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Abstract. We construct a model for cell proliferation with differentiation into different cell types, allowing
backward de-differentiation and cell movement. With different cell types labeled by state variables, the
model can be formulated in terms of the associated transition probabilities between various states. The cell
population densities can be described by coupled reaction-diffusion partial differential equations, allowing
steady wavefront propagation solutions. The wavefront profile is calculated analytically for the simple pure
growth case (2-states), and analytic expressions for the steady wavefront propagating speeds and population
growth rates are obtained for the simpler cases of 2-, 3- and 4-states systems. These analytic results are
verified by direct numerical solutions of the reaction-diffusion PDEs. Furthermore, in the absence of de-
differentiation, it is found that, as the mobility and/or self-proliferation rate of the down-lineage descendant
cells become sufficiently large, the propagation dynamics can switch from a steady propagating wavefront
to the interesting situation of propagation of a faster wavefront with a slower waveback. For the case of a
non-vanishing de-differentiation probability, the cell growth rate and wavefront propagation speed are both
enhanced, and the wavefront speeds can be obtained analytically and confirmed by numerical solution of
the reaction-diffusion equations.

1 Introduction

The ability of cells or bacteria to divide and migrate often
determines the properties of the spatial patterns in tissue
structures and bacterial colonies. The process of wound
healing [1,2] is a well-studied example in which the inter-
play of cell division and cell movement governs the heal-
ing pattern and speed. In another perspective, the ability
of cells to differentiate to a different cell type is of ut-
most importance for carrying out specific biological func-
tions in multi-cellular organisms. For example, stem cells
can often differentiate into a certain lineage of cells under
suitable environment and totipotent stem cells can even
differentiate into several different lineages. For a system
composed of single-cell organisms such as bacteria, the
system can grow only by simple proliferation resulting in
an increase in the population size. However for higher-level
multi-cellular organisms, the growth can proceed within a
single organism that is governed by the interplay of cell
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proliferation, differentiation, and regulated by cell apopto-
sis. The difference in growth mode between single cells and
multi-cellular organisms can be appreciated in the follow-
ing consideration. If an Escherichia coli is put in a suitable
environment, there will be plenty of bacteria after some
period of time. However, one can only get an adult frog
if a frog zygote is incubated. The key point of the above
example is that each E. coli has almost unlimited poten-
tial of replication, while the zygote’s ability to proliferate
is suppressed by the degree of differentiation status. Cell
differentiation, along with proliferation are the most im-
portant events that promote the process for multi-cellular
organ formation and tissue stratification [3]. In addition,
they also play important roles in pathogenesis, such as tu-
morigenesis including benign and malignant tumors [4–6].

On the other hand, it is also worth noting that in de-
velopmental stages, cell-cell communications and interac-
tions become much more frequent and important in the
gastrulation phase than in the cleavage stage. This re-
sults in the aggregation of cells with similar properties
with cell migration now playing a significant role in the
developmental stage. Developmental biology experiments
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revealed that certain groups of cells undergo cell migra-
tion, resulting in pattern formation during early embryo-
genesis. Cells with similar properties will tend to aggre-
gate and deposit, and then they may migrate in groups to
the specific locations for proliferation by either cell-cell in-
teractions or chemotaxis. For example, concentration gra-
dients of BMP and Wnt along two orthogonal axes are
responsible for both dorsal-ventral and anterior-posterior
axis formation. In this phase, a small number of the em-
bryonic stem cells retain their properties while others will
differentiate into three major lineages, known as the ecto-
derm, mesoderm and endoderm. Cell-cell communications
can be achieved by receptors, concentration differences,
and/or cell-cell junctions.

Cell proliferation and migration can be even more pro-
nounced in tumor cells. Benign tumors often proliferate
themselves locally and they aggregate into a cluster form-
ing a tumor mass. Their growth and proliferation will
lead to pressure on other nearby tissues and cause signs
of swelling, redness and painful sensations. On the other
hand, malignant tumor cells can transform into the prim-
itive cell type, similar to cell de-differentiation, thereby
enhancing cell growth rate, mobility and invasion to other
tissues [4]. The idea that de-differentiation of committed
cells is a cause for cancer is a decade old, but it was
challenged by the cancer stem cell hypothesis that cancer
arises from specific progenitor populations [4]. Meanwhile,
recent interesting findings of the p53 tumor suppressor can
prevent de-differentiation [5,6] suggested that tumorigene-
sis and cell reprogramming might share the common mech-
anism of de-differentiation, and hence revived the close
connection between carcinogenesis and de-differentiation.
In addition, cell de-differentiation has been observed in
various cell types such as pancreatic cells [7], neurons [8],
epithelial cells [9], retinal cells [10], germ cell [11], my-
oblasts [12] and epidermal keratinocytes [13] in response
to appropriate stimuli or factors. Studies have been fo-
cused on the invasiveness, motility and spreading of can-
cerous cells [14–19]. It has also been reported that de-
differentiation indeed occurs and plays a significant role in
the context of skin cell proliferation [20] both in vivo [21]
and in vitro [22, 23] under various conditions [24]. These
de-differentiated cells were observed to exhibit high pro-
liferative ability [22–24], suggesting that de-differentiation
can be an important factor for skin cell proliferation. Re-
cently it has been demonstrated that in a simple autoreg-
ulated single progenitor cell model, a small but finite de-
differentiation probability can lead to uncontrolled growth
resembling carcinogenesis [25].

In typical discrete models, cells are represented on the
lattice sites in the cellular Potts model with the cells ran-
domly chosen and their states to be updated by discrete
time steps obeying certain dynamical rules [26–28]. Com-
puter simulations on cellular systems with the Potts model
have been studied by various research groups [26–28],
where the focus was mainly on the spatial arrangement
and pattern formation as governed by cell-cell interac-
tions. The role of cell proliferation can complicate the cell
motion and patterns, which are much less studied. In prin-
ciple, using the information from the microscopic cellular

dynamics or interactions, macroscopic mathematical mod-
els can be derived from the underlying description in the
cellular scale [29, 30]. Cell differentiation has been mod-
eled using the cellular Potts model in the context of de-
velopmental biology and morphogenesis [31]. On the other
hand, the effect of de-differentiation is much less addressed
theoretically [25]. Meanwhile, cell movement and prolifera-
tion have been the major focus in modeling tumor spread-
ing or cancer cell growth [14–18]. Various theoretical stud-
ies have been focused on modeling cancer growth and in-
vasion, ranging from microscopic cellular dynamics via the
computational approach [32] to mathematical modeling in
terms of partial differential equations [29,30,33,34].

In this work, we consider the even more complex situ-
ation of having the possibility of changing cell types as a
result of differentiation or de-differentiation. We focus on
the spatial and temporal evolution of the cell population
taking into the account the effects of cell proliferation,
motility, differentiation and de-differentiation. Cell differ-
entiation can often be depicted conceptually in terms of
some epigenetic energy landscape [35] in which totipotent
stem cells are on the top, passing through the pluripotent
state and then eventually roll down and commit to a cer-
tain lineage. The recent discovery of induced pluripotent
stem cells (iPSC) [36], in which mature cells can be repro-
grammed to become pluripotent and possibly capable of
differentiating into different lineages, opens new avenues in
cell fate control and stem cell therapy. Albeit with a low ef-
ficiency, iPSC from mouse embryonic cells/fibroblasts [36]
and human fibroblasts [37] revealed that the stochastic
nature of cell differentiation/de-differentiation [38] could
be important in cell development. Using the concept of
transition probabilities between different/same cell types,
the processes of proliferation, differentiation, and de-
differentiation can be described within the same frame-
work allowing for a better quantitative understanding.
Furthermore, it has been suggested that stochastic the-
ory based on cell stabilization might be important in dif-
ferentiation therapy for cancer [39]. In our model, cells
can proliferate, differentiate/de-differentiate and migrate
by diffusive motion, hence the population of different cell
types can vary in space and time, which is in turn formu-
lated in terms of reaction-diffusion type nonlinear coupled
partial differential equations (PDEs). Interesting cell den-
sity wave propagation can be obtained and the character-
istic wave speeds in various situations can be calculated
analytically and verified by direct numerical solution of
the PDEs. Our results indicate the existence of a wave-
front propagating with a constant terminal speed resem-
bling collective cell motion. In the simplest case of pure
proliferation and diffusive motility, the wavefront profile
can be obtained analytically by a singular perturbation
method. For the case of proliferation with differentiation
and motility, as the mobility of the down-lineage cells in-
creases, its wave propagation dynamics can “switch gears”
to propagate with a faster wavefront speed, while retain-
ing a slower waveback that propagates with its upper-
lineage ancestor cells. Furthermore, in the presence of cell
de-differentiation, both the wavefront speeds and the cell
growth rate will be significantly enhanced.
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2 Cell differentiation model

As we know, different cell types exist in an individual,
which can be thought of corresponding to different states
as described in the cellular Potts model [26]. In many bi-
ological events, cells have complicated interactions among
them either over short distances such as adhesion with
junctions, or via hormone over long distances. Here we fo-
cus on local short-range interactions, long-range interac-
tion via signaling molecules can also be incorporated (see
appendix F), but will be considered in our future studies.
The local interactions between cells of different types are
taken into account in the Potts model [27, 28], which we
will employ. Consider a system consisting of a collection
of different cell types, each cell i can take q different states
(cell types) labeled by σi. Similar to cellular Potts mod-
els [26], σ can take 0, 1, 2, . . . , q − 1 possible states, with
the state σ = 0 denoting a vacant site.

Similar to the idea of describing cell progression and
mutations by suitable probability distributions in the
kinetic theory approach of modeling multicellular sys-
tems [33, 40], differentiation to different cell types is de-
scribed by transition probabilities in our model. In our
system, each cell can undergo cell division or differentia-
tion into another cell type with a different state as long as
there is a nearby vacant site. The differentiation of cells
into different states of the cell is described by the proba-
bilities Παβ , which is defined as the contributing proba-
bility that a vacant site will become state β if one of its
neighbors is in state α. The q×q asymmetric matrix, Παβ

fully describes the differentiation pathways of the cells,
and

∑
β Παβ = 1. Assuming that each neighbor has equal

effect on the vacant site, then the (normalized) probability
that the vacant site (state 0) will flip to state β is given
by the weighted sum

pβ =
1
c

c∑

i=1

∑

α

Παβ × prob(i-th neighbor is an α-cell),

(1)
where c is the coordination number (number of nearest
neighbors) of the lattice. It follows that

∑

β

pβ =
1
c

c∑

i=1

∑

α

∑

β

Παβ

×prob(i-th neighbor is an α-cell)

=
1
c

c∑

i=1

∑

α

prob(i-th neighbor is an α-cell) = 1,

(2)

verifying the expected normalization of the pβ ’s. The mo-
bility of the cells are taken to diffuse randomly and their
mobility is governed by the corresponding diffusion coeffi-
cients, Dα. The cell death is described by the probabilities
(gα, α �= 0) that each cell (non-vacant site) state becomes
a vacant state. Here it is implicitly assumed that an apop-
totic cell quickly dissociates and does not take up space.

Figure 1a shows schematically that a cell with high
potential to differentiate, such as a zygote or stem cell
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Fig. 1. (a) Schematic picture showing cell differentiation
from the zygote (Z) to different lineages A, A′, A′′, . . . and
B, B′, B′′, . . . , etc. The solid arrows denote normal differentia-
tion down the lineage, while the dashed arrow indicates back-
ward de-differentiation (or possible carcinogenesis pathway).
(b) Schematics showing the differentiation/transformation be-
tween different cell types and the associated probabilities. A
vacant site is denoted by O, Παβ denotes the probability con-
tribution that a cell in state α will proliferate to its neighbor
a new cell of state β. pβ denotes the overall probability of a
vacant site to be transformed to a cell of state β.

(Z), can self-replicate and proliferate into different lin-
eages A,B, . . . , etc. The cells in state Z have high pro-
liferation rates. Each lineage can further differentiate into
higher level of differentiated cells down the lineage. The
direction of differentiation is irreversible and the number
of Z state cells is very little for a well-developed organ-
ism under a normal (healthy) situation. Carcinogenesis is
modeled by the possibility that a fraction of differenti-
ated cells can proliferate backward to the Z state, causing
uncontrolled rapid growth in a cell population resulting
in tumor [25]. Under special conditions, highly differen-
tiated cells can be induced backward by proliferating to
stem cells, as in the recent discovery of induced pluripo-
tent stem cells [36].

3 Reaction diffusion equation

The lattice description of the present model can be cast
in the continuum limit into partial differential equations
allowing further mathematical analysis. In the continuum
description, the lattice spacing is interpreted as the cell
size h. Our goal here is to derive equations to describe
the spatio-temporal evolution of the cell volume fractions
nα(�r, t) for the cell at states α = 0, 1, 2, . . . , q − 1, with∑

α nα = 1. Unlike the cellular Potts model on a discrete
lattice, here the nα fields can overlap in space. Denoting
the cell proliferation rate or “flipping rate” by τf , the evo-
lution equations for nα are

∂nα

∂t
= Dα∇2nα − gαnα +

n0pα

τf
, for α �= 0, (3)
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where pα is the probability of a vacant site to become an α-
type cell due to proliferation from its neighbors as given by
eq. (1). Hereafter, we consider the two-dimensional case.
Since nσ(x, y) gives the probability of being a σ-cell at
(x, y), using eq. (1), pα can be expressed as (consider a
square lattice for convenience)

pα =
1
4

∑

σ

Πσα

(
nσ(x + h, y) + nσ(x − h, y)

+nσ(x, y + h) + nσ(x, y − h)
)
. (4)

For continuum limit, the contributions from the four
neighbors are expanded for small h to O(h2), and finally
one obtains

pα =
∑

σ

Πσαnσ +
h2

4

∑

σ

Πσα∇2nσ. (5)

The Laplacian term in pα arises from the fact that the con-
tribution of α-cell is due to the differentiation/prolifera-
tion from neighboring sites. Using the fact that

∑
α Πσα =

1 and
∑

σ nσ = 1, one can verify explicitly that
∑

α pα =
1. Using the expression of pα in (5), the reaction-diffusion
equation (3) becomes

∂nα

∂t
= Dα∇2nα − gαnα +

n0

τf

∑

σ

Πσαnσ

+n0Df

∑

σ

Πσα∇2nσ, for α �= 0, (6)

where Df ≡ h2

4τf
is the “effective diffusion coefficient” aris-

ing from the proliferation/differentiation of the cells. The
equation can be solved together with n0 = 1−

∑
μ�=0 nμ. It

would be convenient to rescale the space and time via x →
x/

√
Dfτf and t → t/τf , and defining aα ≡ gατf/Παα and

bα ≡ Dα/(DfΠαα). Equation (6) can be written as

∂nα

∂t
=

∑

σ

Πσα

[
(n0 + bαδσα)∇2nσ

+(n0 − aαδσα)nσ

]
, for α �= 0. (7)

Notice that the effective diffusion coefficient in (7) increas-
es with the local vacant site concentration, accounting for
the excluded-volume interactions between the cells. The
homogeneous steady-state solution is obtain by solving

n0

∑

σ

Πσαnσ = Πααaαnα, for α = 1, 2, . . . , q − 1.

(8)
Together with the equation n0 = 1 −

∑
μ�=0 nμ, one

can eliminate variables and obtain an algebraic equation
(polynomial equation of degree q) in n0. It is easy to see
that nα = 0 for α = 1, 2, . . . , q − 1 is always a homo-
geneous steady solution, and all other physical solutions
have to satisfy the condition of nα ≥ 0. Furthermore, the
death rates of the cells should be small compared to the

self-proliferation rates in order to sustain steady wave-
front propagations, hence gα < Παα/τf or aα < 1 for
α �= 0 is assumed throughout this paper. In this paper,
we will focus on differentiation along a single lineage with
Z → A → A′ → . . ., with the cell fractions of Z,A,A′, . . .
corresponding to n1, n2, n3, . . . , respectively.

It should be noted that long-range interaction between
cells via signaling molecules can affect cell differentiation
fate as well as directing cell motion via chemotactic at-
tractants. Chemical signaling is one of the most impor-
tant processes for cell-cell communication that can lead
to collective motion and quorum sensing in both bacteria
and eukaryotic cells [41–44]. Although cell-cell interaction
via signaling molecules is not considered in this work, it
can be incorporated in our model by extending eq. (3) as
described in appendix F.

3.1 Simple growth case: 2-states case (q = 2)

In this case, there are only vacancy and Z cells (corre-
sponding to n1), and eq. (7) reduces to

1
Π11

∂n1

∂t
= (1 + b1 − n1)∇2n1 + n1(1 − a1 − n1), (9)

which resembles the well-studied Fisher-Kolmogorov
equation [45] except for a concentration-dependent effec-
tive diffusion coefficient. The homogeneous steady-state
solutions are simply n1 = 0 and 1 − a1. Much insight
can be obtained by considering the one-dimensional case,
which can be shown easily to admit a traveling wave-
front solution n(x, t) = U(x − ct) that satisfies the ODE
(1 + b1 −U)U ′′ + cU + U(1− a1 −U) = 0. The wavefront
profile gives the boundary conditions U(−∞) = 1−a1 and
U(∞) = 0. Employing nonlinear dynamics analysis [46],
one can show that a traveling wavefront solution exists for
wave speed exceeding some minimal value, given by

c ≥ cmin = 2Π11

√
(1 + b1)(1 − a1). (10)

In terms of the proper units and original parame-

ters, cmin = 2
√(

Π11
τf

− g1

)
(D1 + Π11Df ). For the two-

dimensional case, although (9) does not admit an ex-
act radially symmetric wavefront solution, it can shown
easily using similar analysis as in the standard Fisher-
Kolmogorov equation [45], that the asymptotic solution
admits a propagating wavefront with minimum speed
cmin. For the situation where cell motility is small,
D1 � Π11Df , one gets the growth speed cmin ∼

h

√
Π11
τf

(
Π11
τf

− g1

)
. And for small death rate cmin 


Π11h/τf agreeing with the simple consideration of com-
pact radially growth which is also verified by our simula-
tion results. On the other hand, if cell motility is large,
i.e. D1 � Π11Df , then one recovers the well-known
result from the Fisher-Kolmogorov equation, cmin 


2
√(

Π11
τf

− g1

)
D1.
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(a) (b)

Fig. 2. Traveling wavefront for the simple growth case. (a) Evolution of two different initial wave packets into the same steady
traveling wavefront with speed cmin that agree well with the analytical results given by eq. (10). a1 = 0.4, b1 = 3, Π11 = 0.5.
(b) Wavefront profile: the singular perturbation solution (solid curve) given by (13) agrees well with the numerical solution of
the PDE in (9) (symbols). The wavefront speed c = cmin = 1.549 is obtained from the theoretical result in (10) and agrees well
with the measurement of steady propagating profile from the numerical solution.

(a) (b)

Fig. 3. Traveling wavefront speed for the simple growth case. (a) Steady wavefront speeds of plane waves as a function of the
death rate g1 for various values of D1. Symbols: speeds measured from numerical solutions. Curves: analytical results given by
eq. (10). (b) Steady wavefront speeds of plane waves as a function of the cell flipping probability Π11 for various values of τf .

Figure 2a shows the numerical solution of eq. (9) in one
spatial dimension from two arbitrary initial pulse shapes.
Both of them eventually evolved into the same traveling
wavefront with the minimal steady wave speed given by
cmin. A similar behavior has also been observed in the
Fisher-Kolmogorov equation [46].

The dependence of the steady wavefront speed as a
function of the death rate g1 for different D1 (fig. 3a), and
as a function of the flipping probability Π11 (fig. 3b) are
obtained from the numerical solutions. As shown in fig. 3,
the waves travel with the analytic result of the minimal
speed cmin given by (10) with the predicted dependence on
the parameters. Furthermore, by considering the change

in cell population in time Δt, one has

ΔN1 =
∫ ∞

−∞
dx[U(x − ct − cΔt) − U(x − ct)]

= −cΔt

∫ ∞

−∞
dxU ′(x − ct)

= −cΔt

∫ ∞

−∞
dzU ′(z). (11)

Hence the steady cell growth rate of the Z-cell population,
NZ , is given by

dNZ

dt
=

ΔN1

Δt
= −c

∫ ∞

−∞
dU = c(1 − a1). (12)
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For general situations of growth with differentiation and/
or de-differentiation, the population growth rates for dif-
ferent cell types can be calculated in terms of the steady
state cell populations and wavefront speeds as described
in appendix C.

3.2 Wavefront profile

With z = x − ct, the propagating wavefront profile U(z)
can be calculated using singular perturbation theory [46].
Defining ξ ≡ z/c =

√
ε, U(z) ≡ u(ξ), ε ≡ 1/c2 as the

small parameter for perturbation expansion, one gets the
asymptotic wavefront profile (see appendix B),

U(z) =
1 − a1

1 + e
1−a1

c z
−

(
1 − a1

2c

)2

sech2 (1 − a1)z
2c

×
([

2 +
1 + a1

b1

]

ln cosh
(1 − a1)z

2c

+
1 − a1

b1

[
(1 − a1)z

2c
+ tanh

(1 − a1)z
2c

] )

+O

(
1
c4

)

. (13)

Figure 2b shows the analytic result given by (13) to-
gether with the steady wave profile obtained from the nu-
merical solution, showing very good agreement. From the
analytic result in (13), one easily gets

U ′(0) = − (1 − a1)2

4c
− (1 − a1)2

4b1c3
+ O

(
1
c4

)

, (14)

i.e. the steeper the wavefront profile, the slower is the
propagation speed.

4 Simple model for cell differentiation and
de-differentiation: 3-states case

The system now consists of vacancy, undifferentiated Z
type cells (n1), and differentiated A type lineage cells (n2).
In this case eq. (7) reads

∂n1

∂t
= Π11 (1 + b1 − n1 − n2)∇2n1

+Π21 (1 − n1 − n2)∇2n2

+Π11 (1 − a1 − n1 − n2) n1

+Π21 (1 − n1 − n2) n2, (15)

∂n2

∂t
= Π22 (1 + b2 − n1 − n2)∇2n2

+Π12 (1 − n1 − n2)∇2n1

+Π22 (1 − a2 − n1 − n2) n2

+Π12 (1 − n1 − n2) n1. (16)

The dynamics is qualitatively different in the absence or

presence of de-differentiation, and will be investigated in
detail in the following.

4.1 Cell differentiation

In this case, Π21≡ΠAZ =0, the homogenous steady-state
solutions are (n1, n2) = (0, 0), (0, 1 − a2), and for a2 >
a1, another the non-zero fixed point solution (n1, n2) =

(n(S)
1 , n

(S)
2 ) ≡

( (1−a1)(a2−a1)Π22
a1Π12+(a2−a1)Π22

, a1(1−a1)Π12
a1Π12+(a2−a1)Π22

)
emer-

ges. Note that for both n
(S)
1 and n

(S)
2 > 0, one must

have a2 > a1 (i.e. g2/Π22 > g1/Π11). Assuming plane
wavefront solution of the form n1(x, t) = U1(x − ct) and
n2(x, t) = U2(x− ct), one gets a pair of second-order cou-
pled ODEs. Careful analysis on the nonlinear dynamics
of the 4-dimensional dynamical system reveals that the
fixed point (U1, U2, U

′
1, U

′
2) = (0, 0, 0, 0) is stable suggest-

ing that wave profiles Ui(z) will end with (n1, n2) = (0, 0)
in the z → ∞ limit end. For a1 ≥ a2, there are only
two fixed points and the only possible wavefront connects
from (0, 1 − a2, 0, 0) to (0, 0, 0, 0). Then using the physi-
cal requirement of non-negative U1 and U2 imposed the
constraint that the fixed point (0, 0, 0, 0) must be a stable
node, not a stable focus and revealed that a plane wave-
front can propagate for n1(x, t) and n2(x, t) with speed c
above the minimal value (see appendix C)

c ≥ C0 ≡

max
[
2Π11

√
(1 − a1)(1 + b1), 2Π22

√
(1 − a2)(1 + b2)

]
.

(17)

The above analytical results are checked against numeri-
cal solution of (15) and (16) in one dimension. Figure 4d
and e show the asymptotic profiles of propagating wave-
fronts for Z and A having the same speeds that agree
well with the minimal value given by (17). However, in
the parameter regime of large b2 (strong diffusion of A), a
new local wavefront of A emerges, while the wavefront of
Z continues to exist but propagates with a slower speed
(fig. 4g). In this case the n2 profile consists of a wavefront
with a speed given by eq. (17) and also a waveback prop-
agating with the same speed as the slow wavefront of Z.
Furthermore, the profile of n1 and n2 indicate that the
dynamics connects the (n(S)

1 , n
(S)
2 , 0, 0) fixed point to the

(0, 1−a2, 0, 0), fixed point and then finally to the (0, 0, 0, 0)
fixed point. The stability of steady propagating wave solu-
tion is further studied by numerical integrating the PDEs.
Figure 4 shows the phase diagrams for regimes with differ-
ent values of a1, a2 (fig. 4a) and b1, b2 (fig. 4b). The phase
boundaries in both phase diagram are straight lines given
by 2Π11

√
(1 − a1)(1 + b1) = 2Π22

√
(1 − a2)(1 + b2) sug-

gesting that the propagating wavefront solution (of n2)
switches to a new mode when C0 in (17) takes another
branch of maximal value governed by the parameter of
the A-cell (i.e. a2, b2 and Π22).

The wavefront speed is summarized in fig. 5. For small
values of b2, steady wavefront propagation of both n1 and
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(a) (b) (c)

(d) (e) (f)

(g)

Fig. 4. Phase diagram for steady wave propagation for the case of ΠAZ = 0 obtained from numerical solution of the PDE
system. Π11 = 0.5, Π22 = 0.4, Π12 = 0.1. The symbols denote different wave propagation modes as observed from the numerical
solution of PDEs. (a) a1-a2 phase diagram, with other parameters fixed at b1 = 3, b2 = 3. ◦ denotes the regions a2 > a1 (above
the dashed line) in which stable single wavefront profiles for n1 and n2 as depicted in (d). � denotes a stable wavefront profile
in n2 and a stable spiking profile in n1 as shown in (e). × denotes a stable wavefront profile in n2 but vanishing n1 as shown

in (f). The solid straight line is boundary given by 2Π11

p

(1 − a1)(1 + b1) = 2Π22

p

(1 − a2)(1 + b2), when the speed of the
wavefront switches to another value as given in eq. (D.5). The dashed straight line is the a1 = a2 line. (b) b1-b2 phase diagram
for a2 > a1, with other parameters fixed at a1 = 0.4, a2 = 0.5. + denotes the propagation of a faster wavefront along with
a slow waveback as shown in (g). ◦ and the solid straight line have the same meaning as in (a). (c) b1-b2 phase diagram for
a1 ≥ a2, with other parameters fixed at a1 = 0.5, a2 = 0.4.

n2 with the same speed is stable, with values given by the
minimal propagating speed in (D.5). As b2 is increased
beyond a critical value given by the switching of the cmin

to the other maximal value in (D.5), the n2 wavefront
loses its stability giving rise to a new mode with a wave-
back propagating with a slower speed which is the same
as the wavefront of n1 and another faster wavefront with

speed given by (D.5). Our results indicate the existence of
a wavefront propagating with a constant terminal speed,
which is qualitatively similar to some experimental obser-
vation in cell migration [1, 2]. Furthermore, the existence
of a faster wavefront in our theory resembles the recent
experimental observation of a moving front of leader cells
with faster speed in cell migration patterns [1].



Page 8 of 18 Eur. Phys. J. E (2013) 36: 65

(a) (b)

(c) (d)

Fig. 5. Wavefront speeds, c, of plane waves for the case of 3-state model for cell differentiation (ΠAZ = 0) and de-differentiation
(ΠAZ > 0). (a) c as a function of b2 for a2 > a1, with Π11 = 0.5, Π22 = 0.4, Π12 = 0.1; a1 = 0.4, a2 = 0.5, b1 = 3. Symbols:
speeds measured from numerical solution of the PDEs. (◦): wavefront speeds of n2, which is the same as the wavefront speed
of n1 for b2 � 6.5. (+): wavefront speeds of the n2 is shown in the upper branch, the lower branch is the wavefront speed of
n1 which is the same as the waveback speed of n2. Lower solid red curves: analytical results given by eq. (17). Dashed line:
analytic result of lower limit of front speed of n1 given by eq. (D.7). (�) and (�): measured wave speed for the ΠAZ > 0 case.
Upper solid black curves: analytic results from fixed point analysis for the ΠAZ = 0.1 (�) and 0.4 (�) cases. (b) c as a function
of Π22 with b2 = 3, other parameters have the same values as in (a). The symbols and curves have the same meaning as in (a).
(c) c as a function of b2 for a1 > a2, with Π11 = 0.5, Π22 = 0.4, Π12 = 0.1; a1 = 0.5, a2 = 0.4, b1 = 3. (×): measured wavefront
speed of n2 for ΠAZ = 0. (d) c as a function of Π22 for a1 > a2 with b2 = 3, other parameters have the same values as in (c).

The existence of a faster wavefront and a slower wave-
back when the mobility and/or self-proliferation rate of
the down-lineage cells is sufficiently large can be rational-
ized as follows. Since for steady wavefront propagation, the
growth in population is simply given by the product of the
wavefront speed and the difference in the steady-state ho-
mogeneous concentrations which the wavefront connects
(see eq. (12)), therefore the growth rates of the cells are

given by

dNZ

dt
= cslown

(S)
1 , (18)

dNA

dt
= cslown

(S)
2 + (1 − a2)(cfast − cslow), (19)
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(a) (b)

(c) (d)

Fig. 6. Time evolution towards steady plane wavefront profiles obtained from numerical solution of (16) for the case of 3-state
model with de-differentiation (ΠAZ > 0). Π11 = 0.5, Π22 = 0.4, Π12 = 0.1, Π21 = 0.1; a1 = 0.4, a2 = 0.5, b1 = 3. Profiles of
(a) n1(x, t), (b) n2(x, t) for b2 = 3. Profiles of (c) n1(x, t), (d) n2(x, t) for b2 = 7.

where cfast = 2Π22

√
(1 − a2)(1 + b2) and cslow = 2Π11 ×

√
(a2 − a1)(a2 + b1) are the speeds (as given by (D.5)

and (D.7)) of the faster wavefront and slower waveback
respectively. Careful examination of the cell growth rates
in (18) and (19) suggests that the growth of A has two con-
tributions. The first part (first term in (19)) is originated
from the differentiation from their upper-lineage Z and
advancing with the slow speed cslow. Another part (sec-
ond term in (19)) is derived from their self-proliferation
giving rise to a faster front speed. The above results for the
cell population growth follows from the general scenario
as outlined in appendix C.

4.2 Cell de-differentiation

In this case, Π21 ≡ ΠAZ > 0, the cell can flip back-
wards from the differentiated state A to Z. Such a de-

differentiation back to stem cells is an important route for
carcinogenesis. When we carry out a nonlinear dynam-
ics analysis, the homogenous steady-state solutions are
(n1, n2) = (0, 0), and the non-zero (n∗

1, n
∗
2), whose values

are given by

n∗
1 =

γn∗
0(1 − n∗

0)
a1 − (1 − γ)n∗

0

, n∗
2 = 1 − n∗

0 − n∗
1, (20)

with

n∗
0 =

a1 + a2 −
√

(a1 + a2)2 − 4(1 − μ)a1a2

2(1 − μ)
, (21)

where γ ≡ Π21
Π11

and μ ≡ Π12Π21
Π11Π22

. Assuming the two cell

species admit propagating wavefront solutions with the
same speed, one can carry out similar analysis as in previ-
ous cases. Again one obtains a four-dimensional dynamical
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system with two fixed points (0, 0, 0, 0) and (n∗
1, n

∗
2, 0, 0).

The eigenvalues at the fixed points can be computed from
the quartic characteristic polynomial equations. Similar
to previous cases, the requirement of a stable node at the
fixed point (0, 0, 0, 0) sets a lower limit of the propagat-
ing wavefront speed. The minimal wavefront speed as a
function of b2 obtained from such an analysis is shown in
fig. 5 (upper black curve). Direct solution of the PDEs
also indicates stable propagating wavefronts, with speeds
faster than that of the ΠAZ = 0 case. Figure 6 shows
the evolution of n1 and n2 into steady traveling wavefront
for different parameters. In this case, the wavefronts for
Z and A are always stable and propagate with the same
speeds in all the parameter regimes we studied. The mea-
sured wavefront speeds are shown in fig. 5 (triangles) as
a function of b2 showing excellent agreement with the an-
alytical results.

4.3 Cell growth rates

Our theory can predict the steady cell growth rates ana-
lytically in the absence of de-differentiation and making
use of the observation or conjecture that the wavefront
speed always assumes its minimal value, as described in
appendix C. For a1 > a2, there are only two fixed points:
�X0 = (0, 0) and �X1 = (0, 1 − a2) and the cell population
growth rates are given by eq. (12) in appendix C. Denoting
�N = (NZ , NA), one has

d �N

dt
= ( �X1 − �X0)C0 = C0

(
0

1 − a2

)

. (22)

where

C0 ≡
max

[
2Π11

√
(1 − a1)(1 + b1), 2Π22

√
(1 − a2)(1 + b2)

]

as defined in (D.5). For a2 > a1, another fixed point �X2 =
(n(S)

1 , n
(S)
2 )≡

(
(1−a1)(a2−a1)Π22
a1Π12+(a2−a1)Π22

, a1(1−a1)Π12
a1Π12+(a2−a1)Π22

)
emer-

ges, and we have

d �N

dt
= 2Π11

√
(1 − a1)(1 + b1) �X2,

for 2Π11

√
(1 − a1)(1 + b1) = C0,

d �N

dt
= C1

�X2 + (2Π22

√
(1 − a2)(1 + b2) − C1) �X1,

for 2Π22

√
(1 − a2)(1 + b2) = C0. (23)

The growth in cell populations can also be measured
directly from the numerical solutions. Figure 7 shows the
variation of steady total cell growth rate, as a function of

Fig. 7. Total cell growth rate for the 3-state model, defined as
the increase in the number of A and Z cells in one time interval
τ , as a function of b2. Π11 = 0.5, Π22 = 0.4, Π12 = 0.1,
a1 = 0.4, a2 = 0.5, b1 = 3. Symbols: growth rate measured
from the numerical solution of the PDEs. Curves: theoretical
results from (23).

the parameter b2 indicating a monotonic growth rate. The
theoretical prediction, dNZ/dt + dNA/dt given by (23),
shows perfect agreement. For the case with non-vanishing
de-differentiation probability ΠAZ , the cell growth rates
can also be calculated precisely from our theory in a sim-
ilar way as described in appendix C, although explicit ex-
pressions for the wave speeds, and hence the growth rates,
cannot be obtained. The total growth rate of the cells
obtained theoretically and also measured from direct nu-
merical solution of the PDEs are shown in fig. 7 showing
excellent agreement. As compared with the case of no de-
differentiation, the cell growth rate is always significantly
enhanced. Thus both the cell growth rates and wave prop-
agation speeds are increased in the presence of finite de-
differentiation, this provide a plausible understanding of
the reason why cancerous cells can grow and spread faster
than normal cells.

5 Z → A → A′: 4-states case

The system now consists of vacancy, undifferentiated Z
type cells (n1), and differentiated type lineage cells A (n2)
and A′ (n3). In the case of absence of de-differentiation,
ΠAZ = ΠA′Z = ΠA′A = 0, the homogenous steady-
state solutions (fixed points) are �X0 = (0, 0, 0), �X1 =
(0, 0, 1 − a3), and for a3 > a2, another fixed point �X2 =
(0, n∗∗

2 , n∗∗
3 ) emerges, where n∗∗

2 ≡ (1−a2)(a3−a2)Π33
a2Π23+(a3−a2)Π33

, n∗∗
3 ≡

a2(1−a2)Π23
a2Π23+(a3−a2)Π33

. If furthermore a2 > a1, another non-

zero fixed point �X3 = (n∗∗∗
1 , n∗∗∗

2 , n∗∗∗
3 ) emerges, where
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(a) (b)

Fig. 8. Wave profiles and speeds as a function of b3 of 4-state model of cell differentiation (Π21 = Π32 = Π31 = 0). Π11 = 0.5,
Π22 = 0.4, Π12 = 0.1, Π23 = 0.1, Π33 = 0.3; a1 = 0.4, a2 = 0.5, a3 = 0.6. The symbols show the wave profile speeds
as measured from the numerical solution of the PDEs. The wave profiles of n1, n2 and n3 (from top down respectively) in
different regimes of b3 are also shown. (a) b1 = b2 = 3. (�): wavefront speeds of all three profiles (which are the same) for
smaller regime of b3 and wavefront speed of n3 for large b3 regime. (◦): wavefront speeds of n1 and n2 which is the same as

the waveback speed of n3. The red curve is Max[2Π11

p

(1 − a1)(1 + b1), 2Π33

p

(1 − a3)(1 + b3)] as given in eq. (27). The lower

dashed line is 2Π11

p

(a3 − a1)(a3 + b1) as given by eq. (28). Note that the change of speeds occurs at b3 = 47/3 as predicted
by eq. (27). The small and large regimes in b3 corresponds to the flow X∗

3 → X∗
0 and X∗

3 → X∗
1 → X∗

0, respectively. (b) b1 = 3,

b2 = 8. The red curve is Max[2Π22

p

(1 − a2)(1 + b2), 2Π33

p

1 − a3)(1 + b3)] as given in eq. (27). The lower dashed lines are

2Π11

p

(a2 − a1)(a2 + b1), 2Π11

p

(a3 − a1)(a3 + b1) as given by eq. (29) and eq. (28) respectively. Note that the change of
speeds occurs at b3 = 19 as predicted by eq. (27). Symbols have similar meanings as in (a), except now in the smaller b3 regime
the n2 and n3 wavefront have the same faster speeds (�), the wavefront of n1 and the wavebacks of n2 and n3 have the same
slow speeds (◦). The small and large regimes in b3 corresponds to the flow X∗

3 → X∗
2 → X∗

0 and X∗
3 → X∗

1 → X∗
0, respectively.

n∗∗∗
1 ≡

(1−a1)(a2−a1)(a3−a1)Π22Π33

a2
1Π12Π23+a1(a3−a1)Π12Π33+(a3−a1)(a2−a1)Π22Π33

,

(24)
n∗∗∗

2 ≡
a1(1−a1)(a3−a1)Π12Π33

a2
1Π12Π23+a1(a3−a1)Π12Π33+(a3−a1)(a2−a1)Π22Π33

,

(25)
n∗∗∗

3 ≡
a2
1(1−a1)Π12Π23

a2
1Π12Π23+a1(a3−a1)Π12Π33+(a3−a1)(a2−a1)Π22Π33

.

(26)

Assuming local plane wavefront solution of the form
ni(x, t) = Ui(x − ct) for i = 1, 2, 3, and carrying out the
nonlinear dynamics analysis of the 6-dimensional dynam-
ical system as in the previous cases, one easily finds that
two fixed points always exist: X∗

0 ≡ (0, 0, 0, 0, 0, 0), and
X∗

1 ≡ (0, 0, 1 − a3, 0, 0, 0).

Notice that X∗
0 is always stable, and a plane wavefront

ending with n1 = n2 = n3 = 0 can propagate with a speed

(see appendix E)

C
(4)
0 ≡ max

[
2Π11

√
(1 − a1)(1 + b1) ,

2Π22

√
(1 − a2)(1 + b2), 2Π33

√
(1 − a3)(1 + b3)

]
.

(27)

Similarly, plane wavefront ending with �X1 propagates with
a speed

C
(4)
1 ≡ max

[
2Π11

√
(a3 − a1)(a3 + b1) ,

2Π22

√
(a3 − a2)(a3 + b2)

]
. (28)

If a3 > a2, another fixed point X∗
2≡(0, n∗∗

2 , n∗∗
3 , 0, 0, 0)

emerges and the wavefront that ends with �X2 travels with
the speed

C
(4)
2 ≡ 2Π11

√
(a2 − a1)(a2 + b1). (29)

Finally, if a3 > a2 > a1, another fixed point X∗
3 ≡ (n∗∗∗

1 ,
n∗∗∗

2 , n∗∗∗
3 , 0, 0, 0) emerges. This fixed point can be shown

to be highly unstable, and cannot set a speed limit on the
wavefront flowing into it. Moreover, a wavefront ending
with �X3 has never been observed in the numerical solu-
tions of the PDEs.
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The steady wavefront profile shapes and the corre-
sponding propagating wavefront speeds can all be ana-
lyzed and predicted using the general method outline in
appendix C. Figure 8 illustrates some situations where
the propagating wavefronts display a very rich variety as
one of the parameter, b3, is varied. The steady wave pro-
files and obtained from numerical solution of the coupled
PDEs and the wavefront speeds are measured (denoted
by symbols). The wavefront speeds all take on the cor-
responding minimal values which agrees exactly with the
analytical results (the solid and dashed lines fig. 8) given
above. The steady cell growth rates in the absence of de-
differentiation can be calculated analytically in a similar
way as in sect. 4.3. To illustrate this, consider the param-
eters as in fig. 8 which corresponds to the case of richest
behavior with four fixed points (a3 > a2 > a1) �X0, �X1,
�X2, and �X3 defined above. Denoting �N = (NZ , NA, NA′),
one gets

d �N

dt
= 2Π11

√
(1 − a1)(1 + b1) �X3,

for 2Π11

√
(1 − a1)(1 + b1) = C

(4)
0 ,

d �N

dt
= C

(4)
1

�X3 +
(
2Π33

√
(1 − a3)(1 + b3) − C

(4)
1

)
�X1,

for 2Π33

√
(1 − a3)(1 + b3) = C

(4)
0 . (30)

for the parameters corresponding to fig. 8a (b1 = b2). And

d �N

dt
= C

(4)
2

�X3 +
(
2Π22

√
(1 − a2)(1 + b2) − C

(4)
2

)
�X2,

for 2Π22

√
(1 − a2)(1 + b2) = C

(4)
0 ,

d �N

dt
= C

(4)
1

�X3 +
(
2Π33

√
(1 − a3)(1 + b3) − C

(4)
1

)
�X1,

for 2Π33

√
(1 − a3)(1 + b3) = C

(4)
0 , (31)

for the parameters corresponding to fig. 8b (b1 <b2), where
C

(4)
0 , C

(4)
1 , C

(4)
2 are defined by eqs. (27), (28) and (29),

respectively.

The growth in cell populations can also be measured
directly from the numerical solutions. Figure 9 shows the
variation of steady total cell growth rate, as a function
of the parameter b2 indicating a monotonic growth rate.
The theoretical predictions, dNZ/dt+dNA/dt+dNA′/dt
given by (30) and (31), show perfect agreement.

In the case with cell de-differentiation, the cell can flip
backwards from the differentiated state: A to Z Π21 ≡
ΠAZ > 0, and/or A′ to Z Π31 ≡ ΠA′Z > 0, and/or A′ to
A Π32 ≡ ΠA′A > 0. With the different combinations of
non-zero de-differentiation Π’s, the resulting wave profiles
are very rich; these results will be published elsewhere [47].

Fig. 9. Total cell growth rate for the 4-state model, defined
as the increase in the number of A, A′ and Z cells in one
time interval τ , as a function of b3. Π11 = 0.5, Π22 = 0.4,
Π33 = 0.3, Π12 = 0.1, Π23 = 0.1, a1 = 0.4, a2 = 0.5, a3 = 0.6.
The symbols are total cell growth rates measured from the
numerical solution of the PDEs. (�): b1 = 3, b2 = 3. (◦):
b1 = 3, b2 = 8. The solid curves are analytic results from
eqs. (30) and (31).

6 Conclusion and outlook

In this paper, we develop the basic model to describe a
system consisting of different cell types that possess diffu-
sive motilities, proliferate and transform among different
cell types. Our approach focuses on the macroscopic fea-
tures of the dynamics resulting from the interplay of pro-
liferation, diffusive motility and differentiation/de-differ-
entiation. Effects of the detailed cellular biochemistry
or biology are not modeled directly, the coarse features
of proliferation, movement and differentiation are repre-
sented through the parameters in our model. Some of the
assumptions in the model can be improved to be more bio-
logically realistic, for example our model can be extended
to include the case in which the proliferation rates for dif-
ferent cell states are state dependent and characterized by
different flipping times τα (instead of a common τf as de-
scribed in sect. 3). In appendix G, such an extended model
is considered and it is shown that the resultant PDE can
be cast into the same form as eq. (6), and hence can be
described by similar dynamics. The resulting dependence
of the wave propagation and wave speeds on the param-
eters governing proliferation, motility and differentiation
are thus generic, and arise from the nonlinear dynamics
of the system.

Although this work focused mainly on the analytic
analysis of the reaction-diffusion type coupled PDEs and
the associated wave propagation behavior in one dimen-
sion, our theory can be employed in a straightforward
manner to simulate systems of many cell types and in
a complicated spatial domain. Only a single lineage is
considered in this paper, complicated situations of more
lineages and further levels of differentiation can be in-
vestigated by numerical solution of the coupled reaction-
diffusion system. Furthermore, simulation of the dis-
cretized version of the model can easily allow cell-cell in-
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teractions to be taken into account. This will affect the
pattern morphology and growth dynamics. This is under
current investigation. Another important feature that is
not considered in this work is the feedback regulation of
proliferation, differentiation and motility by gene expres-
sion and signaling molecules. Presumably these regula-
tion/control effects can be modeled by the parameters of
our model (such as Dα, Πα,β and gα, etc.) whose dynamics
are now coupled to the cell concentrations. These effects
can be incorporated in the present model (see appendix F
for incorporation of signaling molecules) and easily imple-
mented in numerical simulations.

Our results on the wave propagation in the absence of
de-differentiation can find applications in wound healing
speed and morphology [1], especially in the early stage
of healing. For example, dermal wound healing involves
the interplay of cell differentiation, migration and prolif-
eration [46], although in our present model the creation
of new tissue and the associated mechanical deformation
and stresses by the cells have yet to be taken into ac-
count. Our results indicate that the effect of finite de-
differentiation will increase both the total cell growth rate
and the propagation speed, resembling the acceleration of
growth and spreading in cancer tumor. Carcinogenesis is
often accompanied with backward differentiation to the
more primitive stage of the lineage and the metastatic
invasion of prostate cancer cells may be due to this de-
differentiation. Also, the metastatic invasion of prostate
cancer cells is often the source of the fast spread of the
cancerous tumor [19]. Furthermore, the recent discov-
ery of induced pluripotent stem cells (iPSC) [36] marked
a breakthrough in stem cell biology and one anticipates
that more detailed quantitative experimental results in
cell differentiation/de-differentiation with controlled fac-
tors will be available. Hopefully our model can be modified
and applied to the description of the transitions among
various cell types.

Finally, we would like to remark that our model can
be applied to the scenario of bacterial migration motion
with mutation. The “switching of gear” in the wavefront
speed in our model provides a mechanism for the bacte-
ria to take up space more efficiently by sending energetic
down-lineage descendent with a faster speed to occupy a
new colony while the upper-lineage ancestors stayed back
and move slowly. Such a strategy would be biologically
advantageous for the whole bacterial community, and the
interesting point is that it arises automatically from the
dynamics of the system. The above situation can also be
thought of in terms of human/animal population migra-
tion strategy: the young and aggressive descendants are
sent out with a fast speed to conquer new territories. Such
a “switch of gear” phenomenon has also been recently pro-
duced in the population dynamics of competitive Lotka-
Volterra model with spatial diffusion [48].

This work has been supported by the NSC of ROC under
the grant nos. NSC 100-2923-M-001-008-MY3, 101-2112-M-
008-004-MY3, NCTS of Taiwan, and NSFC of China under
grant no. 11047163/A05.

Appendix A. Mean-field analysis

Here we consider the mean-field approximation by aver-
aging over the spatial dependence. Integrating over space
in eq. (6) and denoting the fraction of α-type cell by
fα = 1

Ld

∫
nαd�r ≡ 〈nα〉, and invoking no-flux boundary

conditions, one gets

dfα

dt
= −gαfα +

1
τf

∑

σ

Πσα〈n0nσ〉

+Df

∑

σ

Πσα

∑

μ�=0

〈∇nμ · ∇nσ〉, for α �= 0. (A.1)

One replaces nα(�r, t) by its spatial average fα(t) in mean-
field approximation, and one gets a system of ODEs

dfα

dt
= −gαfα +

1
τf

∑

σ

Πσαf0fσ, for α �= 0. (A.2)

However, in most situations the mean-field approximation
will not be valid since the concentration gradient term,
which represents the interfacial driven growth, is very im-
portant and cannot be ignored. This can be seen in the
simple 2-states case (q = 2). Equation (A.1) gives

df1

dt
=−g1f1+

1
τf

Π11f(1 − f) + DfΠ11〈|∇n1|2〉. (A.3)

The last term is always positive and interfacial growth
will drive the system to grow in number until filling up
the whole space. Dropping the last term in the mean-field
approximation leads to the usual logistic growth governed
by the fixed points n1 = 0 and n1 = 1 − g1τ1/Π11, which
leads to incorrect predictions.

Appendix B. Singular perturbation
calculation of the wavefront profile

To look for propagation wave solution, we change to the
moving frame of wave speed c using the new variable
z = x − ct, and defining ξ ≡ z/c =

√
ε, U(z) ≡ u(ξ),

ε ≡ 1/c2 as the small parameter for perturbation ex-
pansion. For notational convenience, we define α ≡ a1,
β ≡ 1/b1, and the origin of the profile can be shifted
to the middle of the front such that U(z = 0) = 1−α

2 ,
then the boundary conditions become u(−∞) = 1 − α
and u(∞) = 0. Equation (9) reads

[1 + β(1 − u)]εu′′ + u′ + u(1 − α − u) = 0. (B.1)

Writing
u(ξ) = u0(ξ) + εu1(ξ) + . . . (B.2)

and substituting into eq. (B.1), the O(ε0) and O(ε1) terms
give

u′
0 + u0(1 − α − u0) = 0, (B.3)

[1 + β(1 − u0)]u′′
0 + u′

1 + u1(1 − α − 2u0) = 0. (B.4)
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Direct integration of (B.3) gives

u0(ξ) =
1 − α

1 + e(1−α)ξ
. (B.5)

It is easy to show that eq. (B.4) can be written as

u′
1 −

u′′
0

u′
0

u1 = −[1 + β(1 − u0)]u′′
0 (B.6)

and with the integrating factor |u′
0|−1, u1 can be readily

integrated to give

u1 = −u′
0

(∫

[1 + β(1 − u0)]
u′′

0

u′
0

dξ + const.
)

(B.7)

= −u′
0

(

ln |u′
0| + β

{

α(1 − α)ξ − 2(1 − α)
1 + e(1−α)ξ

−(1 + α) ln(1 + e(1−α)ξ)
}

+ const.
)

. (B.8)

The integration constant is determined by the condition
u1(0) = 0, and after some algebra, one finally gets

u1(ξ) =
(1 − α)2e(1−α)ξ

(1 + e(1−α)ξ)2

(

ln
4e(1−α)ξ

(1 + e(1−α)ξ)2

+β

(

(1 − α)
(

αξ − 1 − e(1−α)ξ

1 + e(1−α)ξ

)

+(1 + α) ln
2

1 + e(1−α)ξ

))

. (B.9)

With y ≡ (1−α)ξ
2 , u1 can be expressed as

u1 = −
(

(1 − α)
2

)2

sech2 y ([2 + β(1 + α)] ln cosh y

+β(1 − α)[tanh y + y]) , (B.10)

and upon transforming back to the variable z, giving
eq. (13).

Appendix C. General rules for determining
the wavefront speed constraint and
population growth rates

We consider a wavefront that connects two homoge-
neous states �X and �Y . For local wavefront solutions,
one writes nα(x, t) = Uα(x − ct), for α = 1, . . . , q − 1,
for some wavefront speed c to be determined. Then the
reaction-diffusion type equations such as eq. (7) will
lead to a system of ODEs with dynamics described
by (U1, . . . , Uq−1, U

′
1, . . . , U

′
q−1) in a 2(q − 1)-dimensional

phase space. Suppose X∗ and Y∗ are two fixed points in
the multi-dimensional phase space of the dynamical sys-
tem that correspond to the homogeneous steady states
X and Y respectively, such as the one in eq. (D.3). A
propagating wavefront with speed c is characterized by

Fig. 10. Schematics illustrating the wavefront propagation for
a wavefront obtained by connecting from the homogeneous
steady states X to Y . (a) Schematic wavefront profile prop-
agating with speed c. (b) 2(q − 1)-dimensional phase space
flow from the fixed points X∗ to Y∗ resulting in a propagating
wavefront in (a).

a flow from X∗ to Y∗ as shown schematically in fig. 10.
Suppose the first few components of the dynamical sys-
tem represent the population/concentration profiles, with
the physical requirement imposed that these population
components to be non-negative. If the final fixed point
Y∗ includes some zero population components, e.g. Y∗ =
(0, ∗, ∗, . . .), then the flow in phase space when approach-
ing Y∗ cannot spiral into Y∗ otherwise some population
components would be negative. This will impose a con-
straint on the eigenvalues of the Jacobian at Y∗ and in
turn result in a constraint on the speed c ≥ cmin, as
demonstrated in various scenarios in this paper. Further-
more, in many situations (as in all the scenarios in this
paper), the stable wavefront will select to propagate with
the minimal speed cmin. However, it should be noted that
even though a wavefront propagation is possible if there
is a flow connecting from X∗ to Y∗, whether this wave-
front is stable or not is a separate issue. The stability of
the wavefront can be tested by numerical solution of the
PDEs, and in some situations stability analysis can be
performed analytically. Furthermore, in all the numerical
solutions we obtained, the wavefront always propagates
with its minimal allowed speed and we never observe any
steady wavefront that propagates with some speed not
constrained by an upper limit. Therefore, we shall adopt
the conjecture that the wavefront will propagate with its
minimal constrained limit.

As an illustration, consider the 3-state OZA system
with only pure differentiation (Π21 = 0). For the case of
a2 ≤ a1, there are only 2 fixed points X∗

0 ≡ (0, 0, 0, 0) and
X∗

1 ≡ (0, 1−a2, 0, 0). Since X∗
0 is always stable, hence the

only possibility is X∗
1

C0−−→ X∗
0. This will result in wave

profiles shown in fig. 4e or f. For the other case of a2 > a1,
there are 3 possible scenarios: i) X∗

2
C0−−→ X∗

0 resulting in
stable wave profiles shown in fig. 4d. ii) X∗

2
C1−−→ X∗

1
C0−−→ X∗

0

resulting in stable wave profiles shown in fig. 4g. iii)
X∗

1
C0−−→ X∗

0, however such a wavefront is stable only when
n1 is identically zero everywhere. Any finite perturbation
in n1 will destablize this wavefront. One anticipates that
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the scenario of X∗
1 → X∗

2 → X∗
0 is impossible since X∗

2

cannot set a speed limit because its population compo-
nents are all non-zero. This is further supported by that
fact that X∗

2 is highly unstable and the only unstable di-
rection of X∗

1 has a zero n1 component.
Knowing the steady wavefront profiles and making use

of the observation or conjecture that the wavefront speed
always assumes its minimal value, the steady growth rates
of the populations can also be calculated. Suppose in gen-
eral the wave dynamics that connects m+1 fixed points in

phase space is given by X∗
αm

Cαm−1−−−−−→ X∗
αm−1

. . .X∗
α1

Cα0−−→
X∗

α0
, and �X is the q − 1-dimensional vector that contains

the fixed point values of (n1, n2, . . . , nq−1). Then it is easy
to see that the population growth rates of the cells are
given by

d �N

dt
=

m−1∑

j=0

( �Xαj+1 − �Xαj
)Cαj

, (C.1)

where the cell populations {Ni}|i=1,...,q−1 are the compo-
nents of the vector �N ≡ (N1, N2, . . . , Nq−1).

Appendix D. Plane wavefront speeds
calculations for the OZA (3-states) system

Since cell Z(n1) will differentiate into cell A(n2), under
steady traveling wavefront conditions, these two wave-
fronts should have the same speed c. Therefore assum-
ing local plane wavefronts and substituting n1(x, t) =
U1(x − ct) and n2(x, t)=U2(x−ct) into (16), one obtains

Π11(1 + b1 − U1 − U2)U ′′
1 + Π21(1 − U1 − U2)U ′′

2 + cU1

+Π11U1(1 − a1 − U1 − U2) + Π21U2(1 − U1 − U2) = 0,
(D.1)

Π22(1 + b2 − U1 − U2)U ′′
2 + Π12(1 − U1 − U2)U ′′

1 + cU2

+Π22U2(1 − a2 − U1 − U2) + Π12U1(1 − U1 − U2) = 0.
(D.2)

Cell Differentiation: Π21 ≡ ΠAZ = 0

Defining c̃α ≡ c/Παα, eqs. (D.1) and (D.2) reduce to the
4-dimensional dynamical system

U ′
1 = V1,

U ′
2 = V2,

V ′
1 = − c̃1V1 + (1 − U1 − U2 − a1)U1

1 − U1 − U2 + b1
,

V ′
2 =

−
c̃2V2+(1−U1−U2−a2)U2+ Π12

Π22
(1−U1−U2)(U1+V ′

1)
1−U1−U2+b2

,

(D.3)

with two fixed points (0, 0, 0, 0), (0, 1− a2, 0, 0) if a1 ≥ a2

and one more fixed point (n(S)
1 , n

(S)
2 , 0, 0) emerges if a2 >

a1.
The eigenvalues of the Jacobian at (0, 0, 0, 0) can be

directly computed to give

2λ
(1)
± = − c̃1

1 + b1
±

√(
c̃1

1 + b1

)2

− 4(1 − a1)
1 + b1

,

2λ
(2)
± = − c̃2

1 + b2
±

√(
c̃2

1 + b2

)2

− 4(1 − a2)
1 + b2

. (D.4)

It is easy to see that all eigenvalues have negative real
parts and the fixed point is stable. However, physical re-
quirement of non-negative U1 and U2 imposed the con-
straints that the fixed point must be a stable node, but
not stable focus. Hence the wave speeds for wavefront end-
ing with (n1, n2) = (0, 0) must exceed the lower bounds
given by

c ≥ C0 ≡ max
[
2Π11

√
(1 − a1)(1 + b1) ,

2Π22

√
(1 − a2)(1 + b2)

]
. (D.5)

As in the case of the OZ case, one anticipates that the
wavefronts will evolve and attain steady minimal speeds
given by the RHS of (D.5).

The eigenvalues at X∗
1 = (0, 1 − a2, 0, 0) can be simi-

larly computed to be

2λ
(1)
± = − c̃1

a2 + b1
±

√(
c̃1

a2 + b1

)2

− 4(a2 − a1)
a2 + b1

,

2λ
(2)
± = − c̃2

a2 + b2
±

√(
c̃2

a2 + b2

)2

+
4(1 − a2)
a2 + b2

. (D.6)

Note that λ
(2)
± is always real with λ

(2)
+ > 0 and λ

(2)
− < 0. If

a1 ≥ a2, then λ
(1)
± is also real with λ

(1)
+ > 0 and λ

(1)
− <

0. Thus for a1 ≥ a2, this fixed point will not set any
constraint on the wavefront speed.

On the other hand, the situation is different for a2 > a1

with the possibility of Im{λ(1)
± } �= 0 resulting a focus. In

this case, even though X∗
1 is a saddle, it has 3 stable di-

rections (Re{λ(1)
± } < 0, λ

(2)
− < 0) and only 1 unstable

directions (λ(2)
+ > 0). Furthermore, with the presence of

the X∗
2 = (n(S)

1 , n
(S)
2 , 0, 0) fixed point, a wavefront solution

that flows from X∗
2 to X∗

1 is possible. But the physical re-
quirement of non-negative n1 imposes that the constraint
that λ

(1)
± must be real leads to

c ≥ C1 ≡ 2Π11

√
(a2 − a1)(a2 + b1), (D.7)

for a wavefront that ends at (n1, n2) = (0, 1 − a2). Note



Page 16 of 18 Eur. Phys. J. E (2013) 36: 65

Fig. 11. Schematic flow in phase space for the case of a2 > a1. (a) small b2 and (b) large b2, in which the attraction of the

stable direction of the fixed point X∗
1 = (0, 1 − a2, 0, 0) becomes strong enough to attract the flow from X∗

2 = (n
(S)
1 , n

(S)
2 , 0, 0),

resulting in the propagation of wave profiles of the form shown in fig. 4g.

that in this case the eigenvector corresponding to λ
(2)
± is

given by

ê
(2)
± =

1
√

1 + λ
(2)
±

2

(
0, 1, 0, λ

(2)
±

)
. (D.8)

Therefore with c ≥ C1, the saddle node X∗
1 flows towards

the stable node X∗
0 along the unstable direction close the

U2 axis. And the saddle node becomes less unstable (λ(2)
+

decreases) as b2 increases.

Finally, the fixed point X∗
2 = (n(S)

1 , n
(S)
2 , 0, 0) exists if

a2 > a1, and the eigenvalues cannot be expressed analyti-
cally, but they are given by the solution of a quartic poly-
nomial equation and their numerical values of the eigen-
values and eigenvectors can be obtained precisely. X∗

2 is a
highly unstable saddle with 3 unstable and 1 stable direc-
tions. Note that even though it may be possible for phase
space flow to X∗

2 along its stable direction, X∗
2 cannot set

a speed limit of this wavefront. The only possibility of the
above scenario is a flow from X∗

1 to X∗
2, but it is ruled

out by examining the unstable direction of the X∗
1 given

by eq. (D.8), which has a large U2 component towards
X∗

0 but a zero U1-component (see fig. 11). This is further
supported by our numerical solution in which wavefront
connecting from X∗

1 to X∗
2 was possible only for n1 identi-

cally zero and this wavefront is unstable upon local finite
perturbation of n1 �= 0.

De-differentiation: Π21 ≡ ΠAZ > 0

In this case the 4-dimensional dynamical system reads

U ′
1 = V1,

U ′
2 = V2,

V ′
1 =

−
c̃1V1+(1−U1−U2−a1)U1+ Π21

Π11
(1−U1−U2)(U2+V ′

2)
1−U1−U2+b1

,

(D.9)
V ′

2 =

−
c̃2V2+(1−U1−U2−a2)U2+ Π12

Π22
(1−U1−U2)(U1+V ′

1)
1−U1−U2+b2

.

(D.10)

The above system has only two fixed points (0, 0, 0, 0) and
(n∗

1, n
∗
2, 0, 0). Employing similar ideas as before, one can

obtain the characteristic (quartic equation) for the eigen-
values. And by requiring that the fixed point (0, 0, 0, 0)
is a stable node but not a stable focus, one can similarly
obtain a minimal wavefront speed, cmin, in terms of the
parameters. Indeed numerical solutions of the PDEs in-
dicate that steady wavefront propagate with cmin in this
case.
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Appendix E. Plane wavefront speeds
calculations for the OZAA′ (4-states) system

Direct calculation of the Jacobian at X0 leads to the eigen-
values

− c̃1

1 + b1
±

√(
c̃1

1 + b1

)2

− 4(1 − a1)
1 + b1

,

− c̃2

1 + b2
±

√(
c̃2

1 + b2

)2

− 4(1 − a2)
1 + b2

, (E.1)

− c̃3

1 + b3
±

√(
c̃3

1 + b3

)2

− 4(1 − a3)
1 + b3

.

Notice that X∗
0 is always stable. Using the physical re-

quirement of non-negative ni which constrains the X∗
0

fixed point not to be a stable focus, revealed that a plane
wavefront ending with n1 = n2 = n3 = 0 can propagate
for ni(x, t) with speed c above the minimal value:

c ≥ C
(4)
0 ≡ max

[
2Π11

√
(1 − a1)(1 + b1) ,

2Π22

√
(1 − a2)(1 + b2) ,

2Π33

√
(1 − a3)(1 + b3)

]
. (E.2)

Similarly, direct calculation of the Jacobian at X∗
1

leads to the eigenvalues

− c̃1

a3 + b1
±

√(
c̃1

a3 + b1

)2

− 4(a3 − a1)
a3 + b1

,

− c̃2

a3 + b2
±

√(
c̃2

a3 + b2

)2

− 4(a3 − a2)
a3 + b2

, (E.3)

− c̃3

a3 + b3
±

√(
c̃3

a3 + b3

)2

+
4(1 − a3)
a3 + b3

.

And the condition of non-negative n1 leads to

c ≥ C
(4)
1 ≡ max

[
2Π11

√
(a3 − a1)(a3 + b1) ,

2Π22

√
(a3 − a2)(a3 + b2)

]
. (E.4)

If a3 > a2, another fixed point X∗
2 ≡ (0, n∗∗

2 , n∗∗
3 , 0,

0, 0) emerges and the Jacobian at X2 leads to the equation
for the eigenvalues as

− c̃1

a2 + b1
±

√(
c̃1

a2 + b1

)2

− 4(a2 − a1)
a2 + b1

,

− c̃2

a2 + b2
±

√(
c̃2

a2 + b2

)2

+
4n∗∗

2

a2 + b2
, (E.5)

− c̃3

a2 + b3
±

√(
c̃3

a2 + b3

)2

+
4n∗∗

3

a2 + b3
.

And the condition of non-negative n1 leads to

c ≥ C
(4)
2 ≡ 2Π11

√
(a2 − a1)(a2 + b1). (E.6)

Finally, if a3 > a2 > a1, another fixed point X∗
3 ≡ (n∗∗∗

1 ,
n∗∗∗

2 , n∗∗∗
3 , 0, 0, 0) emerges, however in this case the eigen-

values cannot be expressed analytically, but they are given
by the solution of a polynomial equation of degree six and
the numerical values of the eigenvalues and eigenvectors
can be obtained precisely. This fixed point can be shown
to be highly unstable, and cannot set a speed limit on the
wavefront flowing into it.

Appendix F. Modeling interaction via
signaling chemicals

Long-range chemical signaling is the most important
mechanism for cell-cell communication that can lead to
collective directed motion and quorum sensing in cell pop-
ulation [41–44]. The effect of communication via signaling
molecules can be incorporated in the context of our model
by introducing the concentration of the chemotactic sig-
naling molecules c(�r, t). Equation (3) then becomes

∂nα

∂t
= Dα∇2nα − gαnα +

n0pα({nσ}, c)
τα

,

+fctx(nα, c(�r, t),∇c, . . .), for α �= 0, (F.1)

where fctx is some function which models the chemotactic
signaling process. Note that the transition probability pα

becomes dependent on c to include the possibility of affect-
ing the cell differentiation fate by the signaling molecule.
c(�r, t) in turn can be modeled by reaction-diffusion type
PDE as

∂c

∂t
= Dc∇2c − γc + F ({nσ}), (F.2)

where Dc and γ are the diffusivity and decay rate of
the signaling molecules, respectively, and F is some re-
action function that represents the secretion of the signal-
ing chemicals by the cells. For example, simple chemotac-
tic motion that senses the chemical gradient and moves
towards high concentration of c can be modeled with
fctx = −μ∇ · (nα∇c) [49], where μ is a parameter that
measures the chemotactic strength. And the secretion of c
by the cells can be modeled as F =

∑
σ �=0

Sσnσ

βα+nσ
, where Sσ

and βσ are, respectively, the secretion rate and Michaelis-
Menton constant associated with the signaling molecule
production of the σ-type cell.

Appendix G. Model with state dependent
proliferation rates

In this appendix, we consider the situation in which the
cell proliferation rate is dependent on the cell state, i.e.
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instead of a common τf , the cell at state α has a prolifer-
ation rate τα (α �= 0). Then eq. (3) becomes

∂nα

∂t
= Dα∇2nα − gαnα +

n0pα

τα
, for α �= 0. (G.1)

With pα =
∑

σ Πσαnσ + h2

4

∑
σ Πσα∇2nσ as before, one

can adsorb τα into the proliferation probabilities by first
defining a dimensionless proliferation/flipping rate, γα ≡
τα/T in terms of a common time unit T . For instance,
T can be taken to be the proliferation/flipping rate of
a particular cell state. And with Pσα ≡ Πσα/γα, then
Pσα/T = Πσα/τα is the probability per unit time that an
α-cell will proliferate a σ-cell into a neighboring site. The
reaction-diffusion equation becomes

∂nα

∂t
= Dα∇2nα − gαnα +

n0

T

∑

σ

Pσαnσ

+n0Df

∑

σ

Pσα∇2nσ, for α �= 0, (G.2)

where Df ≡ h2

4T . Rescale the space and time via x →
x/

√
DfT and t → t/T , and defining aα ≡ gαT/Pαα and

bα ≡ Dα/(DfPαα), one finally has

∂nα

∂t
=

∑

σ

Pσα

[
(n0 + bαδσα)∇2nσ

+(n0 − aαδσα)nσ

]
, for α �= 0, (G.3)

which is of the same form as in eq. (6).
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