration into the rest
of the heterodyne-interferometer system. The OCXO module is in-
stalled in the PCI rack located in the DIII-D annex. A schematic of this
module is shown in Figure 4.10. A 15V linear-regulated power supply
(15EB40, Acopian Technical Co.; Easton, PA, USA) powers the OCXO,
while a 5V linear-regulated power supply (5EB50, Acopian) powers
the AOM’s thermal-regulation and RF-modulation electronics. Linear-
regulated power supplies are less noisy than either switching-mode
or unregulated power supplies, so it was deemed essential to power
the OCXO with a linear-regulated power supply. To prevent overheat-
ing the AOM (e.g. due to a water-cooling failure), a normally closed,
creep-action thermostat (Pepi Model N, Portage Electric Products, Inc;
North Canton, OH, USA) monitors the AOM temperature; if the AOM
temperature exceeds 30 �C, the thermostat opens. Now, assuming the
AOM temperature is less than 30 �C, connecting the thermostat of the
AOM to the thermal interlock of the OCXO module produces a current
that closes the normally open, non-latching relay that sits between the
15V linear-regulated power supply and the OCXO, powering on the
OCXO. The OCXO signal is evenly split via a Mini-Circuits (Brooklyn,
NY, USA) ZFSC-2-6B RF splitter to produce two LO signals; one of the
LO signals is routed to the AOM RF driver (described in Section 4.5.2)
located in the DIII-D pit, and the other LO signal is routed to the
interferometer demodulation electronics (described in Section 4.5.6)
located in the PCI rack of the DIII-D annex. A Mini-Circuits FTB-1-1
balun transformer breaks the ground loop between the OCXO module
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and the AOM RF driver. A Mini-Circuits ZSDR-230+ RF switch also
enables amplitude modulation of the LO signal that is routed to the
AOM RF driver; this capability is only used during system alignment
to “chop” the reference and probe beams, allowing each beam to be
separately centered on the interferometer’s AC-coupled detector. Fi-
nally, a switch at the rear of the module allows one to easily toggle the
module grounding between the electrical mains (i.e. for bench testing)
and the PCI rack (i.e. for operations).

4.5.2 AOM RF driver

The LO signal must be amplified to several watts in order to drive the
AOM. An ENI (Rochester, NY, USA) 3100L performs this amplifica-
tion. (Note that ENI no longer exists but that the closely related E&I
currently manufactures comparable amplifiers). The 3100L provides
broadband power amplification between 250 kHz to 105MHz. The
3100L has 50 dB gain and a rated power output above 100W (as the
AOM is typically driven at ⇠ 1W, the 3100L greatly exceeds the drive
requirements; note that the 3100L is on long-term loan from the DIII-D
RF group, though, and they had no suitable, lower-power amplifiers).
The harmonic distortion of the 3100L is 6 -25 dBc, and its noise fig-
ure is 6 10 dB. Self-demodulation tests (methodology shown schemat-
ically in Figure 4.17) conducted with and without the 3100L demon-
strate that the 3100L does not add appreciable noise to the interferom-
eter measurements. The 3100L draws 1.1 kW of 120 VAC wall power;
a 2.4 kVA Topaz isolation transformer isolates the 3100L from high-
frequency wall-power noise. At a hefty 70 lbs, the 3100L is mounted
in the PCI rack adjacent to the PCI optical table in the DIII-D pit; the
Topaz isolation transformer is mounted to the pit wall behind the PCI
rack. The AOM drive level is adjusted by appropriately attenuating
the LO signal just upstream of the 3100L input; this “just-in-time” at-
tenuation minimizes the effect of electrical pickup during the ⇠ 60m

signal transit from the annex to the pit (relative to e.g. attenuating the
signal in the annex and then sending the signal to the pit).

4.5.3 Detector

Detection of 10.6µm light is typically effected with Mercury Cadmium
Telluride (HgCdTe), an alloy of HgTe and CdTe [10]. The ratio of HgTe
to CdTe is tuned to provide optimal detection at the device’s intended
operational wavelength and temperature. Cooling the HgCdTe typi-
cally increases the cut-off wavelength, increases optical responsivity,
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Figure 4.11: The heterodyne interferometer’s detector module. The detector element
and thermoelectric (TE) cooler are enclosed within the TO-8 silver “can” at middle
left. The blue housing encloses additional TE-cooling components and the detector
preamplifier. A heat sink and small fan are located opposite of the detector face. The
female SMA connector (for detector output) and the receptacle for a 9-pin LEMO
cable (for communication with the module controller) sit on the unpictured side of
the detector module.

and decreases device noise, but often at the expense of device speed.
Device noise and speed also depend on whether the HgCdTe detector
is photovoltaic (PV) or photoconductive (PC); in particular, PC detec-
tors exhibit 1/f noise and are often slower than their PV counterparts.

Resolving the temporal dynamics of the heterodyne interferome-
ter’s 30MHz signal requires a sufficiently fast detector. This immedi-
ately precludes the use of a liquid-nitrogen cooled detector, as is used
for the PCI. Room-temperature HgCdTe detectors are sufficiently fast
but also exhibit relatively low sensitivity. Modest thermoelectric (TE)
cooling, however, can engender some of the positive aspects of cooling
while maintaining sufficient time resolution.

The 30MHz heterodyne-interference signal is measured with a PVM-
2TE-10.6 detector element mounted on a MIPACv2 detection module,
both procured from VIGO System S.A. (Ozarow Mazowiecki, Poland).
The multiple-junction PV element provides superior speed (3 dB high-
frequency cutoff ⇠ 50MHz) and sensitivity (D⇤ ⇠ 1.9⇥ 108 cm

p
Hz/W)

relative to a PC element or a single-junction PV element. The element
is square with side length sx = 1mm, in accordance with (4.7). The
element has linear saturation intensity Isat = 100mW ·mm−2 and dam-
age intensity Idam = 1W ·mm−2. The element and TE cooler are en-
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closed in TO-8 packaging with a BaF2 window; care should be taken
not to scratch the soft BaF2 window or to subject the system to me-
chanical shocks, which may damage the TE cooler. The TE cooler is
capable of maintaining the detector element at a constant 235K tem-
perature for incident DC optical fluxes . 75mW. The MIPACv2 detec-
tion module houses additional TE-cooling components as well as the
detector preamplifier. The preamplifier is AC-coupled with a cut-on
frequency of 1 kHz and a cut-off frequency of 50MHz, and it is capa-
ble of producing a ±1V output-voltage swing into a 50⌦ load. The
MIPACv2 detection module is powered by VIGO’s STCC-04 controller.
The specific detectivity of the element and the detection module taken
as an integrated unit is

D⇤ = 5.35⇥ 107 cm
p
Hz/W. (4.24)

The detector module is pictured in Figure 4.11.

4.5.4 Coaxial cables to DIII-D annex

RG-58 coaxial cables transmit signals between the interferometer com-
ponents located in the DIII-D annex and the DIII-D pit. Initially in-
stalled for PCI signal transmission but abandoned following an up-
grade to fiber-optic links [2, Sec. 3.3.3], these cables were reclaimed
for the interferometer. The 16 cables sit bundled beneath the PCI op-
tical table and connect to channels C27 through C42 of panel 5B in
the DIII-D annex. The single-transit propagation time of each cable
was measured to be 315ns by launching a square wave of modest
frequency (tens of kHz) down the unterminated cable and halving the
observed time delay between the forward and reflected waves. As
RG-58 has an index of refraction ⇠ 3/2, this corresponds to a cable
length of 63m. DC signals are negligibly attenuated along this cable
length, but AC signals are subject to the skin effect [11, Sec. H.1.4];
the measured attenuation at 30MHz is 5.9 dB. The DC signal between
the AOM thermostat and the thermal interlock of the OCXO mod-
ule travels along one of these coaxial cables. A second coaxial cable
transmits one of the 30MHz LO signals from the OCXO module to
the AOM RF driver, and a third coaxial cable transmits the 30MHz

heterodyne-interference signal from the interferometer detector to the
signal-conditioning RF amplifiers.
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Figure 4.12: Automatic gain-control (AGC) amplifier.

4.5.5 Signal-conditioning RF amplifiers

Despite feedback stabilization of the beam coalignment (discussed in
Sections 4.3.3 and 4.3.5), vibration-induced misalignment can still sub-
stantially reduce the amplitude of the heterodyne-interference signal,
dramatically degrading the signal-to-noise ratio of the interferometer.
These amplitude variations can be compensated with an automatic
gain-control (AGC) amplifier, which monitors the amplitude of the
input signal and dynamically adjusts its gain to maintain a constant-
amplitude output signal.

An AGC amplifier was graciously provided pro bono by Palomar Sci-
entific Instruments (San Marcos, CA, USA). The AGC operates over
a frequency range from 20MHz to 100MHz. The AGC produces a
-6 dBm output signal for an input signal between -24 dBm and
+6 dBm; the input damage limit is 20dBm. The input and output
impedances are both 50⌦, and the input and output ports are female
SMA. The AGC draws 160mA from a DC power supply that can sit
anywhere between 7V and 15V ; however, higher DC voltages produce
significant heat dissipation, and operation at the upper limit of 15V

should be avoided, if possible. The AGC is pictured in Figure 4.12.
If the heterodyne interference signal falls below the lower limit of the
AGC input range (e.g. due to long-term drift of the system alignment),
a Mini-Circuits (Brooklyn, NY, USA) ZFL-500B amplifier is added im-
mediately upstream of the AGC.

These signal-conditioning RF amplifiers are located in the PCI rack
of the DIII-D annex. A 12V linear-regulated power supply (12EB40,
Acopian Technical Co.; Easton, PA, USA) powers the amplifiers. A
Mini-Circuits FTB-1-1 balun transformer breaks the ground loop be-
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Figure 4.13: Schematic for demodulation electronics. Note that the polarity of the
bandpass filters is explicitly noted as M (male) and F (female). The OCXO and the
electronics downstream of the I&Q demodulator are all grounded to the PCI rack in
the DIII-D annex; the IF signal conditioning amplifiers are not grounded to the rack,
so a balun transformer breaks the ground loop. Measurements along any point in
the circuit should be into 50⌦.

tween the interferometer detector and the signal-conditioning RF am-
plifiers.

4.5.6 Demodulation electronics

The theory of ideal and real-world demodulation is discussed in Sec-
tion 3.5, and readers are encouraged to review that section if context
for the hardware described below is desired. A schematic of the de-
modulation electronics is shown in Figure 4.13.

Prior to demodulation, the LO and IF signals are each bandpass fil-
tered with a Mini-Circuits (Brooklyn, NY, USA) BBP-30+. The BBP-30+
has 6 1.5 dB insertion loss over its 27MHz to 33MHz passband. Band-
pass filtering the 30MHz IF suppresses higher-order harmonics and
out-of-band noise, both of which would degrade the heterodyne in-
terferometer’s phase measurement. Although Section 3.5.2 discusses
the potential benefits of demodulating against a square LO, no such
LO was available, so the LO is instead bandpass filtered to ensure that
the IF is demodulated against a sinusoid. The BBP-30+ is directional,
so care should be taken to install the filter with the correct orienta-
tion. Following the bandpass filter, a Mini-Circuits FTB-1-1 breaks the
ground loop between the IF signal-conditioning amplifiers and the
downstream electronics. The resulting -8.5 dBm IF and 8.5 dBm LO
are now ready to be demodulated.

Demodulation is performed with a Mini-Circuits MIQC-60WD+ ana-
log I&Q demodulator. The MIQC-60WD+ can demodulate IF signals
with frequencies between 20MHz and 60MHz, while the bandwidth
of the resulting I and Q signals may span from DC up to 5MHz. To
minimize parasitic capacitances, the MIQC-60WD+ is soldered “dead-
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bug” style [12] to a large grounding plane, and every electrical con-
nection is soldered directly to its corresponding pin; the demodulator,
wiring, and grounding plane are enclosed in a protective box with ex-
ternal BNC jacks. The MIQC-60WD+ conversion loss is 5.3 dB. The
amplitude imbalance is 6 0.6 dB, the phase imbalance 6 5°, and the
DC offset is typically ⇠ 1mV . The 3rd- and 5th-order harmonic sup-
pressions were measured to be 53 dB and 64 dB, respectively.

The signals exiting the I and Q ports of the demodulator must be
low-pass filtered to remove the 60MHz “sum” components that result
from mixing the LO and IF. Low-pass filtering is performed with a
pair of Mini-Circuits BLP-10.7+ filters, which have 6 1 dB insertion
loss over their DC to 11MHz passband. The resulting I and Q signals
are each -18 dBm (i.e. 28.2mV RMS, 80mV peak-to-peak, into 50⌦).

4.5.7 Audio amplifiers

The demodulated I and Q signals are 80mV peak-to-peak, while the
digitizer input voltage range is 8V peak-to-peak. Thus, direct digitiza-
tion of the I and Q signals corresponds to a fractional use ⌘dyn = 0.01
of the digitizer’s dynamic range. When ⌘dyn = 0.01, the autospectral
density of the corresponding quantization noise (3.109) is 104 larger
than when ⌘dyn = 1. Figure 4.20 compares the quantization noise for
⌘dyn ⇡ 1 to typical plasma fluctuations — clearly, ⌘dyn = 0.01 would
produce unacceptably large quantization noise that would mask all
but the largest plasma fluctuations. To minimize quantization noise,
then, the I and Q signals must be amplified to ⌘dyn ⇡ 1 prior to digiti-
zation.

A pair of custom “audio amplifiers” were built to perform the de-
sired amplification of the I and Q signals. The “audio” qualifier indi-
cates that these amplifiers are lower bandwidth than the upstream
RF amplifiers discussed in Section 4.5.5 (the BBP-30+ bandpass fil-
ters restrict the bandwidth of the I and Q signals to . 3MHz, and
plasma fluctuations above the interferometer noise floor are almost
always . 1MHz). The required amplitude gain of the amplifier is
G ⇡ 100. A schematic for a single channel of the amplifier is shown
in Figure 4.14. The amplifier consists of two stages of high-gain, low-
noise amplification followed by a 50⌦ line driver, which is required
to drive the digitizer’s 50⌦ input impedance. Each high-gain, low-
noise amplification stage utilizes an OP37 bipolar operational ampli-
fier (Analog Devices; Norwood, MA, USA) in an inverting configu-
ration. The OP37 is decompensated [11, Sec. 4.9], sacrificing low-gain
stability for higher bandwidth (gain-bandwidth product of 63MHz),
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Figure 4.14: Audio-amplifier schematic. The amplifier consists of two high-gain,
low-noise amplification stages followed by a 50⌦ line driver, which is required to
drive the digitizer’s 50⌦ input impedance.

and it is stable for closed-loop gains > 5. The first stage has a fixed
gain |G1| = 8, and the second stage has a variable gain 8 6 |G2| 6 16

that can be easily adjusted via a potentiometer (allowing quick “on-
the-fly” optimization of the amplifier gain). The inverting and non-
inverting inputs of each OP37 see roughly balanced impedances, min-
imizing the non-ideal effect of input bias current [11, Sec. 4.4.2.E]. The
50⌦ line driver utilizes an AD811 current-feedback operational am-
plifier (also from Analog Devices) in a non-inverting configuration
with an amplitude gain of two. The output impedance of each au-
dio amplifier is Zout = 50⌦ such that the total gain when driving a
50⌦ load is 64 6 G 6 128. The measured bandwidth of each au-
dio amplifier is in excess of 2MHz. The input impedance of each
audio amplifier is Zin = 125⌦. Thus, there is a slight impedance mis-
match between the audio amplifiers and the 50⌦ demodulation com-
ponents; this impedance mismatch decreases the signal-transmission
efficiency, but more nefarious transmission-line effects are negligible
for the . 1MHz signals in the ⇠ 0.5m coaxial cables connecting the
demodulation electronics to the audio amplifiers. Impedance match-
ing could be improved, for example, by utilizing a non-inverting am-
plifier in the first stage (effectively infinite input impedance) coupled
with a parallel 50⌦ resistor to ground at the amplifier input. The
power-supply rails of each operational amplifier are bypassed with
1µF ceramic capacitors to prevent coupling high-frequency power-
supply noise into the amplifier [11, Sec. 4.2.7]. Feedback-loop parasitic
capacitances, which can reduce the high-frequency, closed-loop gain
and excite instability, are minimized via “deadbug” construction [12],
as shown in Figure 4.15. Although deadbug construction is ideal for
prototyping, any future increase to the number of interferometer chan-
nels would call for a printed-circuit-board (PCB) construction. The au-
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Figure 4.15: The “deadbug” construction of the audio amplifiers minimizes parasitic
capacitances that can produce instability. The operational amplifiers sit upside
down, resembling “dead bugs”, and are held in place by their solder connections to
other components in the circuit. An unetched printed circuit board serves as the
grounding plane. The amplifiers are packaged within a protective box (not pictured
here).

dio amplifiers share 15V power supplies with the PCI fiber-optic-link
receivers in the PCI rack of the DIII-D annex.

4.5.8 Anti-aliasing filters

Passive anti-aliasing filters (J3715-840K-50-720B, TTE Filters; Arcade,
NY, USA) sit immediately upstream of the digitizer. Each filter has
50⌦ input and output impedance, a DC to 840 kHz passband, and
3 dB frequency of just over 1MHz. These filters are reclaimed PCI
components, but future procurement of filters with a larger passband
(. 2MHz for typical fs = 4 MSPS sampling rates) would improve the
interferometer’s bandwidth.

4.6 data preparation

The interferometer-measured phase �m is computed from the in-phase
I and quadrature Q signals via the two-argument arctangent function
in (3.102). Before computing the measured phase �m, however, the
ellipticity of the I and Q signals is compensated, as described in Sec-
tion 4.6.1. Then, before computing the autospectral density, a zero-
delay, finite-impulse-response, high-pass filter is applied to the mea-
sured phase �m, as described in Section 4.6.2.
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Figure 4.16: An example of the ellipticity compensation applied to the I and Q

signals prior to computing the measured phase �m.

4.6.1 Ellipticity compensation of I & Q signals

Demodulator imperfections produce a relative error in the measured
fluctuating phase, as described in Section 3.5.4. Because the IF power
entering the demodulator is sufficiently small, demodulator nonlinear-
ities are negligible, and the I and Q signals possess negligible higher-
order harmonics (i.e. |I3| ⌧ I1, |Q3| ⌧ Q1, etc.). Thus, a Lissajous fig-
ure of Q from (3.84) vs. I from (3.83) is an ellipse. This ellipse is fitted
with a direct, efficient, least-squares algorithm [13, 14]. The resulting
fit is then used to compensate any DC offsets, amplitude imbalance,
and phase imbalance in the I and Q signals, minimizing the relative
error (3.87) in the measured fluctuating phase. Figure 4.16 displays an
example of raw and compensated I and Q signals.

4.6.2 High-pass filtering the measured phase �m

Vibrations contaminate the low-frequency components (f . 10 kHz) of
the measured phase �m. At the lowest frequencies, vibrational con-
tributions to �m are orders-of-magnitude larger (& 100 dB) than the
corresponding plasma contribution. Spectral estimates are often com-
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puted after time-history tapering with a Hanning window and with
frequency resolution ⇠ 1 kHz. While the Hanning window provides
at least 32 dB side-lobe suppression [15, Sec. 11.5.2.1], the vibrational
component to �m is so large that substantial spectral leakage can still
occur. To minimize spectral leakage, then, the measured phase is high-
pass filtered in software to remove the large vibrational contributions.
A non-causal, type-I, finite-impulse-response (FIR) filter has the desir-
able property that it produces zero delay for all frequencies [16][17,
Sec. 5.7.3]. Such a filter can be easily designed via the Kaiser window
method [17, Sec. 7.5.3][18]. Typically, a Kaiser-designed, high-pass fil-
ter with -120 dB ripple, 10 kHz cut-on frequency, and 5 kHz transition-
region width performs sufficiently; for the typical fs = 4 MSPS digi-
tization rate, such a filter has a length of 12489 points (corresponding
to ⇠ 3ms), and only points in the filtered phase that are free from the
filter’s boundary effects are included in subsequent analysis (that is,
⇠ 1.5ms at the beginning and the end of the record are lost to the
filter’s boundary effects).

4.7 noise in heterodyne interferometer

The sensitivity of the heterodyne interferometer is set by the noise in
the system. Initially, the heterodyne interferometer was plagued by
enormous noise that obscured all but the strongest coherent plasma
fluctuations. Through substantial effort, this noise was found to be
wholly attributable to LO phase noise and the finite coupling time
of the AOM. The theory of noise generation via this mechanism was
discussed in Section 3.3.2. Below, Section 4.7.1 describes a simple, all-
electrical means of characterizing LO phase noise that, in hindsight,
would have saved a great deal of time and heartache. This section
also discusses compensation of LO phase noise with a delay line, an
approach that was empirically found to suffer from electrical pickup
during DIII-D operations. Ultimately, the heterodyne-interferometer
noise issues were resolved by procuring the OCXO described in Sec-
tion 4.5.1 and eliminating the pickup-prone delay line. Having solved
the LO phase-noise issues, Section 4.7.2 proceeds with a spectral char-
acterization of the predicted and measured sources of noise in the
heterodyne interferometer and compares the resulting noise floor to
typical plasma-fluctuation spectra.
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Figure 4.17: LO self-demodulation schematic for investigation of LO phase noise. A
small fraction of the LO is coupled and delayed to produce a mock IF. The mock IF
is demodulated and digitized, and the autospectral density of the measured phase is
compared to the corresponding autospectral density with zero delay.

4.7.1 Quantification & delay-line compensation of LO phase noise

The finite coupling time of an AOM injects LO phase noise into the
measurements of a heterodyne interferometer. This noise mechanism
was thoroughly discussed in Section 3.3.2, and it can easily be the dom-
inant source of noise in a heterodyne interferometer, potentially pro-
ducing severe constraints on the system sensitivity. Thus, if LO phase
noise is not known a priori, it should be measured. Often, the standard
deviation of the oscillator frequency is specified (for example, the os-
cillator initially procured for this project was specified to be 0.01%
quartz-stabilized); however, without knowledge of the corresponding
spectrum, the specification of the standard deviation is insufficient to
characterize the resulting heterodyne-interferometer noise.

The injection of LO phase noise into the heterodyne interferome-
ter can be empirically characterized by demodulating a delayed copy
of the LO, as depicted schematically in Figure 4.17. A Mini-Circuits
(Brooklyn, NY, USA) ZFBDC20-61HP+ bi-directional coupler provides
adequate coupling for ⇠ 30MHz, moderate-power (. 25W) RF sig-
nals. The delay line should provide a delay comparable to the AOM
coupling time. To lowest order, the AOM coupling time can be esti-
mated as the time required for sound waves in the AOM Germanium
crystal (sound speed cs = 5400m · s−1) to propagate from the AOM
RF port (assumed to be adjacent to the corresponding piezo-actuator)
to the AOM optical axis; for the Gooch & Housego AOM discussed
in Section 4.3.4, this distance is d ⇡ 1.5 cm, corresponding to a cou-
pling time ⌧ ⇡ 2.8µs and an RG-58 coaxial-cable (index of refraction
⇠ 3/2) delay line of length L ⇡ 560m. The mock IF signal may need
to be amplified to combat attenuation along the delay line, but am-
plifier noise should be minimized to prevent corrupting the phase-
noise measurement; Mini-Circuits ZFL-500B amplifiers were found to
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Figure 4.18: Self-demodulation of a 0.1% quartz-stabilized LO gauges the injection of
LO phase noise into a heterodyne interferometer with various AOM coupling times
⌧ (the 4-digit numbers in parentheses indicate the corresponding diagnostic test
shot). If the injection of LO phase noise were negligible, the autospectral density
G�,�(f) would be independent of the delay ⌧; clearly, the injection of phase noise
with this LO is significant for finite ⌧. The coupling time (4.25) of the AOM used in
this work is ⌧ ⇡ 2.5µs.

provide acceptable low-noise amplification. Additionally, because the
bulk phase difference between the mock IF and the LO is fixed by the
delay-line length, the demodulated I and Q signals do not trace out a
full Lissajous ellipse; for this reason, the ellipticity compensation dis-
cussed in Section 4.6.1 should not be performed prior to computing
the measured phase �m. Finally, the autospectral density of the mea-
sured phase should be estimated. If this autospectral density exceeds
the corresponding autospectral density with zero delay, the injection
of LO phase noise into the heterodyne interferometer will be signifi-
cant. Results from such an LO self-demodulation test with the 0.01%
quartz-stabilized oscillator initially procured for this project are shown
in Figure 4.18; clearly, the phase noise of this oscillator is unacceptably
large.

The injection of LO phase noise into the heterodyne interferome-
ter can be minimized by delaying the LO by the AOM coupling time
such that the LO and IF are equally delayed (i.e. the time delay be-
tween the LO and IF vanishes; effectively, ⌧! 0). The rough estimate
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of the AOM coupling time in the previous paragraph can be refined
by noting that the sine-squared weighting of the autospectral density
corresponding to the injected LO phase noise (3.106) exhibits “ring-
ing”, with nulls at frequencies that are integer multiples of 1/⌧. Such
nulls were observed in the interferometer-measured spectrum at in-
teger multiples of f ⇡ 400 kHz, implying an AOM coupling time of

⌧ ⇡ 2.5µs, (4.25)

in reasonable agreement with the rough estimate from the previous
paragraph. Delaying the LO by the AOM coupling time (4.25) can be
easily accomplished with an L ⇡ 500m RG-58 coaxial-cable delay line.
Such a delay line was constructed by stringing together eight of the
pit-to-annex coaxial cables discussed in Section 4.5.4 and amplifying
the signal to appropriately compensate for attenuation. As expected,
the delay line eliminated the injection of LO phase noise into the het-
erodyne interferometer, and a whole host of coherent and broadband
plasma fluctuations were subsequently measured with the system.

However, it was suspected that the use of a 500m delay line in-
creased the system’s susceptibility to electrical pickup, particularly
during DIII-D operations. To quantify the electrical pickup attributable
to the delay line, the LO self-demodulation tests schematically de-
picted in Figure 4.17 were repeated with equal (but extended) LO and
IF cable lengths during DIII-D operations. Because a non-zero time de-
lay between the LO and IF injects LO phase noise that greatly exceeds
the delay-line electrical pickup, the LO and IF cable lengths were ex-
tended by equal amounts, with the total additional cable length acting
as a proxy for the delay-line cable length L. The results of this test
are shown in Figure 4.19. Clearly, even a 250m delay line suffers from
electrical pickup during DIII-D operations; the broadband electrical
pickup between ⇠ 100 kHz and ⇠ 400 kHz is particularly constraining,
as many plasma fluctuations of interest occupy this frequency range.

The above noise issues were resolved by procuring the OCXO de-
scribed in Section 4.5.1. The OCXO phase noise L�!0

(f) is sufficiently
small that the LO phase noise injected into the heterodyne interfer-
ometer (3.106) is negligible for any AOM coupling time ⌧, allowing
removal of the pickup-prone delay line.
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Figure 4.19: Delay-line electrical pickup during DIII-D operations. Delay-line length
L is indicated (the 6-digit numbers in parentheses indicate the corresponding DIII-D
shot). Clearly, even a 250m delay line suffers from electrical pickup during DIII-D
operations. With the 2.5µs AOM coupling time (4.25), compensating for poor LO
stability requires a 500m delay line. The delay line can be eliminated (L = 0) when a
more stable LO is used.

4.7.2 Spectral characterization of heterodyne-interferometer noise

Having resolved the debilitating noise issues described in Section 4.7.1,
the resulting noise floor of the heterodyne interferometer should be
quantified. By comparing noise measurements to theoretical predic-
tions, the dominant source of noise can be identified and the potential
for future sensitivity improvements can be evaluated. Figure 4.20 spec-
trally characterizes both predicted and measured noise sources and
compares them to typical plasma-fluctuation spectra.

Noise predictions establish a baseline for the expected performance
of the heterodyne interferometer. Recall that Chapter 3 extensively dis-
cusses heterodyne-interferometer noise sources and their correspond-
ing autospectral densities, with a concise summary provided in Sec-
tion 3.7.4. The dashed, annotated lines in Figure 4.20 indicate the
predicted (P) autospectral densities from these noise sources in the
heterodyne-interferometer implementation described in this chapter.
Clearly, the demodulated detector noise (3.107) is predicted to be the
dominant source of noise. Note that the demodulated detector noise
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Figure 4.20: Spectral characterization of heterodyne-interferometer noise and
comparison to typical plasma-fluctuation spectra. Dashed lines indicate predicted
(P) quantities, while colored traces correspond to measured quantities with shot
numbers in parentheses (4-digit numbers indicate a diagnostic test shot, and 6-digit
numbers indicate a DIII-D shot). Importantly, the heterodyne-interferometer noise
floor (i.e. the “full system” trace) sits at least an order of magnitude below typical
plasma fluctuations. Vibrations dominate the heterodyne-interferometer spectrum
for f . 10 kHz.

depends on the probe-beam and reference-beam optical powers im-
pinging on the detector element, PP and PR, respectively. Referencing
(4.15), the probe-beam optical power impinging on the square detector
element of the heterodyne interferometer is

PP = PP


erf
✓

sxp
2wP

◆�2
⇡ 25mW, (4.26)

where sx = 1mm from (4.7), wP = 2.7mm from (4.19), and PP =
315mW from (4.18) and the design point indicated in Figure 4.9. Simi-
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larly the reference-beam optical power impinging on the square detec-
tor element of the heterodyne interferometer is

PR = PR


erf
✓

sxp
2wR

◆�2
⇡ 10mW, (4.27)

where sx = 1mm from (4.7), wR = 4.3mm from (4.21), and PR =
315mW from (4.20) and the design point indicated in Figure 4.9. The
demodulated detector noise also depends on the detector-element area
A = s2x = 1mm2 and the detector-module specific detectivity D⇤ from
(4.24). The predicted quantization noise (3.109) corresponds to a bit
depth Nb = 14 and a sample rate fs = 4MSPS, as described in Sec-
tion 4.2.5, and an assumed use of the digitizer’s full dynamic range
(⌘dyn = 1). The OCXO phase noise L�!0

(f) from (4.23) is injected into
the interferometer by the ⌧ = 2.5µs AOM coupling time from (4.25);
because the OCXO has very low phase noise, it makes a negligible con-
tribution to the heterodyne-interferometer noise. The demodulated
optical shot noise (3.108) is easily evaluated using the values of PP
from (4.26) and PR from (4.27), and it also makes a negligible contribu-
tion to the heterodyne-interferometer noise. Unfortunately, the laser
phase noise L!0

(f) is not known, so the injection of laser phase noise
(3.105) into the heterodyne interferometer cannot be predicted (recall
that the probe beam and the reference beam do not have matched op-
tical path lengths); thus, quantifying the effect of laser phase noise
requires empirical investigation.

While the noise predictions establish a baseline, the measured noise
floor actually sets the sensitivity of the heterodyne interferometer. Sev-
eral of the colored traces in Figure 4.20 display the noise contributions
from various system components. The system quantization noise was
measured with the I and Q channels of the digitizer open, and equiv-
alent results were obtained when closing both channels with resistors
matching the 50⌦ input impedance of each digitizer channel. The nor-
malization of the quantization noise assumes full use of the digitizer’s
dynamic range (⌘dyn = 1); utilizing less of the dynamic range increases
the quantization noise (e.g. ⌘dyn ⇠ 0.8 increases the quantization noise
by ⇠ 50%). Interestingly, the measured quantization noise exceeds
the predicted quantization noise by more than an order of magnitude.
While it is not uncommon for aperture error, jitter, and nonlinearities
to reduce the effective bit depth by one or two bits (increasing the
quantization noise by a factor of two to four) [15, Sec. 10.2.4], this dis-
crepancy between the measured and predicted quantization noises is
quite a bit larger. The origin of this anomalously high quantization
noise is not understood, and it was not investigated any further in
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this work. The system electrical noise was measured during an LO
self-demodulation test (shown schematically in Figure 4.17) with the
OCXO, a ⌧ = 2.5µs delay between the LO and mock IF in accordance
with the AOM coupling time (4.25), the appropriate LO and IF pow-
ers, and all the remaining electronics (filters, demodulator, audio am-
plifiers, etc.) configured as they are during operations. The electronics
produce an approximately threefold increase in the system noise rela-
tive to the quantization noise. Finally, the full-system noise was mea-
sured by interfering the probe beam and the reference beam on the de-
tector in the absence of plasma. Relative to the all-electrical noise mea-
surement, the full-system test additionally includes the effects of laser
phase noise, detector noise, and vibrations. Clearly, for frequencies
f & 10 kHz, the full-system, broadband noise is only marginally larger
than the electrical noise (the coherent peaks at f . 30 kHz may corre-
spond to vibrations or laser phase noise; however, without either im-
plementing two-color detection to perform vibration subtraction [19],
or matching the probe-beam and reference-beam optical path lengths
to remove the injection of laser phase noise, it is impossible to deter-
mine the origin of these low-frequency coherent peaks). Note that the
full-system broadband noise sets the heterodyne-interferometer noise
floor at

min
⇥
G�,�(f)

⇤
⇡ 7⇥ 10-11 rad2/kHz, (4.28)

corresponding to a sensitivity to line-integrated electron-density fluc-
tuations of 3⇥ 1014 m-2/

p
kHz. For context, autospectral densities

for typical plasma-density fluctuations in L-mode and H-mode are
also shown in Figure 4.20. Importantly, the fluctuations are one to two
orders of magnitude larger than the noise floor across a large fraction
of the heterodyne interferometer’s temporal bandwidth.

4.8 calibration of combined pci-interferometer

It is always desirable to perform an end-to-end calibration of a sys-
tem to ensure the system is operating as desired. The combined PCI-
interferometer can be end-to-end calibrated by injecting sound waves
into the shared probe beam to produce well-known refractive-index
fluctuations that are detectable by both systems. Below, Section 4.8.1
describes the sound-wave verification of the heterodyne interferom-
eter’s amplitude and wavenumber response. Section 4.8.2 then dis-
cusses the cross-calibration of the PCI against the absolute phase mea-
surements of the heterodyne interferometer. The robust response of
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the combined system across the surveyed wavenumber range demon-
strates the complementary nature of the interferometer and PCI mea-
surements and confirms the ability of the combined system to simul-
taneously monitor low-k and high-k instabilities.

4.8.1 Verification of heterodyne-interferometer response

As discussed in Section 2.4.2, an ideal heterodyne interferometer pos-
sesses a flat wavenumber response and measures absolute phase fluc-
tuations, independent of any calibration factors. However, as dis-
cussed in Section 3.1.4, detection is always effected via finite-size de-
tector elements, which effectively low-pass filter the spatial content
of the signal; in particular, a square detector element weights the
wavenumber transfer function of an ideal heterodyne-interferometer
with a normalized sinc function, as shown in (3.99). The first zero
of this normalized-sinc weighting sets the nominal high-k cutoff of
the system, and the design point for the heterodyne interferometer
described in this work is 5 cm−1, as specified in (4.6). Of course, in-
advertent clipping of the probe beam would alter the wavenumber
response. Further, as demonstrated in Section 3.5.4, demodulator im-
perfections produce relative errors in the measured phase fluctuations.
For these reasons, it is desirable to verify the amplitude and wavenum-
ber response of the heterodyne interferometer.

Sound waves are ideal tools for verifying the wavenumber response
of an interferometer. Sensitive to the index of refraction N, interferom-
eters can detect the fluctuations in N corresponding to sound-wave
pressure perturbations. Further, the well-known sound-wave disper-
sion relation allows one to infer the sound-wave wavenumber k from
the measured sound-wave frequency f. Often, the sound-wave fre-
quency is repeatedly swept in time, enabling verification of the inter-
ferometer response throughout its full wavenumber domain within
a single diagnostic test shot. However, quantitatively comparing the
predicted and the measured interferometer responses requires an ac-
curate description of the sound-wave pressure fluctuations. The sound
waves used throughout this work are characterized in detail with an
absolutely calibrated microphone in Appendix E.

The response of the heterodyne interferometer to the sound waves
can be predicted from the measurements of the sound-wave pressure
perturbations. In particular, (E.11) reveals that the phase shift e�CO2
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Figure 4.21: Sound-wave verification of heterodyne-interferometer response. In
diagnostic test shot 1152, a speaker was centered beneath the interferometer probe
beam, and swept-frequency sound waves were driven orthogonally through the
beam. The interferometer-measured variance of the resulting phase fluctuations is
indicated by the solid black trace. The shaded blue region indicates the predicted
variance (4.31), where var(e�CO2

) is computed from Appendix E’s measurements
with a calibrated microphone of the sound waves’ absolute pressure perturbations.
Note that the variance predicted here differs from that in Figure E.6 due to the
inclusion of the interferometer’s finite sampling-volume effects and noise. Further,
the apparent increase in noise at low-k actually corresponds to low-f vibrational
noise; that is, low-k plasma fluctuations at higher frequencies will not be plagued by
this noise.

imparted to a 10.6µm CO2 probe beam by a sound-wave pressure
perturbation ep is

e�CO2
[rad] = (1.1⇥ 10-5 cm−1)

Z
(ep [Pa])dl, (4.29)

where the differential path length dl must have units of centimeters.
However, to make a true “apples-to-apples” comparison with the inter-
ferometer measurements, finite sampling-volume effects and the sys-
tem noise should be included such that the predicted phase fluctuation
at each wavenumber k becomes

e�(k) = Tfsv(k) · e�CO2
(k) + e�noise(f), (4.30)
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where Tfsv(k) is the finite sampling-volume transfer function (3.99)
with kint

fsv from (4.6), and e�noise(f) is the system noise. (Here, the noise
is written as an explicit function of frequency f to emphasize that the
noise is frequency dependent and not wavenumber dependent; how-
ever, because the sound-wave wavenumber is inferred from the sound-
wave frequency, this frequency-dependent noise has the appearance of a
wavenumber dependence in the ensuing figures). Because the sound-
wave phase fluctuations and the system noise are uncorrelated, the
predicted variance of the sound-wave phase fluctuations is simply

var
h
e�(k)

i
= T2

fsv(k) · var
h
e�CO2

(k)
i
+ var

h
e�noise(f)

i
. (4.31)

Figure 4.21 compares the predicted variance (4.31) to the interferometer-
measured variance, indicating very good agreement.

4.8.2 Cross-calibration of PCI

As discussed in Section 2.5.6, PCI does not make an absolute measure-
ment of phase fluctuations. Instead, quantifying the absolute mag-
nitude of the PCI-measured phase fluctuations requires a calibration
factor, �pci, which is a function of the probe-beam power, the align-
ment quality at the phase plate, the detector responsivity, and the
detector-to-digitizer electrical throughput. Of course, this calibration
factor can be estimated from specified or measured system parameters.
However, an independent and quite possibly more accurate approach
is to cross-calibrate the PCI measurements against the absolute phase
measurements of the heterodyne interferometer.

As the current heterodyne-interferometer implementation only uti-
lizes a single detector element, cross-calibrating the PCI requires a
sound-wave test shot, such as the test shot used in Section 4.8.1 to ver-
ify the heterodyne-interferometer response. The sound waves should
be moderate-k, well away from the cutoffs of both the PCI and the
heterodyne interferometer, and the sound-wave signal measured by
both systems should sit robustly above the corresponding noise floor;
for the work described here, this corresponds to sound waves with
wavenumbers between 2 cm−1 and 3.5 cm−1. Because the heterodyne
interferometer and the PCI share the probe beam, these moderate-k
sound waves should produce identical signals on both systems, less
any finite sampling-volume effects. Equating the measured sound-
wave variance from both systems and appropriately accounting for
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finite sampling-volume effects allows determination of the PCI cali-
bration constant as

�pci =
Thet

fsv (k)

T
pci
fsv (k)

vuuut
var

h
e�het(k)

i

var
h
eypci(k)

i = 1.3⇥ 10-6 rad/bit, (4.32)

where Thet
fsv (k) is the heterodyne-interferometer finite sampling-volume

transfer function (3.99) with kint
fsv from (4.6), T

pci
fsv (k) is the PCI finite

sampling-volume transfer function (3.99) with k
pci
fsv from (4.4), and

eypci(k) is the raw PCI signal (in bits); the numerical value corresponds
to evaluation of this expression for the DIII-D PCI system, and this
calibration factor is used throughout the remainder of this work (i.e.
e�pci(t) = �pci · eypci(t); additionally, note that 4 is idiosyncratically the
least-significant bit of the DIII-D PCI digitizer but that the numeri-
cal value in (4.32) corresponds to a unitary bit). Figure 4.22 displays
the cross-calibration, indicating very good agreement for sound-wave
wavenumbers between 2 cm−1 and 3.5 cm−1.

Upgrading the heterodyne-interferometer detector from a single ele-
ment to a multi-element array would allow comparable cross-calibration
of the PCI with plasma fluctuations rather than sound waves. To
see this, note that the cross-calibration requires accounting for the
wavenumber transfer functions of both the PCI and the heterodyne in-
terferometer. Sound waves are currently used for the cross-calibration
because their wavenumber can be unambiguously inferred from their
measured frequency via the sound-wave dispersion relation. How-
ever, a detector array can measure the wavenumber directly, allow-
ing cross-calibration with arbitrary (albeit moderate-k) plasma fluctu-
ations. Such a capability would allow robust and accurate evaluation
of the PCI calibration on a shot-to-shot and an intra-shot basis.
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Figure 4.22: The PCI can be very accurately calibrated against the absolute
measurements of the heterodyne interferometer. The results are demonstrated here
for diagnostic test shot 1152. The interferometer signal corresponds to the solid
black trace in Figure 4.21 after compensating for the attenuation of the high-k signal
by finite sampling-volume effects; the corresponding dash-dot line for k > 3.5 cm−1

is dominated by noise, so the finite sampling-volume compensation fails to produce
accurate values of the sound-wave variance in this region. The dash-dot line for
k 6 2 cm−1 corresponds to the cutoff PCI signal (note that the signal enters cutoff
somewhat above the nominal low-k cutoff of 1.5 cm−1 from (4.2)). The robust
response of the combined system across the surveyed wavenumber range
demonstrates the complementary nature of the interferometer and PCI
measurements and confirms the ability of the combined system to simultaneously
monitor low-k and high-k instabilities. Also shown are the system noise floors; the
enhanced signal-to-noise ratio of the PCI relative to the heterodyne interferometer is
in order-of-magnitude agreement with the transfer-function predictions in
Figure 2.6.
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5
M U LT I S C A L E T U R B U L E N C E M E A S U R E M E N T S

The development of a first-principles understanding of turbulent trans-
port in a tokamak is a long-standing goal of the fusion community.
Such a model would allow accurate design and optimization of a toka-
mak. Before such a model is accepted, however, it must be validated
against experimental measurements. Ideally, this validation should
be multi-tiered, with the model accurately and robustly reproducing
experimental observations at all scales, from macroscopic parameters
such as the turbulent heat flux to the details of the turbulent spectrum
(e.g. power spectral densities, cross phases, nonlinear couplings, etc.).

Along these lines, this chapter presents measurements of electron-
density turbulence made over a wide spatiotemporal bandwidth dur-
ing a recent DIII-D experiment. Section 5.1 begins with a brief overview
of the drift-wave turbulence often observed in tokamak plasmas, em-
phasizing recent results from realistic multiscale simulations [1, 2, 3,
4, 5]. Section 5.2 then describes the recent DIII-D experiment, which
was designed to probe the multiscale nature of plasma turbulence.
As such, this experiment presents an ideal opportunity for multiscale
turbulence investigations with the combined PCI-interferometer. Next,
Section 5.3 details the measurements from the combined PCI-interferometer.
Numerous turbulent branches are observed. In particular, the interfer-
ometer measures a low-k electromagnetic mode driven unstable by col-
lisionality, properties consistent with the micro-tearing mode (MTM),
and the PCI measures a wavenumber spectrum that exhibits distinct
flattening when increasing the electron-scale turbulent drive relative
to the ion-scale turbulent drive, reminiscent of results from realistic
multiscale gyrokinetic simulations [3]. Finally, to aid the interpreta-
tion of these measurements, linear-stability analysis and quasilinear-
transport modeling are performed with the TGLF code in Section 5.4,
and qualitative agreement with the PCI-measured wavenumber spec-
trum is obtained.

5.1 overview of drift-wave turbulence

The radial transport of particles, heat, and momentum in a tokamak
plasma is often larger than that predicted by collisional (i.e. neoclassi-
cal) theory. There is strong theoretical and experimental evidence that

159
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this “anomalous” transport results from drift-wave turbulence driven
by the free energy in the plasma gradients [6, 7]. This turbulence can
be characterized by its driving gradients, its spatiotemporal character-
istics, the role of trapped particles, and whether or not it is electrostatic
(as opposed to electromagnetic).

The plasma gradients are often quantified in terms of scale lengths.
The scale length of quantity x is defined as Lx = x/|rx| = |r ln x|-1.
Smaller values of Lx indicate more rapid spatial variation (i.e. steeper
gradient) of quantity x. Thus, the free energy in profile x increases
with the inverse scale length 1/Lx. For theoretical analysis, it is con-
ventional to normalize Lx to a relevant length in the system under
study; below, scale lengths are normalized to the tokamak minor ra-
dius a, which is appropriate for studies of radial transport. Thus,
the drive for instability is quantified by the normalized inverse scale
length a/Lx. The ratio of density scale length to temperature scale
length ⌘j = Lnj

/LTj
for species j is an additional dimensionless pa-

rameter that is often used for instability characterization.
Due to the relatively large size of its eddies, ion-scale (k✓⇢s < 1)

turbulence is often considered to be the most detrimental to confine-
ment. Here, k✓ is a typical poloidal wavenumber of the turbulent
mode, ⇢s = cs/⌦i is the ion gyroradius evaluated at the ion sound
speed, cs = (Te/mi)1/2 is the ion sound speed, and⌦i = eB/mi is the
ion angular cyclotron frequency. The temporal ordering of ion-scale
turbulence is usually expressed as k||vti ⌧ ! ⌧ k||vte [8, Sec. 8.3],
where ! is the angular frequency of the instability, k|| is the instabil-
ity wavenumber parallel to the magnetic field, and vtj is the thermal
speed of species j; thus, the electrons respond rapidly (approximately
adiabatically) to the electrostatic-potential fluctuations of the instabil-
ity. Typically, trapped-ion dynamics make insignificant contributions
to ion-scale drift-wave turbulence in tokamak plasmas [6, Sec. IV.E];
passing-particle dynamics, however, are significant and produce the
⌘i mode, which is driven linearly unstable above a critical value of
⌘i (⌘crit

i ⇠ 1) [8, Sec. 8.3] and peaks about k✓⇢s ⇠ 0.3 [7, Sec. 1.2.1].
For sufficiently flat density profiles (a/Lni

. 1, which is valid across
most of the radial domain for the plasmas considered in this work),
the toroidal ⌘i mode has a critical value ⌘crit

i = ⌘crit
i (LTi

), independent
of Lni

; for this reason, the ⌘i mode is also often referred to as the ion
temperature gradient (ITG) mode [8, Sec.8.3], driven more unstable by
larger values of a/LTi

.
Despite having much smaller eddy size than its ion-scale counter-

parts, electron-scale (k✓⇢s > 1) turbulence may still make large contri-
butions to plasma transport. Of particular importance is the electron
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temperature gradient (ETG) mode. The physics of the ETG is com-
parable to that of the ITG, with the roles of the ions and electrons
reversed. (Here, the ion response is approximately adiabatic because
the electrostatic potential fluctuations occur on spatial scales much
smaller than the ion gyroradius [9, Sec. 2.3.4.2]). As the name sug-
gests, the ETG is driven more unstable by larger values of a/LTe

[8,
Sec. 8.3]. Relative to the ITG, the ETG spatial scales in a Te ⇠ Ti deu-
terium plasma are reduced by the square root of the electron-to-ion
mass ratio (me/mi)1/2 ⇡ 60 such that the ETG peaks at k✓⇢s ⇠ 20.
While electron-scale simulations have long shown that the ETG may
be capable of forming radially elongated “streamers” [10] capable of
driving experimentally relevant electron heat transport [11], it was un-
known whether or not such streamers would survive in the presence
of ion-scale turbulence, as self-consistently and simultaneously simu-
lating both ion- and electron-scale turbulence with realistic mass ratios
was computationally intractable until very recently.

By exploiting the latest advances in high-performance computing,
Howard et al. have performed multiscale gyrokinetic simulations with
realistic mass ratios for both L-mode [1, 2, 3] and H-mode plasmas [4,
5]. Indeed, under certain realistic conditions, ETG streamers are pre-
dicted to coexist with the ITG and to drive empirically relevant levels
of electron heat flux [1]. Local and non-local energy cascades between
the ion and electron scales are also predicted [2], indicating the im-
portance of cross-scale coupling. This cross-scale coupling becomes
stronger as the ETG drive a/LTe

increases relative to the ITG drive
a/LTi

[3]. Further, flattening of the wavenumber spectrum is predicted
to be a tell-tale signature of this enhanced cross-scale coupling [3].

Seeking empirical validation of these predictions, Howard et al. re-
cently performed an experiment at DIII-D to alter the local a/LTe

and a/LTi
. The reference discharge for this experiment, DIII-D shot

153523, was selected because multiscale gyrokinetic simulations indi-
cate that its turbulent transport is intrinsically multiscale in nature [5].
The experimental conditions are discussed in Section 5.2, and the
combined PCI-interferometer measurements of the resulting electron-
density fluctuations are presented in Section 5.3. To aid the interpre-
tation of these measurements, linear-stability analysis and quasilinear-
transport modeling is performed in Section 5.4. While the plasmas
simulated in the above multiscale work were ITG-ETG dominant, Sec-
tions 5.3 and 5.4 indicate the presence of additional modes; the basic
properties of candidate modes consistent with these observations are
briefly reviewed below.



162 multiscale turbulence measurements

The linear-stability analysis performed in Section 5.4 indicates the
presence of a mid-k (0.5 . k✓⇢s . 5) electron mode. The mode is
destabilized with increasing a/LTe

(and decreasing a/LTi
). It is con-

ceivable that this mode is the trapped electron mode (TEM). In con-
trast to the passing-particle dynamics of the ITG and ETG, trapped-
electron dynamics destabilize the TEM [8, Sec. 8.4]. Trapped particles
effectively average out their parallel velocities over a bounce period,
but they also spend most of their time in regions of bad magnetic cur-
vature, producing stability characteristics not unlike those seen in a
magnetic mirror [8, Sec. 8.4]. Of course, trapped-particle dynamics
will only be important if trapped particles are able to execute one or
more bounce orbits before being detrapped by collisions. Thus, the
TEM requires that most of the trapped electrons are in the banana
collisionality regime (⌫⇤e < 1) [9, Sec. 2.3.4.3]. The spatiotemporal
aspects of the TEM are characterized by k✓⇢s ⇠ 1 and ! ⇠ !⇤e [9,
Sec. 2.3.1], where !⇤e = -k✓Te(dne/dr)/(eBne) is the electron dia-
magnetic frequency [8, 8.2] and the other parameters were introduced
in the above ITG discussion. (Note that !⇤e is derived from consid-
erations of the adiabatic electron response along the magnetic field,
which corresponds to the parallel electron temperature Te,||; however,
in an isotropic temperature distribution, Te,|| = Te,? = Te). Both a/LTe

and a/Lne provide free energy to the TEM [9, Sec. 2.3.1].
Finally, Section 5.3 identifies a low-k (kR < 1.5 cm−1) electromag-

netic mode driven unstable by collisionality. These properties are con-
sistent with the micro-tearing mode (MTM) [8, Sec. 8.5], which was
predicted to be marginally unstable for ky⇢s ⇠ 0.2 in this experiment’s
reference discharge [5]. While the ITG, ETG, and TEM are electrostatic,
the MTM is electromagnetic and can produce small-scale magnetic is-
lands. Relative to conventional, macroscopic tearing modes, the MTM
has short wavelength and high poloidal mode number m [8, Sec. 8.5].
Tearing-mode linear stability is often quantified by � 0, a parameter
derived from resistive MHD [8, Sec. 7.3]; for the large poloidal mode
number of the MTM, the resulting � 0 predicts stability. However, re-
sistive MHD is an inadequate model for the MTM, and both kinetic
and nonlinear effects can compete with � 0 to destabilize the MTM
in the presence of finite ⌘e (i.e. finite electron temperature gradient).
Importantly, via kinetic effects, the MTM is unstable at “moderate”
⌫ei/!⇤e, where ⌫ei is the electron-ion collision frequency and !⇤e is
the electron diamagnetic frequency [8, Sec. 8.5].
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5.2 experimental conditions

The experiment was run in H-mode with the ITER-similar shape (i.e.
aspect ratio, elongation, and triangularity all closely matched to those
of the ITER-baseline scenario [8, Sec. 13.5 & 13.6]). The on-axis toroidal
field BT = -1.7 T and plasma current Ip = 1.3MA produced q95 =
3.15, where q95 is the average value of the safety factor q [8, Sec. 3.4]
over the surface that encloses 95% of the poloidal flux within the last-
closed flux surface. Neutral beam injection (NBI) [8, Sec. 5.3-5.5] was
performed with feedback to maintain �N = 1.9, where �N is the nor-
malized plasma pressure [8, Sec. 6.18]. In order to suppress core MHD,
an average NBI torque of approximately 1.5N ·m was injected into the
plasma; note that this is approximately four times larger than the pro-
jected ITER-equivalent torque [12]. In order to alter the local electron-
scale and ion-scale drives, the electron cyclotron resonance heating
(ECH) [8, Sec. 5.10] location was scanned between ⇢ = 0.5 and ⇢ = 0.8,
where ⇢ is the square root of the normalized toroidal flux (which
scales as r/a, with r being the minor-radial coordinate and a being
the minor radius of the plasma). Intra-shot scans of the ECH location
were plagued with core MHD, so only shot-to-shot, MHD-free scans of
the ECH location are considered here. The line-averaged density was
ne = 5.2⇥ 1019m−3. Impurities were removed from the plasma by
both large and small edge localized modes (ELMs) [8, Sec. 7.17]. The
time histories of several actuators and plasma parameters are shown in
Figure 5.1. Note that multiscale gyrokinetic simulations of this exper-
iment’s reference discharge, DIII-D shot 153523 with ECH at ⇢ = 0.5,
indicate that the turbulent transport is intrinsically multiscale in na-
ture [5].

Equilibrium profiles were obtained by averaging over 200ms, as in-
dicated by the shaded regions in Figure 5.1. Magnetic equilibria were
reconstructed with the EFIT code [13] and were constrained to match
the total plasma pressure and motional Stark effect (MSE) measure-
ments of the local magnetic pitch angle. Electron densities and tem-
peratures were measured via Thomson scattering, while ion densities
and temperatures were inferred from charge exchange recombination
(CER) measurements of C6+, the dominant impurity in DIII-D. The ra-
dial electric field was computed by invoking force balance on C6+. To
minimize the impact of ELMs on the profile fits, only measurements
falling within the last 50% – 99% of each inter-ELM window were
included in the fitting. The fitted profiles and their corresponding
gradients or normalized inverse scale lengths are shown in Figure 5.2.
While it may seem counterintuitive that the central electron tempera-
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Figure 5.1: Time histories of various actuators and plasma parameters: (a) electron
cyclotron resonance heating (ECH) power PECH, (b) ECH location ⇢ECH, (c) neutral
beam injected (NBI) power Pinj, (d) NBI torque Tinj, (e) line-averaged density ne, (f)
normalized plasma pressure �N, (g) confinement quality H98,y2, and (h) divertor
D↵ light, indicating the presence of large and small edge localized modes (ELMs).

ture Te(0) increases when moving ECH from ⇢ = 0.5 to ⇢ = 0.8, main-
taining constant �N requires increased NBI heating (see Figure 5.1(c)),
which enhances the NBI electron heating density qe,NBI across the full
plasma profile, as shown in Figure 5.3(b). The 1� uncertainties in the
profile fits, indicated by the shaded bands in Figure 5.2, were quan-
tified by performing separate fits to 100 distinct data sets generated
via Monte Carlo variation of the measurements about their uncertain-
ties. Clearly, moving ECH from ⇢ = 0.5 to ⇢ = 0.8 produces large
changes in the electron-scale and ion-scale drives, a/LTe

and a/LTi
,

respectively, in the region of the plasma accessible to the PCI probe
beam (R = 1.98m). Using these profiles, power-balance analysis was
performed with the ONETWO code [14], with NUBEAM [15] calcu-
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Figure 5.2: Profiles, normalized inverse scale lengths, and E⇥B shearing rate: (a)
electron density ne, (b) electron temperature Te, (c) deuterium temperature Ti, (d)
radial electric field Er along the outboard midplane, (e) normalized inverse ne scale
length a/Lne , (f) normalized inverse Te scale length a/LTe

, (g) normalized inverse
Ti scale length a/LTi

, (h) E⇥B shearing rate �E. The shaded bands indicate the 1�

uncertainties in the profiles, as determined by performing separate fits to 100

distinct data sets generated via Monte Carlo variation of the measurements about
their uncertainties. Representative measurements and their uncertainties are
indicated for a 10ms window from a single shot. The relatively large uncertainty on
�E is dominated by uncertainty in the curvature of the Ti profile.

lations for NBI heating and torque and TORAY [16] calculations for
ECH; the resulting loop voltages, stored energies, and neutron rates
match their measured values to within ±5%.

5.3 combined pci-interferometer measurements

The experiment described in Section 5.2 presents an ideal opportu-
nity for multiscale turbulence investigations with the combined PCI-
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Figure 5.3: (a) ECH electron heating density qe,ECH and (b) NBI electron heating
density qe,NBI. When moving ECH from ⇢ = 0.5 to ⇢ = 0.8, maintaining constant �N
requires increased NBI heating (see Figure 5.1(c)), which enhances the NBI electron
heating density qe,NBI across the full plasma profile. The radiated power and ohmic
heating negligibly change between the two discharges.

interferometer. Below, Section 5.3.1 discusses the automated filter-
ing of transient bursts attributable to edge localized modes (ELMs)
that would otherwise bias spectral estimates of the background tur-
bulence. Section 5.3.2 then compares the interferometer and PCI fre-
quency spectra for ⇢ECH = 0.5 and ⇢ECH = 0.8; interestingly, the inter-
ferometer identifies a novel turbulent branch with properties consis-
tent with a micro-tearing mode (MTM). Next, Section 5.3.3 presents
the PCI frequency-wavenumber spectra, which reveal the presence of
several distinct turbulent branches. Finally, Section 5.3.4 demonstrates
that the PCI wavenumber spectrum distinctly flattens with ⇢ECH = 0.5
relative to that with ⇢ECH = 0.8, which is reminiscent of results from
realistic multiscale gyrokinetic simulations.

5.3.1 ELM filtering

Edge localized modes (ELMs) expel impurities from the plasma but
will also present severe challenges to plasma-facing components in fu-
ture reactors [8, Sec. 7.17]. Because of their virulence and their bursty
nature, ELMs produce strong spiking in the interferometer and PCI
measurements, whitening the measured spectra [Sec. 10.3.2.3][17]. Ad-
ditionally, the temperature and density profiles relax during an ELM,
altering the turbulent drives in the plasma edge. In order to accurately
estimate the spectrum of the background turbulence, then, the ELM
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Figure 5.4: Edge localized modes (ELMs) must be removed from the PCI and
interferometer measurements prior to spectral analysis of the background
turbulence. (Upper panel): The interferometer-measured fluctuating phase e�, with
large, ELM-induced spiking. (Lower panel): Divertor D↵ emission, indicating the
presence of large Type I ELMs as well as smaller ELMs. Windows excluded from
spectral analysis are shown in gray. The DIII-D shot number is shown in the upper
right of the lower panel.

contributions to the interferometer and PCI measurements must be
removed.

In this work, ELMs are simply and automatically detected using
measurements from the interferometer. After the high-pass filtering
described in Section 4.6.2, the interferometer-measured fluctuating phase
e� is a zero-mean, random process, as shown in the upper panel of Fig-
ure 5.4. Large, intermittent spikes pepper e�(t) during ELMy H-mode,
and the lower panel of Figure 5.4 indicates that these spikes are well
correlated with ELM-induced D↵ emission in the divertor. While the
D↵ emission following large Type I ELMs exhibits a relatively slow de-
cay, the interferometer-measured e� returns to stationarity much more
rapidly. Thus, it is desirable to identify stationary inter-ELM windows
from the interferometer measurements rather than the D↵ emission.
Points in the interferometer-measured e� exceeding 3⇥ the RMS value
are identified as ELMs, and successive ELMs are required to be sepa-
rated by at least a 0.5ms “debouncing time” (spikes separated by less
than the debouncing time are classified as belonging to the same ELM).
Subsequent spectral analysis is then performed using only the 20% –
80% inter-ELM windows of the interferometer and PCI measurements.
Figure 5.4 shows the windows excluded from spectral analysis in gray.
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5.3.2 Frequency spectra

One-sided autospectral densities estimates G�,�(f) of the phase fluc-
tuations are calculated using the methodology described in Section F.1.
The interferometer and PCI signals from the shaded windows in Fig-
ure 5.1 are split into realizations of 1024 points (corresponding to
roughly 250µs) resulting in a frequency resolution of approximately
4 kHz in the spectral estimates. As described in Section 5.3.1, only
realizations falling within 20% – 80% of each inter-ELM window are
included in the ensemble averaging; the exact number of realizations
Nr included in each ensemble depends on the details of the ELM dy-
namics, but Nr ⇠ 450 for the shots considered here, corresponding
to a relative random error in G�,�(f) of approximately 5%. A Han-
ning window is applied to each realization prior to computation of
its fast Fourier transform (FFT). To simplify inter-ELM bookkeeping,
adjacent realizations have zero overlap. As described in Section 4.6.2,
the interferometer and PCI phase signals are high-pass filtered prior
to spectral analysis, and no further detrending is performed. The re-
sulting spectral estimates for ⇢ECH = 0.5 and ⇢ECH = 0.8 are shown in
Figure 5.5. The corresponding noise floors are estimated from 50ms

of data prior to plasma breakdown; the knee in the PCI noise floor
at approximately 500 kHz corresponds to the roll-off in the temporal
bandwidth of the PCI detector and its preamplifiers. As expected
theoretically (see Figure 2.6) and observed empirically in sound-wave
calibrations (see Figure 4.22), the PCI is more sensitive than the het-
erodyne interferometer.

Interestingly, the autospectral density of the heterodyne interferom-
eter indicates the presence of a distinct broadband fluctuation with
a central frequency f0 ⇠ 450 kHz and a bandwidth �f ⇠ 300 kHz.
The toroidally separated V2 interferometer corroborates the presence
of this fluctuation, but the fluctuation is only vaguely coherent be-
tween the two interferometers, with magnitude-squared coherences
�2xy(f) 6 0.1. The fluctuation is larger than the corresponding PCI-
measured fluctuations in this frequency range, but it is absent from
the autospectral density of the PCI; this indicates that the fluctuation
wavenumber is smaller than the PCI low-k cutoff (4.2). Further, this
fluctuation has a magnetic component, as shown by the beige inset
to Figure 5.5(a). The red curve in the beige inset corresponds to the
autospectral density (in arbitrary units) of the poloidal magnetic-field
fluctuations measured by a high-frequency magnetic probe (b5) [18]
during the ⇢ECH = 0.8 window, while the dashed line corresponds to
the noise floor, as estimated from 50ms of data prior to plasma break-
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Figure 5.5: One-sided autospectral-density estimates G�,�(f) from (a) the
heterodyne interferometer and (b) the PCI. The low-frequency (f . 300 kHz)
dynamics are comparable, with both the interferometer and the PCI measuring a
2- 4⇥ increase in fluctuation power when moving from ⇢ECH = 0.5 to ⇢ECH = 0.8.
The higher-frequency (f & 300 kHz) dynamics, however, are distinct. In particular,
the interferometer-measured broadband fluctuation between 300 kHz and 600 kHz is
low-k (due to its absence in the PCI spectrum), electromagnetic (as seen by the beige
inset to (a)), and driven by collisionality (as shown in Figure 5.7), suggesting that it
may be a micro-tearing mode (MTM). The subtle break in slope at f ⇠ 800 kHz in the
PCI spectrum when ⇢ECH = 0.8 is shown to be a distinct turbulent branch in
Figure 5.9.

down. The magnetic autospectral density is estimated in a manner
consistent with those of the interferometer and PCI (realization length
of approximately 250µs with zero overlap between adjacent realiza-
tions, application of Hanning window to each realization prior to FFT
computation, ensemble averaging only over realizations falling within
20% – 80% of each inter-ELM window, and a total number of realiza-
tions Nr ⇠ 450). The autospectral density of the interferometer also
indicates that the power in this fluctuation increases when moving
from ⇢ECH = 0.5 to ⇢ECH = 0.8. To prove that this is a robust trend,
the total power in this fluctuation is computed for stationary windows
from 7 distinct shots with ⇢ECH = 0.5 and from 7 distinct shots with
⇢ECH = 0.8, each of which are nominally identical to the corresponding
discharges shown in Figures 5.1 and 5.2. The total fluctuation power
is quantified as

var(e�) =
Z600kHz

300kHz

⇥
Gint
�,�(f)-N.F.

⇤
df, (5.1)

where Gint
�,�(f) is the autospectral density of the heterodyne interfer-

ometer and N.F. = 10-10 rad2 · kHz−1 is the corresponding noise floor.
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Figure 5.6: Power var(e�) in interferometer-measured low-k, mid-f, electromagnetic
turbulence vs. ECH location ⇢ECH. Powers are estimated via (5.1). Different points
correspond to distinct, nominally identical shots from the same experimental run
day; the dashed line is the linear least-squares fit to the points, indicating an
approximate doubling in fluctuation power when moving from ⇢ECH = 0.5 to
⇢ECH = 0.8.

Figure 5.6 plots var(e�) versus ⇢ECH; a linear least-squares fit indicates
that the fluctuation power approximately doubles when moving from
⇢ECH = 0.5 to ⇢ECH = 0.8. Further, Figure 5.7 shows that the electron-
ion collisionality ⌫ei in the region of the plasma accessible to the PCI
probe beam (R = 1.98m) also roughly doubles when moving from
⇢ECH = 0.5 to ⇢ECH = 0.8. Thus, this fluctuation is low-k, electromag-
netic, and driven by collisionality, suggesting that this fluctuation may
be a micro-tearing mode (MTM) [8, Sec. 8.5][19], which is predicted to
be marginally unstable in this experiment’s reference discharge [5].

It is also interesting to examine the low-frequency (f . 300 kHz)
fluctuations measured by both the interferometer and the PCI. Both
systems measure a 2 - 4⇥ increase in the low-frequency fluctuation
power when moving from ⇢ECH = 0.5 to ⇢ECH = 0.8, which may be
responsible for the slightly reduced confinement in Figure 5.1(g). The
spatial content of these fluctuations can be roughly characterized via
the magnitude-squared coherence �2xy(f) between the interferometer
(x) and PCI (y) measurements. As discussed in Section F.1, �2xy(f) is
bounded between 0 and 1, and it quantifies the linear correlation be-
tween signals x and y, with �2xy(f) = 0 indicating 0% correlation at
frequency f and �2xy(f) = 1 indicating 100% correlation at frequency
f. Thus, �2xy(f) characterizes the fraction of fluctuation power sitting
in the mid-k overlap of the interferometer and PCI [17, Sec. 5.2.6].
As with the auto-spectral density estimates, the interferometer and
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Figure 5.7: The electron-ion collisionality ⌫ei in the region of the plasma accessible
to the PCI probe beam (R = 1.98m) roughly doubles when moving from ⇢ECH = 0.5
to ⇢ECH = 0.8. The collisionality is computed from the profiles in Figure 5.2, and the
shaded bands indicate the 1� uncertainties. The collisionality normalization is
v⇤e/a, where v⇤e is the electron diamagnetic velocity and a is the minor radius of
the plasma; note that the angular electron diamagnetic frequency !⇤e / v⇤e/a [8,
Sec. 8.2] and that micro-tearing mode (MTM) linear-stability calculations are
performed in expansions of ⌫ei/!⇤e [8, Sec. 8.5][19]. Unfortunately, without a
wavenumber measurement, the more theoretically relevant !⇤e normalization
cannot be performed. Both discharges are in the banana regime (⌫⇤ei < 1) [8, Sec. 4.6]
for ⇢ . 0.95.

PCI signals are split into realizations of 1024 points with zero overlap
between adjacent realizations, a Hanning window is applied to each
realization prior to computing its FFT, the ensemble average is per-
formed only over realizations falling within 20% – 80% of each inter-
ELM window, and the total number of realizations is Nr ⇠ 450. The
resulting �2xy(f) estimates are shown in Figure 5.8. From the definition
of the lab-frame phase velocity vph = 2⇡f/k, where f is the lab-frame
frequency and k is the wavenumber, it can be seen that the lowest fre-
quencies in a particular fluctuation branch are associated with the low-
est wavenumbers, and the highest frequencies in a particular fluctua-
tion branch are associated with the highest wavenumbers. Thus, the
low values of �2xy(f) for f . 100 kHz in Figure 5.8 can be interpreted as
the interferometer measuring substantial power in low-k fluctuations
that sit below the PCI’s low-k cutoff (4.2). Similarly, the low values of
�2xy(f) for f & 300 kHz correspond to the PCI measuring substantial
power in high-k fluctuations that sit above the interferometer’s high-k
cutoff (4.6) or below the interferometer’s noise floor. Between 100 kHz

and 300 kHz, 0.25 . �2xy . 0.5, indicating between 25% and 50% of
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Figure 5.8: The magnitude-squared coherence �2xy(f) between the interferometer
and the PCI measurements characterizes the fraction of total fluctuation power
sitting in the mid-k overlap of the interferometer and the PCI. The increase in �2xy(f)
between 200 kHz and 300 kHz when moving from ⇢ECH = 0.5 to ⇢ECH = 0.8 suggests
a wavenumber downshift in these fluctuations, which is corroborated by the increase
in the lab-frame phase velocity shown in Figure 5.9.

the total fluctuation power sits in the mid-k overlap of the interfer-
ometer and the PCI. Further, moving from ⇢ECH = 0.5 to ⇢ECH = 0.8
produces a substantial increase in �2xy(f) for 200 kHz . f . 300 kHz,
suggesting that the wavenumbers of these fluctuations decrease when
moving from ⇢ECH = 0.5 to ⇢ECH = 0.8; this is corroborated by the
increase in the lab-frame phase velocity shown in Figure 5.9.

5.3.3 Frequency-wavenumber spectra

As the PCI measurements are made with a multi-element detector ar-
ray, the spatial content of the PCI signal can also be characterized. The
two-dimensional autospectral density S�,�(k, f) simultaneously quan-
tifies the spatial and temporal content of a signal. (Unfortunately, as
the interferometer measurements are currently made with a single-
element detector, S�,�(k, f) cannot be estimated from the interferom-
eter measurements; the only spatial knowledge about the interferom-
eter signal is that the wavenumber magnitudes |k| sit below the inter-
ferometer’s high-k cutoff (4.6)).

The PCI S�,�(k, f) is estimated using the hybrid non-parametric-in-
time, parametric-in-space technique discussed in Section F.3.3. Specif-



5.3 combined pci-interferometer measurements 173

ically, the hybrid autocorrelation function eR�,�(�, f) is estimated non-
parametrically over the shaded windows in Figure 5.1 via (F.22) using
the same spectral-estimation parameters as those in Section 5.3.2 (i.e.
realization length of 1024 points with zero overlap between adjacent
realizations, application of Hanning window to each realization prior
to FFT computation, ensemble averaging only over realizations falling
within 20% – 80% of each inter-ELM window, and a total number of
realizations Nr ⇠ 450). Then, a parametric p = 6 Burg autoregression
(AR) in the spatial lag � estimates the autospectral density SeR,eR(k, f)
of eR(�, f), and the autospectral density S�,�(k, f) of the phase fluctu-
ations is computed via (F.28). The Burg AR is evaluated on a uni-
formly spaced, 1000-element wavenumber grid. Often, an AR model
is referred to as an “all-pole model” because the only frequency de-
pendence in the spectral estimate appears in the denominator; this
all-pole feature of an AR model allows fitting very sharp spectral fea-
tures and substantially improves the wavenumber resolution of the
sparsely sampled (in space) PCI data (see Figure F.3 for a comparison
to a conventional Fourier-in-space estimate).

The PCI S�,�(k, f) for ⇢ECH = 0.5 and ⇢ECH = 0.8 are shown in
Figure 5.9. The spectra indicate the existence of numerous turbulent
branches, each of which may respond differently when ⇢ECH is varied.
Two of these branches are discussed here. First, perhaps one of the
most surprising qualitative effects of moving ⇢ECH = 0.5 to ⇢ECH = 0.8
is the excitation of a new, distinct turbulent mode at kR ⇠ -5 cm−1

with a central frequency f0 ⇠ 1MHz and a bandwidth �f ⇠ 400 kHz.
This mode corresponds to the subtle break in slope at f ⇠ 800 kHz

in the PCI G�,�(f) in Figure 5.9. This mode straddles the current
spatiotemporal limits of the interferometer and sits well below the
interferometer noise floor; thus, this mode is invisible to the interfer-
ometer. The mode is robustly observed in all 7 of the steady-state
⇢ECH = 0.8 windows from this experimental run day, and it is robustly
absent from all 7 of the corresponding ⇢ECH = 0.5 windows. It should
be noted that the PCI observes a similar mode during ELM-free H-
mode and wide-pedestal QH-mode [20] as well as during NBI-only
ELMy H-mode (see Figure F.3). Second, and perhaps of more rel-
evance to multiscale studies, is the turbulent branch bounded by the
annotating dashed white lines in Figure 5.9. When ⇢ECH = 0.5, this tur-
bulent branch has a lab-frame phase velocity vph = 5.6 km · s−1 with
wavenumbers and frequencies extending to 14 cm−1 and 1250 kHz, re-
spectively; moving to ⇢ECH = 0.8 increases the lab-frame phase veloc-
ity to vph = 6.5 km · s−1 but reduces the spatiotemporal bandwidth
to 7.2 cm−1 and 750 kHz. These observations are generic to all 7 of
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Figure 5.9: PCI two-dimensional autospectral densities S�,�(k, f) for (a) ⇢ECH = 0.5
and (b) ⇢ECH = 0.8. To better resolve the high-k and high-f features, (c) and (d)
display the same spectra from (a) and (b), respectively, but only for f > 500 kHz and
with an altered colorscale. Moving from ⇢ECH = 0.5 to ⇢ECH = 0.8 increases the
lab-frame phase velocity but decreases the spatiotemporal bandwidth of the
broadband turbulence bounded by the annotating dashed white lines and also
excites a new turbulent branch at k ⇠ -5 cm−1 and f ⇠ 1MHz.

the steady-state ⇢ECH = 0.5 windows and all 7 of the steady-state
⇢ECH = 0.8 windows from this experimental run day. Note that for
a given frequency f, an increase in phase velocity corresponds to a
wavenumber downshift such that the observed change in vph with
⇢ECH confirms the wavenumber-downshift speculation from Figure 5.8.
This turbulent branch will be investigated further in Section 5.3.4.
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Figure 5.10: PCI wavenumber autospectral densities S�,�(k) obtained by integrating
S�,�(k, f) in frequency between the bounds denoted by the annotating dashed while
lines in Figure 5.9. Here, the black dashed lines indicate least-squares power-law fits
to S�,�(k). The flattening (i.e. slower decay) of S�,�(k) with ⇢ECH = 0.5 relative to
that with ⇢ECH = 0.8 is reminiscent of results from multiscale gyrokinetic
simulations in Alcator C-Mod, but quantitative comparisons await completion of the
corresponding multiscale gyrokinetic simulations in DIII-D.

5.3.4 Wavenumber spectra

Because simulations are finely sampled in space but often have lim-
ited temporal histories, experimental wavenumber spectra are partic-
ularly valuable for validating theoretical models and computational
predictions. The PCI wavenumber autospectral density S�,�(k) cor-
responding to a given turbulent branch is computed by integrating
the two-dimensional autospectral density S�,�(k, f) from Section 5.3.3
over the temporal bandwidth �f of the turbulent branch, i.e.

S�,�(k) =

Zf0(k)+(�f/2)

f0(k)-(�f/2)
S�,�(k, f)df, (5.2)

where f0(k) = kvph/(2⇡) is the central frequency of the turbulent
branch at wavenumber k, and vph is the lab-frame phase velocity of
the turbulent branch. Note that restricting the integration domain in
this manner minimizes contributions to S�,�(k) from noise outside of
the branch’s bandwidth. For example, integrating between the bounds
denoted by the annotating dashed white lines in Figure 5.9 produces
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the S�,�(k) displayed in Figure 5.10. Note that the ⇢ECH = 0.5 spec-
trum is substantially flattened (i.e. decays more slowly) relative to the
⇢ECH = 0.8 spectrum. As shown in Figure 5.2, relative to ⇢ECH =
0.8, ⇢ECH = 0.5 corresponds to increased a/LTe and decreased a/LTi

over the majority of the plasma accessible to the PCI probe beam
(R = 1.98m). This spectral flattening with enhanced electron-scale
drive relative to ion-scale drive is reminiscent of results from multi-
scale gyrokinetic simulations [3] of an ion cyclotron resonance heated
(ICRH) [8, Sec. 5.8] L-mode discharge in Alcator C-Mod [8, Sec. 11.5].
While the only existing, realistic, multiscale gyrokinetic simulations of
DIII-D correspond to the reference discharge for the multiscale exper-
iment discussed here, the E ⇥ B shearing rate �E was varied rather
than a/LTe

or a/LTi
[5]. Thus, the spectral flattening observed in

Figure 5.10 with increased a/LTe
and decreased a/LTi

eagerly awaits
quantitative comparison to corresponding multiscale gyrokinetic sim-
ulations, which are expected to be completed by Howard et al. in
roughly the next six months.

5.4 tglf modeling

To aid the interpretation of the combined PCI-interferometer measure-
ments described in Section 5.3, linear-stability analysis and quasilinear-
transport modeling were performed with the TGLF code 1. Below, Sec-
tion 5.4.1 provides a brief overview of the TGLF code, and Section 5.4.2
presents a global overview of the TGLF-predicted linear stability for
⇢ECH = 0.5 to ⇢ECH = 0.8. In order to facilitate comparisons between
theory and measurement, Section 5.4.3 then derives the relationship
between the theoretically relevant field-aligned wavenumber ky and
the PCI-measured major-radial wavenumber kR. Next, in an attempt
to localize analysis of the TGLF results, Section 5.4.4 compares the ad-
vection of the TGLF-predicted instabilities by the E⇥B velocity to the
PCI-measured phase velocities; the comparison suggests that the PCI-
measured branch of interest is localized to 0.6 6 ⇢ 6 0.65. Finally, Sec-
tion 5.4.5 compares the TGLF-predicted electron-density fluctuation
spectrum to the corresponding PCI measurements, finding qualitative
agreement.

1 TGLF simulations were graciously performed by Dr. Alessandro Marinoni, but the
subsequent analysis is the author’s own.
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5.4.1 TGLF overview

TGLF is a gyro-Landau fluid (GLF) model that captures the dynamics
of both trapped (T) and passing particles in shaped geometry with
finite aspect ratio and E⇥ B shear [21, 22]. A GLF model consists of
velocity-moment equations of the gyroaveraged kinetic equation with
moment closures selected to retain important kinetic effects, such as
Landau damping. Due to their reduced dimensionality, GLF models
are computationally less expensive than full gyrokinetic simulations.
TGLF can solve for the linear eigenmodes of trapped ion and electron
modes (TIM and TEM, respectively), ion and electron temperature
gradient (ITG and ETG, respectively) modes, and kinetic ballooning
modes (KBM). Unfortunately, the default eigenfunction basis of four
Hermite polynomials is typically insufficient to resolve micro-tearing
modes (MTMs) [23], so there are no attempts to simulate the MTM
in this work. TGLF additionally uses its eigenmodes to predict quasi-
linear transport using a saturation model fit to results from nonlinear
gyrokinetic simulations [22], the most recent of which include realistic
multiscale physics [24].

5.4.2 Global overview of predicted linear stability

Using the TGLF_scan module in the OMFIT integrated modeling frame-
work [25], TGLF simulations were run to investigate the change in
linear stability when moving from ⇢ECH = 0.5 to ⇢ECH = 0.8. The
simulations span 0.1 6 ky⇢s 6 24 and 0.3 6 ⇢ 6 0.9 (only ⇢ & 0.35 is
accessible to the PCI probe beam, which propagates vertically through
the plasma at major radius R = 1.98m). The equilibrium profiles
shown in Figure 5.2 were used as input to TGLF. Figure 5.11 displays
the resulting linear growth rates � and plasma-frame phase velocities
vph = !/ky as a function of radial position ⇢ and normalized fluctua-
tion wavenumber ky⇢s. The predicted change in linear stability when
moving from ⇢ECH = 0.5 to ⇢ECH = 0.8 is largely in accord with intu-
ition derived from the changes to the normalized inverse scale lengths
shown in Figure 5.2(e)-(g). Perhaps the most substantial change is
that ⇢ECH = 0.5 destabilizes a continuum of mid-k (0.5 . ky⇢s . 5)
electron modes in the outer region (⇢ & 0.6) of the plasma. Addition-
ally, in the outer region of the plasma (⇢ & 0.6), the low-k ion modes
(ky⇢s . 0.3) are marginally suppressed and the high-k electron modes
(ky⇢s & 10) are marginally enhanced relative to ⇢ECH = 0.8.
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Figure 5.11: Global overview of TGLF-predicted linear stability for the profiles
shown in Figure 5.2. Linear growth rates � and plasma-frame phase velocities
vph = !/ky are plotted as a function of radial position ⇢ and normalized fluctuation
wavenumber ky⇢s for ⇢ECH = 0.5 and ⇢ECH = 0.8. Electron modes have vph > 0, and
ion modes have vph < 0. The predicted change in linear stability when moving from
⇢ECH = 0.5 to ⇢ECH = 0.8 is largely in accord with intuition derived from the
changes to the normalized inverse scale lengths shown in Figure 5.2(e)-(g). Growth
rates can be compared to the E⇥B shearing rates �E in Figure 5.2(h).

5.4.3 Relation between field-aligned & PCI-measured wavevectors

As transport parallel to the magnetic field B is much more rapid than
transport across the magnetic field, drift-wave turbulent fluctuations
have a dominant, central wavevector k0 that satisfies the field-aligned
constraint k0 ·B ⇡ 0. For electrostatic fluctuations, the magnetic field
B is well-represented by the equilibrium field B0 such that the field-
aligned constraint reduces to k0 ·B0 ⇡ 0, requiring

k0 = k⇢,0⇢̂+ k✓,0


✓̂ -

✓
B✓,0

B⇣,0

◆
⇣̂

�
, (5.3)

where k⇢,0 is the dominant radial wavenumber of the turbulence (note
that velocity shear produces finite k⇢,0 [26]), k✓,0 is the dominant
poloidal wavenumber of the turbulence, B✓,0 is the equilibrium poloidal
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Figure 5.12: Measurement coordinate system. Here, R is the major-radial direction, Z
is the lab-frame vertical direction, ⇣ is the toroidal angle, ✓ is the poloidal angle, and
⇢ is a flux-surface label corresponding to the square root of the normalized toroidal
magnetic-field flux.

magnetic field, B⇣,0 is the equilibrium toroidal magnetic field, and
the (⇢, ✓, ⇣) coordinate system is defined in Figure 5.12. Analytic the-
ory and computation are often performed on field-aligned coordinate
systems in which the z-coordinate is along B0, the x-coordinate is
in the radial direction, and the y-coordinate is perpendicular to B0

but within a flux surface. In such a field-aligned coordinate system,
k0 - k⇢,0⇢̂ is aligned with the y-coordinate such that one is led natu-
rally to define

ky = k✓,0


✓̂ -

✓
B✓,0

B⇣,0

◆
⇣̂

�
. (5.4)

The wavenumber ky (or its dimensionless equivalent, ky⇢s) is an im-
portant parameter in the classification and understanding of turbulent
fluctuations.

To make contact with theory, then, it is important to understand
the relation between ky and the PCI-measured wavevectors. As a line-
integrated measurement, PCI is sensitive to fluctuations with wavevec-
tors kpci that are perpendicular to the beam path. Thus, for the vertical
beam path of DIII-D’s PCI,

kpci · Ẑ = 0. (5.5)

As with k0, kpci is also field-aligned such that (for electrostatic fluctu-
ations)

kpci ·B0 ⇡ 0. (5.6)
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In general, kpci 6= k0. Instead, it is suitable to define

kpci = k0 + �k. (5.7)

The PCI will measure finite signal only if there exists a �k within
the spatial bandwidth �k of the turbulence such that the resulting
kpci from (5.7) satisfies both (5.5) and (5.6). (Note that the above
reasoning also holds for any other vertically line-integrated measure-
ment of field-aligned turbulence, such as those made by the hetero-
dyne interferometer constructed in this work). Decomposing �k in
the (⇢, ✓, ⇣) coordinate system defined in Figure 5.12 such that �k =
�k⇢⇢̂+ �k✓✓̂ + �k⇣⇣̂, constraint (5.5) requires

�k⇢ = -�k⇢,0 - (k✓,0 + �k✓) cot ✓, (5.8)

and constraint (5.6) requires

�k⇣ = -

✓
B✓,0

B⇣,0

◆
�k✓. (5.9)

Using (5.8) and (5.9), kpci from (5.7) reduces to

kpci = -

✓
k✓,0 + �k✓

sin ✓

◆
R̂+

✓
B✓,0 sin ✓

B⇣,0

◆
⇣̂

�
, (5.10)

where R̂ is the unit vector in the major-radial direction and is re-
lated to ⇢̂ and ✓̂ as defined in Figure 5.12. Because |B✓,0| ⌧ |B⇣,0|,
the PCI is sensitive to fluctuations with wavevectors that are predom-
inantly in the major-radial direction. If measurements are made with
a one-dimensional detector array, only a projection of kpci can be re-
constructed. The one-dimensional detector array of the DIII-D PCI is
nominally aligned in the major-radial direction such that the major-
radial wavenumber kR of kpci can be reconstructed, i.e.

kR = kpci · R̂ = -

✓
k✓,0 + �k✓

sin ✓

◆
. (5.11)

In subsequent numerical evaluations, it is assumed that |�k✓| ⌧ |k✓,0|

in order to relate the field-aligned ky from TGLF to the PCI-measured
major radial wavenumber kR. Figure 5.13 displays profiles of |ky⇢s|

for various kR of interest.
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Figure 5.13: Profiles of |ky⇢s| vs. radial coordinate ⇢ for the PCI low-k cutoff
kR = 1.5 cm−1, the interferometer high-k cutoff kR = 5 cm−1, and the PCI high-k
cutoff kR = 25 cm−1 in the ⇢ECH = 0.5 and ⇢ECH = 0.8 discharges shown in
Figure 5.2. The gray region (⇢ . 0.35) is inaccessible to the PCI probe beam, which
propagates vertically through the plasma at major radius R = 1.98m. The roll-off in
|ky⇢s| for ⇢ . 0.4 is attributable to the sin ✓ major-radial projection, while the roll-off
for ⇢ & 0.95 is attributable to the edge pedestal.

5.4.4 Comparison to PCI-measured phase velocities

In an attempt to localize analysis of the TGLF results, the advection
of the TGLF-predicted instabilities by the E⇥ B velocity can be com-
pared to the PCI-measured phase velocities. The PCI-measured phase
velocity is

vpci
ph =

!pci

kR
=

kpci · v
kR

, (5.12)

where!pci is the PCI-measured angular frequency, kpci is the wavevec-
tor (5.10), v is the lab-frame velocity of the fluctuation, and kR is
the reconstructed major-radial wavenumber (5.11). By field-aligned
constraint (5.6), kpci · v = kpci · v?, where v? is the velocity perpen-
dicular to the equilibrium magnetic field. The perpendicular veloc-
ity v? is simply the sum of the E ⇥ B velocity vE and the plasma-
frame phase velocity v

plasma
ph of the fluctuation; here, the plasma-frame
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phase velocity is approximated by that of the dominant wavevector,
i.e. vplasma

ph ⇡ vplasma
ph k̂0, where k̂0 = k0/|k0| and k0 is the dominant

wavevector defined in (5.3). Thus, v? ⇡ vE + vplasma
ph k̂0, and

!pci = kpci · v? ⇡ kpci · vE + (kpci · k̂0)v
plasma
ph . (5.13)

Now, the electrostatic potential ' = '(⇢) is a flux function such that
the corresponding electric field is E = -r' = Er(⇢, ✓)⇢̂. The resulting
E⇥B velocity is

vE =
E ⇥B0

B2
0

=
Er(⇢, ✓)

B2
0

�
B✓⇣̂ -B⇣✓̂

�
. (5.14)

Using kpci from (5.10), vE from (5.14), k0 from (5.3), !pci from (5.13),
kR from (5.11), and a bit of algebra, the PCI-measured phase velocity
(5.12) readily reduces to

vpci
ph =


Er(⇢, ✓)

B0
- vplasma

ph

�✓
B0

B⇣,0

◆
sin ✓. (5.15)

The sign convention for the plasma-frame phase velocity is such that
vplasma

ph > 0 for electron modes and vplasma
ph < 0 for ion modes. For phys-

ical intuition regarding this sign convention, consider a region of the
plasma with Er > 0; here, electron modes propagate against the E⇥B

direction (decreasing vpci
ph relative to the E⇥B contribution alone), and

ion modes propagate in the E ⇥ B direction (increasing vpci
ph relative

to the E⇥ B contribution alone). The B0/B⇣,0 multiplicative enhance-
ment to vpci

ph results from |kR| < |kpci| when the magnetic field is not
solely toroidal, and the sin ✓ term provides the major-radial projection
required by the constraint (5.5); note that vpci

ph changes sign about the
midplane (✓ = 0) due to this major-radial projection. As the spatially
filtering mask [27, 28] was not used in this experiment, the PCI mea-
surements cannot be localized to above or below the midplane, and
only the magnitude of vpci

ph will be considered here. Figure 5.14 com-
pares the magnitude of the predicted PCI phase velocity from (5.15)
to the measured PCI phase velocities from the annotated turbulent
branches in Figure 5.9 and infers that this turbulence is localized to
0.6 6 ⇢ 6 0.65.

As a brief aside, it should be emphasized that the radial electric
field Er in (5.15) is not a flux function. To see this, recall that the
corresponding electrostatic potential is a flux function, i.e. ' = '(⇢) =
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Figure 5.14: Comparison of predicted and measured PCI phase velocities. Here,
�vph is the difference between the predicted phase velocity and the measured phase
velocity. The predicted phase velocity (5.15) is computed using the equilibrium
profiles shown in Figure 5.2 and the TGLF-predicted plasma-frame phase velocites
shown in Figure 5.11. The measured phase velocities correspond to the annotated
turbulent branches in Figure 5.9. The wavenumber range ky⇢s considered here is
restricted to kR 6 15 cm−1, the maximum PCI-measured wavenumber in Fig 5.9.
The minimum discrepancy between the predicted and measured PCI phase
velocities occurs between at 0.6 6 ⇢ 6 0.65, suggesting that the annotated turbulent
branches in Figure 5.9 are localized to 0.6 6 ⇢ 6 0.65.

'( ), where  is the flux-surface label corresponding to the poloidal
magnetic-field flux per radian. Now,

Er(⇢, ✓) = -

✓
@'

@r

◆

= -

✓
d'

d 

◆✓
@ 

@r

◆

= -

✓
d'

d 

◆
(RB✓) , (5.16)

where the last line follows from the definition of  as the poloidal
magnetic-field flux per radian. The derivative d'/d is a flux function
because ' is a flux function, and this implies that Er/(RB✓) is also a
flux function. Thus, the radial electric field at any point within the
last closed flux surface can be computed from the radial electric field
along the outboard midplane (where ✓ = 0) as follows

Er

RB✓

����
⇢,✓

=
Er

RB✓

����
⇢,✓=0

. (5.17)
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5.4.5 Quantitative local results

A global overview of the TGLF-predicted linear stability was presented
in Section 5.4.2. In Section 5.4.4, the annotated turbulent branches
from Figure 5.9 were localized to 0.6 6 ⇢ 6 0.65. Thus, it is now
reasonable to perform a more quantitative assessment of the corre-
sponding local TGLF predictions. Below, TGLF predictions are shown
for ⇢ = 0.6, but comparable predictions are made at ⇢ = 0.65.

Figure 5.15 displays the TGLF-predicted linear stability at radial lo-
cation ⇢ = 0.6 for ⇢ECH = 0.5 and ⇢ECH = 0.8. Both operational scenar-
ios are predicted to destabilize ion and electron modes across multiple
spatiotemporal scales, but ⇢ECH = 0.5 is predicted to destabilize a con-
tinuum of mid-k (0.5 . ky⇢s . 5) electron modes that bridge the
gap between low-k (ky⇢s . 0.5) ion modes and high-k (ky⇢s & 5)
electron modes, potentially facilitating cross-scale coupling. Further,
relative to ⇢ECH = 0.8, the ⇢ECH = 0.5 ion-mode growth rates are sub-
stantially reduced (becoming comparable to the E⇥ B shearing rate
shown in Figure 5.2(h)), and the high-k electron-mode growth rates
are marginally enhanced, both of which may also facilitate cross-scale
coupling.

Howard et al. suggest a linear-stability “rule of thumb” for gaug-
ing the importance of cross-scale coupling [3]. The rule of thumb
attempts to quantify the relative “strength” of electron-scale to ion-
scale turbulence by examining the ratio of the maximum electron-
scale growth rate �high-k to the maximum ion-scale growth rate �low-k,
with larger values of �high-k/�low-k corresponding to increased cross-
scale coupling. Howard et al. constrain their search for �high-k to
2 6 ky⇢s 6 48 and for �low-k to 0.25 6 ky⇢s 6 0.75. For consistency,
this same selection criterion is used below. For ⇢ECH = 0.8, Figure 5.15

shows that �high-k = 540 kHz at ky⇢s = 14 and �low-k = 43 kHz at
ky⇢s = 0.4 such that �high-k/�low-k = 12.6; with such a small value, the
rule of thumb suggests that cross-scale coupling is insignificant. For
⇢ECH = 0.5, Figure 5.15 shows that �high-k = 720 kHz at ky⇢s = 14

and �low-k = 63 kHz at ky⇢s = 0.7 such that �high-k/�low-k = 11.4,
less than the ⇢ECH = 0.8 case. It should be noted, however, that the
distinct mid-k electron branch in Figure 5.15 is absent from the plas-
mas used to develop the rule of thumb; further, the above �low-k for
⇢ECH = 0.5 corresponds to this mid-k electron branch. If �low-k is in-
stead restricted to an ion mode, �low-k = 17 kHz at ky⇢s = 0.35 such
that �high-k/�low-k = 42; cross-scale coupling can be important in ELMy
H-mode plasmas with this �high-k/�low-k [4].



5.4 tglf modeling 185

Figure 5.15: TGLF-predicted linear stability at ⇢ = 0.6 for the profiles shown in
Figure 5.2. Linear growth rates � and plasma-frame phase velocities vph = !/ky are
plotted as a function of normalized fluctuation wavenumber ky⇢s for ⇢ECH = 0.5
and ⇢ECH = 0.8. Electron modes have vph > 0, and ion modes have vph < 0. The
gray region exceeds the spatial bandwidth of the combined PCI-interferometer
developed in this work. Growth rates can be compared to the E⇥B shearing rates
�E in Figure 5.2(h).

In addition to assessing linear stability, TGLF can predict the electron-
density fluctuation spectrum using quasilinear transport and a model
for the nonlinear saturation of the turbulence. This saturation model is
fit to results from nonlinear gyrokinetic simulations [22], the most re-
cent of which include realistic multiscale physics [24]. The multiscale
saturation model is referred to as SAT1. The density fluctuation spec-
trum predicted by TGLF-SAT1 at ⇢ = 0.6 is shown Figure 5.16. Within
the PCI sensitivity and wavenumber domain, the predicted spectra are
qualitatively consistent with the PCI-measured spectra in Figure 5.10.
Specifically, the ⇢ECH = 0.5 spectrum is noticeably flatter (i.e. decays
more slowly) than the ⇢ECH = 0.8 spectrum, which may be indicative
of enhanced cross-scale coupling [3]. Note that the PCI spectrum also
depends on k⇢,0 and �k, as discussed in Section 5.4.3, so quantitative
comparison with the PCI measurements requires a full-physics simu-
lation (i.e. beyond the abilities of a reduced model like TGLF) and a
synthetic diagnostic [29]. It should also be emphasized that the TGLF-
SAT1 model is fit to just a handful [24] of realistic multiscale gyroki-
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Figure 5.16: Electron-density fluctuation spectra predicted by TGLF-SAT1 at radial
location ⇢ = 0.6 for ⇢ECH = 0.5 and ⇢ECH = 0.8. The gray region exceeds the spatial
bandwidth of the combined PCI-interferometer developed in this work. The
equivalent PCI noise floor, indicated by the horizontal dash-dot line, is inferred from
the noise floor in Figure 5.10; that is, for ⇢ECH = 0.5 the equivalent noise floor
intersects S(ky) at ky⇢s ⇡ 2.7, and ky⇢s ⇡ 2.7$kR ⇡ 15 cm−1 at ⇢ = 0.6, which is
where the corresponding S(kR) intersects the noise floor in Figure 5.10. Within the
PCI sensitivity and wavenumber domain, the predicted spectra are qualitatively
consistent with the PCI-measured spectra in Figure 5.10. The black dashed lines
indicate least-squares power-law fits to the predicted S(kR). Note that the PCI
spectrum also depends on k⇢,0 and �k, as discussed in Section 5.4.3, so quantitative
comparison with the PCI measurements requires a full-physics simulation and a
synthetic diagnostic.

netic simulations corresponding to Alcator C-Mod L-mode plasmas,
so the model may improve when additional multiscale simulations
are completed and the TGLF-SAT1 model is recalibrated.
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6
C O R R E L AT I O N O F D I I I - D ’ S T O R O I D A L LY
S E PA R AT E D I N T E R F E R O M E T E R S

The toroidal structure of an MHD mode can have important implica-
tions for the mode’s stability and its interaction with the surrounding
plasma. A mode’s toroidal structure is typically characterized by its
toroidal mode number n. Historically, measurement of toroidal (and
poloidal) mode numbers with external magnetic probes has provided
rich insight into the physics governing numerous operational regimes
and stability limits. However, core-localized MHD produces weak sig-
nals outside of the plasma volume, making measurement of the cor-
responding mode numbers via external magnetic probes difficult or
impossible. Recently, measurements from toroidally separated elec-
tron cyclotron emission imaging (ECEI) systems on the KSTAR toka-
mak have identified mode numbers of sawteeth [1], demonstrating
the utility of using more exotic measurements to probe the structure
of core-localized MHD.

This chapter describes the correlation of toroidally separated inter-
ferometers to measure toroidal mode numbers. To the author’s knowl-
edge, this is the first such implementation in a tokamak. As the inter-
ferometers are capable of probing the plasma core, their correlation
allows direct measurement of the toroidal structure of core-localized
modes — a long-sought after and first-of-its-kind measurement at
DIII-D. Below, Section 6.1 reviews the two-point correlation tech-
nique, which allows inference of a propagating wave’s spatial struc-
ture from measurements made at two distinct spatial locations. Sec-
tion 6.2 then examines the geometry of the interferometers and devel-
ops a formula for the measured toroidal mode number. Section 6.3 de-
scribes the careful efforts to eliminate timebase discrepancies between
the two interferometer systems, validates the interferometer-measured
toroidal mode numbers against those measured by external magnetic
probes, and discusses the effect of the interferometers’ radial offset. Fi-
nally, Section 6.4 provides an encouraging proof of principle regarding
the ability of the correlated interferometers to diagnose core-localized
MHD.
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6.1 two-point correlation

Two-point correlation allows inference of a propagating wave’s spatial
structure from measurements made at two distinct spatial locations.
Below, Section 6.1.1 details the two-point correlation technique. Sec-
tion 6.1.2 then discusses the aliasing of large wavenumbers and estab-
lishes a measurement’s Nyquist wavenumber, below which wavenum-
bers are not aliased. Finally, Section 6.1.3 converts the results of the
previous sections into their toroidal-mode-number equivalents, as is
conventional for fluctuation characterization in a tokamak.

6.1.1 Wavenumber measurement via two-point correlation

Consider a 1-dimensional, coherent density fluctuation with ampli-
tude en0, wavenumber k, and angular frequency !

en(z, t) = en0e
i(kz-!t). (6.1)

Imagine that the density is measured at two locations separated by
distance �z, producing two time series, x(t) and y(t), given as

x(t) = en(z0, t) (6.2)

y(t) = en(z0 +�z, t) = x(t)eik�z. (6.3)

The cross phase ↵xy between these two time series is

↵xy = arg [x⇤(t) · y(t)] (6.4)
= k�z, (6.5)

where x⇤ is the complex conjugate of x. Thus, a measured wavenum-
ber kmeas can be inferred from the cross phase via

kmeas =
↵xy

�z
. (6.6)

The cross phase ↵xy of x(t) and y(t) can be readily estimated via the
non-parametric, FFT-based spectral-estimation techniques discussed
in Appendix F.1. Note that such cross-phase estimates are frequency-
resolved, allowing simultaneous characterization of multiple fluctua-
tions at distinct frequencies.
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6.1.2 Aliasing & the Nyquist wavenumber

The measured wavenumber (6.6) may be aliased. To see this, note that
the cross-phase estimate ↵xy is only unique modulo 2⇡ (that is, 0

is equivalent to ±2⇡, ±4⇡, etc.). If the fluctuation wavenumber k is
sufficiently large (i.e. if it exceeds the so-called Nyquist wavenumber
kNy), this cross-phase ambiguity aliases the measured wavenumber
(6.6) away from the true wavenumber.

In the most general case, the wave’s propagation direction is not
known a priori, and both positive and negative wavenumbers should
be considered (i.e. -⇡ < ↵xy 6 ⇡). This cross-phase domain yields a
Nyquist wavenumber

kNy =
⇡

�z
, for unknown propagation direction. (6.7)

Wavenumber measurements (6.6) from fluctuations with |k| > kNy are
aliased, while measurements from fluctuations with |k| 6 kNy are not
aliased. Note that (6.7) is equivalent to the famed Nyquist frequency:
making the transformations �z ! 1/fs for temporal sampling rate
fs and k ! 2⇡f, (6.7) readily becomes fNy = fs/2. Thus, 1/�z can
be thought of as the spatial sampling rate, with a larger sampling rate
(i.e. smaller �z) allowing un-aliased measurements of larger wavenum-
bers.

Now, if the wave’s propagation direction is known a priori (for ex-
ample, if the wave propagation is dominated by advection, and the
fluid velocity is well-diagnosed), only a single polarity of wavenum-
bers need to be considered. For concreteness, positive wavenumbers
are considered below (i.e. 0 6 ↵xy < 2⇡). This cross-phase domain
yields a Nyquist wavenumber

kNy =
2⇡

�z
, for known propagation direction. (6.8)

6.1.3 Measurement of toroidal mode numbers

Fluctuations in a torus are often characterized by their toroidal n and
poloidal m mode numbers, both of which are constrained to be in-
tegers by the toroidal and poloidal periodicities, respectively, of the
torus. For a torus with major radius R, the toroidal mode number n is
related to the toroidal wavenumber k⇣ as

k⇣ =
n

R
, (6.9)
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and the toroidal angular separation �⇣ is related to the spatial separa-
tion �z as

�⇣ =
�z

R
. (6.10)

Using these definitions, the above formulas for the measured wavenum-
ber and the Nyquist wavenumber can be rewritten in terms of toroidal
mode numbers as follows:

nmeas =
↵xy

�⇣
, (6.11)

nNy =

8
<

:

⇡
�⇣ for unknown propagation direction
2⇡
�⇣ for known propagation direction

. (6.12)

6.2 toroidal correlation of interferometers

This section applies two-point correlation to the measurement of toroidal
mode numbers with DIII-D’s toroidally separated, heterodyne CO2 in-
terferometers. Section 6.2.1 describes the geometry of the interferom-
eter probe beams, which establishes the Nyquist toroidal mode num-
ber. Sections 6.2.2 and 6.2.3 then examine the relationship between
the interferometer-measured phase fluctuations and the toroidal mode
number. As the interferometers are capable of probing the plasma
core, their correlation allows direct measurement of the toroidal struc-
ture of core-localized modes — a long-sought after and first-of-its-kind
measurement at DIII-D.

6.2.1 DIII-D’s interferometers

DIII-D’s multichannel, two-color, heterodyne CO2 interferometer mea-
sures both the equilibrium [2] and fluctuating [3, 4] components of
the line-integrated electron density. Each channel is configured as
a Michelson interferometer, with each probe beam making a double-
pass through the plasma. The three vertical chords pass through the
V1, V2, and V3 ports at a toroidal location of 240�, while the radial
chord passes through the R0 port at a toroidal location of 225�. Of
particular relevance to this work is the V2 interferometer, which has
a major-radial location R = 1.94m and is shown in Figure 6.1. The
viewing geometry influences an interferometer’s sensitivity to various
MHD instabilities; for example, vertical chords are more sensitive to
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Figure 6.1: (a) A top-down view of the DIII-D vessel. The toroidal location of the V2

interferometer beam is ⇣ = 240�, and the toroidal location of the PCI beam is
⇣ = 285�. The DIII-D sign convention for toroidal mode numbers is that n > 0 for
modes that rotate counterclockwise when viewing the torus from above, as this
corresponds to the direction of dominant torque injection. (b) A poloidal cross
section of the DIII-D vessel. The major-radial location of the V2 interferometer beam
is R = 1.94m, and the major-radial location of the PCI beam is R = 1.98m.

toroidal Alfvén eigenmodes (TAEs), while radial chords are more sen-
sitive to reversed-shear Alfvén eigenmodes (RSAEs) [3].

The addition of a heterodyne-interferometer channel to DIII-D’s pre-
existing phase contrast imaging (PCI) system is discussed extensively
in Chapter 4 and elsewhere [5], but the details of relevance to the
toroidal-correlation measurement are briefly reviewed here. The PCI
probe beam sits at a toroidal location of 285� and has a major-radial
location R = 1.98m. The location of the PCI beampath relative to that
of the V2 interferometer is shown in Figure 6.1.

The geometry of the V2 and PCI interferometers has consequences
for the toroidal-correlation measurement. The interferometers are toroidally
spaced by �⇣ = 45� such that the Nyquist toroidal mode number (6.12)
becomes

nNy =

8
<

:
4 for unknown propagation direction

8 for known propagation direction
. (6.13)

The DIII-D sign convention for toroidal mode numbers is indicated in
Figure 6.1; that is, n > 0 for modes that rotate counterclockwise when
viewing the torus from above, as this corresponds to the direction of
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dominant torque injection. Consistency with this sign convention re-
quires that x(t) corresponds to the V2 interferometer signal and that
y(t) corresponds to the PCI interferometer signal when computing the
toroidal mode number via (6.11). Finally, the V2 and PCI interferome-
ter beam paths have a slight radial offset (�R = 4 cm with Rv2

= 1.94m
and Rpci = 1.98m); the consequences of this offset are discussed in Sec-
tion 6.3.4.

For completeness, it should also be mentioned that a three-chord, ra-
dially viewing Faraday-effect polarimeter-interferometer was recently
installed on DIII-D’s 285� R0 port [6]. While diagnosing core-localized
magnetic fluctuations is the primary impetus for this installation, the
system also measures line-integrated electron-density fluctuations. Pre-
sumably, these measurements could be correlated with those from the
225� R0 CO2 heterodyne interferometer. However, these two systems
do not have phase-locked sampling rates (the necessity of which is
discussed in Section 6.3.1), so no attempts to correlate their interfero-
metric measurements are performed in this work.

6.2.2 Interferometer-measured phase fluctuations

Consider a tokamak electron density fluctuation with complex ampli-
tude en0(r), toroidal mode number n, poloidal mode number m, and
angular frequency !

ene(r, t) = en0(r)e
i(n⇣+m✓-!t). (6.14)

The phase fluctuation (2.31) imparted to a CO2 probe beam propagat-
ing vertically through ene(r, t) becomes

e� = -re�0

Z
ene(r, t)dz.

= �ei(n⇣-!t), (6.15)

where

� = -re�0

Z
en0(r)e

im✓dz (6.16)

is a complex-valued function of the beam’s major-radial location and
the radial and poloidal mode structure. For a given mode, the V2 and
PCI interferometers see the same radial and poloidal mode structure
such that � effectively reduces to a one-dimensional function � =
�(R). Further, � can be written explicitly as a complex value � =
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|�|ei�. Thus, the phase fluctuation (6.15) can be written alternatively
as

e� = |�(R)|ei[n⇣-!t+�(R)], (6.17)

where the dependence on the major radius R of the beam has been
noted explicitly.

6.2.3 Interferometer-measured toroidal mode number

Define x(t) and y(t) to be the V2-measured and PCI-measured phase
fluctuations, respectively; i.e.

x(t) = e�v2

(t) = |�(Rv2

)|ei[n⇣v2

-!t+�(Rv2

)], (6.18)

y(t) = e�pci(t) = |�(Rpci)|e
i[n⇣pci-!t+�(Rpci)]. (6.19)

Then the cross phase (6.4) becomes

↵xy = n�⇣+
⇥
�(Rpci)- �(Rv2

)
⇤

, (6.20)

where �⇣ = ⇣pci - ⇣v2

= 45� is the toroidal separation between the in-
terferometer beams. The cross phase ↵xy of x(t) and y(t) can be read-
ily estimated via the non-parametric, FFT-based spectral-estimation
techniques discussed in Appendix F.1, but �(Rpci) and �(Rv2

) are not
typically known a priori. Nonetheless, the measured toroidal mode
number nmeas is defined as

nmeas =
↵xy

�⇣
, where �⇣ = 45�. (6.21)

However, if �(Rpci) 6= �(Rv2

), the measured mode number will not
be equal to the true mode number (i.e. nmeas 6= n); this is discussed
further in Section 6.3.4. Further, if the true mode number exceeds
the Nyquist mode number (6.13), the measured mode number will be
aliased away from the true mode number (i.e. nmeas 6= n).

6.3 implementation details and non-ideal effects

This section discusses various implementation details and non-ideal
effects regarding the toroidal correlation of the V2 and PCI interfer-
ometers. Specifically, Section 6.3.1 describes the modifications to the
V2 and PCI digitizers that now enable phase-locked measurements.
Section 6.3.2 unveils the presence of a deleterious “trigger offset” be-
tween the phase-locked systems but also demonstrates an easy and ro-
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bust methodology for estimating and compensating this offset in post-
processing software. Section 6.3.3 then compares the interferometer-
measured toroidal mode numbers with those measured by DIII-D’s
array of midplane magnetic probes, typically resulting in good agree-
ment for large, robust tearing modes. Finally, Section 6.3.4 discusses
how the �R = 4 cm major-radial offset between the V2 and PCI inter-
ferometers can bias the measured toroidal mode numbers; eliminat-
ing this radial offset is not possible with the current port allocations,
but future work to empirically or computationally account for the ra-
dial and poloidal mode structures may aid the interpretation of the
interferometer-measured toroidal mode numbers.

6.3.1 Phase-locked sampling

Extracting useful information from the correlation of two measure-
ments requires that the sampling rates of the two measurements are
phase-locked. If the sampling rates are not phase-locked, slippage be-
tween the sampling times will result in artificial evolution of the mea-
sured phase.

Digitizing the two signals on a common digitizer is the simplest
method for ensuring phase-locked sampling. Unfortunately, such an
approach is not suitable for the V2 and PCI interferometer signals.
The V2 interferometer’s �f0 = 40MHz intermediate-frequency signal
is demodulated using an all-digital technique that mandates use of a
sampling rate fs = (4/3)�f0 [7], and the baseband I and Q signals
never exist in analog form. In contrast, as described in Chapter 4 and
[5], the PCI interferometer’s �f0 = 30MHz intermediate-frequency
signal is demodulated with analog electronics, and the analog base-
band I and Q signals are then digitized on two channels of a D-tAcq
ACQ216 CPCI board. Because the V2 interferometer’s baseband I

and Q signals never exist in analog form, it is not possible to digitize
the V2 I and Q signals on the digitizer used by the PCI interferome-
ter. Further, because of the intermediate-frequency mismatch between
the V2 and PCI interferometers, it is also not possible digitally de-
modulate and digitize the PCI interferometer’s 30MHz intermediate-
frequency signal using the V2 interferometer’s 40MHz digital demod-
ulation system. An alternative approach is to directly digitize both
intermediate-frequency signals with a high-bandwidth digitizer and
demodulate both signals in software, as has been done elsewhere [8].
While DIII-D’s ion cyclotron emission (ICE) digitizer has a 200MSPS
sample rate, channels on the ICE digitizer are not consistently avail-
able.



6.3 implementation details and non-ideal effects 199

As sharing a common digitizer is not possible, phase-locked sam-
pling between the V2 and PCI interferometers requires that the digi-
tizers of both systems derive their clocks from a common source. The
V2 interferometer derives its clock from a 320MHz oven-controlled
crystal oscillator (OCXO), and its digital demodulation system has
two auxiliary outputs that can be programmed to output phase-locked
LVCMOS signals at 320MHz/N, where N 2 {1, 2, 3, ..., 32}. Both out-
puts are currently programmed with divisor N = 20 such that they
each provide a 16MHz clock signal. One of these 16MHz clock signals
is routed via an RG-58 coaxial cable from the V2 digital demodulation
hardware in the first row of the DIII-D annex to the PCI digitizer in
the third row of the DIII-D annex.

The PCI digitizer typically samples at fs = 4MSPS. Thus, division
of the V2 16MHz clock by four (in hardware or software) yields a clock
appropriate for typical sampling. Each board of the PCI digitizer can
accept an external clock through the front panel’s single-pin LEMO
CLK input. The CLK signal passes through an optocoupler with a
bandwidth ⇠ 10MHz [9], but in-house tests have demonstrated that
the input clock frequency can actually exceed 16MHz. As a result,
the 16MHz signal is directly connected to the front-panel LEMO CLK
input of the “master” digitizer board (“board 8”), and the necessary
division (i.e. divide by four to achieve typical 4MSPS sampling rate)
is performed within the digitizer board, which is cleaner, simpler, and
more easily extensible than performing the division in hardware. The
resulting 4MHz clock is routed to the “slave” digitizer board (“board
7”) via the PXI backplane. The phase-locked sampling of the V2 and
PCI systems has been in place since June 2016.

6.3.2 Estimating & compensating the “trigger offset”

As discussed in Appendix G, phase-locked digitizers can still suffer
from a so-called “trigger offset”, as defined by (G.7). A finite trigger
offset results (a) when a digitizer triggers at a time �t later than its
nominal trigger time and (b) when the sampling rate deviates from the
nominal sampling rate and the nominal trigger times of both digitizers
differ.

A finite trigger offset biases mode-number measurements. For ex-
ample, Figure 6.2(a) displays the toroidal mode numbers of two coher-
ent modes as measured by the uncompensated interferometers. Note
that the measured mode number of each mode (unphysically) evolves
with the mode frequency, which is consistent (see (G.9)) with the pres-
ence of a finite trigger offset between the interferometer measurements.
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Referencing (G.11), the trigger offset can be estimated from the mea-
sured mode-number evolution during a linear frequency sweep as

�ttrig =
d↵xy

d!
⇡ �↵xy

�!
⇡ 30µs, (6.22)

where �↵xy = �⇣ · �nmeas is the measured phase-angle change and
�⇣ = ⇡/4 is the angular separation of the interferometers (consistent
with (6.21)); here, the numerical value results from �nmeas ⇡ 5 and
�! ⇡ 2⇡ · 20 kHz, as indicated by the red circular annotations to the
lower-frequency mode in Figure 6.2(a). Note that �ttrig > 0 implies
that the actual sampling times of the PCI interferometer lag (i.e. oc-
cur later than) those of the V2 interferometer, as shown schematically
in Figure G.1. Applying standard techniques [10, Sec. 4.5] in post-
processing software to eliminate this 30µs timebase discrepancy dra-
matically reduces the unphysical mode-number evolution observed in
Figure 6.2(a). Scanning �ttrig about 30µs shows that the unphysical
mode-number evolution is minimized for

�ttrig = 32.5µs. (6.23)

Figure 6.2(b) displays the interferometer-measured toroidal mode num-
bers after compensating for trigger offset (6.23); note that the mode
numbers are constant in time, consistent with physical expectations.
It should be emphasized that the only difference between Figure 6.2(a)
and Figure 6.2(b) is the compensation of trigger offset (6.23).

Trigger offset (6.23) has been robustly stable since phase-locking the
V2 and PCI digitizers in June 2016, a timescale currently exceeding one
year. It is interesting to examine the physical origin of this trigger off-
set to understand when it might change. Referencing the definition of
�ttrig in (G.7), there are three distinct mechanisms contributing to the
trigger offset. The first effect is the difference between the trigger-time
discrepancies �tj of each digitizer; in a properly functioning digitizer,
this is discrepancy is typically smaller than one or two sample times
(i.e. . 1µs for the digitizers considered here), making it an unlikely
source of the relatively large trigger offset (6.23). The second effect is
the digitizers’ normalized sampling-rate deviation �Fj (phase-locked
digitizers have equal normalized sampling-rate deviations; see (G.5)).
Because the trigger offset (6.23) does not appear to vary in time, tem-
poral fluctuations in �Fj cannot be responsible; however, �Fj will be
constant and finite if the sampling rate has a constant offset from the
nominal sampling rate. The third effect is the weighting of �Fj by
the difference in nominal trigger times. Now, the V2 digitizer nomi-
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Figure 6.2: Interferometer-measured toroidal mode numbers (a) without
compensation for the trigger offset and (b) with compensation for the trigger offset.
In (a), the finite trigger offset (6.23) results in the unphysical evolution of the
measured toroidal mode numbers. The trigger offset is roughly estimated from the
measured mode-number evolution between the red circular annotations to the
lower-frequency mode (�f ⇡ 20 kHz and �n ⇡ 5; note that �nmeas refers to the total
number of mode numbers evolved through, i.e. it is path-dependent and is not
simply the difference between the final and initial nmeas). In (b), the digital records
of both interferometers have been synchronized by compensating for the finite
trigger offset (6.23), and the measured toroidal mode numbers are constant in time,
consistent with physical expectations. The 6-digit number in the upper right-hand
corner indicates the DIII-D shot.

nally triggers at tnom
v2

[0] ⇡ -1.5 s relative to plasma breakdown, while
the PCI digitizer nominally triggers at tnom

pci [0] = -0.05 s relative to
plasma breakdown. Solving for the �Fj in (G.7) and neglecting the
small trigger-time discrepancies �tj yields

�Fj ⇡
�ttrig

tnom
pci [0]- tnom

v2

[0]
⇡ 2.2⇥ 10-5, (6.24)

which is not an unreasonable precision for the digitizer sampling rates.
Thus, digitizer offset (6.23) appears to result from the combined effects
of finite sampling-rate precision (i.e. nonzero �Fj) and the difference
between the nominal trigger times of the V2 and PCI digitizers. Im-
portantly, if the nominal trigger times of the V2 or PCI digitizers are
altered in the future, the trigger offset will also change and will need
to be estimated from new measurements.
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Figure 6.3: A comparison of interferometric (left) and magnetic (right)
measurements of toroidal mode numbers. Here, cross-spectral densities are
estimated by averaging over ⇡ 14ms “ensembles”, each of which consists of 10
“realizations”; adjacent realizations have 50% overlap, and a Hanning window is
applied to each realization prior to performing any spectral computations. Only
points with magnitude-squared coherence �2xy > 0.5 are displayed in the
interferometer spectrum, while only points with coefficient of determination
R2 > 0.9 are displayed in the magnetic spectrum. See Appendix F for background
regarding spectral estimation. The 6-digit number in the lower right-hand corner
indicates the DIII-D shot.

6.3.3 Validation against magnetic measurements

After compensating for the trigger offset (6.23), the interferometer-
measured toroidal mode numbers can be validated against those mea-
sured by the DIII-D midplane magnetic probes [11]. The magnetic
probes measure the poloidal magnetic-field perturbation eB✓, as eddy
currents in the wall tend to reinforce eB✓ (in contrast, eddy currents
tend to shield the radial perturbations eBr). While toroidal mode num-
bers can be computed via two-point correlation of a single magnetic-
probe pair, a more robust estimate can be made by correlating each
unique magnetic-probe pair and then least-squares fitting the result-
ing cross-phase estimates vs. the corresponding toroidal separations
to a linear model; all of the magnetics-measured toroidal mode num-
bers presented in this work are computed via this more robust estima-
tion method. Figure 6.3 compares the interferometer-measured and
the magnetics-measured toroidal mode numbers; both measurements
indicate the presence of an n = 1 tearing mode and several higher or-
der harmonics. The good agreement between the interferometric and
magnetic measurements is typical for large, robust tearing modes.
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Figure 6.4: When the radial mode structure evolves, the �R = 4 cm major-radial
offset between the V2 and PCI interferometers can produce unphysical “jumping” of
the measured toroidal mode number, indicated here with red circular annotations.
The 6-digit number in the upper right-hand corner indicates the DIII-D shot.

6.3.4 Effect of major-radial offset

As discussed in Section 6.2.1, the beams of the V2 and PCI interferom-
eters have a �R = 4 cm major-radial offset. This major-radial offset can
bias the measured cross phase (6.20) between the two interferometer
signals, which produces a corresponding bias in the interferometer-
measured toroidal mode number (6.21). The cross-phase bias in (6.20)
is �(Rpci)- �(Rv2

), where �(R) = arg[�(R)] and �(R) is proportional
to the line-integrated radial and poloidal mode structure at major ra-
dius R, as defined in (6.16). Now, if the mode structure is up-down
symmetric about the midplane, � is real, and, modulo 2⇡, �(Rpci)-
�(Rv2

) 2 {0,⇡}. The toroidal mode number is correctly identified
when �(Rpci) - �(Rv2

) = 0 but is aliased (and thus incorrectly iden-
tified) when �(Rpci)- �(Rv2

) = ⇡. If the radial mode structure evolves
such that �(Rpci)- �(Rv2

) = 0 ! ⇡ or vice versa, the measured mode
number will “jump”; an example of such mode-number “jumping”
is shown in Figure 6.4. If the mode structure is not up-down sym-
metric about the midplane, however, � is complex, and the bias to
the measured mode number becomes continuous, rather than discrete.
Fast-ion shearing of Alfvén eigenmodes [12], for example, produces
such up-down asymmetries.

Currently, there is not a tested, robust method for correcting the
bias introduced by the major-radial offset of the interferometers (other
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than reducing the offset, i.e. �R ! 0, which is not possible with cur-
rent port allocations). Although external magnetic probes can cor-
roborate the interferometer-measured mode numbers in some cases,
such as in Figure 6.3, they are blind to core-localized fluctuations. It
may be possible to account for the radial and poloidal mode structure
via measurements from microwave imaging reflectometry (MIR) [13]
or electron cyclotron emission imaging (ECEI) [14] or via predictions
from ideal MHD (e.g. NOVA [15, 16]) or hybrid MHD-gyrofluid (e.g.
TAEFL [17, 18]) codes, but such efforts were deemed beyond the scope
of this work.

6.4 diagnosis of core-localized mhd

Directly measuring the toroidal mode numbers of core-localized MHD
was one of the primary motivations for the addition of a heterodyne-
interferometer channel to DIII-D’s pre-existing PCI system. As dis-
cussed in Section 6.3.4, however, the �R = 4 cm major-radial offset be-
tween the V2 and PCI beams introduces ambiguities in the interferometer-
measured mode numbers. Further, because core-localized MHD is, by
definition, invisible to external magnetic probes, the interferometer-
measured mode numbers cannot be corroborated by magnetics. Al-
though the interferometer-measured mode numbers may currently
be biased away from their true values, the mere presence of core-
localized MHD in the interferometer signals should still be considered
an encouraging proof of principle, where future work to eliminate
the major-radial offset would allow direct and accurate mode-number
measurements of core-localized MHD.

Figure 6.5 provides such a proof of principle. The top panel dis-
plays the fluctuating poloidal magnetic-field spectrum measured by
a high-frequency magnetic probe [11], while the second panel dis-
plays the toroidal mode numbers measured by the midplane array
of lower-bandwidth magnetic probes [11]. The third panel shows
the interferometer-measured toroidal mode numbers, indicating very
good agreement with the low-bandwidth magnetic measurements; how-
ever, between 1.8 s and 2.2 s, the interferometers measure a burst of
fluctuations that are invisible to the low- and high-bandwidth mag-
netic probes, indicating that the modes are core-localized. The modes
are triggered when the on-axis safety factor q0 drops below unity. Un-
fortunately, additional observations of core-localized MHD proved to
be surprisingly rare, and no systematic behavior could be identified
linking the few-and-far-between occurrences.
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Figure 6.5: Between 1.8 s and 2.2 s, the correlated interferometers (3rd panel)
measure a burst of fluctuations that are invisible to magnetics (1st and 2nd panels).
This suggests that the modes are core-localized and that the correlated interferometers
are indeed capable of measuring core-localized MHD. Various plasma parameters of
interest are shown in the lower panels; the modes are triggered when the on-axis
safety factor q0 drops below unity.
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7
C O N C L U S I O N S & F U T U R E W O R K

7.1 summary & conclusions

The work described in this thesis can be summarized as follows:

• Chapter 2 discusses the theory of optical interferometric meth-
ods in the context of measuring tokamak plasma-density fluc-
tuations. The laser-plasma interaction is quantified via Fraun-
hofer scalar-diffraction theory, and the resulting diffracted field
is imaged onto a square-law detector. Interfering the imaged
field with a known reference field produces measurable inten-
sity fluctuations; the specification of this reference field defines
the interferometric method. Details of two particular interfero-
metric methods — external-reference-beam interferometry and
phase contrast imaging (PCI) — are discussed, with an empha-
sis on their sensitivity to fluctuations and their spatiotemporal
bandwidths. Significantly, while PCI can measure fluctuations
more sensitively than an external-reference-beam interferometer,
PCI suffers from a low-k cutoff; an external-reference-beam in-
terferometer does not suffer from such a low-k cutoff.

• Chapter 3 considers the design of an external-reference-beam,
heterodyne interferometer (hereafter referred to as a heterodyne
interferometer). A criterion for satisfactory wavefront matching
between the probe beam and the reference beam is developed,
and finite-sampling-volume effects are shown to constrain the
heterodyne interferometer’s spatial bandwidth. The effects of
phase noise, amplitude noise, and digitizer bit noise are each dis-
cussed in the context of the heterodyne interferometer’s signal-
to-noise ratio, and the systematic errors resulting from imperfect
demodulation of the heterodyne interference signal are quanti-
fied.

• Chapter 4 details the addition of a heterodyne interferometer
to the pre-existing PCI system on the DIII-D tokamak. Both
systems operate simultaneously, sharing a single 10.6µm probe
beam through the plasma. Optical-diagnostic access on DIII-D
and the capabilities of the pre-existing PCI system are briefly
reviewed. Referencing the design considerations in Chapter 3

209
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and adopting the philosophy that the pre-existing PCI system
should be minimally perturbed, the optical layout for the het-
erodyne interferometer is developed; the magnification of the
interferometer’s imaging system is selected such that the spatial
bandwidths of the PCI and interferometer have a mid-k over-
lap. The design, procurement, and installation of the new opti-
cal and electrical components required to make the heterodyne
interferometric measurement are summarized. Of note is the in-
terferometer’s radio-frequency local oscillator: the phase noise
of a crystal oscillator (XO) was empirically found to be too large
to make meaningful fluctuation measurements in most tokamak
plasmas, but the substantially lower phase noise of an oven-
controlled crystal oscillator (OCXO) allows measurements of a
whole zoo of coherent and broadband plasma fluctuations. The
interferometer response and the multiscale capabilities of the
combined PCI-interferometer are empirically verified via sound-
wave calibrations. Specifically, the PCI is shown to measure
high-k (1.5 cm−1 < |kR| 6 25 cm−1) fluctuations with sensitivity
3 ⇥ 1013 m-2/

p
kHz, while the interferometer simultaneously

measures low-k (|kR| < 5cm−1) fluctuations with sensitivity 3⇥
1014 m-2/

p
kHz. Both systems have temporal bandwidths in

excess of 1MHz.

• Chapter 5 demonstrates the multiscale capabilities of the com-
bined PCI-interferometer. During a recent DIII-D experiment,
the location of electron cyclotron resonance heating (ECH) was
moved from ⇢ECH = 0.5 to ⇢ECH = 0.8, altering the local a/LTe

and a/LTi
in an attempt to change the coupling between the

electron-scale and ion-scale turbulence. As such, this experi-
ment presents an ideal opportunity for multiscale turbulence
investigations with the combined PCI-interferometer. Numer-
ous turbulent branches are observed. In particular, the interfer-
ometer measures a low-k electromagnetic mode driven unsta-
ble by collisionality, properties consistent with the micro-tearing
mode (MTM), and the PCI measures a wavenumber spectrum
that exhibits distinct flattening when a/LTe

is increased relative
to a/LTi

, reminiscent of results from realistic multiscale gyroki-
netic simulations [1]. To aid the interpretation of these measure-
ments, linear-stability analysis and quasilinear-transport model-
ing are performed with the gyro-Landau fluid code TGLF, and
qualitative agreement with the PCI-measured wavenumber spec-
trum is obtained.
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• Chapter 6 discusses the correlation of the newly installed in-
terferometer with DIII-D’s toroidally separated, pre-existing V2

interferometer. Capable of probing the core plasma, the inter-
ferometers are shown to be sensitive to core-localized fluctua-
tions that are invisible to external magnetic probes. The chap-
ter begins with a brief review of the two-point correlation tech-
nique and shows how toroidal mode numbers can be extracted
from a pair of toroidally separated measurements. Meaningful
correlation requires that the two measurements share the same
timebase. The digitizers of both interferometers were modified
to phase lock their clocks, and a residual “trigger offset” was
measured and is compensated in software. Where comparisons
can be made with magnetic probes, the interferometer-measured
toroidal mode numbers are in good agreement. Currently, there
is not a tested, robust method for correcting the bias introduced
by the 4 cm major-radial offset between the interferometer beam
centers, which unfortunately limits the deployment of this sys-
tem for physics studies of core-localized MHD.

7.2 future work

The combined PCI-interferometer developed in this work has a clear
application in the burgeoning study of multiscale turbulence and cross-
scale coupling, which may be significant in the reactor relevant Te ⇡ Ti
regime. In roughly the next six months, Howard et al. expects to com-
plete realistic multiscale gyrokinetic simulations for the experiment
described in Chapter 5. It will be very interesting to see if the pre-
dicted wavenumber spectrum matches the PCI-measured wavenum-
ber spectrum. It should be noted that a synthetic PCI diagnostic al-
ready exists for the interpretation of such gyrokinetic simulations [2].
Small modifications to the synthetic PCI should also allow a synthetic
interferometer diagnostic. Previous multiscale simulations predict sig-
nificant local and non-local energy cascades between the ion and elec-
tron scales [1], so it is desirable to investigate such coupling empir-
ically. With its large spatiotemporal bandwidth, the combined PCI-
interferometer may be ideally suited for measurement of such cou-
pling, which may be suitably quantified by the bicoherence [3] be-
tween various channels of the system or some other suitable measure
of nonlinear processes. (Note that the author has performed prelimi-
nary bispectral analysis of the measurements discussed in Chapter 5;
interestingly, the |kR| ⇠ 5 cm−1 and f ⇠ 1MHz mode observed in Fig-
ure 5.9(b) has an exceptionally large autobicoherence).
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The interferometer-measured, low-k, electromagnetic modes that
are destabilized by collisionality are also deserving of further study.
The properties of this mode are consistent with the micro-tearing mode,
which was predicted to be marginally unstable in the multiscale exper-
iment’s reference discharge [4]. Unfortunately, TGLF’s default eigen-
function basis of four Hermite polynomials is typically insufficient
to resolve micro-tearing modes (MTMs) [5], so there are no attempts
to simulate the MTM in this work. However, it may be conceivable
that increasing the number of Hermite polynomials will allow identifi-
cation of the MTM in TGLF. Alternatively, linear simulations with the
gyrokinetic code GYRO [6] could be pursued. (Note that the reference-
discharge simulations indicating marginal MTM instability were per-
formed with GYRO). Experimentally, it is desirable to map out the
parametric dependencies of this mode, particularly its response to
the plasma � and collisionality. If dedicated experiments cannot be
performed, it should be noted that the relevant experimental condi-
tions (i.e. ITER-baseline scenario) are fairly typical at DIII-D, and a
fair amount may still be learned by “piggybacking” on other experi-
ments.

With regards to the combined PCI-interferometer, the most substan-
tial improvement to the system would be upgrading the heterodyne-
interferometer detector from a single element to a multi-element ar-
ray. This would allow reconstruction of kR from the interferometer
measurements, enabling estimates of frequency-wavenumber spectra
S�,�(k, f) and wavenumber spectra S�,�(k) much like with the PCI.
This capability is desirable for several reasons. First and foremost, in-
terferometric measurements across a multi-element array would allow
accurate estimates of S�,�(k) below the PCI low-k cutoff (4.2), which
may have important implications for validation of spectral-flattening
predictions from multiscale gyrokinetic predictions. Further, as dis-
cussed in Section 4.8.2, interferometric measurements across a multi-
element array would allow robust and accurate cross-calibration of
the PCI on a shot-to-shot and an intra-shot basis. Note that each ad-
ditional detector element would require its own set of electronics (e.g.
signal conditioning RF amplifiers, demodulation electronics, and au-
dio amplifiers) and two additional digitizer channels (to digitize both
the in-phase I and quadrature Q signals). While the “deadbug” cir-
cuit construction utilized in this work is ideal for prototyping, any
future increase to the number of interferometer channels would call
for a printed-circuit-board (PCB) construction of the electronics. Thus,
increasing the number of interferometer channels is not a small under-
taking.
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A simpler, cheaper, and faster performance improvement would be
the procurement of anti-aliasing filters with a higher cutoff frequency.
The current anti-aliasing filters limit the bandwidth of the interfer-
ometer to approximately 1MHz, but the upstream components have
bandwidths in excess of 2MHz. Thus, new anti-aliasing filters could,
quite literally overnight, nearly double the temporal bandwidth of the
interferometer.

Finally, there is not currently a tested, robust method for correcting
the bias introduced by the major-radial offset of the toroidally cor-
related interferometers (other than reducing the offset, i.e. �R ! 0,
which is not possible with current port allocations). It may be possible
to account for the radial and poloidal mode structure via e.g. mea-
surements from microwave imaging reflectometry (MIR) [7] or elec-
tron cyclotron emission imaging (ECEI) [8]. A fully functional system
would, for example, enable the detection and identification of Alfvén
eigenmode toroidal mode numbers and, consequently, quantification
of their damping rates, as has been done in JET [9].

Looking towards ITER and other next-step devices, the combined
PCI-interferometer may allow sensitive, high spatiotemporal bandwidth
measurements of multiscale turbulence. The diagnostic development
pursued in this thesis proves that heterodyne-interferometric detec-
tion and PCI detection can be simultaneously implemented using a
shared probe beam and a shared set of ports. The addition of PCI de-
tection to e.g. the ITER interferometer [10], however, is not without its
challenges. For example, the ITER interferometer employs a Michel-
son configuration, with the beam making a second pass through the
plasma after bouncing off of a retroreflector inside the vacuum ves-
sel. In contrast, at least to the author’s knowledge, all previous PCI
implementations have employed a Mach-Zehnder configuration, with
the probe beam making a single pass through the plasma. In princi-
ple, PCI can use a Michelson configuration, but the double pass and
retroreflector may complicate interpretation of the measurements, par-
ticularly if attempting to localize the measurements with a spatially fil-
tering mask [11, 12, 13] or with 2-dimensional detector arrays [14, 15].

Regardless, the spatial bandwidth of a PCI system that shares its
probe beam with the ITER interferometer can be considered. The
1/e E waist of the ITER interferometer’s 10.6µm probe beam is w0 ⇡
8mm [10] such that a PCI system using this probe beam would have
a diffraction-limited low-k cutoff (2.88) of 2.5 cm−1. (However, recall
that the DIII-D PCI is operated two to three times above the diffraction
limit to give some leeway to the PCI feedback system). Of course, as
demonstrated in this thesis, simultaneous heterodyne-interferometric
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and PCI detection can obviate the PCI’s low-k cutoff. A somewhat
larger problem, however, may be the limited collection volumes and
long path lengths between the vacuum vessel and the detector, which
may impose severe constraints on the high-k cutoff of a 10.6µm PCI
or interferometer. One potential solution is to use a smaller probe
wavelength (i.e. larger k0) to decrease the scattering angle ✓m from
(A.14). As the burning plasma regime will be predominantly electron
heated (i.e. via fusion alpha particles slowing down on electrons), it
is extremely important that both high-k electron turbulence and any
cross-scale coupling with low-k ion turbulence is accurately diagnosed
and understood.
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A
D I F F R A C T I O N O F A G A U S S I A N P R O B E B E A M

a.1 kirchhoff scalar-diffraction theory

As discussed in the text surrounding (2.25), a CO2 probe beam in
a tokamak plasma propagates as a transverse electromagnetic wave
with near-constant polarization (with any small changes to beam po-
larization being of little practical interest to the present work). Thus,
it is suitable to pursue a scalar theory of the beam’s interaction with
the plasma. Below, Kirchoff’s scalar-diffraction theory is summarized.

A monochromatic scalar wave U(r)e-i!t in vacuum satisfies the
Helmholtz equation

(r2 + k2)U = 0, (A.1)

where k = !/c. The Helmholtz-Kirchhoff integral theorem states that
the field at a point P is

U(P) =
1

4⇡

Z

S


U
@

@n

✓
eiks

s

◆
-

eiks

s

@U

@n

�
dS, (A.2)

where S is an arbitrary surface that encloses P, s is the vector from
point P to differential area element dS, n is the inward-pointing normal
of surface S, and U is assumed to be differentiable to second order
within and on S [1, Sec. 8.3]. The relevant geometry is sketched in
Figure A.1(a).
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S

dS

s

n

(a) (b)
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s = ρ' - r
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S2n

Figure A.1: Geometries for Kirchhoff scalar-diffraction calculations. When S1 is
imaged by an optical system, S1 is referred to as the object plane.
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218 diffraction of a gaussian probe beam

To proceed with the diffraction calculation, assume that the inci-
dent waves propagate in the +z-direction and adopt the surface drawn
in Figure A.1(b). That is, S = S1 + S2, where S1 is a circle in the
(x,y)-plane, and S2 is a spherical segment centered on the optical axis.
When S1 is imaged by an optical system, S1 is referred to as the object
plane. Now, assume that the incident waves were “turned on” at some
finite time in the past, and take the radius of S2 to be large enough
such that none of the diffracted waves have had sufficient time to reach
S2, i.e. U ⌘ 0 on S2. (Of course, strictly speaking, the source’s finite
turn-on time requires relaxation of the monochromatic assumption. Fi-
nite turn-on time does not preclude a pseudo-monochromatic source,
however, and such a source is assumed hereafter). Thus, the integral
over S2 vanishes, and the diffraction calculation reduces to an integral
over S1.

Now, evaluation of the Helmholtz-Kirchhoff integral (A.2) requires
knowledge of U on S1. For free-space propagation, S1 is an imagined
(rather than a physical) surface that does not impede the propagation
of the incident wave U(i) (that is, U = U(i) and @U/@n = @U(i)/@n on
S1). If, however, S1 contains opaque obstacles, the free-space propa-
gation conditions are no longer valid; instead, the Kirchhoff boundary
conditions can be adopted:

surfaces of clear aperture: U = U(i),
@U

@n
=
@U(i)

@n
,

opaque surfaces: U = 0,
@U

@n
= 0.

While these boundary conditions are adequate for the current applica-
tion, it should be noted that they are not physical for points that are
very close to the boundaries of the opaque obstacles.

a.2 free-space diffraction of a gaussian beam

This section demonstrates that the Fraunhofer diffraction formalism
gives the correct form for a free-space Gaussian beam in the far-field
limit, and it also lays the groundwork for examining the diffraction
of a Gaussian beam from plasma-density fluctuations. Note that the
Gaussian-beam definition provided in Section 2.2.1 is used throughout
the remainder of this appendix.

Assume that the incident Gaussian beam has a waist at S1, and take
the radius of S1 to be much larger than the beam waist w0 such that
the domain of integration effectively extends over the whole (x,y)-
plane. For free-space propagation, S1 does not perturb the Gaussian
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beam; thus, E(r, t) = E(i)(r, t) = EG(r)e-i!0t, where EG(r) is the
Gaussian beam’s spatial dependence, as defined by (2.33). Now, in the
far-field (k0s � 1) and paraxial (s ⇡ -zẑ) approximations

eik0s

s
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⇡ eik0s

z
,
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✓
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⇡ -ik0

✓
eik0s

z

◆
.

The s-dependence in the phase arguments has been retained, as it is
the mechanism responsible for diffraction, but the s-dependence in
the amplitude has been dropped as it only gives rise to negligible vari-
ations in the amplitude of the diffracted wave. Relative to a spherical
wave, a Gaussian beam has several additional z-dependencies; how-
ever, at the beam’s waist
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Then, if the beam’s Rayleigh range is much greater than the probe
wavelength (k0zR � 1) and the relevant transverse dimensions are
much less than the Rayleigh range (w0 ⌧ zR), the Gaussian beam at
S1 satisfies

EG(r 0)
��
S1

⇡ E0e
-(⇢ 0/w0)

2

,

@EG(r 0)
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⇡ ik0

h
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2
i

.

Note that the CO2 laser beams (k0 ⇡ 2⇡⇥ 105m−1) that probe toka-
mak plasmas often have zR � 10m such that k0zR � 1 and w0 ⌧ zR
(the transverse dimensions are constrained by the machine size such
that w0 ⌧ 1m) are very well-satisfied.

Substituting the above expressions for the incident waves and their
surface-normal derivatives into the Helmholtz-Kirchhoff integral (A.2)
and simplifying yields

E(r) ⇡ -iE0

�0z

Z

S1

e-(⇢ 0/w0)
2

eik0sdS. (A.3)
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To proceed further, s must be approximated:

s = |⇢ 0 - r|

=
⇥
r2 - 2(x 0x+ y 0y) + (x 02 + y 02)

⇤1/2

⇡ r-
x 0x+ y 0y

r
, (A.4)

where only terms linear in (x 0/r) and (y 0/r) have been retained. This is
known as the Fraunhofer limit, and it is valid in the far-field z � zR [1,
Sec. 8.3.3]. Under the Fraunhofer limit the diffraction integral (A.3)
becomes

E(r) ⇡ -iE0

�0z
eik0rDxDy, (A.5)

where

Dx =
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-1
e-(x 0/w0)

2

e-ik0x
0x/rdx 0 (A.6)

= F
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e-(x 0/w0)

2
i
(k0x/r)
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⇡w0e

-(k0w0x/2r)
2

(A.7)

gives the diffraction pattern in the x-direction, and the integral has
been easily evaluated by noting that it is simply the Fourier transform
of a Gaussian. The diffraction pattern in the y-direction, Dy, is simi-
larly determined. Note that the e-ik0x

0x/r = e-ik0x
0 sin✓ term in (A.6)

is the typical geometric phase factor that results from path-length dif-
ferences between points on surface S1 and the field point r, as shown
in Figure A.2. Substituting (A.7) into (A.5) yields

E(r) ⇡ -iE0

⇣zR
z

⌘
e-(k0w0⇢/2r)

2

eik0r. (A.8)

Is this consistent with the expected far-field representation of a Gaus-
sian beam? Yes! To see this, note that in the far-field (z � zR)

zR
z

⇡ w0

w(z)
,

k0w0⇢

2r
⇡ ⇢

w(z)
,

r ⇡ z+
⇢2

2R(z)
,

-i = e-i⇡/2 ⇡ e-i (z),
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Figure A.2: (a) Typical Fraunhofer diffraction geometry and (b) a close up that
displays the path-length difference x 0 sin ✓ between a wave emanating from the
origin and a wave emanating from x 0

such that the diffracted field in the Fraunhofer limit (A.8) can be cast
in the form of a typical Gaussian beam as expressed in (2.33), i.e.
E(r) = EG(r) for z � zR. Of course, when considering free-space
propagation, E(r) ⌘ EG(r) for 0 6 z < 1, but the above work proves
that the Fraunhofer diffraction formalism gives the correct results un-
der the appropriate limits; it also lays the groundwork for examining
the diffraction of a phase-modulated Gaussian beam.

a.3 diffraction from plasma-density fluctuations

Now, allow a Gaussian CO2 probe beam to pass through a tokamak
plasma. The beam acquires the plasma-induced phase delay �(⇢ 0, t)
given by (2.30), where ⇢ 0 corresponds to the beam’s transverse di-
mensions. Explicitly dividing � into bulk �(t) and spatially varying
e�(⇢ 0, t) components, the plasma-induced phase delay becomes

�(⇢ 0, t) = �(t) + e�(⇢ 0, t). (A.9)

Typically, e� varies on much faster time scales than �, but this is not
required. The spatial variation of the plasma-induced phase delay con-
tributes to the diffraction of the incident Gaussian probe beam, and
the remainder of this section uses scalar-diffraction theory to deter-
mine the diffracted field in the Fraunhofer limit; the near-field form
consistent with the computed Fraunhofer field is then inferred. (The
object planes of the imaging systems relevant to this work sit in the
near field, so computation of the imaged field requires knowledge of
the near-field diffraction pattern).

The response functions of the diagnostics investigated in Sections 2.4
and 2.5 are shown to be linear in their regimes of relevance, so it is suf-
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ficient to examine phase fluctuations e� consisting of a single Fourier
mode

e�(⇢ 0, t) = e�0 cos(kx 0 -!t). (A.10)

As a CO2 beam’s optical cycles (!0 = 2⇡ · 28.3 THz) occur much more
rapidly than the temporal evolution of the plasma (! . 2⇡ · 1GHz),
the problem can be treated adiabatically by solving for the beam prop-
agation at each instant in time during the relatively slow evolution of
�. Then, following the formalism pioneered by Raman and Nath [2, 3],
this plasma-induced phase delay makes an additional phase contribu-
tion to the diffraction integral (A.6) such that the diffraction pattern in
the x-direction is given as

Dx =

Z1

-1
e-(x 0/w0)

2

e-ik0xx
0/rei�(x 0,t)dx 0

= ei�
Z1

-1
e-(x 0/w0)

2

e-ik0xx
0/rei

e�0 cos(kx 0-!t)dx 0

= ei�
Z1

-1
e-(x 0/w0)

2

e-ik0xx
0/r

⇥
� 1X

m=-1
im
h
Jm(e�0)

i
eim(kx 0-!t)

✏

dx 0

= ei�
1X

m=-1
im
h
Jm(e�0)

i
e-im!t

⇥
Z1

-1
e-(x 0/w0)

2

e
-i
⇣
k0x

r -mk
⌘
x 0
dx 0

=
p
⇡w0e

i�
1X

m=-1

�
im
h
Jm(e�0)

i
e-im!t

⇥ e
-
h
w0
2

⇣
k0x

r -mk
⌘i2�

,

(A.11)

where the bracketed expression in the third equality follows from ap-
plication of the well-known Jacobi-Anger expansion and Jm is the mth

Bessel function of the first kind. Noting that E(r, t) = E(r)e-i!0t,
substitution of (A.11) into (A.5) yields
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Figure A.3: Coordinate transformation for interpretation of the diffraction pattern of
a phase-modulated Gaussian beam

Here, only the |m| 6 1 terms have been retained because |Jm(e�0)| ⇠
e�|m|
0 for experimentally relevant values of e�0 ⌧ 1. (The complete

small-argument, asymptotic form for Jm is discussed in Section 2.3.3).
The effect of higher order terms can be easily investigated by e.g. in-
cluding the m = ±2 terms etc.

To put (A.12) in a more familiar form, consider the coordinate trans-
formation from the lab-frame coordinate system r to the coordinate
system of the mth scattered beam rm, as depicted graphically in Fig-
ure A.3. As the transformation is simply a rotation about the y-axis
by angle ✓m, the coordinate systems are related via

0
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where

sin ✓m ⌘ mk

k0
. (A.14)

Typically, mk/k0 ⌧ 1 such that

cos ✓m ⇡ 1-
1

2

✓
mk

k0

◆2

(A.15)

is a very good approximation. The above coordinate transformation
can be written more compactly as

rm = [R(✓m)]r, (A.16)
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where

R(✓) =

0

BB@

cos ✓ 0 - sin ✓
0 1 0

sin ✓ 0 cos ✓

1

CCA (A.17)

is the rotation matrix that rotates the (x, z)-plane about the y-axis by
angle ✓. Rotation matrices are orthogonal, which endows R(✓m) with
some useful properties [4, Ch. 6]; namely, its inverse is equal to its
transpose [R(✓m)]T

[R(✓m)]T = [R(✓m)]-1 = R(-✓m), (A.18)

and its determinant is unity

det[R(✓m)] = |R(✓m)| = 1 (A.19)

such that the rotation preserves lengths, i.e. rm = r. It is sufficient to
retain terms only to first order in k/k0 (small scattering angle) and x/z

(paraxial limit) for the amplitude dependencies of the diffracted field
(this is not, in general, true for the phase dependencies). Thus, 1/z ⇡
1/zm and x ⇡ xm+(mk/k0)z such that the Fraunhofer diffracted field
(A.12) can be rewritten as

E(r, t) ⇡ ei�
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(A.20)

where ⇢m = (x2m + y2
m)1/2. Now, the bracketed expression has the

form of (A.8) for a far-field Gaussian beam; thus, the diffracted electric
field can be more compactly and generally written as

E(r, t) ⇡ ei�
1X

m=-1

im
h
Jm(e�0)

i
EG(rm)e-i(!0+m!)t. (A.21)

Note that (A.21) is valid for 0 6 z < 1 rather than only for z �
zR; that is, computing the far-field diffraction pattern has additionally
allowed inferring the corresponding near field.

Thus, a sinusoidal phase modulation diffracts an incident Gaus-
sian beam predominantly into downscattered (m = -1), unscattered
(m = 0), and upscattered (m = 1) Gaussian beams. The incident beam
is coupled into the mth scattered beam with strength Jm(e�0). The
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mth scattered beam is Doppler shifted relative to the incident beam
by m! and propagates at an angle ✓m ⇡ mk/k0 relative to the lab-
frame optical axis. The adiabatic assumption (!/!0 ⌧ 1) is very
well-satisfied for a CO2 probe beam in a typical tokamak plasma (i.e.
!/!0 . 1GHz/28.3 THz ⇠ 10-5). Thus, the scattering is very nearly
elastic, and |k0,m| = k0 is a very good approximation. This constraint
of elasticity coupled with knowledge of the scattering angle ✓m allows
determination of the scattered wavevector

k0,m = (mk)x̂+ k0

"

1-

✓
mk

k0

◆2
#1/2

ẑ. (A.22)

Finally, note that the simultaneous presence of both the upscattered
and downscattered beams (a key prediction of the Raman-Nath for-
malism) under typical experimental conditions has been demonstrated
empirically [5, Sec. 2.1]. In the above formalism, the simultaneous
upscattering and downscattering of the incident probe beam results
from the assumption of a sinusoidal phase fluctuation in (A.10); if a
complex exponential were assumed instead, one would erroneously
deduce that only one such scattering process (either up or down) oc-
curs.

a.4 validity of the raman-nath formalism

The Raman-Nath formalism employed in Section A.3 is valid as long
as the fluctuation wavenumber k is not “too large”. This constraint
has been rigorously quantified by Bhatia and Noble [6, 7] and is also
discussed by Born and Wolf [1, Ch. 12]. Specifically, beam diffraction
will be in the Raman-Nath regime when

� =
ene

ne

✓
k0
k

◆2

� 1, (A.23)

where ne is the bulk plasma density, ene is the amplitude of the plasma-
density fluctuation, k0 is the vacuum wavenumber of the probe beam,
and k is the wavenumber of the plasma-density fluctuation. Note
that the above � is equivalent to that used by Bhatia and Noble, after
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having made the appropriate substitutions for a CO2 probe beam in a
tokamak plasma. Assuming typical tokamak values

ene

ne
⇠ 10-3,

k . 30 cm−1

yields � & 40 for a CO2 probe beam (k0 ⇡ 2⇡ · 105m−1) such that
the beam’s diffraction is well within the Raman-Nath regime. In the
opposite regime (� ⌧ 1) the beam can Bragg scatter from the phase
fluctuation, producing a single, strongly-scattered beam [7] [1, Ch. 12];
such Bragg scattering is the foundation of acousto-optics.

a.5 wavenumber filtering of the diffracted field

Examine again the diffracted field (A.21). The spatial dependence of
each term in the summation is wholly governed by the factor EG(rm),
which corresponds to a Gaussian beam that emanates from the beam
waist at an angle ✓m relative to the lab-frame z-axis. The coordinate
system rm is defined such that the mth Gaussian beam propagates
along the zm-axis, and it is related to the lab-frame coordinate system
r via (A.16). The wavenumber basis km that is dual to rm is similarly
related to the lab-frame wavenumber basis k via

km = [R(✓m)]k, (A.24)

which naturally results from the geometric constraint that k · r = km ·
rm.

Imagine now that each of the above Gaussian beams is somehow
manipulated based upon its Fourier wavenumber content. Assume
this manipulation can be described in terms of a transfer function T(k),
where k is the lab-frame wavenumber basis. A transfer function of this
form is appropriate for investigating e.g. diffraction from an aperture
or the action of a phase plate. Using the wavenumber basis transfor-
mation (A.24), this transfer function can be written in terms of the km

wavenumber basis as

T(k) = T(R-mkm), (A.25)
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where the abbreviation Rm = R(✓m) has been adopted. The trans-
formed field ET then has the Fourier representation in the km wavenum-
ber basis

ET (km) = T(R-mkm) · EG(km). (A.26)

Inverse Fourier transforming ET (km) yields

ET (rm) =
1

(2⇡)3

Z
dkm

⇥
T(R-mkm)eikm·rm

⇤
EG(km). (A.27)

Note that each spectral component EG(km) individually satisfies the
wave equation. Thus, the above construction of the transformed field
ET (rm), which consists of a linear combination of the spectral com-
ponents with arbitrary amplitudes and phases, also satisfies the wave
equation. Now, explicitly writing EG(km) as the Fourier transform of
EG over a dummy spatial coordinate r 0, and exchanging the order of
integration yields

ET (rm) =
1

(2⇡)3

Z
dr 0 EG(r 0)

Z
dkm T(R-mkm)eikm·(rm-r 0). (A.28)

Further, for the applications considered here, it is advantageous to
change the variables of integration from the km wavenumber basis to
the lab-frame wavenumber basis k. Note that

dkm =

����
@km

@k

����dk = |Rm|dk = dk (A.29)

and that

km · (rm - r 0) = (Rmk) · (rm - r 0)

= (Rmk)T (rm - r 0)

= kTRT
m(rm - r 0)

= k · [R-m(rm - r 0)] (A.30)

such that the transformed field ET (rm) becomes

ET (rm) =
1

(2⇡)3

Z
dr 0 EG(r 0)

Z
dk T(k)eik·[R-m(rm-r 0)], (A.31)

where, again, the abbreviation R-m = R(-✓m) has been adopted and
R(✓) is the rotation matrix given by (A.17).

To make further progress, a particular form of T(k) is needed. As-
sume that wavenumbers are filtered only in the direction of beam scat-
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tering i.e. T(k) = T(kx). (For example, the groove of a phase plate
would be aligned with the lab-frame y-axis to effect such filtering).
Then

R-m(rm - r 0) =

0

BB@

(xm - x 0) cos ✓m + (zm - z 0) sin ✓m
ym - y 0

(zm - z 0) cos ✓m - (xm - x 0) sin ✓m

1

CCA (A.32)

such that (A.31) becomes

ET (rm) =
1

(2⇡)3

Z
dr 0 EG(r 0)

Z
dky eiky(ym-y 0)

⇥
Z
dkz e

ikz[(zm-z 0) cos✓m-(xm-x 0) sin✓m]

⇥
Z
dkx T(kx)e

ikx[(xm-x 0) cos✓m+(zm-z 0) sin✓m]

=
1

2⇡

Z
dr 0 EG(r 0)�(ym - y 0)

⇥ �
�
(zm - z 0) cos ✓m - (xm - x 0) sin ✓m

�

⇥
Z
dkx T(kx)e

ikx[(xm-x 0) cos✓m+(zm-z 0) sin✓m]

=
1

2⇡

Z
dx 0 EG

�
x 0, ym, zm - (xm - x 0) tan ✓m

�

⇥
Z
dkx T(kx)e

ikx(xm-x 0) sec✓m
(A.33)

Contributions to the integral from regions outside of |x 0| . w(zm) are
suppressed by the Gaussian envelope such that

w
�
zm - (xm - x 0) tan ✓m

�
⇡ w(zm),

R
�
zm - (xm - x 0) tan ✓m

�
⇡ R(zm),

 
�
zm - (xm - x 0) tan ✓m

�
⇡  (zm)

are very good approximations. Note that the phase of the Gaussian
beam cannot be approximated in such a manner; instead, terms up to
first order in ✓m must be retained in the phase. After making these
approximations, (A.33) reduces to

ET (rm) ⇡ EG(0,ym, zm) · E(rm,k), (A.34)
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where

E(rm,k) =
e-imkxm

2⇡

⇥
Z
dx 0 exp


-x 02

w(zm)2

�
exp

�
i


mkx 0 +

k0x
02

2R(zm)

��

⇥
Z
dkx T(kx)e

ikx(xm-x 0)

(A.35)

is a complex-valued function that describes the amplitude and phase
transformations that result from filtering the scattered radiation by
T(kx). (Note that (A.34) readily reduces to ET (rm) = EG(rm) when
T(kx) = 1, in agreement with expectations). Generalizing (A.21) to
allow for such wavenumber-dependent manipulation yields a total
diffracted electric field

E(r, t) ⇡ ei�
1X

m=-1

im
h
Jm(e�0)

i
ET (rm)e-i(!0+m!)t. (A.36)

Manipulating the total diffracted electric field in such a manner forms
the foundation of phase contrast imaging (PCI), as is discussed in Sec-
tion 2.5.
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B
I M A G I N G S Y S T E M S

b.1 geometric optics of imaging systems

Let the optical axis of an arbitrary optical system lie along the z-axis,
and let all optical rays lie in a plane with the optical axis. At a given
position zj, an optical ray is fully described by its transverse distance
⇢ to the optical axis and its slope d⇢/dz. In the paraxial limit d⇢/dz ⇡
✓, where ✓ is the angle between the ray and the optical axis. Ray
propagation through homogeneous media and refractive interfaces is
well-governed by the so-called ABCD ray-matrix formalism [1, Ch. 15];
that is, a ray propagating from point j to point j+ 1 evolves as

 
⇢j+1

✓j+1

!

=

 
A B

C D

! 
⇢j

✓j

!

, (B.1)

where the ABCD matrix elements are determined by the optical prop-
erties of the media between points j and j + 1. Some rudimentary
ABCD matrices are given in Table B.1, while more exhaustive lists can
be readily found elsewhere [1, Ch. 15] [2].

An imaging system I, by definition, redirects all rays emanating
from transverse position ⇢O in the object plane SO to intersect at trans-
verse position

⇢I = M⇢O (B.2)

optical element ABCD matrix

propagation by distance d

through medium of constant
index of refraction, N

0

B@
1 d

0 1

1

CA

thin lens with
focal length f

0

B@
1 0

-1/f 1

1

CA

Table B.1: Some useful ABCD ray matrices.
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in the image plane SI. Here, M is the magnification of the imaging
system, and M < 0 implies that the image is inverted relative to the
object. The imaging system’s A, B, and D matrix elements are easily
determined by inspection. Recalling the ray-matrix definitions in (B.1),
note that ⇢I = M⇢O = A⇢O + B✓O such that A = M and B = 0.
Further, assuming the image plane and object plane refractive indices
are identical, as is often the case, the determinant of the ray matrix
is unity (i.e. AD- BC = 1) [3] such that D = 1/M. The final matrix
element C is determined by the particulars of the imaging system; for
propagation through “simple” optical components, such as lenses and
homogeneous media, C is constrained to be real. Thus, an imaging
system of magnification M is characterized by an ABCD ray matrix of
the form

I =

 
M 0

C 1/M

!

. (B.3)

The symmetry axis of a Gaussian beam behaves as a ray in the
geometric-optics sense [2]. Application of the imaging ABCD ray
matrix (B.3) to a beam scattered by ✓m in the object plane (i.e. see
(2.42)) indicates that this beam will be rotated by angle ✓m/M relative
to the unscattered beam in the image plane, as shown in Figure B.1.
Further, the imaging optics do not alter the magnitude of the beam’s
wavevector, i.e. |I(km)| = k0 (this readily follows from the fact that
the imaging optics do not alter the energy of the beam’s constituent
photons). Knowledge of the wavevector’s image-plane magnitude and
orientation allows determination of the image-plane wavevector as

I(k0,m) = k0,m,I = (mkI) x̂+ k0

"

1-

✓
mkI
k0

◆2
#1/2

ẑ, (B.4)

where

kI ⌘ k

M
(B.5)

is the imaged wavenumber of the corresponding object-plane phase
fluctuation (2.39).

b.2 gaussian-beam transformation in imaging systems

In addition to manipulating the ray-like trajectory of a Gaussian beam’s
symmetry axis, an imaging system also alters other important proper-
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object
plane

imaging
system

magnifi-
cation, Munscattered

mth scattered

θm

θm / M

image
plane

Oℐ

Om,ℐ

O!

zℐ

Figure B.1: Beam geometries in an imaging system with magnification M. Beam
scattering occurs in the object plane at the probe beam’s waist. Thus, the mth

scattered beam shares the origin OO with the unscattered beam but is angularly
separated by ✓m. The imaging system redirects all beams emanating from OO to
intersect at angle ✓m/M in the image plane. In general, the image plane does not sit
at a beam waist such that the post-imaging-system beam waists of the scattered and
unscattered beams do not coincide, i.e. OI 6= Om,I.

ties of an incident Gaussian beam. A Gaussian beam is fully charac-
terized by its in-medium wavelength �0/N, its width w(zj), and its
radius of curvature R(zj) at a single location zj. These parameters
can be conveniently combined to define the so-called complex beam
parameter q [1, Sec. 17.1]

1

q
⌘ 1

R
- i

✓
�0

N⇡w2

◆
. (B.6)

Referencing the Gaussian-beam width (2.34) and the Gaussian-beam
radius of curvature (2.35), the complex beam parameter can be rewrit-
ten as

q = z+ izR, (B.7)

where z is the axial distance from the beam waist and zR is the Rayleigh
range (2.37). The Gaussian beam can then be propagated from point j
to point j+ 1 via

qj+1 =
Aqj +B

Cqj +D
, (B.8)

where, amazingly, A, B, C, and D are equal to the corresponding val-
ues of the ABCD ray matrix from geometric optics [1, Sec. 20.2] [2].
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The beam’s transverse and angular displacements relative to the lab-
frame optical axis are similarly governed by the so-called “S-parameter
transformation” [2]. It is important to note that the complex beam pa-
rameter and its evolution are independent of the beam’s transverse and
angular displacements from the lab-frame optical axis (assuming such
displacements do not violate the paraxial limit, of course); that is, a
scattered beam’s width and radius of curvature evolve identically to
those of the unscattered beam.

The properties of the image-plane beams are easily determined. Us-
ing the ray matrix of an imaging system from (B.3), the image-plane
complex beam parameter qI is given as

qI =
MqO

CqO + (1/M)
, (B.9)

where qO is the object-plane complex beam parameter, and M and
C are both real. Note that the post-imaging-system beam waists do
not necessarily sit at the image plane, in which case the beams’ native
coordinate systems are necessarily displaced from each other (i.e. OI 6=
Om,I, as indicated in Figure B.1). Examining the image-plane complex
beam parameter (B.9) it is easy to see that the beam waists will not
sit at the image plane when |CqO| � 1/M such that zI = Re(qI) ⇡
M/C 6= 0.

As the native coordinate systems of the unscattered beam and the
mth scattered beam do not align in the image plane, it will be conve-
nient to determine the relevant coordinate transformation. The trans-
formation is derived for the most general case in which the beam
waists do not sit at the image plane (i.e. OI 6= Om,I, as indicated
in Figure B.1). The coordinate transformation is simply a series of
translations and rotations

rm,I = [R(✓m/M)] [rI - zIẑ] + zIẑ, (B.10)

where

R(✓) =

0

BB@

cos ✓ 0 - sin ✓
0 1 0

sin ✓ 0 cos ✓

1

CCA (B.11)
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is the rotation matrix that rotates the (x, z)-plane about the y-axis by
angle ✓. Explicitly, the image-plane coordinate transformation (B.10)
is

0

BB@

xm,I

ym,I

zm,I

1

CCA =

0

BB@

xI cos
⇣
✓m
M

⌘

yI

zI + xI sin
⇣
✓m
M

⌘

1

CCA ⇡

0

BB@

xI

yI

zI + xI

⇣
✓m
M

⌘

1

CCA , (B.12)

where the approximation is valid to first order in ✓m/M.
Imagine now that the detector is located an axial distance �zI down-

stream of the image plane (i.e. zdet = zI + �zI such that positive �zI
implies that the detector is downstream of the image plane, and neg-
ative �zI implies that the detector is upstream of the image plane).
Coordinate transformation (B.10) then readily generalizes to

rm,det = [R(✓m/M)] [rdet - zIẑ] + zIẑ, (B.13)

where rdet = rI+(�zI)ẑ specifies the detector-plane coordinates of the
unscattered beam and rm,det specifies the detector-plane coordinates
of the mth scattered beam. Explicitly, the detector-plane coordinate
transformation (B.13) is

0

BB@

xm,det

ym,det

zm,det

1

CCA =

0

BB@

xdet cos
⇣
✓m
M

⌘
- �zI sin

⇣
✓m
M

⌘

ydet

zI + �zI cos
⇣
✓m
M

⌘
+ xI sin

⇣
✓m
M

⌘

1

CCA

⇡ rdet +
✓m

M

0

BB@

-�zI

0

xdet

1

CCA-
1

2

✓
✓m

M

◆2

0

BB@

xdet

0

�zI

1

CCA , (B.14)

where the approximation is valid to second order in ✓m/M. As dis-
cussed in Section 3.1.5, second-order effects can become significant
when the detector is displaced from the image plane (i.e. when �zI 6=
0).
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C
S O M E I D E N T I T I E S F O R T H E P C I WAV E N U M B E R
R E S P O N S E

c.1 E(rm , k) in the beam’s near field

The effect of wavenumber-dependent manipulation T(kx) on the mth

scattered beam is given by the complex-valued function E(rm,k) as
defined in (2.45), which is repeated here for completeness

E(rm,k) =
e-imkxm

2⇡

⇥
Z
dx 0 exp


-x 02

w(zm)2

�
exp

�
i


mkx 0 +

k0x
02

2R(zm)

��

⇥
Z
dkx T(kx)e

ikx(xm-x 0)

(C.1)

The integrals are over the full domain of x 0 and kx, but contributions
to the integral from regions outside of |x 0| . w(z) are suppressed by
the Gaussian envelope such that

k0x
02

2R(zm)
. k0[w(z)]2

2R(z)
, (C.2)

where the approximations w(zm) ⇡ w(z) and R(zm) ⇡ R(z) have been
used. Now, in the beam’s near field (z ⌧ zR, which is often experi-
mentally relevant), the beam’s waist and radius of curvature are

w(z) ⇡ w0, (C.3)

R(z) ⇡
z2R
z

, (C.4)
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as can be easily verified by examining the definitions in (2.34) and
(2.35), respectively. Thus, (C.2) becomes

k0x
02

2R(zm)
. k0[w(z)]2

2R(z)

⇡
k0w

2
0

2(z2R/z)

=
z

zR

⌧ 1, (C.5)

where z/zR ⌧ 1 follows from the near-field assumption. Thus, in
the beam’s near field, the curvature-induced phase factor is negligible,
and E(rm,k) reduces to

E(rm,k) ⇡ e-imkxm

2⇡

Z
dx 0 e-[x 0/w(zm)]2eimkx 0

⇥
Z
dkx T(kx)e

ikx(xm-x 0).
(C.6)

This near-field assumption will be implicit in the remainder of the
discussion about PCI.

c.2 pci’s E(rm , k)

The transfer function of the PCI phase plate can be described as

T(kx) = i
p
⌘H(kg - |kx|)

+H(|kx|- kg)H(kD - |kx|),
(C.7)

where H(x) is the Heaviside step function defined as

H(x) =

8
<

:
0, x < 0

1, x > 0
, (C.8)

⌘ is the reflectivity of the phase-plate groove, and kg and kD are the
low-k and high-k cutoffs of the phase plate as defined in (2.86) and
(2.89), respectively. Note that the first term on the right-hand side of
(C.7) corresponds to reflection from the phase-plate groove, while the
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second term corresponds to reflection from the non-grooved portion
of the phase plate (i.e. the “face”). Thus, for PCI

E(rm,k) =
e-imkxm

2⇡

Z
dx 0 e-[x 0/w(zm)]2eimkx 0

⇥
�Z-kg

-kD

dk 0
x e

ik 0
x(xm-x 0)

+ i
p
⌘

Zkg

-kg

dk 0
x e

ik 0
x(xm-x 0)

+

ZkD

kg

dk 0
x e

ik 0
x(xm-x 0)

✏

.

(C.9)

c.3 some useful integrals for evaluation of E(rm , k)

c.3.1 Finite-domain inverse Fourier transforms of unity

Note that
Zk2

k1

dkxe
ikxx =

eik2x - eik1x

ix
. (C.10)

Now, if k1 = -k2, this simplifies to

Zk2

-k2

dkxe
ikxx = 2k2sinc

✓
k2x

⇡

◆
, (C.11)

where

sinc(x) =
sin(⇡x)
⇡x

(C.12)

is the normalized sinc function; note that sinc is an even function. Fi-
nally, note that

Z-k1

-k2

dkxe
ikxx +

Zk2

k1

dkxe
ikxx

=

Zk2

-k2

dkxe
ikxx -

Zk1

-k1

dkxe
ikxx

= 2k2sinc
✓
k2x

⇡

◆
- 2k1sinc

✓
k1x

⇡

◆
. (C.13)
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Using (C.11) and (C.13), it is easy to see that (C.9) becomes

E(rm,k) =
e-imkxm

⇡

Z
dx 0 e-[x 0/w(z)]2eimkx 0

⇥
�

kDsinc

kD
⇡

(x 0 - xm)

�

- kgsinc

kg

⇡
(x 0 - xm)

�

+ i
p
⌘kgsinc


kg

⇡
(x 0 - xm)

�✏

.

(C.14)

c.3.2 Integral of offset sinc with complex-Gaussian weighting

Note that (C.14) consists of several integrals of the form

I ⌘ b

⇡

Z
dx e-ax2

eicxsinc

b

⇡
(x- x0)

�
, (C.15)
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where a > 0 and x0, b, and c are real. While daunting, the integral
can be evaluated “analytically” in terms of complex error functions as
follows

I =
b

⇡

Z
dx e-ax2

eicxsinc

b

⇡
(x- x0)

�

=
1

⇡

Z
dx e-ax2

eicx · sin[b(x- x0)]

x- x0

=
1

⇡

Zb

0

d�

Z
dx e-ax2

eicx cos[�(x- x0)]

=
1

2⇡

Zb

0

d�

Z
dx e-ax2

eicx
h
ei�(x-x0) + e-i�(x-x0)

i

=
1

2⇡

Zb

0

d�

Z
dx e-ax2

ei[(�+c)x-�x0]

+
1

2⇡

Zb

0

d�

Z
dx e-ax2

ei[-(�-c)x+�x0]

=
1

2⇡

Zb

0

d�

Z
dx e-ax2

ei[(�+c)x-�x0]

-
1

2⇡

Z-b

0

d� 0
Z
dx e-ax2

ei[(�
0+c)x-� 0x0]

=
1

2⇡

Zb

-b

d�

Z
dx e-ax2

ei[(�+c)x-�x0]

=
1

2⇡

Zb

-b

d� e-(�+c)2/4ae-i�x0

Z
dx e-a[x-i(�+c)/2a]2

=
1

2
p
⇡a

Zb

-b

d� e-(�+c)2/4ae-i�x0

=
1

2
p
⇡a

eicx0

Zc+b

c-b

d� 0 e-�
02/4ae-i� 0x0

=
1

2
p
⇡a

e-ax2
0eicx0

Zc+b

c-b

d� 0 e-(� 0+i2ax0)
2/4a

=
1p
⇡
e-ax2

0eicx0

Zu(c+b,a,x0)

u(c-b,a,x0)
due-u2

=
1

2
e-ax2

0eicx0
�

erf[u(c+ b,a, x0)]

- erf[u(c- b,a, x0)]
 

,
(C.16)

where the error function is defined for complex argument z as

erf(z) =
2p
⇡

Zz

0

e-t2dt, (C.17)
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and

u(�,a, x0) =
1

2
p
a
(�+ i2ax0). (C.18)

Now, substituting the appropriate values into (C.16)

x0 ⌘ xm, a ⌘ 1

w(z)2
, b ⌘ kj, c ⌘ mk

yields

I =
1

2
e-[xm/w(zm)]2eimkxmD(rm,k,kj), (C.19)

where the difference function D is defined as

D(rm,k,kj) = erf[u(rm,k,kj)]- erf[u(rm,k,-kj)], (C.20)

and

u(rm,k,kj) =
w(zm)

2


(mk+ kj) + i

2xm

w(zm)2

�
. (C.21)

With these definitions (C.14) readily reduces to

E(rm,k) =
1

2
e-[xm/w(zm)]2

⇥ [D(rm,k,kD) + (i
p
⌘- 1)D(rm,k,kg)] .

(C.22)

c.4 symmetries and degeneracies in the image plane

The plasma midplane sits at the object plane of a magnification-M
imaging system. The probe beam’s waist also nominally sits at this
object plane, with a 1/e E radius of w0,O, and the plasma dimen-
sions are far smaller than the corresponding Rayleigh length such that
throughout the plasma volume

w(z) ⇡ w0,O. (C.23)

As discussed in Appendix B, the waist of the imaged beam does not
necessarily occur at the image plane. However, the derivation of (C.6)
required assuming that the beam was well within its Rayleigh range
(i.e. |zI| ⌧ zR,I). Thus, valid application of any of the above derived
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results to the image plane requires that the image plane and the waist
of the imaged beam approximately overlap such that

w(zI) ⇡ w0,I ⇡ Mw0,O, (C.24)

where w0,I is the 1/e E radius of the imaged beam at its waist.
The coordinate system and properties of the mth scattered beam also

have certain symmetries in the image plane. In particular, according
to the image-plane coordinate transformation in (2.48),

x-m,I = xI cos
✓
✓-m

M

◆

= xI cos
✓
-✓m
M

◆

= xI cos
✓
✓m

M

◆

= xm,I. (C.25)

Additionally, again from the image-plane coordinate transformation
in (2.48), z-m,I = zI + xI sin(✓-m/M) such that

w(z-m,I) ⇡ w(zI) ⇡ w(zm,I) (C.26)

are very good approximations when ✓m/M ⌧ 1, as is typical. The
above symmetries lead to several other symmetries and degeneracies
that will be useful for evaluating E(rm,k) in the image plane.
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c.4.1 Properties of u in the image plane

The complex-valued function u is defined in (C.21). Referencing sym-
metry properties (C.25) and (C.26) and cleverly rearranging terms, it
readily follows that u is anti-Hermitian with respect to m and kj,I:

u(r-m,I,kI,-kj,I) =
w(z-m,I)

2


(-mkI - kj,I) + i

2x-m,I

w(z-m,I)2

�

⇡ w(zm,I)

2


(-mkI - kj,I) + i

2xm,I

w(zm,I)2

�

=
w(zm,I)

2


-(mkI + kj,I) + i

2xm,I

w(zm,I)2

�

=
-w(zm,I)

2


(mkI + kj,I)- i

2xm,I

w(zm,I)2

�

=
-w(zm,I)

2


(mkI + kj,I) + i

2xm,I

w(zm,I)2

�⇤

= -[u(rm,I,kI,kj,I)]⇤, (C.27)

where z⇤ indicates the complex conjugate of z. Further, referencing
(C.24), note that

u(rm,I,kI,kj,I) =
w(zI)

2


(mkI + kj,I) + i

2xI
w(zI)2

�

⇡ Mw0,O

2

✓
mk

M
+

kj

M

◆
+ i

2MxO
(Mw0,O)2

�

=
w0,O

2

�
mk+ kj

�
+ i

2xO
(w0,O)2

�

= u(rm,O,k,kj,O); (C.28)

that is, u(rm,I,kI,kj,I) and u(rm,O,k,kj,O) are geometrically similar,
as is expected in an imaging system.

c.4.2 Properties of the error function

The error function has two useful properties that will be exploited
shortly. First, the error function is odd

erf(-z) = -erf(z), (C.29)
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as is easily determined by inspection. Second, the error function com-
mutes with complex conjugation

erf(z⇤) = [erf(z)]⇤, (C.30)

where z⇤ is the complex conjugate of z.

c.4.3 Properties of D in the image plane

The complex-valued difference function D is defined in (C.20). Using
the anti-Hermitian properties of u from (C.27) and the error-function
properties (C.29) and (C.30), it is easy to show that D is Hermitian
with respect to m:

D(r-m,I,kI,kj,I) = erf[u(r-m,I,kI,kj,I)]
- erf[u(r-m,I,kI,-kj,I)]

= erf{-[u(rm,I,kI,-kj,I)]
⇤}

- erf{-[u(rm,I,kI,kj,I)]⇤}

= -{erf[u(rm,I,kI,-kj,I)]}
⇤

+ {erf[u(rm,I,kI,kj,I)]}⇤

= {erf[u(rm,I,kI,kj,I)]
- erf[u(rm,I,kI,-kj,I)]}

⇤

= D⇤(rm,I,kI,kj,I). (C.31)

The above symmetry relation also implies a degeneracy when m = 0;
namely, D(r0,I,kI,kj,I) = D⇤(r0,I,kI,kj,I), which proves that D(r0,I,kI,kj,I)
is purely real.

c.4.4 Properties of E in the image plane

Eq. (C.31) allows (C.22) to be rewritten as

E(rm,I,kI) = e-[xm,I/w(zm,I)]
2

⇥ [F(rm,I,kI) +G(rm,I,kI)] ,
(C.32)

where

F(rm,I,kI) =
1

2

⇥
D(rm,I,kI,kD,I)-D(rm,I,kI,kg,I)

⇤
, (C.33)

G(rm,I,kI) =
i
p
⌘

2
D(rm,I,kI,kg,I). (C.34)
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Here, the notation is mnemonic: the non-grooved portion of the phase
plate (i.e. the “face”) acts on the mth scattered beam via F, while the
phase-plate groove acts on the mth scattered beam via G. Note that F
is Hermitian with respect to m

F(r-m,I,kI) = F⇤(rm,I,kI), (C.35)

while G is anti-Hermitian with respect to m

G(r-m,I,kI) = -G⇤(rm,I,kI). (C.36)

Note that the above symmetries also imply a degeneracy when
m = 0. Specifically, (C.35) states that F(r0,I,kI) = F⇤(r0,I,kI); that
is, F(r0,I,kI) is purely real

F(r0,I,kI) = Re[F(r0,I,kI)]. (C.37)

Similarly, (C.36) states that G(r0,I,kI) = -G⇤(r0,I,kI); that is, G(r0,I,kI)
is purely imaginary

G(r0,I,kI) = i · Im[G(r0,I,kI)]. (C.38)

Another set of useful degeneracies occurs when the fluctuation wavenum-
ber vanishes (i.e. kI = 0). Note that the kI dependence of F and G

only appears as the product (m · kI). Just as m = 0 at finite kI yields
(m · kI) = 0, kI = 0 at finite m also gives (m · kI) = 0; thus,

F(rm,I,kI = 0) = F(r0,I,kI), (C.39)
G(rm,I,kI = 0) = G(r0,I,kI), (C.40)

where the approximation w(zm,I) ⇡ w(z0,I) has been used. The PCI
amplitude response Apci(kI, xI) is given by (2.99); of particular rele-
vance is that Apci(kI, xI) / A(kI, xI), where A(kI, xI) = (A2

I +A2
Q)1/2

is a real number and AI and AQ are given by (2.102) and (2.103), re-
spectively. Note that the notational shorthand Fm ⌘ F(rm,I,kI) and
Gm ⌘ G(rm,I,kI) is being used in the expressions for AI and AQ. Us-
ing (C.39) and (C.40), the expression for AI in the low-k limit becomes

lim
kI!0

AI(kI, xI) = Im(G0)


lim
kI!0

Re(F1)
�
- Re(F0)


lim
kI!0

Im(G1)

�

= Im(G0)Re(F0)- Re(F0)Im(G0)

= 0.
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Similarly, the expression for AQ in the low-k limit becomes

lim
kI!0

AQ(kI, xI) = Im(G0)


lim
kI!0

Im(F1)

�
+ Re(F0)


lim
kI!0

Re(G1)

�

= Im(G0)Im(F0) + Re(F0)Re(G0)

= Im(G0) · 0+ Re(F0) · 0
= 0,

where the third line follows from the fact that F0 is purely real and
G0 is purely imaginary. As AI and AQ vanish at k = 0, A and Apci
must also vanish at k = 0. This is in agreement with expectations: as
k ! 0, the upscattered and downscattered beams fall into the phase-
plate groove, reducing the phase contrast, and the response vanishes
fully for k = 0.





D
O S C I L L AT O R P H A S E N O I S E

A precision oscillator is well-described in the complex plane via

A(t) = [A0 + "(t)] e
i[!0t+�(t)], (D.1)

where A0 is the nominal amplitude, "(t) is the deviation from the
nominal amplitude, !0 is the nominal angular frequency, and �(t)
is the phase deviation from the nominal phase !0t [1]. Within the
context of this work, it is sufficient to regard "(t) and �(t) as zero-
mean, stationary, random processes. Note that both "(t) and �(t)
have simple geometric interpretations, as shown in Figure D.1. Typi-
cally, |"(t)| ⌧ A0 such that the amplitude deviation can be neglected.
However, phase-sensitive instruments, such as interferometers, can be
susceptible to small phase deviations. This appendix discusses the
IEEE definition of phase noise L(f) and quantitatively links it to the
corresponding noise of a phase-sensitive instrument.

Re[A(t)]

Im[A(t)]

�0t

�(t
)

0

A0

A0

 A0e
i�0t

A(t)�(t
)

Figure D.1: An oscillator’s amplitude deviation "(t) and phase deviation �(t) can be
easily visualized in the complex plane.

d.1 definitions

An oscillator’s phase noise L(f) (pronounced as “script-ell of f”) is
defined as

L(f) =
G�,�(f)

2
, (D.2)
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where G�,�(f) is the one-sided autospectral density of the phase fluc-
tuations �(t) [1]. Note that the one-sided autospectral density G�,�(f)
is related to the two-sided autospectral density S�,�(f) via

G�,�(f) =

8
<

:
2S�,�(f), f > 0

S�,�(f), f = 0
. (D.3)

The two-sided autospectral density S�,�(f) is itself defined as

S�,�(f) = F
⇥
R�,�(⌧)

⇤
(f), (D.4)

where F is the Fourier transform operator and R�,�(⌧) is the autocor-
relation function defined as

R�,�(⌧) = E [�(t) ·�(t+ ⌧)] ; (D.5)

here, E is the expectation-value operator [2, Ch. 5].

d.2 units

Phase noise L(f) can be expressed in SI units as rad2 ·Hz−1. However,
this is not common practice. Instead, it is much more common to
express phase noise in units of dBc/Hz, which corresponds to the
ratio (expressed in dB) of phase-noise power to carrier-signal power
in a one Hz bandwidth. Explicitly,

L(f) [dBc/Hz] = 10 log10

�
L(f) [rad2 ·Hz−1]

�
. (D.6)

While it may initially come as a surprise that phase noise should be
expressible in terms of the power in the carrier signal (i.e. the nomi-
nal oscillator signal), this choice of units is perfectly natural. To see
this, examine Figure D.1: the oscillator’s nominal phasor A0e

i!0t is
displaced in the perpendicular direction by A(t) sin�(t) ⇡ A0�(t),
where the approximation follows for the small amplitude and phase
deviations (|"(t)| ⌧ A0, |�(t)| ⌧ 1) of practical relevance. Thus, a
phase deviation �(t) produces a phasor deviation that is proportional
to the oscillator’s nominal amplitude A0, making dBc/Hz a natural
choice of units for L(f).
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d.3 connection to instrumental phase noise

Numerous phase-sensitive instruments, such as interferometers, de-
modulators, etc. operate by comparing an oscillator’s phase at times
t and t+ ⌧j:

arg[A⇤(t) ·A(t+ ⌧j)] = !⌧j + ��(t, ⌧j), (D.7)

where !⌧j is the expected phase progression and

��(t, ⌧j) = �(t+ ⌧j)-�(t) (D.8)

is the instrumental phase noise. Obviously, the instrumental phase
noise ��(t, ⌧j) is very closely related to the oscillator phase deviation
�(t), and it is the goal of this section to quantitatively relate the au-
tospectral density of the instrumental phase noise S��,��(f) to the
oscillator phase noise L(f).

d.3.1 Autocorrelation of instrumental phase noise

The autocorrelation of the instrumental phase noise R��,��(⌧) is

R��,��(⌧) = E
⇥
��(t, ⌧j) · ��(t+ ⌧, ⌧j)

⇤

= E
⇥�
�(t+ ⌧j)-�(t)

 
·
�
�(t+ ⌧+ ⌧j)-�(t+ ⌧)

 ⇤

= E
⇥
�(t+ ⌧j) ·�(t+ ⌧+ ⌧j)

⇤
- E

⇥
�(t+ ⌧j) ·�(t+ ⌧)

⇤

- E
⇥
�(t) ·�(t+ ⌧+ ⌧j)

⇤
+ E [�(t) ·�(t+ ⌧)]

= 2R�,�(⌧)- R�,�(⌧+ ⌧j)- R�,�(⌧- ⌧j), (D.9)

where (D.9) follows from the stationary nature of the phase deviation
�(t) and the invariance of a stationary process’s autocorrelation func-
tion to translations in time.
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d.3.2 Autospectral density of instrumental phase noise

The autospectral density of the instrumental phase noise S��,��(f)
is simply the Fourier transform of the corresponding autocorrelation
function (D.9). Explicitly,

S��,��(f) = F
⇥
R��,��(⌧)

⇤
(f)

= 2F
⇥
R�,�(⌧)

⇤
(f)-F

⇥
R�,�(⌧+ ⌧j)

⇤
(f)

-F
⇥
R�,�(⌧- ⌧j)

⇤
(f)

= 2S�,�(f)-
�
ei2⇡f⌧ + e-i2⇡f⌧

�
S�,�(f)

= 2
⇥
1- cos(2⇡f⌧j)

⇤
S�,�(f)

= 4 sin2(⇡f⌧j)S�,�(f), (D.10)

where the Fourier transform’s linear and translational properties have
been used. Referencing the definition of oscillator phase noise (D.2),
the instrumental phase noise (D.10) can be rewritten (as a one-sided
autospectral density) as

G��,��(f) = 8 sin2(⇡f⌧j)L(f). (D.11)
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E
S O U N D - WAV E C H A R A C T E R I Z AT I O N

Sound waves have the well-known dispersion relation

! = csk, (E.1)

where! is the angular frequency of the sound wave, k is the wavenum-
ber of the sound wave, and cs = 343m · s−1 is the sound speed in dry
air at sea level and T = 20 �C. Further, the sound-wave pressure fluc-
tuations produce corresponding fluctuations in the refractive index,
making sound waves an ideal tool for probing the wavenumber re-
sponse of an interferometer. A quantitative comparison between the
predicted and observed interferometer responses, however, requires
an accurate description of the sound-wave pressure fluctuations.

It is the intent of this appendix to quantitatively characterize the
sound-wave pressure fluctuations driven by the speaker used through-
out this thesis. Below, Section E.1 describes the speaker and the hard-
ware used to measure the pressure fluctuations of its sound waves.
Section E.2 discusses the sound-wave measurements and their implica-
tions for the model of the sound-wave pressure fluctuations developed
in Section E.3. Then, Section E.4 relates these sound-wave pressure
fluctuations to the corresponding refractive-index variations. Finally,
Section E.5 computes the phase shift imparted to a CO2 probe beam
by the speaker’s sound waves.

e.1 hardware

Section E.1.1 describes the speaker used to drive sound waves through
the interferometer probe beam, while Section E.1.2 describes the cali-
brated microphone used to measure the absolute pressure fluctuations
of the sound waves. The speaker and the microphone are mounted in
the test stand described in Section E.1.3, allowing simple and accurate
measurements of the sound waves.

e.1.1 Speaker

Previous sound-wave calibrations were performed with high-frequency
speakers suitable for characterizing the medium-k to high-k response
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of the PCI. However, to quantify the low-k to medium-k response of
the heterodyne interferometer (and simultaneously cross-calibrate the
PCI), the speaker should be capable of driving sound waves through-
out most of the heterodyne-interferometer wavenumber range. The
interferometer high-k cutoff of 5 cm−1 corresponds to a sound wave
with frequency 27 kHz. Sound waves of such frequency are typically
produced by speakers known as “tweeters”.

An economic (⇠ $30) XT25BG60-04 tweeter (Tymphany HK Ltd.,
Wanchai, Hong Kong; procured through Parts Express) was used through-
out this work to quantify the interferometer wavenumber response.
The XT25BG60-04 employs a patented dual-concentric 1" diaphragm
and a unique waveguide center plug to provide excellent on- and off-
axis response; the specified on-axis response is flat from 1.5 kHz to
20 kHz. The coil impedance is 4⌦, and the specified RMS power han-
dling is 90W (however, operation at significantly lower power levels
destroyed the coil of the first XT25BG60-04 procured). Throughout
this work, the XT25BG60-04 is driven by a 2V peak-to-peak signal.

e.1.2 Calibrated microphone

A 378C01 free-field microphone package (PCB Piezotronics, Inc.; De-
pew, NY, USA) was procured to quantify the on- and off-axis speaker
response. The 378C01 consists of a 377C01 microphone and a 426B03
preamplifier. The signal from the microphone package is conditioned
with 480C02 battery-powered signal conditioner (also through PCB)
prior to signal measurement with an oscilloscope. The microphone
has a NIST-traceable calibrated sensitivity of 2.52mV · Pa−1 at 251.2Hz

and ±1 dB sensitivity variation between 20Hz and 100 kHz.

e.1.3 Test stand

A microphone test stand, machined previously at the MIT PSFC, en-
ables easy and accurate adjustment of the microphone position. Twin
aluminum pylons with demarcations in 1 cm intervals are mounted
to a large aluminum base. A small aluminum crossbeam, also with
with demarcations in 1 cm intervals, slides up and down the two py-
lons and can be easily locked into place at a particular height z above
the speaker face. The microphone itself is mounted to a platform
that extends ⇠ 10 cm horizontally from the crossbeam. Sound-wave
reflections from the platform are minimized with acoustic-damping
foam. After centering the speaker below the microphone, the micro-
phone’s transverse position can be easily scanned by sliding the mi-
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Figure E.1: On-axis amplitude of sound waves as a function of wavenumber k and
height z above the speaker face. Note that the amplitude is specified as a peak-to-peak
value.

crophone platform along the crossbeam. Thus, the test stand allows
accurate and independent adjustment of the microphone’s height z

above the speaker’s face and the microphone’s radial distance ⇢ from
the speaker’s symmetry axis, establishing the (⇢, z) coordinate system
for the sound-wave measurements described in Section E.2.

e.2 sound-wave measurements

To lowest order, the speaker is cylindrically symmetric. Thus, the
sound waves are expected to have axial, radial, and frequency de-
pendencies. Sections E.2.1 through E.2.3 summarize these measure-
ments and their implications for the sound-wave model developed in
Section E.3. All measurements were made with steady-state speaker
drive.

e.2.1 On-axis amplitude

After centering the microphone on the speaker’s symmetry axis, the
on-axis amplitude can be easily characterized by varying both the fre-
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quency f of the sound waves and the microphone height z above the
speaker face. The frequencies f and heights z are motivated by the
parameters of the heterodyne interferometer described in Chapter 4.
Specifically, the interferometer spatial bandwidth |k| 6 5 cm−1 from
(4.6) motivates sound-wave measurements at frequencies f . 30 kHz

(i.e. |k| . 5 cm−1). Further, to produce a robust interference signal
during sound-wave calibrations, the speaker is placed very close to
the edge of the collimated probe beam, which has 1/e E radius w0 =
3.4 cm; thus, sound-wave measurements are made at heights spanning
the probe-beam profile z = {2.5 cm, 5.5 cm, 8.5 cm}. The on-axis ampli-
tude of the sound waves as a function of wavenumber k and height
z above the speaker face is shown in Figure E.1. As expected, the on-
axis amplitude decreases with increasing distance z from the speaker
face. Further, the on-axis amplitude has a complicated wavenumber
dependence, but it is relatively flat for 1 cm−1 . k . 3.5 cm−1.

e.2.2 Wavefront phasing

Characterizing the sound-wave phasing is somewhat more involved
than characterizing the on-axis amplitude, as it requires measurements
at several radial positions ⇢ for each frequency f and microphone
height z. For this reason, the wavefront-phasing measurements are
more coarsely sampled in frequency f than the on-axis amplitude
measurements in Section E.2.1. For a given frequency f and height
z, the sound-wave phasing is measured by tracking a point of con-
stant phase in the microphone waveform as the radial position ⇢ is
varied; such tracking can be easily accomplished by triggering the os-
cilloscope with a copy of the waveform that is driving the speaker. To
begin the radial scan, the microphone height z is selected, and the
microphone is displaced from the speaker’s symmetry axis by a few
centimeters. Then, in 1 cm increments, the microphone is moved radi-
ally inwards towards the center; upon passing through the center, the
radial scan is continued in 1 cm increments until the sound-wave am-
plitude becomes negligible. Note that beginning the radial scan with
a small displacement from the symmetry axis allows empirical iden-
tification of the symmetry-axis location (by e.g. fitting the measured
amplitude and/or phasing and identifying the extremum that occurs
at the symmetry axis).

At sufficiently large distances, the speaker will behave like a point
source, producing sound waves with spherical wavefronts. This point-
source approximation is taken as a reasonable starting point for the
investigation of the wavefront phasing. If a sound wave is measured
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Figure E.2: Wavefront phasing of sound waves. The symbols show the measured
time delay ⌧ between the wavefront at height z and radial displacement ⇢ and the
corresponding on-axis wavefront (i.e. same z but ⇢ = 0), with each symbol shape
corresponding to particular frequency. The traces correspond to the time delay (E.2)
predicted for spherical waves. The close proximity of the measured points to the
spherical-wave traces indicates that, to lowest order, the waves are approximately
spherical over the spatial domain and frequencies probed.

on axis at height z above the speaker, the corresponding wavefront
will subsequently arrive at position r = (z2 + ⇢2) delayed by a time ⌧

⌧ =
r- z

cs
, (E.2)

where cs is the sound speed. Figure E.2 compares the measured time
delay to the time delay predicted for spherical waves (E.2) as a function
of height z, radial position ⇢, and frequency f. Clearly, to lowest order,
the waves are approximately spherical over the spatial domain and
frequencies probed.

e.2.3 Spatial envelope

If the sound-wave amplitude is also measured during the radial scans
described in Section E.2.2, the spatial envelope of the sound waves can
also be quantified. Figure E.3 displays the spatial envelopes of sound
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Figure E.3: Sound-wave spatial envelopes for frequencies f at height z = 5.5 cm
above the face of the speaker. Symbols indicate measurement points, while the
traces correspond to Gaussian fits of the form (E.3). Measurements and fits at other
heights z exhibit qualitatively similar trends.

waves of various frequencies f at height z = 5.5 cm above the face
of the speaker. Clearly, the width of the spatial envelope decreases
with increasing frequency f. Measurements at other heights z exhibit
qualitatively similar behavior.

The narrowing of the spatial envelope with increasing frequency can
be quantified by fitting the measurements to an assumed functional
form. To lowest order, the spatial envelopes are well approximated by
a Gaussian

Vmic(⇢) = V0(z, f) exp


-⇢2

w(z, f)2

�
, (E.3)

where w(z, f) is the 1/e radius, which is a function of the height z

and the sound-wave frequency f. Gaussian fits to the envelope mea-
surements are also shown in Figure E.3. Deviations from a Gaussian
are most apparent at low frequencies; this may be attributable to baf-
fle diffraction across the speaker face but was not further investigated.
The approximation of a Gaussian envelope will be sufficiently accu-
rate for the present work. Figure E.4 displays the fitted 1/e Gaus-
sian radii w as a function of sound-wave wavenumber k and height
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Figure E.4: Fitted 1/e Gaussian radii w of sound waves as a function of sound-wave
wavenumber k and height z above the face of the speaker.

z above the face of the speaker. As previously and anecdotally noted
for z = 5.5 cm, the width of the spatial envelope w decreases with
increasing k for each height z. Further, w increases with increasing z,
which results from free-space diffraction of the sound wave.

e.3 sound-wave model

Quantitatively predicting the response of a heterodyne interferometer
to sound-wave pressure fluctuations ep(r, t) requires knowledge of ep
at each point along the beam path. Because the measurements de-
scribed in Section E.2 were made at discrete positions and frequencies,
it is necessary to develop an approximate model of ep. Recall that Sec-
tion E.2.2 shows that the wavefronts of the sound waves are approxi-
mately spherical, while Section E.2.3 shows that the spatial envelope
of the sound waves is approximately Gaussian. Thus, the sound-wave
pressure fluctuation can be modeled as

ep(r, t) = ep0(z, f) · exp


-⇢2

w(z, f)2

�
· cos(kr-!t), (E.4)



266 sound-wave characterization

Figure E.5: “Snapshot” (i.e. at a single point in time) of the model’s predicted 15 kHz

pressure fluctuation ep.

where z is the height above the speaker face, ⇢ = (x2+y2) is the radial
distance from the symmetry axis, r = (x,y, z) is the spatial coordinate
relative to the center of the speaker face, r = |r| is the corresponding
distance from the center of the speaker face,! is the angular frequency
of the sound wave, and k is the wavenumber of the sound wave, as de-
termined from the sound-wave dispersion relation (E.1). Additionally,
ep0(z, f) is the on-axis sound-wave amplitude, and it is a complicated
function of z and f that is computed via radial-basis-function (RBF)
interpolation [1, Sec. 3.7] [2, 3] of the measured on-axis amplitude
shown in Figure E.1 (after conversion from V to Pa using the absolute
calibration of the microphone discussed in Section E.1.2). Similarly,
w(z, f) is the 1/e Gaussian radius of the sound wave, and it is a com-
plicated function of z and f that is computed via RBF interpolation of
the measured 1/e Gaussian radii shown in Figure E.4. As an example,
a “snapshot” (i.e. at a single point in time) of the model’s predicted
15 kHz pressure fluctuation ep is shown in Figure E.5.

e.4 perturbed index of refraction

Interferometric methods are sensitive to the index of refraction N.
Thus, quantitatively predicting the response of a heterodyne interfer-
ometer requires computing the perturbed index of refraction eN corre-
sponding to the sound-wave pressure fluctuation ep in (E.4).
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While the quantification of air’s refractive index in the visible and
infrared has been vigorously pursued by the metrology community
[4, 5, 6, 7], the lowest-order description will be sufficiently accurate for
the present application. Specifically, an electromagnetic wave propa-
gating through air induces a time-varying polarization in the air that
alters the propagation of the wave; it is precisely this interaction that
the refractive index N quantifies. Clearly, the induced polarization is
proportional to the number density n of the air. Thus, air’s deviation
from the vacuum refractive index of unity is also proportional to n, i.e.

N- 1 = ↵n, (E.5)

where ↵ is a complicated function of the atmospheric composition,
the vacuum wavelength of the electromagnetic wave, etc. Explicitly
writing the refractive index and number density as sums of equilib-
rium and perturbed components (i.e. N = N + eN and n = n + en,
respectively), one readily sees that the perturbed refractive index can
be written as

eN =

✓
N- 1

n

◆
en. (E.6)

Now, the sound-wave compressions and rarefactions are approximately
adiabatic such that the total pressure p and the total number density
n are related via p / n�, where � is the ratio of specific heats. Thus,
the density perturbation en corresponding to a sound-wave pressure
perturbation |ep| ⌧ p (where p is the equilibrium pressure) is

en ⇡
✓

n

�p

◆
ep (E.7)

such that the perturbed refractive index (E.6) becomes

eN ⇡
✓
N- 1

�p

◆
ep. (E.8)

As DIII-D sits very nearly at sea level, the equilibrium pressure is p =
101 325 Pa. Further, for dry air at T ⇠ 300K, the ratio of specific heats
is � = 1.4, and the deviation from the vacuum index of refraction for
10.6µm radiation is N- 1 = 2.7⇥ 10-4 [6, 7, 8]. Thus, the perturbed
refractive index (E.8) for a 10.6µm CO2 probe beam becomes

eN ⇡ (1.9⇥ 10-9) ep [Pa]. (E.9)
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e.5 phase shift imparted to a co2 probe beam

A probe beam propagating through a sound-wave pressure perturba-
tion ep will acquire a phase shift

e� = k0

Z
eNdl, (E.10)

where k0 is the vacuum wavenumber of the probe beam, eN is the
perturbed index of refraction (E.8), and the integration is performed
along the beam path. This phase shift is, of course, the measurable
quantity of a heterodyne interferometer. For a 10.6µm CO2 probe
beam, the phase shift (E.10) becomes

e� [rad] = (1.1⇥ 10-5 cm−1)

Z
(ep [Pa])dl, (E.11)

where (E.9) has been referenced and the differential path length dl

must have units of centimeters. The bounds on the variance of the
phase shift imparted by the sound-wave pressure fluctuation (E.4) is
shown in Figure E.6. To make a quantitative comparison with the
corresponding heterodyne-interferometer measurements, the interfer-
ometer wavenumber response and noise floor must also be accounted
for; such a comparison is performed in Section 4.8.
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Figure E.6: The bounds on the variance of the phase shift (E.11) imparted to a
10.6µm CO2 probe beam by the sound-wave pressure fluctuation (E.4). Because the
probe beam has finite cross section and the phase shift varies with the height z above
the speaker face, the maximum and minimum values of the variance are indicated
by the upper and lower bounds of the shaded region, respectively; the minimum
height considered is z = 2.5 cm, and the maximum height considered is z = 8.5 cm.
The symmetry axes of the probe beam and the speaker are intersecting and
orthogonal. To make a quantitative comparison with the corresponding
heterodyne-interferometer measurements, the interferometer wavenumber response
and noise floor must also be accounted for; such a comparison is performed in
Section 4.8.
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F
S P E C T R A L E S T I M AT I O N

In contrast to deterministic processes, random processes cannot be
modeled via an explicit mathematical relationship. Rather, random
processes are characterized in terms of probabilities and statistical
properties. Any given observation of a random process represents
only one of many possible observations; each such observation is re-
ferred to as a “sample” or a “realization” of the random process and is
denoted as xk(t). The random process itself consists of the ensemble
of all of the potential observations and is denoted as {xk(t)}. Random
processes can be stationary or nonstationary. The statistical properties
of a stationary random process do not vary in time.

The spectral tools discussed below are all developed for analysis
of stationary random processes. Section F.1 discusses non-parametric
spectral-estimation techniques, which find powerful and versatile ap-
plication in the analysis of uniformly and richly sampled data. Sec-
tion F.2 discuses parametric spectral-estimation techniques, which find
application in the analysis of data with sharp spectral features, partic-
ularly if the data is sparsely sampled. Finally, Section F.3 discusses the
hybrid non-parametric-in-time, parametric-in-space technique used to
estimate the PCI-measured two-dimensional autospectral density func-
tion.

f.1 non-parametric techniques

Most of the discussion below is distilled from the seminal work by
Bendat and Piersol [1], and inquisitive readers are directed there for a
more extensive treatment of the subject.

The windowed, finite Fourier transform Xk(f, T) of a continuous
signal xk(t) sampled for -T/2 6 t < T/2 is defined as

Xk(f, T) =
ZT/2

-T/2

dt [w(t) · xk(t)]e-i 2⇡ft, (F.1)

where w(t) is an arbitrary windowing function. Typically, the selected
windowing function smoothly tapers as |t| ! T/2 to minimize side-
lobe leakage that results from discontinuities at the start and end of
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the sample record. Further, to prevent power loss, the windowing
function is also typically normalized such that

1

T

ZT/2

-T/2

dt [w(t)]2 = 1. (F.2)

The normalized Hanning window is perhaps the most commonly used
windowing function, and it is used uniformly throughout this work.

For real-valued, stationary random processes {xk(t)} and {yk(t)}, the
one-sided cross-spectral density function Gxy(f) is defined as

Gxy(f) ⌘ lim
T!1

2

T
E [X⇤

k(f, T)Yk(f, T)] (F.3)

for 0 < f < 1; Gxy(f) is not defined for f < 0, and it is reduced by a
factor of two relative to (F.3) at f = 0 (the value of Gxy(0) is of little
relevance to this work). Note that E[·] is the expectation value oper-
ator; this operator averages over all of the realizations in the ensem-
ble, and its application ensures that (F.3) is a statistically consistent
definition of the cross-spectral density (that is, ensemble averaging
is needed for Gxy(f) to approach the true cross-spectral density as
T ! 1). If, in addition to being stationary, the random process is also
ergodic, the ensemble average can be replaced with a time average of
Xk(f, T) over successive time slices. If desired, these time slices may
partially overlap. Unless otherwise noted, all of the ensemble aver-
ages in this work are computed using this assumption of ergodicity,
and successive slices are selected to overlap by 50%.

In general Gxy(f) is a complex-valued function. This can be made
explicit by writing

Gxy(f) = |Gxy(f)| e
i↵xy(f), (F.4)

where ↵xy(f) is the cross phase. For the special case {xk(t)} = {yk(t)},
Gxx(f) is real-valued (i.e. Gxx(f) = |Gxx(f)|) and is referred to as the
one-sided autospectral density function.

The degree of correlation between random processes {xk(t)} and
{yk(t)} can be easily quantified with the corresponding spectral den-
sity functions. In particular, the magnitude-squared coherence function
�2xy(f) is defined as

�2xy(f) ⌘
|Gxy(f)|2

Gxx(f)Gyy(f)
, (F.5)
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Spectral estimate Random error [1]

Gxy(f) " [Gxy(f)] =
1

|�xy(f)|
p
Nr

↵xy(f) s.d.[↵xy(f)] ⇡
[1-�2

xy(f)]
1/2

|�xy(f)|
p
2Nr

�2xy(f) "
⇥
�2xy(f)

⇤
=

p
2[1-�2

xy(f)]

|�xy(f)|
p
Nr

Table F.1: Random errors in estimates of spectral properties are functions of the
number of realizations Nr used in the computation of the ensemble average and the
coherence magnitude |�xy(f)|. Here, s.d[·] represents the standard deviation of the
estimate, and "[·] represents the standard deviation of the estimate normalized to the
true value of the spectral property.

and it satisfies

0 6 �2xy(f) 6 1 (F.6)

for 0 6 f < 1. If �2xy(f) = 1, {xk(t)} and {yk(t)} are 100% correlated
at frequency f, and if �2xy(f) = 0, {xk(t)} and {yk(t)} are completely
uncorrelated at frequency f. Note that the ensemble-averaging oper-
ation in (F.3) is paramount to the computation of informative values
for �2xy(f); that is, if ensemble averaging is ignored, and only single
realizations of the random processes are used, �2xy(f) ⌘ 1 for all f,
regardless of the actual degree of coherence between between {xk(t)}
and {yk(t)}.

Care should be taken when computing spectral density estimates.
Table F.1 summarizes the random errors associated with the estimates
of various spectral properties. Note that the number of realizations
Nr used in the computation of the ensemble average is a parameter
that can be specified at the time of analysis and that increasing Nr

reduces the random errors of each spectral estimate. (While increased
�2xy(f) also reduces random errors, �2xy(f) is an intrinsic property of
the data rather than a parameter that can be specified at the time of
analysis). Further, in various programming languages, it is not un-
common to “detrend” realizations xk(t) and yk(t) by subtracting the
signal mean or linear trend prior to application of (F.3). As described
in Section 4.6.2, signals are high-pass filtered prior to spectral analysis,
and no further detrending is performed.
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f.2 parametric techniques

Parametric techniques attempt to represent a signal with a mathemati-
cal model containing a limited number of predefined parameters. For
a pedagogical overview of such techniques, the reader is directed to
the work of Oppenheim and Schafer [2, Ch. 11] The discussion here is
largely synthesized from the discussion by Marple [3].

Many random processes are well approximated by rational transfer-
function models. In such models, an input driving sequence nn and
an output (i.e. data) sequence xn are related via the linear difference
equation

xn =
qX

l=0

blnn-l -
pX

k=1

akxn-k; (F.7)

sequence xn and nn each have length N, and successive samples are
separated in time by �t. Such a model is termed an autoregressive-
moving average (ARMA) model. Now, if b0 = 1 and the remainder of
the bl are zero, (F.7) reduces to

xn = -
pX

k=1

akxn-k +nn (F.8)

such that xn is an autoregression (AR) of order p driven by white
noise nn. The autospectral density Gxx(f) of such an AR is

Gxx(f) =
�2

����1+
pP

k=1

ak exp(-2⇡kf�t)

����
2

, (F.9)

where �2 is the variance of noise term nn. Because the only frequency
dependence in spectral estimate (F.9) appears in the denominator, the
AR model is often referred to as an all-pole model. In one dimen-
sion, AR spectra are equivalent to spectra computed via the maximum
entropy method (MEM). Interestingly, AR spectra do not suffer from
traditional sidelobes due to windowing.

The AR process is fully characterized by the (p + 1) parameters
(a1,a2, · · · ,ap,�2), and numerous techniques exist for their estima-
tion. The p+ 1 autocorrelations {Rxx(0), Rxx(�t), . . .Rxx(p · �t)} are
related to (a1,a2, · · · ,ap,�2) via the Yule-Walker normal equations,
which the Levinson-Durbin recursion can efficiently solve [2, Sec. 11.6].
However, better AR estimates are often obtained via least-squares lin-
ear prediction applied directly to the data xn. Such techniques may
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employ the forward-only linear prediction or some combination of
the forward and reverse linear predictions. The covariance method [2,
Sec. 11.3.2] is perhaps the most well known forward-only algorithm,
while the Burg method is perhaps the most well known forward and
reverse algorithm.

Here, the Burg method is briefly reviewed. The algorithm is itera-
tive, so assume that the pth order AR parameters are known. Then,
the forward linear prediction is

x̂n = -
pX

k=1

ap,kxn-k, (F.10)

where ap,k is the kth coefficient of the p-order AR model. The corre-
sponding forward linear-prediction error is

ep,n = xn - x̂n

=
pX

k=0

ap,kxn-k, p 6 n < N, (F.11)

where ap,0 = 1 by definition and the limits on n are established such
that the error is defined only over the available data. Note that ep,n =
nn such that �2 = |ep,n|

2. For a stationary process, the coefficients of
the backward linear-prediction error filter are simply conjugated and
reversed in time relative to those of the forward linear-prediction error
filter such that the backward linear-prediction error is

bp,n =
pX

k=0

a⇤
p,kxn-p+k, p 6 n < N, (F.12)

where z⇤ indicates the complex conjugate of z. The total forward and
backward linear-prediction error is

Ep =
N-1X

n=p

|ep,n|
2 +

N-1X

n=p

|bp,n|
2. (F.13)

To estimate the AR parameters, the Burg method minimizes the total
error Ep subject to the constraint that the AR parameters satisfy the
Levinson-Durbin recursion

ap,k = ap-1,k + ap,pa
⇤
p-1,p-k, 1 6 k 6 p. (F.14)
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Figure F.1: Schematic of PCI detector array. Only the gray channels are digitized.

The Levinson-Durbin constraint ensures that the AR filter is stable (i.e.
all poles fall within the unit circle) and make Ep a function solely of
the unknown coefficient ap,p. Setting the derivative of Ep with respect
to ap,p to zero then yields

ai,i =

-2
N-1P
k=i

b⇤
i-1,k-1ei-1,k

N-1P
k=i

(|bi-1,k-1|2 + |ei-1,k-1|2)

. (F.15)

Although the Burg method has satisfactory performance for the
present work, it should be noted for completeness that the Burg method
suffers from several problems, including spectral line splitting and
biases in the frequency estimate. These problems can be corrected
via a “least-squares” algorithm (independently developed by Ulrych-
Clayton and Nuttall) in which Ep is differentiated with respect to all
of the ap,k, not just ap,p, to obtain a set of normal equations (the
Levinson-Durbin constraint is no longer enforced). Application of this
modified algorithm is relegated to future work.

f.3 hybrid two-dimensional spectral estimates

The PCI detector consists of 32 elements arranged in a linear array.
However, due to digitization constraints, only a subset of the signals
from the linear array are digitized. Further, to achieve reasonable
mid-k and high-k response, this subset of channels is non-uniformly
spaced, as indicated in Figure F.1. This immediately precludes direct
application of the fast Fourier transform (FFT) in the spatial dimen-
sion, and more elaborate schemes must be utilized to quantify the spa-
tial spectrum. Below, Section F.3.1 describes the estimation and com-
pensation of the trigger offset between the two PCI digitizer boards.
Then, Section F.3.2 discusses estimation of the two-dimensional auto-
correlation function, which can be computed even when channels are
non-uniformly spaced. Finally, Section F.3.3 discusses calculation of
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the two-dimensional autospectral density from the two-dimensional
autocorrelation function.

f.3.1 Estimation & compensation of trigger offset

Prior to performing any spectral computations, the trigger offset be-
tween digitizer board 7 and digitizer board 8 must be estimated and
compensated. The general theory is discussed in Appendix G. The
trigger offset is estimated by defining

�↵(f) =
↵15,16(f) +↵17,18(f)

2
(F.16)

�↵meas(f) = ↵16,17(f), (F.17)

and applying (G.10); here ↵i,j(f) is the cross phase between channels
i and j during a stationary portion of the discharge. To minimize
random error, at least 1000 realizations are averaged over, and only
frequencies with sufficiently high coherence (e.g. �2i,j > 0.1) are con-
sidered. The offset is rarely larger than one or two timestamps, but
even such small offsets can significantly bias spectral estimates. Then,
using standard techniques [2, Sec. 4.5], the trigger offset can be com-
pensated easily in post-processing, even if the offset is a non-integer
multiple of the sample spacing.

f.3.2 Two-dimensional autocorrelation function

The autocorrelation function Rxx and the autospectral density function
Sxx are Fourier transform pairs, i.e.

Sxx(⇠, f) = F[Rxx(�, ⌧)](⇠, f), (F.18)

Rxx(�, ⌧) = F-1[Sxx(⇠, f)](�, ⌧), (F.19)

where F is the Fourier transform, ⌧ is the temporal lag, � is the spa-
tial lag, f is the frequency, and ⇠ is the spatial frequency (related
to the wavenumber k via k = 2⇡⇠). If the measurements are uni-
formly sampled in space and time, it is most efficient to estimate the
two-dimensional autospectral density Sxx using the FFT methods de-
scribed in Section F.1 and then apply the inverse Fourier transform
as in (F.19) to compute the two-dimensional autocorrelation function
Rxx. However, if the measurements are not uniformly spaced, the two
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dimensional autocorrelation function can still be estimated via the def-
inition

Rxx(�, ⌧) = E[xk(z, t) · xk(z+ �, t+ ⌧)], (F.20)

where E[·] is the expectation-value operator and xk is the kth realiza-
tion of the real-valued random process {xk(z, t)}. If needed, the au-
tocorrelation can be interpolated onto a uniform grid, and then the
autospectral density Sxx can be computed by applying the Fourier
transform, as in (F.18).

When temporal sampling is uniform but spatial sampling is nonuni-
form, as in the PCI, it is often convenient to define a “hybrid” two-
dimensional autocorrelation function eRxx

eRxx(�, f) = F-1[Sxx(⇠, f)](�)

=

Z1

-1
d⇠ei2⇡⇠�Sxx(⇠, f)

= Sxx(�, f), (F.21)

where Sxx(�, f) = Sxi,xj
(f) is the cross-spectral density function be-

tween xi(t) = x(z, t) and xj(t) = x(z + �, t). Note that Sxi,xj
(f) can

be efficiently computed via the FFT methods described in Section F.1
such that the “hybrid” autocorrelation function can be estimated as an
ensemble average over all of the unique correlation pairs separated by
�

eRxx(�, f) =

P
i-j=�

Sxi,xj
(f)

P
i-j=�

1
; (F.22)

if there are no correlation pairs separated by �, then eRxx is undefined
for this separation. If the variances of xi and xj are artificially biased
e.g. due to the finite PCI beam width, the variances should be equal-
ized prior to estimating eRxx with (F.22). As discussed in Section F.3.3,
the autospectral density can be computed from this eRxx estimate.

Before proceeding, however, it is instructive to consider a few prop-
erties of eRxx. In general, eRxx is complex-valued. For real-valued
x, however, eRxx is Hermitian, i.e. eRxx(-�,-f) = [eRxx(�, f)]⇤, where
z⇤ indicates the complex conjugate of z. At any given frequency f,
|eRxx(�, f)| attains a maximum at � = 0. The variance of signal x(z, t) is
related to eRxx via

var(x) =
Z
eRxx(0, f)df. (F.23)
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Figure F.2: Example of the (a) real and (b) imaginary components of the
PCI-measured normalized, two-dimensional, hybrid autocorrelation function
erxx(�, f). Note that � = 0 corresponds to the same detector element, � = 1

corresponds to adjacent detector elements, etc. The vertical white striations
correspond to non-existing element separations (as established by the digitization
layout shown in Figure F.1) for which erxx(�, f) is not defined. To proceed with the
autospectral density estimation in Section F.3.3, the computation must either be
restricted to the central, continuous domain, or the autocorrelation function must be
interpolated; linear interpolation was found to be sufficient in this work.

Because |eRxx| can vary by several orders of magnitude across the full
temporal bandwidth of signal x(z, t), visualizing the spatiotemporal
structure of eRxx can be aided by defining the normalized autocorrela-
tion function

erxx(�, f) =
eRxx(�, f)
eRxx(0, f)

. (F.24)

An example of the PCI-measured erxx(�, f) is shown in Figure F.2.
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f.3.3 Two-dimensional autospectral density

The two-dimensional autospectral density function Sxx(k, f) can be
computed from the hybrid two-dimensional autocorrelation function
eRxx(�, f). Below and throughout this work, if eRxx(�, f) is not defined
for a given �, it is linearly interpolated across the gap. Investigation
of more sophisticated interpolation algorithms is relegated to future
work.

As suggested by (F.18), computing the spatial Fourier transform of
eRxx(�, f) produces an estimate of the autospectral density Sxx(k, f).
Explicitly,

Sxx(k, f) = F
h
eRxx(�, f)

i
(k)

=

Z1

-1
eRxx(�, f)e-ik�d�

⇡
Z�/2

-�/2

eRxx(�, f)e-ik�d�, (F.25)

where � = 2 · max(|�|) is the full span of spatial lags. Of course, for
efficiency, the Fourier transform should be computed via the FFT. Fur-
ther, to minimized sidelobe leakage, eRxx(�, f) should be windowed in
� prior to computing the Fourier transform; here, only the Hanning
window is considered. Using the eRxx(�, f) corresponding to Figure F.2,
the resulting Fourier-in-space autospectral density estimate is shown
in Figure F.3(a). Clearly, the wavenumber resolution of the Fourier
estimate is severely limited by the sparse spatial sampling.

The parametric spectral-estimation techniques discussed in Section F.2
present an alternative method for computing Sxx(k, f). For each fre-
quency f in eRxx(�, f), a p-order Burg AR can be performed in � to es-
timate the autospectral density of the autocorrelation function SeReR(k, f).
Now, from the non-parametric methods discussed in Section F.1, the
autospectral density of eRxx is defined as

SeReR(k, f) = lim
�!1

1

�
E

2

4
�����

Z�/2

-�/2

eRxx(�, f)e-ik�d�

�����

2
3

5 (F.26)

such that
Z�/2

-�/2

eRxx(�, f)e-ik�d� ⇡ ±
⇥
� · SeReR(k, f)

⇤1/2 , (F.27)
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Figure F.3: Two-dimensional autospectral density estimates Sxx(k, f). Here, (a)
estimates the spatial spectrum using conventional Fourier methods while (b)
estimates the spatial spectrum using a p = 4 Burg AR evaluated on a uniformly
spaced, 1000-element wavenumber grid. It is important to note that the autospectral
density estimates in both (a) and (b) correspond to the same raw data and the same
autocorrelation function eRxx(�, f) from Figure F.2. However, the Burg AR produces
substantially improved wavenumber resolution.

which is real-valued because SeReR and � are real-valued. Substituting
(F.27) into (F.25) yields

Sxx(k, f) ⇡
⇥
� · SeReR(k, f)

⇤1/2 , (F.28)

where the positive root has been selected because Sxx(k, f) is positive
semidefinite by definition. Power conservation is ensured by normal-
izing the spectral estimate to the signal variance, i.e.

Z
Sxx(k, f)dkdf = var(x), (F.29)
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where var(x) is related to Rxx(�, f) via (F.23). Because the all-pole fea-
ture of an AR model is capable of fitting very sharp spectral features
and the resulting spectral estimate can be evaluated with an arbitrary
resolution, the wavenumber resolution of the Burg AR estimate may
be substantially better than that of the corresponding Fourier estimate,
as shown in Figure F.3(b).
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G
S Y N C H R O N I Z AT I O N O F D I G I TA L R E C O R D S

Digital signal processing is often foundational to signal analysis. Of
course, application of such techniques requires converting an analog
signal to a digital record. Efficient conversion requires both quan-
tization of the signal magnitude and temporal sampling [1]. When
examining the phasing between multiple digital records, the synchro-
nization of this temporal sampling is of paramount importance.

This appendix discusses post-processing synchronization of digi-
tal records. Below, Section G.1 defines temporal sampling and men-
tions caveats regarding nominal and actual sampling parameters. Sec-
tion G.2 then discusses various digitization schemes, highlighting which
schemes allow synchronization. Finally, Section G.3 details the syn-
chronization of phase-locked digital records.

g.1 temporal sampling

Typically, temporal sampling of signal xj(t) occurs at a fixed sampling
rate Fj such that successive points in the digital record are separated
in time by 1/Fj. Digitization begins at the trigger time tj[0] such that
the mth digitized point is sampled at time

tj[m] = tj[0] +
m

Fj
. (G.1)

Ideally, the realized sampling rate Fj and trigger time tj[0] are equal to
their nominal values Fnom

j and tnom
j [0], respectively. However, short-

term jitter, long-term drifts, and constant offsets often plague real-
world digitization such that Fj 6= Fnom

j , tj[0] 6= tnom
j [0], and

tj[m] 6= tnom
j [0] +

m

Fnom
j

; (G.2)

that is, the actual sample times of the digital record differ from their
nominal values. In a properly operating digitizer, these discrepancies
are typically small, and an autospectral-density estimate (for exam-
ple) of xj(t) from its digital record will be negligibly compromised.
When estimating the phasing between xj(t) and xk(t) for j 6= k, how-
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ever, identifying and correcting such timebase discrepancies becomes
paramount in importance.

g.2 which digital records can be synchronized?

The digitization scheme determines whether or not digital records
{xj[m]} and {xk[m]} can be synchronized. The cleanest, simplest, and
most problem-free scheme is to digitize xj(t) and xk(t) on the same sys-
tem such that the actual sample rates and trigger times of both digital
records are identical (i.e. Fj = Fk and tj[0] = tk[0], respectively). How-
ever, such a scheme is not always feasible. Further, note that multiple
digitizer boards operating in a master-slave configuration can still suf-
fer from trigger-time offsets, despite nominally being part of the same
digitization system. The next-best scheme is to use phase-locked digi-
tizers such that

Fj

Fk
=

Fnom
j

Fnom
k

= constant (for phase-locked digitizers), (G.3)

regardless of any short-term jitter or long-term drift in the digitizer
clocks. As shown in Section G.3, the actual sampling times of phase-
locked digital records differ (at most) by a constant “trigger offset”,
which can be compensated easily. Finally, the least-desirable scheme
is to use free-running digitizers such that Fj/Fk 6= Fnom

j /Fnom
k ; it may be

impossible to synchronize records from free-running digitizers. While
the below discussion considers synchronization via post-processing, it
should be noted for completeness that hardware solutions for synchro-
nization also exist [2].

g.3 synchronization of phase-locked digital records

This section details the synchronization of phase-locked digital records.
Specifically, Section G.3.1 defines the “trigger offset” between phase-
locked digital records, and Section G.3.2 discusses the phase bias pro-
duced by a finite trigger offset. Section G.3.3 describes methods for es-
timating the trigger offset. Then, using standard techniques [3, Sec. 4.5],
the trigger offset can be compensated easily in post-processing, even
if the offset is a non-integer multiple of the sample spacing.
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g.3.1 The “trigger offset”

Phase-locked digitizers may suffer from a deleterious “trigger offset”.
To see this, consider two digitizers j and k. Assume that the digi-
tizers have different nominal trigger times tnom

j [0] 6= tnom
k [0] but the

same nominal sampling rate Fnom
j = Fnom

k . (If the digitizers have dif-
ferent nominal sampling rates, however, the records from one of the
digitizers can be digitally resampled [3, Sec. 4.6] with the sampling
rate of the other digitizer, and then the presentation below proceeds
unchanged). Because the nominal trigger times of digitizers j and k

differ, their mth nominal timestamps also differ, i.e. tnom
j [m] 6= tnom

k [m].
Instead, tnom

j [m] = tnom
k [n], where

n = m+ Fnom
j

�
tnom
j [0]- tnom

k [0]
�

, (G.4)

and the equality of the nominal sampling rates has been utilized.
Now, for digitizer j define �tj = tj[0] - tnom

j [0] to be the difference
between the actual and nominal trigger times, �Fj = Fj - Fnom

j to be
the difference between the actual and nominal sampling rates, and
�Fj = �Fj/F

nom
j to be the normalized difference between the actual

and nominal sampling rates (|�Fj| ⌧ 1). Similar definitions apply for
digitizer k. Because the digitizers satisfy the phase-locked constraint
(G.3),

�Fj = �Fk. (G.5)

(Note that equality (G.5) holds even if the nominal sampling rates are
different). Then, to first order in �Fj, the actual sampling times tj[m]
are related to the nominal sampling times tnom

j [m] via

tj[m] ⇡ tnom
j [m] + �tj -

m · �Fj
Fnom
j

. (G.6)

Thus, trigger-time discrepancy �tj produces a constant offset between
the actual and nominal sampling times of digitizer j, while sampling-
rate discrepancy �Fj produces a linear ramp between the actual and
nominal sampling times of digitizer j.

Now, in some situations it is of the utmost importance that the ac-
tual sampling times of digitizers j and k align. (Inferring the spatial
structure of a signal from its phasing between two spatially separated
sensors is one such example). The nominal sampling times are aligned
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Figure G.1: The “trigger offset” �ttrig between phase-locked digitizers. Here, the nth

nominal sampling time of digitizer k equals the mth nominal sampling time of
digitizer k (i.e. tnom

j [m] = tnom
k [n]), where n and m are related via (G.4). However, a

finite trigger offset (G.7) produces a discrepancy between the actual sampling times
of the two digitizers (i.e. tj[m] 6= tk[n]), which can bias phase measurements, as
discussed in Section G.3.2.

via (G.4), but any remaining discrepancy between the actual sampling
times is

�ttrig = tj[m]- tk[n]

=
�
�tj - �tk

�
+ �Fj

�
tnom
j [0]- tnom

k [0]
�

; (G.7)

this situation is shown schematically in Figure G.1. Here, the first term
on the right-hand side of (G.7) corresponds to the difference between
trigger-time discrepancies of each digitizer, while the second term on
the right-hand side corresponds to the relative sampling-rate discrep-
ancy weighted by the difference in nominal trigger times. As both
effects are related to triggering, this timestamp discrepancy is referred
to as the “trigger offset” �ttrig. Note that �ttrig is a single, constant
value for any given pair of phase-locked digital records.

g.3.2 Effect of the trigger offset

The trigger offset (G.7) biases the measured phasing between the dig-
ital records. To see this, let xj(t) be a coherent mode of angular fre-
quency ! such that the corresponding digital record is

xj[m] = xj(tj[m])

/ Xj(!)ei!tj[m]

= |Xj(!)|ei{↵j(!)+!tj[m]}, (G.8)

where |Xj(!)| is the Fourier amplitude and ↵j(!) is the Fourier phase.
(Here, the Fourier-transform kernel is / e-i!t and the inverse Fourier-
transform kernel is / ei!t, in accord with the NumPy implementa-
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tion of the fast Fourier transform (FFT) [4]; if the opposite convention
is used for FFT computations, then the substitution �ttrig ! -�ttrig
should be made in equations (G.9), (G.10), and (G.11)). Then, after
aligning nominal sampling times via (G.4), the measured phase differ-
ence �↵meas between digital records {xj[m]} and {xk[n]} is

�↵meas = arg
�
x⇤k[n] · xj[m]

�

=
⇥
↵j(!)-↵k(!)

⇤
+!

�
tj[m]- tk[n]

�

= �↵(!) +
�
! · �ttrig

�
, (G.9)

where �↵(!) = ↵j(!)- ↵k(!) is the true phase difference and �ttrig
is defined in (G.7). Thus, non-zero trigger offset �ttrig biases the mea-
sured phase difference �↵meas away from the true phase difference �↵.
The above argument readily extends to broadband signals.

g.3.3 Estimating the trigger offset

Clearly, a finite trigger offset is undesirable. In some situations, it
is possible to estimate the trigger offset. Then, using standard tech-
niques [3, Sec. 4.5], the trigger offset can be compensated easily in
post-processing, even if the offset is a non-integer multiple of the sam-
ple spacing.

If the true phase difference �↵(!) is known a priori (from e.g. an-
other measurement), solving for �ttrig in (G.9) yields an estimated trig-
ger offset

�ttrig =
�↵meas(!)-�↵(!)

!
. (G.10)

Although a priori knowledge of �↵ may make (G.10) seem rather aca-
demic, it does find real-world application. For example, imagine the
signals from a regularly spaced array of channels are digitized across
multiple digitizer boards. The intra-board trigger offsets are negligi-
ble such that the true phase difference �↵ can be accurately estimated
from adjacent channels digitized on the same board; comparing this
estimate of �↵ to the measured phase difference �↵meas between ad-
jacent channels digitized on different boards via (G.10) then yields an
estimate of the trigger offset between the boards. This methodology
is used to estimate the trigger offset between the two boards of the
DIII-D PCI digitizer.

In addition to requiring a priori knowledge of the true phase differ-
ence �↵, trigger-offset estimate (G.10) also suffers from aliasing. That
is, �↵meas is only measured modulo 2⇡ such that (G.10) specifies an
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infinite set of potential trigger offsets, with adjacent values spaced by
2⇡/!. This is particularly troublesome for “large” trigger offsets.

Under certain circumstances, the trigger offset can be estimated in
an alternative, alias-free manner. For example, consider a coherent
mode with time-dependent angular frequency !(t). If the angular
frequency ramps linearly in time (i.e. !̇ = d!/dt = constant) and
the true phase difference �↵ does not vary in time, taking the time
derivative of (G.9) and solving for �ttrig yields

�ttrig =
1

!̇

d [�↵meas(!)]

dt
=

d [�↵meas(!)]

d!
. (G.11)

Because (G.11) depends on the derivative of �↵meas, it is an alias-free
estimate of the trigger offset. Further, (G.11) does not require a priori
knowledge of the true phase difference �↵ (other than requiring that it
be constant in time). This methodology is used to estimate the trigger
offset between DIII-D’s two toroidally separated interferometers.
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