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Abstract

A new doubling algorithm – Alternating-Directional Doubling Algorithm (ADDA) – is
developed for computing the unique minimal nonnegative solution of an M -Matrix Algebraic
Riccati Equation (MARE). It is argued by both theoretical analysis and numerical experi-
ments that ADDA is always faster than two existing doubling algorithms – SDA of Guo, Lin,
and Xu (Numer. Math., 103 (2006), pp. 393–412) and SDA-ss of Bini, Meini, and Poloni
(Numer. Math., 116 (2010), pp. 553–578) for the same purpose. Also demonstrated is that
all three methods are capable of delivering minimal nonnegative solutions with entrywise
relative accuracies as warranted by the defining coefficient matrices of an MARE.

2000 Mathematics Subject Classification. 15A24, 65F30, 65H10.

Key words and phrases. Matrix Riccati equation, M -Matrix, minimal nonnegative solution, doubling

algorithm

1 Introduction

An M -Matrix Algebraic Riccati Equation1 (MARE) is the matrix equation

XDX −AX −XB + C = 0, (1.1)

for which A, B, C, and D are matrices whose sizes are determined by the partitioning

W =

( m n

m B −D
n −C A

)
, (1.2)
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1Previously it was called a Nonsymmetric Algebraic Riccati Equation, a name that seems to be too broad to
be descriptive. MARE was recently coined in [33] to better reflect its characteristics.
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and W is a nonsingular or an irreducible singular M -matrix. This kind of Riccati equations
arise in applied probability and transportation theory and have been attracting a lot of attention
lately. See [18, 16, 20, 21, 22, 23, 28] and the references therein. It is shown in [16, 20] that
(1.1) has a unique minimal nonnegative solution Φ, i.e.,

Φ ≤ X for any other nonnegative solution X of (1.1).

In [21], a structure-preserving doubling algorithm (SDA) was proposed and analyzed for an
MARE with W being a nonsingular M -matrix by Guo, Lin, and Xu. SDA is very fast and
efficient for small to medium size MAREs as it is globally and quadratically convergent. The
algorithm has to select a parameter µ that is no smaller than the largest diagonal entries in both
A and B. Such a choice of µ ensures the following:

1. An elegant theory of global and quadratic convergence [21] (except in the critical case for
which only linear convergence is ensured [11]);

2. Computed Φ has an entrywise relative accuracy as the input data deserves, as argued
recently in [33].

Consequently, SDA has since emerged as one of the most efficient algorithms.
But as we shall argue in this paper, SDA has room to improve. One situation is when A

and B differs in magnitudes. But since SDA is blind to any difference between A and B, it
still picks one parameter µ. Conceivably, if A and B could be treated differently with regard to
their own characteristics, better algorithms would be possible. This is the motivational thought
that drives our study in this paper. Specifically, we will propose a new doubling algorithm –
Alternating-Directional Doubling Algorithm (ADDA) – that also imports the idea from the ADI
(Alternating-Directional-Implicit) iteration for Sylvester equations [7, 32]. Our new doubling
algorithm ADDA includes two parameters that can be tailored to reflect each individual char-
acteristics of A and B, and consequently ADDA converges at least as fast as SDA and can be
much faster when A and B have very different magnitudes.

We are not the first to notice that SDA often takes quite many iterations for an MARE
with A and B having very different magnitudes. In fact, Bini, Meini, and Poloni [9] recently
developed a doubling algorithm called SDA-ss using a shrink-and-shift approach of Ramaswami
[27]. SDA-ss has shown dramatic improvements over SDA in some of the numerical tests in [9].
But it can happen that sometimes SDA-ss runs slower than SDA, although not by much. Later
we will show our ADDA is always the fastest among the three methods.

Throughout this article, A, B, C, and D, unless explicitly stated differently, are reserved for
the coefficient matrices of MARE (1.1) for which

W defined by (1.2) is a nonsingular M -matrix or an irre-
ducible singular M -matrix.

(1.3)

The rest of this paper is organized as follows. Section 2 presents several known results about
M -matrices, as well as a new result on optimizing the product of two spectral radii of the gen-
eralized Cayley transforms of two M -matrices. This new result which may be of independent
interest of its own will be used to develop our optimal ADDA. Section 3 devotes to the devel-
opment of ADDA whose application to M -matrix Sylvester equation leads to an improvement
of the Smith method [29] in section 4. A detailed comparison on rates of convergence among
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ADDA, SDA, and SDA-ss is given in section 5. Numerical results to demonstrate the efficiency of
the three doubling methods are presented in section 6. Finally, we give our concluding remarks
in section 7.

Notation. Rn×m is the set of all n×m real matrices, Rn = Rn×1, and R = R1. In (or simply I
if its dimension is clear from the context) is the n× n identity matrix and ej is its jth column.
1n,m ∈ Rn×m is the matrix of all ones, and 1n = 1n,1. The superscript “·T” takes the transpose
of a matrix or a vector. For X ∈ Rn×m,

1. X(i,j) refers to its (i, j)th entry;

2. when m = n, diag(X) is the diagonal matrix with the same diagonal entries as X’s, ρ(X)
is the spectral radius of X, and

ϱ(X) = ρ([diag(X)]−1[diag(X)−X]).

Inequality X ≤ Y means X(i,j) ≤ Y(i,j) for all (i, j), and similarly for X < Y , X ≥ Y , and
X > Y .

2 Preliminary Results on M-Matrices

A ∈ Rn×n is called a Z-matrix if it has nonpositive off-diagonal entries [8, p.284]. Any Z-matrix
A can be written as sI − N with N ≥ 0, and it is called an M -matrix if s ≥ ρ(N), a singular
M -matrix if s = ρ(N), and a nonsingular M -matrix if s > ρ(N).

In this section, we first collect a few well-known results about M -matrices in Lemmas 2.1
and 2.2 that are needed later in this paper. They can be found in, e.g., [8, 14, 31]. Then we
establish a new result on optimizing the product of two spectral radii of the generalized Cayley
transforms of two M -matrices.

Lemma 2.1 gives four equivalent statements about when a Z-matrix is an M -matrix.

Lemma 2.1. For a Z-matrix A, the following are equivalent:

(a) A is a nonsingular M -matrix.

(b) A−1 ≥ 0.

(c) Au > 0 for some vector u > 0.

(d) All eigenvalues of A have positive real parts.

Lemma 2.2 collects a few properties of M -matrices, important to our later analysis, where
Item (d) can be found in [26].

Lemma 2.2. Let A,B ∈ Rn×n, and suppose A is an M-matrix and B is a Z-matrix.

(a) If B ≥ A, then B is an M-matrix. In particular, θI + A is an M -matrix for θ ≥ 0 and a
nonsingular M -matrix for θ > 0.

(b) If B ≥ A and A is nonsingular, then B is a nonsingular M -matrix, and A−1 ≥ B−1.

(c) If A is nonsingular and irreducible, then A−1 > 0.
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(d) The one with the smallest absolute value among all eigenvalues of A, denoted by λmin(A),
is nonnegative, and λmin(A) ≤ maxiA(i,i).

(e) If A is a nonsingular M -matrix or an irreducible singular M -matrix, and is partitioned as

A =

(
A11 A12

A21 A22

)
,

where A11 and A22 are square matrices, then A11 and A22 are nonsingular M -matrices,
and their Schur complements

A22 −A21A
−1
11 A12, A11 −A12A

−1
22 A21

are nonsingular M -matrices if A is a nonsingular M -matrix or an irreducible singular
M -matrices if A is an irreducible singular M -matrix.

Theorem 2.1 which may have independent interest of its own lays the foundation of our
optimal ADDA in terms of its rate of convergence subject to certain nonnegativity condition.
To the best of our knowledge, it is new. Define the following generalized Cayley transformation

C (A;α, β)
def
= (A− αI)(A+ βI)−1 (2.1)

of a square matrix A, where α, β are scalars such that A+ βI is assumed nonsingular.

Theorem 2.1. For two M -matrices A ∈ Rn×n and B ∈ Rm×m, define2

f(α, β)
def
= ρ(C (A;α, β)) · ρ(C (B;β, α))

for

α ≥ αopt
def
= max

i
A(i,i), β ≥ βopt

def
= max

i
B(i,i). (2.2)

(a) If both A and B are singular, then f(α, β) ≡ 1;

(b) If one of A and B is nonsingular, then f(α, β) is strictly increasing in α and β and f(α, β) <
1.

In each case, we have
min

α≥αopt,β≥βopt

f(α, β) = f(αopt, βopt). (2.3)

Proof. Assume for the moment that both A andB are irreducibleM -matrices. WriteA = sI−N ,
where s ≥ 0 and N ≥ 0, and N is irreducible. By the Perron-Frobenius theorem [8, p.27], there
is a positive vector u such that Nu = ρ(N)u. It can be seen that λmin(A) = s − ρ(N) ≥ 0,
where λmin(A) is as defined in Lemma 2.2(d). We have

−C (A;α, β)u = (αI −A)(A+ βI)−1u = [α− λmin(A)][λmin(A) + β]−1u.

Since −C (A;α, β)) ≥ 0 and irreducible for α > αopt and β > 0, it follows from the Perron-
Frobenius theorem that

ρ(C (A;α, β)) = ρ(−C (A;α, β)) = [α− λmin(A)][λmin(A) + β]−1.

2It is possible that this function f may be undefined at α = αopt or β = βopt. When that is the case, we take
f(α, β) to be its right limits.
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Similarly, we have for α > 0 and β > βopt,

ρ(C (B;β, α)) = [β − λmin(B)][λmin(B) + α]−1.

Finally for α > αopt and β > βopt,

f(α, β) = ρ(C (A;α, β)) · ρ(C (B;β, α))

=
α− λmin(A)

λmin(A) + β
· β − λmin(B)

λmin(B) + α

= g(α)h(β),

where

g(α) =
α− λmin(A)

λmin(B) + α
, h(β) =

β − λmin(B)

λmin(A) + β
.

Now if both A and B are singular, then λmin(A) = λmin(B) = 0 and thus f(α, β) ≡ 1 which
proves Item (a). If one of A and B is nonsingular, then λmin(A) + λmin(B) > 0 and thus

g′(α) =
λmin(A) + λmin(B)

(λmin(B) + α)2
> 0, h′(β) =

λmin(A) + λmin(B)

(λmin(A) + β)2
> 0.

So f(α, β) is strictly increasing in α and β for α > αopt and β > βopt and

f(α, β) < lim
α→∞
β→∞

f(α, β) = 1.

This is Item (b).
Suppose now that A and B are possibly reducible. Let Π1 ∈ Rn×n and Π2 ∈ Rm×m be two

permutation matrices such that

ΠT
1 AΠ1 =


A11 −A12 . . . −A1q

A22 . . . −A2q

. . .
...
Aqq

 , ΠT
2 BΠ2 =


B11 −B12 . . . −B1p

B22 . . . −B2p

. . .
...
Bpp

 ,

where Aij ∈ Rni×nj , Bij ∈ Rmi×mj , all Aii and Bjj are irreducible M -matrices, and all Aij ≥ 0
and Bij ≥ 0 for i ̸= j. It can be seen that

f(α, β) = max
i,j

ρ(C (Aii;α, β)) · ρ(C (Bjj ;β, α)).

If one of A and B is nonsingular, then one of Aii and Bjj is nonsingular for each pair (Aii, Bjj)
and thus all ρ(C (Aii;α, β)) · ρ(C (Bjj ;β, α)) are strictly increasing in α and β for α > αopt

and β > βopt; so is f(α, β). Now if both A and B are singular, then there is at least one pair
(Aii, Bjj) for which both Aii and Bjj are singular and irreducible. By Item (a) we just proved
for the irreducible case, for that pair ρ(C (Aii;α, β)) · ρ(C (Bjj ;β, α)) ≡ 1 under (2.2). Since for
all other pairs (Aii, Bjj), ρ(C (Aii;α, β)) ·ρ(C (Bjj ;β, α)) ≤ 1 by Item (a). Thus f(α, β) ≡ 1.
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3 ADDA: Alternating-Directional Doubling Algorithm

The basic idea of doubling algorithms for an iterative scheme is to compute only the 2kth
approximations, instead of every approximation in the process. It traces back to 1970s (see [2]
and references therein). Recent resurgence of interests in the idea has led to efficient doubling
algorithms for various nonlinear matrix equations. The interested reader is referred to [11] for
a more general presentation. The use of a structure-preserving doubling algorithm (SDA) to
solve an MARE was first proposed and analyzed by Guo, Lin, and Xu [21]. For MARE (1.1),
SDA simultaneously computes the minimal nonnegative solutions of (1.1) and its complementary
M -Matrix Algebraic Riccati Equation (cMARE)

Y CY − Y A−BY +D = 0. (3.1)

In what follows, we shall present our ADDA for MARE in this way: framework, analysis, and
then optimal ADDA. We name it ADDA after taking into consideration that it is a doubling
algorithm and relates to the Alternating-Directional-Implicit (ADI) iteration for Sylvester equa-
tions (see section 4).

3.1 Framework

The framework in this subsection actually works for any algebraic Riccati equation, provided all
involved inverses exist. It is just that in general we may not have a similar convergence theory
as for an MARE in the next subsection.

For any solution X of MARE (1.1) and Y of cMARE (3.1), it can be verified that

H

(
I
X

)
=

(
I
X

)
R, H

(
Y
I

)
=

(
Y
I

)
(−S), (3.2)

where

H =

(
B −D
C −A

)
, R = B −DX, S = A− CY. (3.3)

Given any scalars α and β, we have

(H − βI)

(
I
X

)
( R+ αI) = (H + αI)

(
I
X

)
( R− βI),

(H − βI)

(
Y
I

)
(−S + αI) = (H + αI)

(
Y
I

)
(−S − βI).

If R+ αI and S + βI are nonsingular, then

(H − βI)

(
I
X

)
= (H + αI)

(
I
X

)
C (R;β, α), (3.4a)

(H − βI)

(
Y
I

)
C (S;α, β) = (H + αI)

(
Y
I

)
. (3.4b)

Suppose for the moment that A+ βI and B + αI are nonsingular and set

Aβ = A+ βI, Bα = B + αI, (3.5)

Uαβ = Aβ − CB−1
α D, Vαβ = Bα −DA−1

β C, (3.6)
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and

Z1 =

(
B−1

α 0
−CB−1

α I

)
, Z2 =

(
I 0

0 −U−1
αβ

)
, Z3 =

(
I B−1

α D
0 I

)
.

It can be verified that

M0
def
= Z3Z2Z1(H − βI) =

(
E0 0

−X0 I

)
, (3.7a)

L0
def
= Z3Z2Z1(H + αI) =

(
I −Y0
0 F0

)
, (3.7b)

where

E0 = I − (β + α)V −1
αβ , Y0 = (β + α)B−1

α DU−1
αβ , (3.8a)

F0 = I − (β + α)U−1
αβ , X0 = (β + α)U−1

αβCB−1
α . (3.8b)

Pre-multiply the equations in (3.4) by Z3Z2Z1 to get

M0

(
I
X

)
= L0

(
I
X

)
C (R;β, α), M0

(
Y
I

)
C (S;α, β) = L0

(
Y
I

)
. (3.9)

Our development up to this point differs from SDA of [21] only in our inclusion of two param-
eters α and β. The significance of doing so will be demonstrated in our later comparisons on
convergence rates in section 5 and numerical examples in section 6. From this point forward,
ours is the same as in [21]. The idea is to construct a sequence of pairs {Mk, Lk}, k = 0, 1, 2, . . .
such that

Mk

(
I
X

)
= Lk

(
I
X

)
[C (R;β, α)]2

k

, Mk

(
Y
I

)
[C (S;α, β)]2

k

= Lk

(
Y
I

)
, (3.10)

and at the same time Mk and Lk have the same forms as M0 and L0, respectively, i.e.,

Mk =

(
Ek 0

−Xk I

)
, Lk =

(
I −Yk
0 Fk

)
. (3.11)

The technique for constructing {Mk+1, Lk+1} from {Mk, Lk} is not entirely new and can be
traced back to 1980s in [10, 15, 25] and more recently in [3, 6, 30]. The idea is to seek suitable
M̌, Ľ ∈ R(m+n)×(m+n) such that

rank
(
(M̌, Ľ)

)
= m+ n, (M̌, Ľ)

(
Lk

−Mk

)
= 0 (3.12)

and set Mk+1 = M̌Mk and Lk+1 = ĽLk. It is not hard to verify that if the equations in (3.10)
hold, then they hold for k replaced by k + 1, i.e., for the newly constructed Mk+1 and Lk+1.
The only problem is that not every pair {M̌, Ľ} satisfying (3.12) leads to {Mk+1, Lk+1} having
the forms of (3.11). For this, we turn to the constructions of {M̌, Ľ} in [12, 13, 21, 24]:

M̌ =

(
Ek(Im − YkXk)

−1 0
−Fk(In −XkYk)

−1Xk Im

)
, Ľ =

(
In −Ek(Im − YkXk)

−1Yk
0 −Fk(In −XkYk)

−1

)
,
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with which Mk+1 = M̌Mk and Lk+1 = ĽLk have the forms of (3.11) with

Ek+1 = Ek(Im − YkXk)
−1Ek, (3.13a)

Fk+1 = Fk(In −XkYk)
−1Fk, (3.13b)

Xk+1 = Xk + Fk(In −XkYk)
−1XkEk, (3.13c)

Yk+1 = Yk + Ek(Im − YkXk)
−1YkFk. (3.13d)

By now we have presented the framework of ADDA:

1. Pick suitable α and β for (best) convergence rate;

2. Compute M0 and L0 of (3.7) by (3.5), (3.6), and (3.8);

3. Iteratively compute Mk and Lk by (3.13) until convergence.

Associated with this general framework arise a few questions:

1. Are the iterative formulas in (3.13) well-defined, i.e., do all the inverses exist?

2. How do we choose best parameters α and β for fast convergence?

3. What do Xk and Yk converge to if they are convergent?

4. How much better is ADDA than the doubling algorithms: SDA of Guo, Lin, and Xu [21]
and SDA-ss of Bini, Meini, and Poloni [9]?

The first three questions will be addressed in the next subsection while the last question will be
answered in section 5.

3.2 Analysis

Recall that W defined by (1.2) is a nonsingular or an irreducible singular M -matrix. MARE
(1.1) has a unique minimal nonnegative solution Φ [18] and cMARE (3.1) has a unique minimal
nonnegative solution Ψ . Some properties of Φ and Ψ are summarized in Theorem 3.1 below.
They are needed in order to answer the questions we posed at the end of the previous subsection.

Theorem 3.1 ([16, 17, 18]). Assume (1.3).

(a) MARE (1.1) has a unique minimal nonnegative solution Φ, and and its cMARE (3.1) has
a unique minimal nonnegative solution Ψ ;

(b) If W is irreducible, then Φ > 0 and A− ΦD and B −DΦ are irreducible M -matrices;

(c) If W is nonsingular, then A− ΦD and B −DΦ are nonsingular M -matrices;

(d) Suppose W is irreducible and singular. Let u1, v1 ∈ Rm and u2, v2 ∈ Rn be positive vectors
such that

W

(
v1
v2

)
= 0,

(
u1
u2

)T

W = 0. (3.14)
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1. If uT1 v1 > uT2 v2, then B − DΦ is a singular M -matrix with3 (B − DΦ)v1 = 0 and
A− ΦD is a nonsingular M -matrix, and Φv1 = v2 and Ψv2 < v1;

2. If uT1 v1 = uT2 v2 (the so-called critical case), then both B−DΦ and A−ΦD are singular
M -matrices, and Φv1 = v2 and Ψv2 = v1;

3. If uT1 v1 < uT2 v2, then B −DΦ is a nonsingular M -matrix and A− ΦD is a singular
M -matrix, and Φv1 < v2 and Ψv2 = v1.

(e) I −ΦΨ and I −ΨΦ are M -matrices and they are nonsingular, except for the critical case in
which both are singular.

Recall our goal is to compute Φ as efficiently and accurately as possible and, as a by-product,
Ψ , too. In view of this goal, we identify X = Φ and Y = Ψ in all appearances of X and Y in
subsection 3.1. In particular

S = A− CΨ, R = B −DΦ, (3.3′)

and (3.10) and (3.11) yield immediately

Ek = (I − YkΦ) [C (R;β, α)]2
k

, (3.15a)

Φ−Xk = FkΦ [C (R;β, α)]2
k

, (3.15b)

Ψ − Yk = EkΨ [C (S;α, β)]2
k

, (3.15c)

Fk = (I −XkΨ) [C (S;α, β)]2
k

. (3.15d)

Examining (3.15), we see that ADDA will converge if

ρ(C (R;β, α)) < 1, ρ(C (S;α, β)) < 1, (3.16a)

because then

[C (R;β, α)]2
k

→ 0, [C (S;α, β)]2
k

→ 0 (3.16b)

as k → ∞. This is one of the guiding principles in [21] which enforces

α = β ≥ max
i,j

{A(i,i), B(j,j)} (3.17)

which in turn ensures (3.16a) and thus (3.16b) because, by Theorem 3.1(c), both4 S and R are
nonsingular M -matrices if5 W is a nonsingular M -matrix. Later Guo, Iannazzo, and Meini [19]
proved SDA of [21] still converges even if W is a singular irreducible M -matrix. They also
proved that taking

α = β = max
i,j

{A(i,i), B(j,j)} (3.18)

makes the resulting SDA converge the fastest subject to (3.17) [19, Theorem 4.4]. Another critical
implication of (3.17) is that it makes −E0 and −F0, Ek and Fk for k ≥ 1, and Xk and Yk for

3[16, Theorem 4.8] says in this case DΦv1 = Dv2 which leads to (B −DΦ)v1 = Bv1 −Dv2 = 0.
4That R is a nonsingular M -matrix is stated explicitly in Theorem 3.1(c). For S, we apply Theorem 3.1(c) to

cMARE (3.1) identified as an MARE in the form of (1.1) with its coefficient W -matrix as

(
A −C

−D B

)
.

5This is the case studied in [21].
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k ≥ 0 all nonnegative [21], a property that enables SDA of [21] (with some minor but crucial
implementation changes [33]) to compute Φ with deserved entrywise relative accuracy as argued
in [33].

We would like our ADDA to have such a capability as well, i.e., computing Φ with deserved
entrywise relative accuracy. To this end, we require

α ≥ αopt
def
= max

i
A(i,i), β ≥ βopt

def
= max

j
B(j,j), (3.19)

allow α and β to be different, and seek to minimize the product of the spectral radii

ρ(C (R;β, α)) · ρ(C (S;α, β)),

rather than each individual spectral radius. Later we will see that it is this product, not each
individual spectral radius, that ultimately reflects the true rate of convergence. In particular,
convergence is guaranteed if the product is less than 1, even if one of the spectral radii is bigger
than 1. Moreover, the smaller the product, the faster the convergence.

The assumption (1.3) implies that A and B are nonsingular M -matrices by Lemma 2.2(e).
Therefore both αopt > 0 and βopt > 0.

Lemma 3.1. Assume (1.3). If α > 0 and β > 0, then Aβ, Bα, Uαβ, and Vαβ defined in (3.5)
and (3.6) are nonsingular M -matrices. Furthermore, both Uαβ and Vαβ are irreducible if W is
irreducible.

Proof. If α > 0 and β > 0,

Ŵ = W +

(
αI 0
0 βI

)
=

(
B + αI −D
−C A+ βI

)
≥ min{α, β} · I +W

is a nonsingularM -matrix. As the diagonal blocks of Ŵ , Aβ and Bα are nonsingularM -matrices;

so are their corresponding Schur complements Vαβ and Uαβ in Ŵ by Lemma 2.2(e). If also W

is irreducible, then Ŵ is a nonsingular irreducible M -matrix, and thus both Uαβ and Vαβ are
nonsingular irreducible M -matrices again by Lemma 2.2(e).

Theorem 3.2. Assume (1.3) and (3.19).

(a) We have

E0 ≤ 0, F0 ≤ 0, C (R;β, α) ≤ 0, C (S;α, β) ≤ 0, (3.20)

0 ≤ X0 ≤ Φ, 0 ≤ Y0 ≤ Ψ. (3.21)

If W is also irreducible, then

E0 < 0, F0 < 0, C (R;β, α) < 0, C (S;α, β) < 0, (3.20′)

0 ≤ X0 < Φ, 0 ≤ Y0 < Ψ. (3.21′)

(b) Both I − YkXk and I −XkYk are nonsingular M -matrices for all k ≥ 0.
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(c) We have

Ek ≥ 0, Fk ≥ 0, 0 ≤ Xk−1 ≤ Xk ≤ Φ, 0 ≤ Yk−1 ≤ Yk ≤ Ψ for k ≥ 1. (3.22)

If W is also irreducible, then

Ek > 0, Fk > 0, 0 ≤ Xk−1 < Xk < Φ, 0 ≤ Yk−1 < Yk < Ψ for k ≥ 1. (3.22′)

Proof. Our proof is largely the same as in [19].

(a) That C (R;β, α) ≤ 0 and C (S;α, β) ≤ 0 is fairly straightforward because R and S are
M -matrices and α and β are restricted by (3.19). For E0 and F0, we note

E0 = V −1
αβ [Vαβ − (β + α)I] (3.23a)

= V −1
αβ (B − βI −DA−1

β C), (3.23b)

F0 = U−1
αβ [Uαβ − (β + α)I] (3.23c)

= U−1
αβ (A− αI − CB−1

α D). (3.23d)

Since Aβ, Bα, Vαβ , and Uαβ are nonsingular M -matrices by Lemma 3.1, we have

A−1
β ≥ 0, B−1

α ≥ 0, V −1
αβ ≥ 0, U−1

αβ ≥ 0.

Therefore E0 ≤ 0, F0 ≤ 0, X0 ≥ 0, and Y0 ≥ 0. Equations (3.15b) and (3.15c) for k = 0 yields
Φ−X0 ≥ 0 and Ψ − Y0 ≥ 0, respectively.

Now suppose W is irreducible. By Lemma 3.1, both Uαβ and Vαβ are irreducible. So
U−1
αβ > 0, V −1

αβ > 0, and no columns of Vαβ − (β + α)I ≤ 0 and Uαβ − (β + α)I ≤ 0 are zeros.

There E0 < 0 and F0 < 0 by (3.23a) and (3.23c). Theorem 3.1(b) implies that (S + βI)−1 > 0,
(R+ αI)−1 > 0, and no columns of S − αI ≤ 0 and R− βI ≤ 0 are zeros, and thus

C (S;α, β) = (S + βI)−1(S − αI) < 0, C (R;β, α) = (R+ αI)−1(R− βI) < 0.

Finally
Φ−X0 = F0ΦC (R;β, α) > 0, Ψ − Y0 = E0Ψ C (S;α, β) > 0

because Φ > 0 and Ψ > 0 by Theorem 3.1(b) and because (3.20′).

(b) and (c) We have I −X0Y0 ≥ I −ΦΨ and I −Y0X0 ≥ I −ΨΦ. Suppose for the moment that
W is nonsingular. Then both I−ΦΨ and I−ΨΦ are nonsingular M -matrices by Theorem 3.1(e),
and thus I −X0Y0 and I − Y0X0 are nonsingular M -matrices, too, by Lemma 2.2(b).

Now suppose W is an irreducible singular matrix. By Theorem 3.1(d), we have ΨΦv1 ≤ v1,
where v1 > 0 is defined in Theorem 3.1(d). So ρ(ΨΦ) ≤ 1 by [8, Theorem 1.11, p.28]. By part (a)
of this theorem, 0 ≤ X0 < Φ and 0 ≤ Y0 < Ψ . Therefore 0 ≤ X0Y0 < ΦΨ . Since both X0Y0 and
ΦΨ are irreducible, we conclude by [8, Corollary 1.5, p.27]

ρ(Y0X0) = ρ(X0Y0) < ρ(ΨΦ) = ρ(ΦΨ) ≤ 1,

and thus I − Y0X0 and I −X0Y0 are nonsingular M -matrices. This proves part (b) for k = 0.
Since E0 ≤ 0 and F0 ≤ 0, and I−Y0X0 and I−X0Y0 are nonsingular M -matrices, we deduce

from (3.13)
E1 ≥ 0, F1 ≥ 0, X1 ≥ X0, Y1 ≥ Y0.

11



By (3.15b) and (3.15c),

Φ−X1 = F1Φ [C (R;β, α)]2 , Ψ − Y1 = E1Ψ [C (S;α, β)]2 , (3.24)

yielding Φ−X1 ≥ 0 and Ψ −Y1 ≥ 0, respectively. Consider now W is also irreducible. We have,
by (3.20′) and (3.21′) and (3.13),

E1 > 0, F1 > 0, X1 > X0 ≥ 0, Y1 > Y0 ≥ 0,

and then X1 < Φ and Y1 < Ψ by (3.24). This proves part (c) for k = 1.
Part (b) for k ≥ 1 and part (c) for k ≥ 2 can be proved together through the induction

argument. Detail is omitted.

One important implication of Theorem 3.2 is that all formulas in subsection 3.1 for ADDA
is well-defined under the assumptions (1.3) and (3.19).

Next we look into choosing α and β subject to (3.19) to optimize the convergence speed. We
have (3.15) which yields

0 ≤ Φ−Xk = (I −XkΨ) [C (S;α, β)]2
k

Φ [C (R;β, α)]2
k

(3.25a)

≤ [C (S;α, β)]2
k

Φ [C (R;β, α)]2
k

, (3.25b)

0 ≤ Ψ − Yk = (I − YkΦ) [C (R;β, α)]2
k

Ψ [C (S;α, β)]2
k

(3.25c)

≤ [C (R;β, α)]2
k

Ψ [C (S;α, β)]2
k

. (3.25d)

Now if W is a nonsingular M -matrix, then both R and S are nonsingular M -matrices, too, by
Theorem 3.1(c). Therefore

ρ(C (R;β, α)) < 1, ρ(C (S;α, β)) < 1 under (3.17), (3.26)

implying Xk → Φ and Yk → Ψ as k → ∞. This is what was proved in [21]. But for irreducible
singular M -matrix W with uT1 v1 ̸= uT2 v2, it is proved in [19] that one of the spectral radii in
(3.26) is less than 1 while the other one is equal to 1, still implying Xk → Φ and Yk → Ψ as
k → ∞. Furthermore, [19, Theorem 4.4] implies that the best choice is given by (3.18) in the
sense that both spectral radii in ρ(C (R;α, α)) and ρ(C (S;α, α)) are minimized.

We can do better by allowing α and β to be different, with the help of Theorem 2.1. The
main result is summarized in the following theorem.

Theorem 3.3. Assume (1.3) and (3.19). We have

lim sup
k→∞

∥Φ−Xk∥1/2
k ≤ ρ(C (S;α, β)) · ρ(C (R;β, α)), (3.27a)

lim sup
k→∞

∥Ψ − Yk∥1/2
k ≤ ρ(C (R;β, α)) · ρ(C (S;α, β)), (3.27b)

where ∥ · ∥ is any matrix norm. The optimal α and β that minimize the right-hand sides of
(3.27) are α = αopt and β = βopt.
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Proof. By (3.25b), we have

∥Φ−Xk∥1/2
k ≤

∥∥∥[C (S;α, β)]2
k
∥∥∥1/2k · ∥Φ∥1/2k · ∥∥∥[C (R;β, α)]2

k
∥∥∥1/2k .

which goes to ρ(C (S;α, β)) · ρ(C (R;β, α)) as k → ∞. Thus (3.27a) holds. Similarly we have
(3.27b). Since R = B −DΦ and S = A− CΨ are M -matrices and DΦ ≥ 0 and CΨ ≥ 0,

α ≥ max
i

A(i,i) ≥ max
i

S(i,i), β ≥ max
j

B(j,j) ≥ max
j

R(j,j).

By Theorem 2.1, ρ(C (R;β, α)) · ρ(C (S;α, β)) is either strictly increasing if at least one of R
and S is nonsingular or identically 1, subject to (3.19). So in any case, α = αopt and β = βopt
minimize the product ρ(C (S;α, β)) · ρ(C (R;β, α)).

3.3 Optimal ADDA

We are now ready to present our ADDA, basing on the framework in subsection 3.1 and analysis
in subsection 3.2.

Algorithm 3.1.
ADDA for MARE XDX −AX −XB + C = 0 and,
as a by-product, for cMARE Y CY − Y A−BY +D = 0.
1 Pick α ≥ αopt and β ≥ βopt;

2 Aβ
def
= A+ βI, Bα

def
= B + αI;

3 Compute A−1
β and B−1

α ;

4 Compute Vαβ and Uαβ as in (3.6) and then their inverses;
5 Compute E0 by (3.23b), F0 by (3.23d), X0 and Y0 by (3.8);
6 Compute (I −X0Y0)

−1;
7 Compute X1 and Y1 by (3.13c) and (3.13d);
8 For k = 1, 2, . . ., until convergence
9 Compute Ek and Fk by (3.13a) and (3.13b) (after substituting k + 1 for k);
10 Compute (I −XkYk)

−1 and (I − YkXk)
−1;

11 Compute Xk+1 and Yk+1 by (3.13c) and (3.13d);
12 Enddo

Remark 3.1. ADDA differs from SDA of [21] only in its initial setup – Lines 1 – 5 that build
two parameters α and β into the algorithm. In [33], we explained in detail how to make critical
implementation changes to ensure computed Φ and Ψ by SDA to have entrywise relative accuracy
as much as the input data deserves. The key is to use the GTH-like algorithm [1, 34] to invert
all nonsingular M -matrices. Every comment in [33, Remark 4.1], except the selection of its sole
parameter for SDA applies here. We shall not repeat most of those comments to save space.

About selecting the parameters α and β, Theorem 3.3 suggests α = αopt and β = βopt for the
best convergence rate. But when the diagonal entries of A and B are not known exactly or not
exactly floating point numbers, the diagonal entries of A−αI and B−βI needed for computing
E0 by (3.23b) and F0 by (3.23d) may suffer catastrophic cancelations. One remedy to avoid
such possible catastrophic cancelations is to take α = η · αopt and β = η · βopt for some η > 1
but not too close to 1. This will slow down the convergence, but the gain is to ensure computed
Φ and Ψ by ADDA have deserved entrywise relative accuracy. Usually ADDA converges so fast,
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such a little degradation in the optimality of α and β does not increase the number of iteration
steps needed for convergence.

Recall the convergence of ADDA does not depend on both spectral radii ρ(C (S;α, β)) and
ρ(C (R;β, α)) being less than 1. In fact, often the larger one is bigger than 1 while the smaller
one is less than 1 but the product is less than 1. It can happen that the larger one is so big
that implemented as exactly given in Algorithm 3.1 ADDA can encounter overflown in Ek or
Fk before Xk and Yk converge to a desired accuracy. This happened in one of our test runs.
To cure this, we notice that the scaling of Ek and Fk to ηEk and η−1Fk for some η > 0 has no
effect on Xk+1 and Yk+1 and thereafter. In view of this, we devise the following strategy: at
every iteration step after Ek and Fk are computed, we pick η such that ∥ηEk∥ = ∥η−1Fk∥, i.e.,
η =

√
∥Fk∥/∥Ek∥, to scale Ek and Fk to ηEk and η−1Fk, where ∥ · ∥ is some matrix norm. 3

The optimal ADDA is the one with α = αopt and β = βopt. Since there is little reason not
to use the optimal ADDA, except for the situation we mentioned in Remark 3.1 above, for the
ease of presentation in what follows we always mean the optimal ADDA whenever we refer to
an ADDA, unless explicitly stated differently.

4 Application to M-Matrix Sylvester Equation

When D = 0, MARE (1.1) degenerates to a Sylvester equation:

AX +XB = C. (4.1)

The assumption (1.3) on its associated

(
B 0

−C A

)
implies that A and B are nonsingular M -

matrices and C ≥ 0. Thus (4.1) is an M -Matrix Sylvester Equation (MSE) as defined in
[34]: both A and B have positive diagonal entries and nonpositive off-diagonal entries and
P = Im ⊗A+BT ⊗ In is a nonsingular M -matrix, and C ≥ 0.

MSE (4.1) has the unique solution Φ ≥ 0 and its cMARE has the solution Ψ = 0. Apply
ADDA to (4.1) to get

E0 = C (B;β, α) ≡ (B + αI)−1(B − βI), (4.2a)

F0 = C (A;α, β) ≡ (A+ βI)−1(A− αI), (4.2b)

X0 = (β + α)(A+ βI)−1C(B + αI)−1, (4.2c)

and for k ≥ 0

Ek+1 = E2
k , Fk+1 = F 2

k , (4.2d)

Xk+1 = Xk + FkXkEk. (4.2e)

The associated error equation is

0 ≤ Φ−Xk = [C (A;α, β)]2
k

Φ [C (B;β, α)]2
k

. (4.3)

Smith’s method [29, 34] is obtained after setting α = β in (4.2) always.
Alternatively, we can derive (4.2) through a combination of an Alternating-Directional-

Implicit (ADI) iteration and Smith’s idea in [29]. Given an approximation XXX ≈ Φ, we compute
next approximation ZZZ by one step of ADI:
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1. Solve (A+ βI)YYY = C −XXX(B − βI) for YYY ;

2. Solve ZZZ(B + αI) = C − (A− αI)YYY for ZZZ.

Eliminate YYY to get
ZZZ = X0 + F0XXXE0, (4.4)

where E0, F0, and X0 are the same as in (4.2a) – (4.2c). With ZZZ0 = XXX = 0, keep iterate (4.4)
to get

ZZZk =

k∑
i=0

F i
0X0E

i
0.

If it converges, it converges to the solution of (4.1) Φ = ZZZ∞ =
∑∞

i=0 F
i
0X0E

i
0. It can be verified

that {ZZZi} relates to {Xi} by Xk = ZZZ2k . Namely, instead of computing every member in the
sequence {ZZZi}, (4.2) computes only the 2kth members. In view of its connection to ADI and
Smith’s method [29], we call (4.2) an Alternating-Directional Smith Method (ADSM) for MSE
(4.1). This connection to ADI is also the reason for us to name our Algorithm 3.1 an Alternating-
Directional Doubling Algorithm (ADDA).

Equation (4.3) gives

lim sup
k→∞

∥Φ−Xk∥1/2
k ≤ ρ(C (A;α, β)) · ρ(C (B;β, α)), (4.5)

suggesting us to pick α and β to minimize the right-hand side of (4.5) for fastest convergence.
Subject to again

α ≥ αopt
def
= max

i
A(i,i), β ≥ βopt

def
= max

j
B(j,j) (3.19)

in order to ensure F0 ≤ 0, E0 ≤ 0 and all Fk ≥ 0 and Ek ≥ 0 for k ≥ 1, we conclude by
Theorem 2.1 that α = αopt and β = βopt minimize the right-hand side of (4.5).

5 Comparisons with Existing Doubling Algorithms

In this section, we will compare the rates of convergence among our ADDA, the structure-
preserving doubling algorithm (SDA) of [21], and SDA combined with the shrink-and-shift tech-
nique (SDA-ss) of [9].

The right-hand sides in (3.27) provide an upper bound on convergence rate of ADDA. It
is possible that the bound may overestimate the rate, but we expect in general it is tight. To
facilitate our comparisons in what follows, we shall simply regard the upper bound as the true
rate, and without loss of generality, assume

αopt
def
= max

i
A(i,i) ≥ βopt

def
= max

i
B(i,i). (5.1)

Let λmin(S) be the eigenvalue of S in (3.3′) with the smallest real part among all its eigenvalues.
We know λmin(S) ≥ 0, and let λmin(R) be the same for R also in (3.3′).

We have the convergence rate for the optimal ADDA

radda =
αopt − λmin(S)

βopt + λmin(S)
· βopt − λmin(R)

αopt + λmin(R)
. (5.2)
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Estimates in (3.27) with α = β hold for SDA. Apply [19, Theorem 4.4] to conclude that the
convergence rate for the optimal SDA is

rsda =
αopt − λmin(S)

αopt + λmin(S)
· αopt − λmin(R)

αopt + λmin(R)
(5.3)

upon noticing (5.1).
In order to see the convergence rate of the optimal SDA-ss, we outline the algorithm below.

For
β ≥ βopt

def
= max

j
B(j,j), (5.4)

set
Ĥ = I − β−1H, Â = I + β−1A, B̂ = I − β−1B, (5.5)

where H is defined as in (3.3). With S and R given by (3.3′), we have

Ĥ

(
I
Φ

)
=

(
I
Φ

)
R̂, Ĥ

(
Ψ
I

)
Ŝ =

(
Ψ
I

)
, (5.6a)

R̂ = I − β−1R, Ŝ = (I + β−1S)−1. (5.6b)

Note that Â is a nonsingular M -matrix, and let

M̂0 =

(
Ê0 0

−X̂0 I

)
, L̂0 =

(
I −Ŷ0
0 F̂0

)
, (5.7)

where

Ê0 = B̂ + β−2DÂ−1C, Ŷ0 = β−1DÂ−1, (5.8a)

F̂0 = Â−1, X̂0 = β−1Â−1C. (5.8b)

It can be verified that Ĥ = L̂−1
0 M̂0, substituting which into the equations in (5.6) to get

M̂0

(
I
Φ

)
= L̂0

(
I
Φ

)
R̂, M̂0

(
Ψ
I

)
Ŝ = L̂0

(
Ψ
I

)
.

The rest follows the same idea in [21] (and also in section 3). SDA-ss seeks to construct a

sequence of pairs {M̂k, L̂k}, k = 0, 1, 2, . . . such that

M̂k

(
I
Φ

)
= L̂k

(
I
Φ

)
R̂

2k

, M̂k

(
Ψ
I

)
Ŝ

2k

= L̂k

(
Ψ
I

)
, (5.9)

and at the same time M̂k and L̂k have the same forms as M̂0 and L̂0, respectively, i.e.,

M̂k =

(
Êk 0

−X̂k I

)
, L̂k =

(
I −Ŷk
0 F̂k

)
. (5.10)
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The formulas (3.13) for advancing from the kth approximations to the (k + 1)st ones remain
valid here after placing a “hat” over every occurrence of E, F , X, and Y there. At the end, we
will have the following equations for errors in the approximations X̂k and Ŷk:

Φ− X̂k = (I − X̂kΨ)Ŝ
2k

ΦR̂
2k

≤ Ŝ
2k

ΦR̂
2k

, (5.11)

Ψ − Ŷk = (I − ŶkΦ)R̂
2k

ΨŜ
2k

≤ R̂
2k

ΨŜ
2k

. (5.12)

Consequently

lim sup
k→∞

∥Φ− X̂k∥1/2
k
, lim sup

k→∞
∥Ψ − Ŷk∥1/2

k ≤ ρ(R̂) · ρ(Ŝ). (5.13)

In view of this inequality and (5.4), we conclude that the convergence rate of the optimal SDA-ss
is

rsda-ss =
1− β−1

optλmin(R)

1 + β−1
optλmin(S)

=
βopt − λmin(R)

βopt + λmin(S)
. (5.14)

Now we are ready to compare all three rates of convergence. To simplify notations, let us drop
the subscript “opt” to α and β, and write λS = λmin(S) and λR = λmin(R). We have

radda
rsda

=
β − λR

α− λR
· α+ λS

β + λS

= 1− (λR + λS)(α− β)

(α− λR)(β + λS)
, (5.15)

radda
rsda-ss

=
α− λS

α+ λR

= 1− λR + λS

α+ λR
, (5.16)

rsda-ss
rsda

=
β − λR

β + λS
· α+ λS

α− λS
· α+ λR

α− λR

= 1− (λR + λS)[α(α− β)− λS(α− λR)− α(β − λR)]

(β + λS)(α− λS)(α− λR)
. (5.17)

If λR + λS = 0 (which happens in the critical case), then all three ratios are 1. In fact, for the
critical case radda = rsda = rsda-ss = 1 and thus the three doubling algorithms converge linearly
[11]. Suppose, in what follows, that λR + λS > 0, and recall (5.1). The first ratio

radda/rsda ≤ 1 always,

with equality for α = β, as expected. The ratio can be made much less than 1 if α/β ≫ 1. The
second ratio

radda/rsda-ss < 1 always.

There is no definitive word on the third ratio because the sign of

ζ
def
= α(α− β)− λS(α− λR)− α(β − λR)

can change, dependent on different cases. If ζ > 0, then SDA-ss is faster than SDA; otherwise
it is slower.
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It is worth pointing out that for SDA-ss it is very important how the shift-and-shrink (5.5)
is done. For example, instead of (5.1), if

max
i

A(i,i) < max
i

B(i,i). (5.18)

Then we still have (5.14), but, instead of (5.3),

rsda =
β − λS

β + λS
· β − λR

β + λR
. (5.19)

Then
rsda
rsda-ss

=
β − λS

β + λR
= 1− λR + λS

β + λR
< 1

always, indicating SDA-ss is slower than SDA. To overcome this, when (5.18) holds, SDA-ss
should be applied to cMARE (3.1), instead, and as a by-product, Φ is computed as the minimal
nonnegative solution to the complementary MARE of cMARE (3.1).

6 Numerical Examples

In this section, we shall present a few numerical examples to test numerical effectiveness of
ADDA, in comparison with SDA and SDA-ss, as well as their ability to deliver entrywise relative
accurate numerical solutions as argued in [33]. We will use two error measures to gauge accuracy
in a computed solution Φ̂: the Normalized Residual (NRes)

NRes =
∥Φ̂DΦ̂−AΦ̂− Φ̂B + C∥1

∥Φ̂∥1(∥Φ̂∥1∥D∥1 + ∥A∥1 + ∥B∥1) + ∥C∥1
, (6.1)

a commonly used measure because it is readily available, and the entrywise relative error
(ERErr),

ERErr = max
i,j

|(Φ̂− Φ)(i,j)|/Φ(i,j) (6.2)

which is not available in actual computations but is made available here for testing purpose. In
the case of ERErr, the indeterminant 0/0 is treated as 0. In (6.1), we use ℓ1-operator norm as
an example. For all practical purpose, any matrix norm should work just fine.

Both errors defined by (6.1) and (6.2) are 0 if Φ̂ is exact, but numerically they can only be
made as small as O(u) in general, where u is the unit machine roundoff. As we will see, to
achieve Φ̂ with deserved entrywise relative accuracy, tiny NRes (as tiny as O(u)) is not sufficient.
To get some idea about what deserved entrywise relative accuracy should be expected, we will
first outline some of the main perturbation results in [33] and then present them along with our
numerical results.

6.1 Deserved entrywise relative accuracy

Let6 W be perturbed to W̃ in such a way that

|Ã−A| ≤ ϵ|A|, |B̃ −B| ≤ ϵ|B|, |C̃ − C| ≤ ϵC, |D̃ −D| ≤ ϵD, (6.3)

6We’ll denote each perturbed counterpart by the same symbol but with a tilde.
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where 0 ≤ ϵ < 1. It has been shown [33] that Φ̃(i,j) = 0 if and only if Φ(i,j) = 0, under (6.3) and

the assumption that both W and W̃ are M -matrices. This fact paves the way to investigate
how much each entry changes relatively.

Split A and B as

A = D1 −N1, D1 = diag(A), (6.4a)

B = D2 −N2, D2 = diag(B). (6.4b)

Correspondingly

A− ΦD = D1 −N1 − ΦD, B −DΦ = D2 −N2 −DΦ,

and set

λ1 = ρ(D−1
1 (N1 + ΦD)), λ2 = ρ(D−1

2 (N2 +DΦ)), λ = max{λ1, λ2}, (6.5)

τ1 =
miniA(i,i)

maxj B(j,j)
, τ2 =

minj B(j,j)

maxiA(i,i)
. (6.6)

If W is nonsingular, then A−ΦD and B −DΦ are nonsingular M -matrices by Theorem 3.1; so
λ1 < 1 and λ2 < 1 [31, Theorem 3.15 on p.90] and thus 0 ≤ λ < 1. If W is an irreducible singular
M -matrix, then by Theorem 3.1(d)

1. if uT1 v1 > uT2 v2, then λ1 < 1 and λ2 = 1;

2. if uT1 v1 < uT2 v2, then λ1 = 1 and λ2 < 1;

3. if uT1 v1 = uT2 v2, then λ1 = λ2 = 1.

The third case uT1 v1 = uT2 v2, the so-called critical case, is rather extreme. It is argued in [18]

that for the critical case for sufficiently small ∥W̃ −W∥ there exists a constant θ such that

1. ∥Φ̃− Φ∥ ≤ θ∥W̃ −W∥1/2;

2. ∥Φ̃− Φ∥ ≤ θ∥W̃ −W∥ if W̃ is also singular.

This θ is only known by its existence.
The following results are taken from [33]. They are more informative, but do not work for the

critical case. Suppose that W is a nonsingular M -matrix or an irreducible singular M -matrix
with uT1 v1 ̸= uT2 v2, ϵ in (6.3) is sufficiently small, and W̃ is an M -matrix. We have

1.
|Φ− Φ̃| ≤

[
2γϵ1n,m +O

(
ϵ2
)]

Φ, (6.7)

where γ are given by

(A− ΦD)Υ + Υ (B −DΦ) = D1Φ+ ΦD2, γ = max
i,j

Υ(i,j)/Φ(i,j). (6.8)
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2.
|Φ− Φ̃| ≤

[
2mnκχ ϵ+O

(
ϵ2
)]

Φ, (6.9)

where κ is given by

(A− ΦD)Φ1 + Φ1(B −DΦ) = C, κ = max
i,j

(Φ1)(i,j)/Φ(i,j),

and dependent on different cases, χ is given by

(a) for nonsingular M -matrix W ,

χ = max

{
1 + λ1 + (1 + λ2)τ

−1
1

1− λ1 + (1− λ2)τ
−1
1

,
1 + λ2 + (1 + λ1)τ

−1
2

1− λ2 + (1− λ1)τ
−1
2

}
≤ 1 + λ

1− λ
. (6.10)

(b) for singular M -matrix W with uT1 v1 ̸= uT2 v2,

χ = 2×


1 + λ1 + 2τ−1

1

1− λ1
, if uT1 v1 > uT2 v2,

1 + λ2 + 2τ−1
2

1− λ2
, if uT1 v1 < uT2 v2.

(6.11)

It is proved both γ and κ are finite [33]. Between (6.7) and (6.9), the linear term in the former
is sharp while the one in the latter is not. But (6.9) is more informative in that it reveals the
critical role played by the spectral radii λi in Φ’s sensitivity.

In view of these perturbation results under (6.3) with ϵ = O(u), it is reasonable to define
the deserved entrywise relative accuracy in any computed Φ̂ to be that the associated ERErr
is about O(γu) or O(κχu). In our examples in the next subsection, we shall compare ERErr
against (m+n)γu to verify if all of our computed Φ̂ at convergence have the deserved entrywise
relative accuracy.

6.2 Examples

All computations are performed in MATLAB with u = 1.11 × 10−16. Optimal parameters as
specified in section 5 are used for ADDA, SDA, and SDA-ss. Kahan’s stopping criteria [34]:

(Xk+1 −Xk)
2
(i,j)

(Xk −Xk−1)(i,j) − (Xk+1 −Xk)(i,j)
≤ ϵ · (Xk+1)(i,j) for all i and j (6.12)

is used to terminate iterations, unless explicitly stated differently, where ϵ is a pre-selected
tolerance. After numerous numerical experiments, we find that ϵ about 10−10 to 10−12 works
the best for computed Φ̂ to achieve its deserved accuracy without wasting the last iteration step.

Since ADDA is SDA if αopt = βopt for which there are numerous tests in literature, our
examples will mainly focus on the case:

αopt
def
= max

i
A(i,i) ̸= βopt

def
= max

i
B(i,i).

We will present five examples here. Table 6.1 summarizes rates of convergence for ADDA, SDA-
ss, and SDA for the examples. Also included in the table are quantities ϱ(I−ΦΨ) and ϱ(I−ΨΦ)
which tell us how accurately all inverses of M -matrices I − XkYk and I − YkXk arising from
the methods may be computed [34]. Table 6.2 summarizes various stability parameters in the
first order error bounds in subsection 6.1. They can and will be used to explain the entrywise
relative accuracy in computed Φ̂.
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Example radda rsda-ss rsda ϱ(I − ΦΨ) ϱ(I − ΨΦ)

6.1 0.11 0.17 0.49 1.4 · 10−2 1.4 · 10−2

6.2 0.58 0.75 0.64 0.5 0.5

6.3 0.96 0.96 1− 2 · 10−6 0.89 0.89

6.4 0.06 0.14 0.25 6.3 · 10−2 6.3 · 10−2

6.5 0.11 0.11 1− 2 · 10−4 5.9 · 10−2 1.1 · 10−1

Table 6.1: Rates of convergence of ADDA, SDA-ss, and SDA

Example λ1 λ2 2γ κ κχ

6.1 0.70 0.68 6.9 1.01 5.36

6.2 0.78 1.0 15.0 3.0 84.0

6.3 1− 6.2 · 10−7 0.98 1.6 · 106 16.5 2.6 · 107

6.4 1 0.4 3.2 · 102 30.9 1.6 · 102

6.5 0.11 1 2.1 · 104 1.1 4.8 · 104

Table 6.2: Parameters in the first order error bounds

Example 6.1. A,C,D,B ∈ Rn×n are given by

n = ℓ2, Tℓ = tridiag

(
−1, 4 +

200

(ℓ+ 1)2
,−1

)
∈ Rℓ×ℓ,

A = tridiag(−Iℓ, Tℓ,−Iℓ), B = ξ ·A,

Φ =
1

50
1n,n, C = ΦDΦ−AΦ− ΦB, D =

1

50
tridiag(1, 2, 1),

where tridiag(·, ·, ·) constructs a tridiagonal or block tridiagonal matrix with its three arguments
in an evident way. Making ξ = 1 recovers one of the examples in [4, 21]. We use 0 < ξ ̸= 1 to
make A ̸= B. In this example W is a nonsingular M -matrix. All entries in Φ are the same and
consequently tiny NRes does imply tiny ERErr. Figure 6.1 shows two plots: the left one for
NRes and the right one for ERErr, for the three methods for ℓ = 10 and ξ = 10. The horizontal
dotted line in the right plot is (m + n)γu. If its ERErr is below the dotted line, we regard
the computed Φ̂ to have the deserved entrywise relative accuracy. We will follow this way of
presenting iteration histories in the rest of examples.

In this example, ADDA is the fastest, SDA-ss comes in second, and SDA is the slowest.
All three algorithms are able to compute Φ̂ with the deserved entrywise relative accuracy at
convergence. 3

Example 6.2. In this example, m = n = 2 and

B =

(
3 −1

−1 3

)
, D = 12,2, A = ξ ·B, C = ξ ·D.

Making ξ = 1 and scaling W by 10−3 recovers a null recurrent case example in [5] (see also [19,
Test 7.2]). It can be verified that

Φ =
1

2
12,2, Ψ =

1

2ξ
12,2.
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Figure 6.1: Example 6.1: ℓ = 10 and ξ = 10.
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Figure 6.2: Example 6.2: the top two plots for ξ = 1 (the critical case) and the bottom two plots for
ξ = 1.5. Stopping criteria for ξ = 1 is NRes < 10−16 because Kahan’s criteria (6.12) does not work well
for linear convergent sequences [34]. Note SDA-ss is actually slower than SDA.
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Note also W is an irreducible singular M -matrix:

W14 = 0,

(
12

ξ−1 · 12

)T

W = 0.

The case in which ξ = 1 is the critical case. For the critical case, we know

1. radda = rsda-ss = rsda = 1 but all doubling algorithms still converge linearly [11];

2. ϱ(I − ΦΨ) = ϱ(I − ΨΦ) = 1, indicating I −XkYk and I − YkXk are increasingly difficult
to invert as they are becoming singular;

3. ∥Φ̃−Φ∥ ≤ θ∥W̃ −W∥1/2 for some constant θ [18] provided ∥W̃ −W∥ is sufficiently small.
This means that we should expect errors no better than about O(

√
u) in the computed Φ.

The ERErr plot in Figure 6.2 for ξ = 1 certainly confirm this expectation.

But for 0 < ξ ̸= 1 all three methods converge quadratically. See Figure 6.2. Again we see that
ADDA is the fastest, but this time SDA comes in second, and SDA-ss is the slowest. 3

Example 6.3. In this example m = n = 2, and

A =

(
100002 −105

−105 100002

)
, B =

(
3 −1

−1 3

)
, C =

(
1 1− 2−p

1− 2−p 1

)
, D = C.

Making p = ∞ and scaling W by 10−3 recovers a null recurrent case example in [5] (see also [9]).
W is an irreducible singular M -matrix if p = ∞: W14 = 0 and 1T4 W = 0 (the critical case),
and a nonsingular M -matrix if p > 0. Thus the doubling algorithms converge linearly [11] for
p = ∞ and quadratically for p > 0. See Figure 6.3. For both cases, there is little difference in
performance for ADDA and SDA-ss with ADDA still being the faster one as expected, and both
are much faster than SDA. Notice that for p = ∞, how much errors in going from X0 to X1 are
suppressed for ADDA and SDA-ss but not so much for SDA. This is due to that both ADDA
and SDA-ss are able to suppress the error components along eigenspace directions associated
with nonzeros eigenvalues of R and S.

We notice from Figure 6.3 is that ERErr are not about O(u) at convergence, but still below
the dotted line (m+ n)γu. 3

Example 6.4.

A =


3 −1

3
. . .
. . . −1

−1 3

 ∈ Rn×n, C = 2In, B = 10A, D = 10C.

W is an irreducible singular M -matrix: W12n = 0, but uT1 v1 ̸= uT2 v2. For testing purpose,
we have computed for n = 100 an “exact” solution Φ and Ψ by the computerized algebra
system Maple with 100 decimal digits. This7 “exact” solution Φ’s entries range from 5.7 · 10−31

to 6.3 · 10−2 and Ψ ’s entries range from 5.7 · 10−30 to 6.3 · 10−1. Despite of this wide range

7The “exact” Φ and Ψ by Maple suggest Ψ = 10Φ.
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Figure 6.3: Example 6.3: the top two plots for p = ∞ (the critical case) and the bottom two plots for
p = 10. Stopping criteria for p = ∞ is NRes < 10−16 because Kahan’s criteria (6.12) does not work well
for linear convergent sequences [34]. In the plots, SDA and SDA-ss are mostly indistinguishable.
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Figure 6.4: Example 6.4. Uneven convergence towards entries with widely different magnitudes. ERErr
is still large even when NRes is already tiny before Φ̂ is fully entrywise converged.
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Figure 6.5: Example 6.5. ADDA and SDA-ss are barely distinguishable. Both are much faster than
SDA.

of magnitudes in their entries, all three methods are able to deliver computed Φ̂ and Ψ̂ with
entrywise relative errors at the level of O(u). See Figure 6.4. Notice how little improvements in
ERErr for the first four iterations, even though NRes decrease substantially during the period.
For example, at iteration 5,

ADDA SDA-ss SDA

NRes 1.6950 · 10−17 7.4124 · 10−15 5.7149 · 10−11

ERErr 2.0093 · 10−3 6.6470 · 10−2 8.1583 · 10−1

This is because it takes a while for the tiny entries to gain some relative accuracy. 3

Example 6.5 ([5, 19]). This is essentially the example of a positive recurrent Markov chain
with nonsquare coefficients, originally from [5]. Here

A = 18 · I2, B = 180002 · I18 − 104 · 118,18, C = 12,18, D = CT.

It is is known Φ = 1
18 · 12,18 = ΨT. See Figure 6.5 for the performance of the three methods on

this example. ADDA and SDA-ss are about the same, but both are much faster than SDA. 3

Along with five examples above, we have conducted numerous other tests, including many
random ones. We come up with the following two conclusions about speed and accuracy for the
three doubling algorithms:

• ADDA is always the fastest among all three. SDA-ss can even run slower than SDA when
maxiA(i,i) and maxj B(j,j) are about the same or differ within a fact of two. However,
when maxiA(i,i) and maxj B(j,j) differ by a factor over, say 10 for example, ADDA and

SDA-ss take about the same number of iterations to deliver fully converged Φ̂ and both
can be much faster than SDA.

• With the suggested optimal parameter selections in section 5, all three methods are capable
of delivering computed Φ̂ with the deserved entrywise relative accuracy as warranted by
the input data.
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7 Concluding Remarks

We have presented a new doubling algorithm for the unique minimal nonnegative solution Φ
of MARE (1.1). It is the product of combining the alternating directional idea in ADI for
the Sylvester equation (see [7, 32]) and the idea of SDA in [21]. For this reason, we name
our new method ADDA (Alternating-Directional Doubling Algorithm). Compared with two
existing double algorithms – SDA in [21] and SDA-ss in [9], our ADDA is always the fastest as
we argued first through theoretical convergence analysis and then numerical tests. Finally, all
three methods are able to compute Φ as entrywise accurately as the perturbation analysis in
[33] suggests.
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