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structed from all the AWT coefficients and from reduced coeffi- 
cients are investigated, and the data reduction criteria are obtained 
from uniform resampling. The proposed reconstruction algorithm 
is found to allow increased rate of reduction. 

The auditory wavelet transform simulates the human auditory 
periphery as a first-order approximation because the wavelet theory 
requires the use of time invariant filters that all have the same shape 
on a logarithmic scale. The filtering function at each point along 
the length of the human cochlea is dynamically adjusted according 
to the input sound pressure and other factors. The variable filters 
should be realized in future analysis/synthesis auditory models. The 
auditory wavelet transform and the reconstruction algorithm may 
nevertheless improve signal production for auditory psychological 
experiments and other applications. 
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Fractal Estimation from Noisy Data via Discrete 
Fractional Gaussian Noise (DFGN) and the 

Haar Basis 

Lance M. Kaplan and C.-C. Jay Kuo 

Abstract-We show that the application of the discrete wavelet trans- 
form (DWT) using the Haar basis to the increments of fractional 
Brownian motion (f Bm), also known as discrete fractional Gaussian 
noise (DFGN), yields coefficients which are weakly correlated and have 
a variance that is exponentially related to scale. Similar results were 
derived by Flandrin, Tewfik, and Kim for a continuous-time fBm going 
through a continuous wavelet transform (CWT). The new theoretical 
results justify an improvement to a fractal estimation algorithm re- 
cently proposed by Wornell and Oppenheim. The performance of the 
new algorithm is compared with that of Wornell and Oppenheim’s al- 
gorithm in numerical simulation. 

I. INTRODUCTION 

To model stochastic processes that exhibit significant correlation 
for large lags, Mandelbrot and Van Ness [l 11 introduced fractional 
Brownian motion (fBm) which is a generalization of normal 
Brownian motion. The fBm B H ( t )  is a zero mean nonstationary 
Gaussian random process with the covariance function 

where the parameters u2 and 0 < H < 1 characterize the process. 
The parameter H controls the “roughness” of the fBm such that 
an individual realization of the process has a fractal dimension [ 101 

D = 2 - H .  

The H parameter also controls the shape of the average spectral 
density defined as [3] 

As a result, the fBm serves as a good model for 1 /f processes 
where 1 < Y b  < 3, which represents the infrared (IR) catastrophe 
case [18]. The IR case is the most common case of 1 lfprocesses, 
and many examples of these 1 /f processes can be found in nature 
and even economics [7]. 

The continuous-time fBm is of only theoretical interest. For 
practical computation, we have to sample the continuous-time fBm 
via 

B[k] = BH(kAx), k E Z (1.3) 
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where Ax is the sampling period. The increment 

X [ k ]  = B [ k  + I ]  - B [ k ]  (1 .4 )  

defines a sequence known as the discrete fractional Gaussian noise 
(DFGN). The variance of the fBm has a self-similar property which 
provides a variance relation of [ 8 ]  

var ( B [ k  + p ]  - B [ k ] )  = IpIZH var ( B [ k  + 1 1  - B [ k ] ) .  (1.5) 

It can also be shown [ 8 ]  that the DFGN is a zero mean stationary 
Gaussian process that is characterized by its autocorrelation 

Without loss of generality, we set A x  = 1 for the following dis- 
cussion. 

The estimation of the fractal dimension of the continuous-time 
fBm from its real discrete data is a very important problem, which 
can be applied to linear prediction problems and texture classifi- 
cation [8]. Many fractal estimation techniques exist [ 5 ] ,  [ 8 ] ,  [ 1 3 ] ,  
but they cannot handle noisy measurements. Most of the fractal 
estimators use regression analysis to take advantage of the expo- 
nential progressions, which are characteristics of fractals, in the 
frequency or space domain. In fact, the exponential progression for 
the coefficients of the continuous wavelet transform (CWT) of the 
continuous-time fBm was studied in [ 3 ] ,  [ 4 ] ,  [ 1 4 ] ,  [ 1 6 ] ,  which 
leads to estimators using wavelets. 

Womell and Oppenheim [ 181 created a fractal estimator algo- 
rithm using the wavelet transform to derive an approximate maxi- 
mum likelihood estimator when a 1 /fprocess is embedded in white 
Gaussian noise. Womell and Oppenheim's algorithm first passes 
sampled l / fno ise  measurements through the DWT based on an 
algorithm of Mallat [ 9 ] .  That is, given a sampled signal a o [ k ]  of 
the finest scale m = 0, we calculate the approximation coefficients 
a, [ k ] ,  and the detail coefficients d, [ k ]  of coarser scale m > 0 re- 
cursively via 

CO 

a , + , [ k ]  = c h[2k - k']a,[k'], (1 .7 )  
k ' =  - -m 

where h [k]  and g [ k ]  must satisfy the quadrature mirror filter (QMF) 
constraint, i.e., g [ k ]  = ( - l ) k h [ l  - k ] .  Then, the average power, 
or variance, of the wavelet coefficients, d , [ k ] ,  for each scale is 
calculated. Finally, the variance estimates are put through an es- 
timate-maximize (EM) algorithm to find the maximum likelihood 
estimate of H .  The EM algorithm is based on the fact that the 
wavelet coefficients are uncorrelated and that for a given scale, the 
variance of the coefficients is 

var [d , [k] l  = u22yhm + ut (1 .9 )  

where yb is related to H via ( 1 . 2 )  and U :  is the variance of the 
initial white noise process. The algorithm also estimates u2 and 
U:,. The results of these estimates, however, are of no concem in 
this paper. The EM algorithm can be tuned for three modes: U :  is 
unknown, U:. > 0 is known, and ut = 0 is known. 

Womell justified the variance progression in ( 1 . 9 )  by arguing 
that the wavelet transform acts as a Karhunen-Lokve-like expan- 
sion for 1 /fnoise [ 171. That is, if d, [k]  is indeed uncorrelated over 
scale and time and if the variance progression of the coefficients 
does follow (1 .9 )  where o', = 0, then the actual process is nearly 

1 /f in the sense that the power spectrum is bounded by 

The variance progression was also validated in [ 1 6 ] ,  where it is 
proved that if fBm is passed through a continuous wavelet trans- 
form then ( 1 . 9 )  is correct and that the d ,  [k]  terms are weakly cor- 
related in scale and time. To be precise, the cross correlation of 
d ,  [k]  and d, [ I ]  decays asymptotically as 

(1.10) 

where R is the number of vanishing moments of the selected 
wavelet basis. 

Consequently, the wavelet basis must be selected such that R 2 
2 to whiten the fBm, which means the support of the basis must be 
at least of length 4 [ I ] .  Errors in the computation of Womell's 
algorithm appear because not all wavelet coefficients can be com- 
puted exactly for finite supported f Bm by using a wavelet basis of 
length greater than 2 .  For this case, it is often that the DWT com- 
putation assumes periodic extension of available data. However, 
the extrapolation method may cause some harmful effects. Besides, 
Womell and Oppenheim's algorithm must perform the DWT on the 
discretely sampled fBm. Then, the variance progression of ( 1 . 9 )  
for the wavelet coefficients is biased and this error leads to an under 
estimate of the parameter H when only a small amount of mea- 
surements are available [ 4 ] .  

To fix the problem, we first show in Section I1 that when the 
increments of the sampled fBm (or the DFGN), is set equal to the 
finest scale wavelet approximation coefficients and when the Haar 
basis is selected, the DWT coefficients are weakly correlated and 
have a variance that is exponentially related to scale. Then, we 
discuss in Section I11 a modified fractal estimation algorithm by 
using the DFGN and the Haar wavelet transform. The new algo- 
rithm will be compared with the algorithm of Womell and Oppen- 
heim in Section IV, and Section V concludes the paper. 

E [ d , , , [ k ] d , [ I ] ]  - 0 ( / 2 " k  - 2"I12'H-R)) 

11. PROPERTIES OF DWT COEFFICIENTS OF DFGN USING 
HAAR BASIS 

Womell and Oppenheim's algorithm uses the sampled f Bm 
which is a nonstationary process and can be generated by the 
DFGN. Since the sampled fBm and the DFGN are causally inver- 
tible, they share the same amount of information. By applying the 
CWT to the fBm, the nonstationarity falls into the CWT approxi- 
mation coefficients. For the DWT case, however, even though the 
wavelet coefficients are stationary for the Haar basis, the recursive 
computation of the coefficients causes the nonstationarity to prop- 
agate through scale and bias the variance progression. As a fix to 
the problem, we consider the application of the DWT to the DFGN. 

A.  Theory 

In this subsection, we will examine the statistical properties of 
the coefficients of the discrete Haar transform applied to DFGN. 
Analogous discussion for the case of the CWT applied to fBm ap- 
pears in [ 4 ] ,  [ 161. A more general treatment of the statistical prop- 
erties of CWT coefficients of stochastic processes can be found in 
[ 2 ] .  We will show that when the finest approximation coefficients 
are set to be equal to the DFGN, the DWT coefficients have many 
desirable properties. Roughly speaking, they follow a nice variance 
progression per scale, and as lag increases, the correlation of the 
coefficients decay much faster than that of the correlation of the 
DFGN. To make the correlation comparison, it is instructive to 
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perform a Taylor series expansion on (1 .6)  to understand the 
asymptotic decay of r [ k ] .  The following Taylor series expression 
is very useful for (011 < ( t  1 

where 
r -  1 

V ( r )  = n (2H - s). 
s = o  

Then, by substituting (2.1) into (1.6), we can express r [ k ]  fork # 
0 as 

The rate of decay of r [k]  is controlled by the first coefficient of the 
summation. The Taylor series expansion in (2.2) helps to demon- 
strate the whitening effect of the DWT. The properties of the 
wavelet coefficients are stated and proved below. 

Theorem 1: Let B [ k ]  be sampled fBm with a parameter 0 < H 
< I ,  and h [n]  and g [n]  be the scaling and wavelet filter realiza- 
tions of the Haar basis as given in (1.7) and (1.8). Define the sto- 
chastic process d, [k]  as the detail wavelet coefficients of the DWT 
where the finest scale approximation a. [k]  is the increment X [ k ]  = 

B [ k  + I ]  - B [ k ]  of the sampled fBm. Then, 
a) for fixed scale m the variance of d, [ k ]  is 

var [d, [ k ] ]  = 27"" ' )  u 2  (2 - 27) (2.3) 

where 

y = 2 H - 1  (2.4) 

b) for fixed scale m the autocorrelation rd,,, [k - I ]  of d, [k]  de- 
cays as O(  Ik - l 1 2 ( " - * ) )  for all k ,  l such that lk - l I > l .  

Proof: Since a,[k]  = X [ k ] ,  the autocorrelation of a o [ k ]  is 
given by (1.6). First, we want to show that the autocorrelation 
ra," [k]  of the approximation coefficients a,  [ k ]  for scale m 2 0 as 
calculated via (1.7) is related to the autocorrelation r [k ]  of the in- 
crements X [ k ]  by 

It is obvious that (2.5) holds form = 0. Let us assume 

Due to (1.7) and the Haar basis, we have 

1 
a,[k] =--(~,-1[2k] + ~ , - 1 [ 2 k  + I ] ) .  (2.7) Jz 

By combining (2.6) and (2.7), it is easy to show that the autocor- 
relation of a,  [k]  is 

2(2H- I)(, - 1) 

(2r [2k ]  + r [ 2 k  + I ]  + r [2k  - 11). (2.8) 2 ram [kl = 

By substituting (1.6) into (2.8), one obtains 

r, [k] = 2 ' 2 ~ -  I l m a L  ( I k  + 1 ( 2 H  + ( k  - 1 1 2 H  - 21kI2") 
2 

r [kl . - - 2@H- I)m 

Thus, by induction, (2.5) holds for all m 2 0. Next, we examine 
the autocorrelation rd," [k]  of the detail coefficients d, [ k ] .  From (1 .8 )  

and the Haar basis, 

1 
d , [k ]  = - ( u m - I [ 2 k ]  - ~ , - , [ 2 k  + 11). (2 .9 )  Jz 

By combining ( 2 . 5 )  and ( 2 . 9 ) ,  one gets 
* ( Z H - I ) ( m - I j  

'd, Ikl = (2r [2k ]  - r [2k  + 11 - r [2k  - 1 1 )  

(2.10) 

Thus, ( 2 . 3 )  is obtained by setting k = 0 in ( 2 . 1 0 )  and using (1.6), 
and Part (a) is proved. 

Substitution of (1.6) in ( 2 . 1 0 )  yields 

U 2  
2(2H - I)(, - I j 

- (412k + 1(2H + 412k - 1IzH 
2 2  rd,[kI = 

- (2k  + 212H - 12k - 212H - 6(2kI2"). (2.11) 

By factoring out the 2k term in (2.11) and using the Taylor series 
expansion ( 2 . 1 ) ,  we have for (kl  > 1 

where 

P ( r )  = 4(;)'+ 4(-i)r  - 1 - ( - l ) r  - 6S(r ) .  

Since, 

P ( r )  = 0 for r = 0, 1 ,  2, 3 

the autocorrelation of d, [k]  decays as expressed in Part (b). 0 
It is worthwhile to point out several features for the above result. 

First, the scaling filter (1.7) of the Haar basis takes full advantage 
of the self-similarity of the fBm as characterized by ( 1 . 5 ) .  In par- 
ticular, for approximation coefficients a,  [ k ] ,  each increase in scale 
m is like subsampling the fBm by a factor of two and, due to (1.6), 
a 22H term pops up in the expression for the correlation of a,  [k ]  by 
doubling the value of k .  Note also that the fBm increment X [ k ]  
approximates the first-order differentiation so that the asymptotic 
behavior of the DFGN correlation from ( 2 . 2 )  is O (  lk12H-2)  and 
the variance progression is governed by (2.4) rather than ( 1 . 2 ) .  
Finally, the regularity of the Haar wavelet filter causes the first 
term in the Taylor series expansion in (2.2) to disappear. Theorem 
1 can be generalized below for the correlation r d [ m ,  n ;  k ,  11 of 
d, [k ]  and dn [ I ]  between scales m and n .  

Theorem 2: Let d,  [k]  be defined as in Theorem 1. Then, 
a) The correlation r d [ m ,  n ;  k ,  I ]  of d , [k ]  and d , [ l ]  is 

r d [ m r  n ;  k ,  I ]  = 

- - 
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b) For given m and n the correlation r d [ m ,  n;  k ,  I ]  of d , [ k ]  
decays as 0 ( 12" k - 2" l 1 2 ( H  'I) for all k and 1 such that 12" k - 
2"lI > max (2",  2"). 

Proof: See [ 6 ] .  0 
Theorem 2 proves that the detail DWT coefficients are weakly 

correlated over both time and scale. The whitening effect is much 
stronger for the special case of normal Brownian motion ( H  = 1 / 2 ) .  
By setting H = 1 / 2  in ( 2 . 1 3 ) ,  then the correlation is zero as long 
as 2"k - 2"l 2 2" or 2"'k - 2"I 5 -2"'. Thus, we have the 
following corollary. 

Corollary I :  Given the increments of B [k]  with H = 1 / 2 ,  the 
detail wavelet coefficients d , [k ]  from the Haar transform are in- 
dependent, i.e. 

rd [mr  n; k,  I ]  = 0 

provided that m and n are fixed and that k and 1 are outside the 
region defined as 

2"-"'1 - 1 < k < 2"-"'(I + I ) .  

This result is similar to one found in [ 4 ]  for the case of the CWT 
and continuous fBm, which in turn is a special case of results on 
the CWT of stochastic processes with orthogonal increments as 
presented in [ 2 ] .  Since the increments of Brownian motion are 
white, Corollary 1 just states that the Haar transform of white noise 
produces white noise. This fact is true for any orthogonal wavelet 
basis and is used in [ 181. 

The whitening effect for general DFGN will be verified experi- 
mentally in Section 11-C. One advantage of using the DFGN and 
the Haar basis is that because the DWT coefficients are virtually 
uncorrelated for 0 < H < 1 via Haar transform, the periodic ex- 
tension of data problem is avoided. By comparing Part (b) of Theo- 
rem 2 to ( 1 .  l o ) ,  we may say that the application of the discrete 
Haar transform to the DFGN, in a sense, behaves like the appli- 
cation of the continuous wavelet transform with the Daubechies D4 
basis to the corresponding continuous-time fBm. 

B. Extension to Higher Order Wavelet Filters 

It seems that some results presented in Section 11-A can be ex- 
tended to wavelet bases of higher order. It is our conjecture that 
when the DFGN is passed through the DWT using a Daubechies 
filter 1 1 1  of length 2R (or any orthogonal filter with R vanishing 
moments), the R vanishing moments of the filter should cancel out 
the first R terms in the correlation expansion of ( 2 . 2 )  so that the 
detail wavelet coefficients decay at a rate of 

E [ d , [ k ] d , , [ l ] ]  = 0 ( / 2 " ' k  - 2"112'H-'-R' ). (2 .14)  

In fact, a technique originated in [I21 was used by Tewfik and Kim 
in [15 ]  to verify the decay of ( 2 . 1 4 ) .  Their work is based on mul- 
tiscale signal processing of sampled data, and it covers the special 
case of orthonormal wavelet basis. When the correlation structure 
of ( 1 . 6 )  is treated as a continuous function, the function will be 
continuously differentiable for k > 1 .  Based on [ 1 5 ] ,  it can be 
argued that if a length 2R Daubechies filter is used for DWT im- 
plementation, the detail wavelet coefficients are bounded by 

By taking the 2R derivatives of ( 2 . 2 ) ,  the asymptotic decay ( 2 . 1 4 )  
is verified and experimental verification is provided in Section III- 
C. Thus, the DWT should be able to whiten the DFGN for any 
choice of wavelet basis with R > 0 vanishing moments. 

-100 -so 0 50 100 

1% 

Fig. 1, Autocorrelation of DFGN with H = 0.8 

It is believed, however, that only the Haar basis ( R  = 1) takes 
advantage of the self-similarity ( 1 . 5 )  of the fBm so that the vari- 
ance progression is not biased. For the case of the CWT, [ 1 6 ,  
Theorem 1 1  states that the detail coefficients have the same statis- 
tics within a scaling factor for each scale, and this scaling factor 
controls the "clean" variance progression. For the DWT case 
however, the similar correlation functions of the detail coefficients 
translates into the fact that the approximation correlation functions 
must be the same between scale within a scaling factor. In the proof 
of Theorem 1 ,  the variance progression (2.3) is a direct result of 
the fact that as the approximation coefficients become coarser, the 
correlation structure remains the same with the exception of a scal- 
ing factor. This nice feature does not occur for higher order Dau- 
bechies or B-spline filters (the Haar filter is the first order member 
of both families of filters). The bias in the variance progression is 
verified experimentally in Section IV. Even if the higher order fil- 
ters did not suffer from variance bias, they would be of limited 
value because of the windowing problem that results from the DWT 
implementation. Longer filters might create coefficients with cor- 
relation that decays faster than the Haar filters, but it is shown in 
Section 11-C that the faster decay is not significant for real data. 

C. Experimental Verification 

To demonstrate the above discussion, the correlation of DFGN 
for fBm with H = 0 . 8  is examined. Fig. 1 shows the theoretical 
autocovariance function of the DFGN process for lags - 128 to 128 
as given by ( 1 . 6 ) .  We clearly see that there is a rapid drop from 
lag 0 to other nonzero lags, but the function is slowly converging 
to zero. When the increments of a fBm realization of length 128 is 
treated as a vector and is put through a Haar transform, the output 
can also be treated as a vector where element 1 represents the 
coarsest approximation coefficient and elements 2 through 128 rep- 
resent the detail coefficients from coarsest to finest. Because the 
approximation coefficient is of no interest, it is discarded and the 
resulting output vector is of length 127. By using ( 2 . 1 3 ) ,  a theo- 
retical covariance matrix is computed and displayed in Fig. 2 .  
Cross-correlation between overlapping time segments of different 
scales and the hyperbolic decay of the peaks are both evident in the 
figure. Finally, 256 realizations of fBm increments of length 128 
were generated using the Cholesky approach as in [ 8 ] .  These sam- 
ples were put through the Haar transform and an average covari- 
ance matrix was computed. Fig. 3 shows the matrix, and the figure 



3558 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 41. NO. 12. DECEMBER 1993 

(2,128) 
Fig. 2 .  Magnitude of entries of the theoretical covariance matrix of the 

wavelet coefficients with the Haar basis and H = 0.8. 

Fig. 3 .  Magnitude of entries of the experimental covariance matrix of the 
wavelet coefficients with the Haar basis and H = 0.8. 

displays a large diagonal peak with small off-diagonal elements. 
The variance progression is also evident. These experimental re- 
sults validate the theory in Section 11-A. 

To verify that higher order Daubechies filters do whiten the 
DFGN, we use the D4 and D16 bases to perform the same numer- 
ical experiment. In these experiments when the length of the filter 
became too long for the DWT implementation, a smaller filter is 
chosen just as in [16]. Figs. 4 and 5 show the covariance matrices 
for the wavelet coefficients using the D4 and D16 bases, respec- 
tively. The whitening effect is verified. The faster decay of the 
peaks for the D16 filter, however, is not evident. The fact that a 
decay should occur seems more crucial than the actual rate of decay 

for real data. Besides, the higher order bases suffer from variance 
bias as will be tested in Section IV.  

111. THE MODIFIED ALGORITHM 

The theoretical results suggest that the Womell and Oppen- 
heim’s algorithm can be improved by first computing the incre- 
ments so that the problems of variance bias and periodic data ex- 
tensions can be avoided. Then, we apply the Haar transform to the 
DFGN, compute the average variance of detail coefficients d, [k]  
for each scale and use the EM algorithm to find a maximum like- 
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(2,128) 
Fig. 4. Magnitude of entries of the experimental covariance matrix of the 

wavelet coefficients with the Daubechies D4 basis and H = 0.8. 

I 

(2,128) 
Fig. 5.  Magnitude of entries of the experimental covariance matrix of the 

wavelet coefficients with the Daubechies D16 basis and H = 0.8. 

lihood estimate of H. It is important to note that the EM algorithm 
must be altered to reflect the variance progression of the noisy data. 

To create a fractal estimator for noisy measurements, one must 
understand what happens to white noise when its increments are 
passed through the DWT. Let us assume that the additive white 
Gaussian noise w [ k ]  is independent of the 1 / f  process and has 
variance u t .  Then, the white noise increment w, [ k ]  = w [ k  + 11 - 
w[k]  has a autocorrelation structure of 

2a2, i f k  = o 

0 otherwise. 

One can verify that the process w,[k] is in fact a zero mean sta- 
tionary Gaussian process characterized by the autocorrelation (1.6) 
with H = 0 and U *  = 2 ~ 2 , .  It is important to note that even though 
the increment is of the form (1.6), white noise is not the same as 
fBm of H = 0 because the way DFGN is added up to generate 
fBm, the first element of the discrete-time fBm with H = 0 is 
correlated with all future samples. Since the increments, however, 
are equivalent, the same theory for the DFGN hold for w, [ k ] .  The 
variance progression of w,[k] can be determined from (2.3) by set- 
ting H = 0. Since the DWT is linear and white noise is independent 
of the fBm process, the wavelet coefficients from the white noise 
increment is independent of the wavelet coefficients of the DFGN, 
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H 
0.90 
0.75 
0.50 
0.25 

and the variance progression of noisy DFGN is 

U ;  = var [dm[k]] = 2Y"-' )u2(2  - 2?) + 2-"" ' )  3u;, (3.1) 

where y is defined in (2.4).  In a sense, the modified EM algorithm, 
formulated according to (3. l ) ,  will separate two fBm signals, i .e. ,  
one with H = 0 and the other one with unknown H. 

Using the variance progression given in 3.1 and the "whiteness" 
assumption, it is easy to derive that the likelihood function for the 
given data is 

mean std rms mean std rms 

0.846 0.021 0.058 0.899 0.017 0.017 
0.683 0.026 0.072 0.748 0.017 0.017 
0.398 0.021 0.109 0.499 0.016 0.016 
0.082 0.022 0.169 0.252 0.016 0.016 

where 6; is the sample variance, N ( m )  is the number of available 
samples at scale m, and 8 is the parameter space. The derivation 
of formulas for the estimate maximize (EM) algorithm can be found 
in [18, Appendix A] with trivial changes, and thus, will not be 
repeated here, and the new EM formulas are listed in [6, Appendix 
A]. The new EM algorithm can be tuned for the same three modes 
as the original EM algorithm that was discussed in Section I. 

The modified algorithm can be directly compared to a very com- 
mon fractal estimation technique known as the variance estimator 
that was used as a control algorithm in [8]. It is basically a space 
domain version of the algorithm presented in [ 131. The variance 
estimator uses the self-similar property (1.5). The variance of the 
increments are computed for different lags, i, and then regression 
analysis on a log-log scale is used to determine H. By looking at 
the proof of Theorem 1, one can see that in effect, the variance 
estimator performs the regression analysis on the approximation 
coefficients. In other words, the modified algorithm adds the wave- 
let filtering step of (1.8) to whiten the coefficients so that a maxi- 
mum likelihood estimate of H is easy to formulate. Even without 
the maximum likelihood formulations, a regression analysis after 
the wavelet filtering step should provide for more accurate esti- 
mates because the coefficients are virtually independent. 

H 
0.90 
0.75 

IV. SIMULATIONS 

Wornell and Oppenheim's (WO) algorithm and our modified al- 
gorithm were compared using simulated fBm data. The simulated 
data was generated using the Cholesky decomposition approach as 
in [8]. This method is chosen because it provides accurate fBm 
realizations. In this section, the signal to noise ratio is computed 
as 

mean std rms mean std rms 
0.894 0.032 0.032 0.917 0.019 0.025 
0.760 0.040 0.041 0.770 0.029 0.035 

(4.1) 

H 
0.90 
0.75 

where U' is the fBm increment power and U :  is the noise power. 
Motivation to use 4.1  for SNR instead of considering an approach 
used in [8] is provided by [6]. To implement the WO algorithm, 
the 16-tap Daubechies wavelet basis [ l ]  was chosen, and any 
wavelet coefficients that could not be computed accurately were 
discarded. For our simulations, 64 samples of noise-free fBm of 
various lengths where H = 0.25,  H = 0 .5 ,  H = 0.75, and H = 
0.9 were created. 

The WO and modified algorithms were first tested on the noise- 
free fBm data of length 2048. The resulting mean, standard devia- 
tion, and root mean square (RMS) error of the value of H as esti- 
mated by the two algorithms under the noise-free assumption are 
given in Table I. The problem of variance bias is very much evident 
in the WO algorithm. The standard deviation of the WO algorithm 
is also slightly larger. Table I1 shows the resulting statistics of the 
estimated parameter H when the two algorithms are tuned to search 

mean std rms mean std rms 

0.908 0.088 0.088 0.926 0.039 0.047 
0.745 0.103 0.103 0.768 0.041 0.045 

TABLE I 
MEANS A N D  STANDARD DEVIATIONS FOR THE H ESTIMATE WITH 2048 

NOISE-FREE MEASUREMENTS IN THE NOISE-FREE MODE 

0.50 
0.25 

I True 11 WO I Modified I 

0.536 0.106 0.112 I 0.542 1 0.050 I 0.065 
0.275 0.152 0.154 I 0.312 I 0.069 I 0.093 

TABLE I1 
MEANS A N D  STANDARD DEVIATIONS FOR T H E  H ESTIMATE WITH 2048 

NOISE-FREE MEASUREMENTS IN THE NOISE SEARCH MODE 

I Modified I True II WO I 

0.50 11 0.510 1 0.043 I 0.044 I 0.520 [ 0.021 I 0.030 
0.25 11 0.272 I 0.050 I 0.055 I 0.290 I 0.038 I 0.055 

TABLE 111 
MEANS AND STANDARD DEVIATIONS FOR THE H ESTIMATE WITH 512 

NOISE-FREE MEASUREMENTS IN THE NOISE SEARCH MODE 

I True I I  WO I Modified I 

for a noise level. It appears that the WO algorithm, when searching 
for a noise floor, treats the variance bias as noise so that a less 
biased estimate of H can be found, but the standard deviation be- 
comes some what larger than that of the modified algorithm. Table 
I1 also shows that the RMS error of the two algorithms are com- 
parable for data of length 2048. The performance of the modified 
algorithm in the noise search mode, however, beats the WO algo- 
rithm for shorter data as demonstrated by Table 111. 

Next, white noise was added to the fBm data so that the SNR is 
10 dB. The two algorithms were tested in the noise search mode. 
The RMS errors of the H estimate are plotted versus data length in 
Figs. 6 through 9 for various values of H. It is clear that the mod- 
ified algorithm is superior for moderate data lengths while the two 
algorithms perform almost equally well at length 2048. 

Flandrin [4] showed that the bias in the variance progression, 
that leads to an underestimate of H,  decreases as the scale becomes 
coarser. The EM algorithm, however, gives more credence to the 
variance estimates of finer scales because they contain more sam- 
ples of data. As a result, the WO algorithm operating in the noise- 
free mode has difficulty in decreasing the error in the estimate of 
H a s  the number of samples increase. A simple fix to this problem 
is to just throw away the data form the finer scales before the EM 
algorithm is used. Fig. 10 shows the mean value of the H estimate 
when the WO algorithm is implemented in noise free mode via the 
D4, D8, and D16 basis on noise free samples of fBm data with H 
= 0.25 and where the finest k scale detail coefficients are dis- 
carded. We see that excluding the finest scales do improve the es- 
timate of H, even though the WO algorithm still underestimates H. 
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- 

- 

- 

- 

- 

- 

0.45 

0.41 \ Solid: WO 

Dashed: Modified 

01 I 
0 500 1 r" 1500 2000 2500 

Length 

Fig. 7 .  RMS error of the estimate for H = 0.75. 

Note also, that the performance of the WO algorithm is not really 
sensitive to the choice of basis. Next, the same test was applied 
with the two algorithms in the noise search mode, and the results 
are shown in Fig. 11. It appears that the noise searching process 
will help the WO algorithm to provide virtually bias-free estimates. 
Tables I1 and 111, however, show that the price of the lower bias 
appears as increased standard deviation. 

Since the method of finer scale exclusion offers a way to see if 
variance bias does not exist in an algorithm, we also use this method 
to test the variance progression of the modified algorithm extended 
to higher order Daubechies filters. Fig. 12 shows the result of finer 
scale exclusion using the same data as in the previous paragraph 
for the modified algorithm (the Haar basis) and it extension using 
the D4, D8, and D16 filter. The variance progression bias of (2.3) 
for higher order filters is evident in the figure. 

We want to comment that throwing away the finer scales is not 
a practical fix to the bias problem, because the finer scales contain 
most of the data. For example, if data in the 3 finest scales are 
discarded, only 12.5% of the original data is used for the EM al- 
gorithm. As seen in Fig. 10, the quality of the estimator is affected 
by the absence of the 3 finest scales for the D4 basis. A better way 
to handle the bias problem is to use an algorithm that does not 
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Fig. 9. RMS error of the estimate for H = 0.25. 
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Fig. 10. Mean value of H of various estimators with fine scale exclusion 
for H = 0.25 (noise free mode). 

suffer from the variance bias. The modified algorithm, in noise free 
mode, is such an algorithm, and its lack of variance bias is clearly 
seen in Fig. 10. 
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V.  CONCLUSIONS AND EXTENSIONS 

A theory about the DWT coefficients of the increments of the 
fBm using the Haar basis has been presented. It has also been 
shown that Womell and Oppenheim’s fractal estimation algorithm 
can be modified as a result of our new theory. The modified algo- 
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rithm improves the accuracy of the H estimate for moderate data 
lengths of the fBm. For longer lengths, both our algorithm and 
Womell and Oppenheim’s algorithm can find very good estimates. 
For short data lengths of the fBm in additive noise, the modified 
algorithm is still unreliable, and it is so far not clear how to im- 
prove a wavelet based fractal estimator for short data lengths. Al- 
though highly regular filters may zero out terms in the Taylor series 
expansion of the autocorrelation of DFGN, they cause a bias in 
variance progression. How to avoid the bias of high-order filters is 
also of interest. 
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