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As an extension of Pawlak’s rough sets, rough fuzzy sets are proposed to deal with fuzzy target concept. As we know, the uncertainty
of Pawlak’s rough sets is rooted in the objects contained in the boundary region,while the uncertainty of rough fuzzy sets comes from
three regions (positive region, boundary region, and negative region). In addition, in the view of traditional uncertaintymeasures,
the two rough approximation spaces with the same uncertainty are not necessarily equivalent, and they cannot be distinguished.
In this paper, firstly, a fuzziness-based uncertainty measure is proposed. Meanwhile, the essence of the uncertainty for rough
fuzzy sets and its three regions in a hierarchical granular structure is revealed. Then, from the perspective of fuzzy distance, we
introduce a modified uncertainty measure based on the fuzziness-based uncertainty measure and present that our method not
only is strictly monotonic with finer approximation spaces, but also can distinguish the two rough approximation spaces with
the same uncertainty. Finally, a case study is introduced to demonstrate that the modified uncertainty measure is more suitable for
evaluating the significance of attributes.Theseworks are useful for further study on rough sets theory and promote the development
of uncertain artificial intelligence.

1. Introduction

The rough sets introduced by Pawlak [1, 2] have been
demonstrated as an effective tool to handle uncertain infor-
mation by using the given information granulations [3–5].
An uncertain concept can be described by a pair of lower
and upper approximation sets. And three disjoint regions
are constructed in a rough approximation space. Generally
speaking, the target concepts in Pawlak's rough sets are
usually accurate and crisp. For a decision-making problem,
there are only two states which are opposite and disjoint
each other for a crisp concept. For example, in the decision-
making problems of diagnosis analysis, there are only two
states of Yes or No for a patient. That is, a patient is either
diseased or not diseased. However, in many real decision-
making applications, the states of the target concept may be
uncertain and fuzzy in practice. To address this problem, the
rough fuzzy sets (RFS) [6–8] are proposed to deal with the

target concept which is usually fuzzy or uncertain. In rough
fuzzy sets, the lower and upper approximation fuzzy sets are
considered as two boundary fuzzy sets of the target concept.

Probabilistic rough fuzzy setmodel [9], based on the aver-
age membership degree, classifies an approximation space
into positive region, boundary region, and negative region by
setting a pair of threshold (𝛼, 𝛽) (0 ≤ 𝛽 < 𝛼 ≤ 1). Similar
to the probabilistic rough sets, the rough fuzzy sets also have
a good fault-tolerance. It is well known that the uncertainty
of classical rough sets is only rooted in the boundary region,
while the uncertainty of rough fuzzy sets not only comes from
the boundary region, but also comes from the negative or
positive regions, because the membership degrees of these
objects in the negative or positive regions are not completely
equal to 1 or 0. From the viewpoint of hierarchical quotient
space [10, 11], with the increase of information, not only
the objects in the boundary region, but also the objects in
the positive region and negative region will be reclassified.
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Therefore, for rough fuzzy sets, the uncertainty comes from
three regions and is not monotonic with finer knowledge
spaces.

As a new methodology for simulating human cognitive
mechanism, granular computing (GrC) is regarded as an
umbrella covering the theories, methodologies, techniques,
and tools in artificial intelligence [12–17]. From the viewpoint
of GrC, the certainty and uncertainty of knowledge can be
transformed for each other at a certain granularity level
[18]. As the main GrC models, fuzzy sets [19], rough sets
[1], quotient space [10], and cloud model [20] realize the
representation and transformation of uncertain knowledge
from the different views. The uncertainty measure plays an
important role in acquiring rules from information system
and it is helpful in evaluating attribute weight in attribute
reduction.Wierman [21] first introduced an axiomatic defini-
tion of knowledge granularity to measure the uncertainty in
information system. Yao [22] presented a so-called expected
granularity (EG) class that provides a family of uncertain
measure. Besides, there are various uncertain measures, such
as fuzziness [23, 24], rough entropy [25], inclusion degree
[26], roughness [27], and knowledge distance [28, 29].

The uncertain measure of rough fuzzy sets model has
drawn many researchers’ attention, because it can reflect the
quality of acquiring rules from information system. Guo and
Mi [30] proposed a fuzziness measure of rough fuzzy sets
based on the conditional entropy. By using new lower and
upper approximation operators, Beg and Rashid [31] pro-
posed a modified soft rough fuzzy set model, which provide
better approximations of undefinable sets. Based on rough
entropy and information entropy, Wang [32] introduced a
method address the uncertainty measure of rough fuzzy sets.
Combining the rough degree with the rough entropy, Qin
[33] proposed a new rough entropy that is strictly monotonic
with finer approximation space. Sun [34, 35] introduced an
uncertainty measure for generalized rough fuzzy sets based
on the Shannon entropy, which is effective and suitable for
evaluating the roughness and accuracy of a generalized rough
fuzzy sets. From the perspective of distance, Hu [36] studied
the roughness measure of rough fuzzy sets and applied
it to incomplete information systems with fuzzy decision.
However, there are still several shortcomings in the current
research on uncertainty measure of rough fuzzy sets as
follows: (i) lack of theoretical analysis on the change rules
of uncertainty of RFS in a hierarchical granular structure.
For example, in many practical applications, such as medical
diagnosis [37], decision-making [38], and feature selection
[39], the analysis on the uncertainty of three regions with
changing knowledge spaces is helpful in improving the
decision quality. (ii) In the view of traditional uncertainty
measures, two rough approximation spaces with the same
uncertainty are not necessarily equivalent and the difference
between them is difficult to reflect. Actually, in some cases,
such as granularity selection, attribute reduction, and multi-
granularity construction, we usually need to discriminate
the two rough approximation spaces. To solve the above
problems, in this paper, from the perspective of fuzzy dis-
tance, we propose a modified uncertainty measure based on
fuzziness.

The rest of this paper is organized as follows. Section 2
presents many preliminary concepts such as rough fuzzy sets,
step fuzzy set, average membership degree, average fuzzy
set, and probabilistic rough fuzzy sets, etc. In Section 3, a
basic uncertainty measure based on fuzziness is proposed
to investigate the changing rules of uncertainty of RFS in a
hierarchical granular structure. In Section 4, in the view of
fuzzy distance, a modified uncertainty measure is presented.
In Section 5, an illustrative example is conducted to verify
the effectiveness of the proposed method. In Section 6,
conclusions are drawn.

2. Preliminaries

In order to facilitate the description of this paper, many basic
concepts are reviewed briefly in this section. In this paper,
we denote an information system by 𝑆 = (𝑈,𝐶 ∪ 𝐷,𝑉, 𝑓),
where𝑈 is a nonempty finite domain,𝐶 is the set of condition
attributes, 𝐷 is the decision attribute, 𝑉 is the set of all
attribute values, and 𝑓 : 𝑈 × 𝐶 is an information function.

Definition 1 (rough sets [1, 2]). Given an information system𝑆 = (𝑈,𝐶 ∪ 𝐷,𝑉, 𝑓), 𝑅 ⊆ 𝐶, and 𝑋 ⊆ 𝑈, the lower and upper
approximation sets of 𝑋 are defined as follows:

𝑅 (𝑋) = {𝑥 ∈ 𝑈 | [𝑥]𝑅 ⊆ 𝑋} ,
𝑅 (𝑋) = {𝑥 ∈ 𝑈 | [𝑥]𝑅 ∩ 𝑋 ̸= 𝜙} . (1)

where [𝑥]𝑅 denotes the equivalence class induced by 𝑈/𝑅,
namely, 𝑈/𝑅 = {[𝑥]𝑅} = {[𝑥]1, [𝑥]2, . . . , [𝑥]𝑚}.

For simplicity, let [𝑥]𝑅 ≜ [𝑥] in case of confusion. If𝑅(𝑋) = 𝑅(𝑋),𝑋 is a definable set; otherwise𝑋 is a rough set.
Universe 𝑈 is divided by positive region, boundary region,
and negative region, then the three regions can be defined,
respectively, as follows:

𝑃𝑂𝑆𝑅 (𝑋) = 𝑅 (𝑋) ,
𝐵𝑁𝐷𝑅 (𝑋) = 𝑅 (𝑋) − 𝑅 (𝑋) ,
𝑁𝐸𝐺𝑅 (𝑋) = 𝑈 − 𝑅 (𝑋) .

(2)

In this paper, a partition space 𝑈/𝑅 is also called a
knowledge space or granularity space. If 𝑅1, 𝑅2 ⊆ 𝐶, 𝑈/𝑅1 ={𝑝1, 𝑝2, . . . , 𝑝𝑙} and 𝑈/𝑅2 = {𝑞1, 𝑞2, . . . , 𝑞𝑚} are two knowl-
edge spaces. If ∀𝑞𝑗∈𝑈/𝑅2

(∃𝑝𝑖∈𝑈/𝑅1
(𝑞𝑗 ⊆ 𝑝𝑖)), then 𝑈/𝑅2 is finer

than𝑈/𝑅1, denoted by𝑈/𝑅2≺𝑈/𝑅1. If ∀𝑞𝑗∈𝑈/𝑅2
(∃𝑝𝑖∈𝑈/𝑅1

(𝑞𝑗 ⊂𝑝𝑖)), then𝑈/𝑅2 is strictly finer than𝑈/𝑅1, denoted by𝑈/𝑅2 ≺𝑈/𝑅1.

Definition 2 (rough fuzzy sets [6–8]). Given an information
system 𝑆 = (𝑈,𝐶 ∪ 𝐷,𝑉, 𝑓), 𝑅 ⊆ 𝐶 and 𝑋 is a fuzzy set
on 𝑈, then the lower and upper approximation sets of 𝑋 can
be defined as a pair of fuzzy sets, 𝑅(𝑋) and 𝑅(𝑋). And their
membership functions are defined as follows:

𝜇𝑅 (𝑥) = inf {𝜇𝑋 (𝑦) | 𝑦 ⊆ [𝑥]𝑅} , ∀𝑥 ∈ 𝑈,
𝜇𝑅 (𝑥) = sup {𝜇𝑋 (𝑦) | 𝑦 ⊆ [𝑥]𝑅} , ∀𝑥 ∈ 𝑈, (3)
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where [𝑥]𝑅 denotes the equivalence class induced by the
equivalence relation 𝑈/𝑅. If 𝑅(𝑋) = 𝑅(𝑋), then 𝑋 is a
definable fuzzy set; otherwise 𝑋 is a rough fuzzy sets.

Definition 3 (step fuzzy set [40]). Given an information
system 𝑆 = (𝑈,𝐶 ∪𝐷,𝑉, 𝑓), 𝐶 denotes an attribute set. 𝑅 ⊆ 𝐶
and 𝑋 is a fuzzy set on 𝑈. 𝑈/𝑅 = {[𝑥]1, [𝑥]2, . . . , [𝑥]𝑙} is a
partition space, where [𝑥]𝑖 = {𝑥𝑖1

, 𝑥𝑖2
, . . . , 𝑥𝑖𝑡𝑖

} (𝑖 = 1, 2, . . . , 𝑙)
and 𝑡1 + 𝑡2 + ⋅ ⋅ ⋅ + 𝑡𝑙 = |𝑈|, 𝑋 is a fuzzy set on 𝑈. If 𝜇𝑋(𝑥𝑖1

) =𝜇𝑋(𝑥𝑖2
) = ⋅ ⋅ ⋅ = 𝜇𝑋(𝑥𝑖𝑡𝑖

) = 𝑐𝑖 (0 ≤ 𝑐𝑖 ≤ 1, 𝑖 = 1, 2, . . . , 𝑙), then𝑋 is a step fuzzy set on 𝑈/𝑅.
Definition 4 (average membership degree [40]). Given an
information system 𝑆 = (𝑈,𝐶 ∪ 𝐷,𝑉, 𝑓), 𝑅 ⊆ 𝐶 and𝑋 is a fuzzy set on 𝑈, 𝑈/𝑅 = {[𝑥]1, [𝑥]2, . . . , [𝑥]𝑙} is a
partition space. ∀𝑥 ∈ [𝑥]𝑖, where 𝑖 = 1, 2, . . . , 𝑙, 𝜇(𝑥) =𝜇([𝑥]𝑖) = ∑𝑥⊆[𝑥]𝑖

𝜇(𝑥)/|[𝑥]𝑖|, then we call that 𝜇(𝑥) is the
average membership degree.

In Definition 4, 𝜇(𝑥) is the average membership degree
that an object 𝑥 ∈ [𝑥]𝑖, 𝑖 = 1, 2, . . . , 𝑙 belongs to the fuzzy
concept𝑋. 1−𝜇(𝑥) is the average membership degree that an
object 𝑥 ∈ [𝑥]𝑖, 𝑖 = 1, 2, . . . , 𝑙, belongs to the fuzzy concept𝑋. From the perspective of probability statistics, 𝜇(𝑥) can be
understood as the probability that an equivalent class [𝑥] 𝑖, 𝑖 =1, 2, . . . , 𝑙, belongs to the fuzzy concept 𝑋. Similarly, 1 − 𝜇(𝑥)
can be understood as the probability that an equivalent class[𝑥]𝑖, 𝑖 = 1, 2, . . . , 𝑙, belongs to the fuzzy concept𝑋.

Definition 5 (average fuzzy set [41]). Given an information
system 𝑆 = (𝑈,𝐶 ∪ 𝐷,𝑉, 𝑓), 𝑅 ⊆ 𝐶 and 𝑋 is a fuzzy set on 𝑈,𝑈/𝑅 = {[𝑥]1, [𝑥]2, . . . , [𝑥]𝑙} is a partition space, where [𝑥]𝑖 ={𝑥𝑖1

, 𝑥𝑖2
, . . . , 𝑥𝑖𝑡𝑖

} (𝑖 = 1, 2, . . . , 𝑙) and 𝑡1 + 𝑡2 + ⋅ ⋅ ⋅ + 𝑡𝑙 = |𝑈|,𝑋
is a fuzzy set on 𝑈. If 𝜇𝑋∗(𝑥𝑖1

) = 𝜇𝑋∗(𝑥𝑖2
) = ⋅ ⋅ ⋅ = 𝜇𝑋∗(𝑥𝑖𝑡𝑖

) =
𝜇([𝑥]𝑖) = ∑𝑥⊆[𝑥]𝑖

𝜇(𝑥)/|[𝑥]𝑖|, 𝑖 = 1, 2, . . . , 𝑙, where 𝑋∗ is a
fuzzy set on 𝑈, then we call 𝑋∗ is the average fuzzy set of 𝑋.

Example 6. Given an information system 𝑆 = (𝑈,𝐶∪𝐷,𝑉, 𝑓),𝑅 ⊆ 𝐶, 𝑋 = 0.1/𝑥1 + 0.2/𝑥2 + 0.5/𝑥3 + 0.6/𝑥4 + 1/𝑥5 +1/𝑥6 + 0.7/𝑥7 + 0.3/𝑥8 + 0.2/𝑥9 is a fuzzy set on 𝑈; 𝑈/𝑅 ={{𝑥1, 𝑥2}, {𝑥3, 𝑥4, 𝑥5}, {𝑥6, 𝑥7}, {𝑥8, 𝑥9}}, then
𝑅 (𝑋) = 0.1𝑥1

+ 0.1𝑥2

+ 0.5𝑥3

+ 0.5𝑥4

+ 0.5𝑥5

+ 0.7𝑥6

+ 0.7𝑥7

+ 0.2𝑥8

+ 0.2𝑥9

,
𝑅 (𝑋) = 0.2𝑥1

+ 0.2𝑥2

+ 1𝑥3

+ 1𝑥4

+ 1𝑥5

+ 1𝑥6

+ 1𝑥7

+ 0.3𝑥8

+ 0.3𝑥9

,
𝑅 (𝑋∗) = 0.15𝑥1

+ 0.15𝑥2

+ 0.7𝑥3

+ 0.7𝑥4

+ 0.7𝑥5

+ 0.85𝑥6

+ 0.85𝑥7

+ 0.25𝑥8

+ 0.25𝑥9

.

(4)

Definition 7 (probabilistic rough fuzzy sets [9]). Given an
information system 𝑆 = (𝑈,𝐶 ∪ 𝐷,𝑉, 𝑓) with a pair of
threshold 𝛼, 𝛽 (0 ≤ 𝛽 ≤ 𝛼 ≤ 1), 𝑅 ⊆ 𝐶 and 𝑋 is a fuzzy
set on 𝑈, the lower and upper approximation sets of 𝑋 are
defined as follows:

𝑅(𝛼,𝛽) (𝑋) = {𝑥 ∈ 𝑈 | 𝜇 ([𝑥]) ≥ 𝛼} ,
𝑅(𝛼,𝛽) (𝑋) = {𝑥 ∈ 𝑈 | 𝜇 ([𝑥]) > 𝛽} . (5)

Universe 𝑈 is divided by positive region, boundary region,
and negative region, which can be defined as follows:

𝑃𝑂𝑆(𝛼,𝛽)𝑅 (𝑋) = {𝑥 ∈ 𝑈 | 𝜇 ([𝑥]) ≥ 𝛼} = 𝑅(𝛼,𝛽) (𝑋) ,
𝐵𝑁𝐷(𝛼,𝛽)

𝑅 (𝑋) = {𝑥 ∈ 𝑈 | 𝛽 < 𝜇 ([𝑥]) < 𝛼}
= 𝑅(𝛼,𝛽) (𝑋) − 𝑅(𝛼,𝛽) (𝑋) ,

𝑁𝐸𝐺(𝛼,𝛽)
𝑅 (𝑋) = {𝑥 ∈ 𝑈 | 𝜇 ([𝑥]) ≤ 𝛽}

= 𝑈 − 𝑅(𝛼,𝛽) (𝑋) .

(6)

Definition 8 (granularity measure [21, 22, 42]). Suppose 𝑈 is
finite and nonempty universe. A function 𝑚 : 2𝑈 󳨀→ R is a
granularity measure if it satisfies the following conditions for
any 𝑃,𝑄 ∈ 2𝑈:

(1) 𝑚(𝑥) ≥ 0.
(2) 𝑃 ⊂ 𝑄 󳨐⇒ 𝑚(𝑃) < 𝑚(𝑄).
(3) 𝑃≡𝑠𝑄 󳨐⇒ 𝑚(𝑃) = 𝑚(𝑄).

where ≡𝑠 denotes there is a bijection from 𝑃 to 𝑄.
Definition 9 (knowledge granulation [25]). Given an infor-
mation system 𝑆 = (𝑈,𝐶 ∪ 𝐷,𝑉, 𝑓), 𝑅 ⊆ 𝐶, and 𝑋 is a
fuzzy set on 𝑈, 𝑈/𝑅 = {[𝑥]1, [𝑥]2, . . . , [𝑥]𝑙}. The knowledge
granulation of 𝑈/𝑅 is defined as follows:

𝐺𝐾 (𝑅) = ∑𝑙
𝑖=1

󵄨󵄨󵄨󵄨[𝑥]𝑖󵄨󵄨󵄨󵄨2|𝑈|2 . (7)

Obviously, 1/|𝑈| ≤ 𝐺𝐾(𝑅) ≤ 1 for any 𝑅 ⊆ 𝐶.
Definition 10 (fuzziness [43]). Suppose 𝑈 = (𝑥1, 𝑥2, . . . , 𝑥𝑛)
be a finite universe, 𝐴 and 𝐵 be two fuzzy sets on 𝑈, if 𝐻 :𝐹(𝑈) 󳨀→ [0, 1] satisfies the following conditions:

(1) If and only if 𝐴 ∈ 𝑃(𝑈),𝐻(𝐴) = 0.
(2) If and only if ∀𝑥𝑖 ∈ 𝑈 and 𝐴(𝑥𝑖) = 1/2,𝐻(𝐴) = 1.
(3) ∀𝑥𝑖 ∈ 𝑈, if 𝐵(𝑥𝑖) ≤ 𝐴(𝑥𝑖) ≤ 1/2 or 𝐵(𝑥𝑖) ≥ 𝐴(𝑥𝑖) ≥1/2, then𝐻(𝐵) ≤ 𝐻(𝐴).
(4) ∀𝐴 ∈ 𝐹(𝑈),𝐻(𝐴) = 𝐻(𝐴).

where𝐻(∙) is called the fuzziness of a fuzzy subset.

Definition 11 (distance between two fuzzy sets [44]). A real
function 𝑑 : 𝐹(𝑈) × 𝐹(𝑈) 󳨀→ 𝑅+ satisfies the following
conditions:
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(1) ∀𝐴, 𝐵 ∈ 𝐹(𝑈), 𝑑(𝐴, 𝐵) = 𝑑(𝐵,𝐴).
(2) ∀𝐴 ∈ 𝐹(𝑈), 𝑑(𝐴, 𝐴) = 0.
(3) ∀𝐴 ∈ 𝐹(𝑈), 𝑑(𝐴, ∼ 𝐴) = max∀𝐴,𝐵∈𝐹(𝑈)𝑑(𝐴, 𝐵).
(4) ∀𝐴, 𝐵, 𝐶 ∈ 𝐹(𝑈), if 𝐴 ⊆ 𝐵 ⊆ 𝐶, then 𝑑(𝐴, 𝐵) ≤𝑑(𝐴, 𝐶) and 𝑑(𝐵, 𝐶) ≤ 𝑑(𝐴, 𝐶).

Then, 𝑑(∙, ∙) is a distance measurement.

3. A Basic Fuzziness-Based
Uncertainty Measure

In the RFS model, the uncertainty usually comes from three
regions at each granularity, because the objects in a positive
or negative region are uncertain. Namely, the membership
degrees of these objects may be not necessarily equal to 0
or 1. With the adding attributes, the objects in the negative
or positive regions may be reclassified and the three disjoint
regions will be changed. As a result, the uncertainty at each
granularity in RFSmodel will be changed accordingly. In this
section, we will pay attention to analyze the change rules of
the uncertainty of RFS in the changing knowledge spaces.

Research on uncertainty of RFS is very useful in approxi-
mate knowledge acquisition. Based onDefinition 10, there are
various fuzziness formulas proposed by many researchers. In
this paper, we choose the fuzziness formula presented in [30]
as follows:

𝐻𝑅 (𝑋) = 4𝑛
𝑛∑

𝑖=1

𝜇 (𝑥𝑖) (1 − 𝜇 (𝑥𝑖)) . (8)

According to the analysis in Section 1, the uncertainty of
a target concept in RFS comes from three regions: positive
region, negative region. and boundary region; that is to say,

𝐻𝑅 (𝑋) = 4𝑛
𝑛∑

𝑖=1

𝜇 (𝑥𝑖) (1 − 𝜇 (𝑥𝑖))
= 4𝑛 ∑

𝑥∈𝑃𝑂𝑆
(𝛼,𝛽)

𝑅 (𝑋)

𝜇 (𝑥) (1 − 𝜇 (𝑥))

+ 4𝑛 ∑
𝑥∈𝑁𝐸𝐺

(𝛼,𝛽)
𝑅 (𝑋)

𝜇 (𝑥) (1 − 𝜇 (𝑥))

+ 4𝑛 ∑
𝑥∈𝐵𝑁𝐷

(𝛼,𝛽)
𝑅 (𝑋)

𝜇 (𝑥) (1 − 𝜇 (𝑥))

= 𝐻 (𝑃𝑂𝑆(𝛼,𝛽)𝑅 (𝑋)) + 𝐻(𝑁𝐸𝐺(𝛼,𝛽)
𝑅 (𝑋))

+ 𝐻 (𝐵𝑁𝐷(𝛼,𝛽)
𝑅 (𝑋)) .

(9)

Obviously, given an information system 𝑆 = (𝑈,𝐶 ∪𝐷,𝑉, 𝑓), 𝑅 ⊆ 𝐶 and 𝑋 is a fuzzy set on 𝑈, the following
properties hold for𝐻𝑅(𝑋):

(1) 0 ≤ 𝐻𝑅(𝑋) ≤ 1.
(2) 𝐻𝑅(𝑋) does not decrease with respect to 𝛼 and does

not increase with respect to 𝛽.

Therefore, the advantage of this method is independent of
thresholds (𝛼, 𝛽).
Lemma 12. Given an information system 𝑆 = (𝑈,𝐶 ∪𝐷,𝑉, 𝑓), 𝑅1 ⊆ 𝑅2 ⊆ 𝐶. 𝑋 is a fuzzy set on 𝑈, 𝑈/𝑅1 ={𝑝1, 𝑝2, . . . , 𝑝𝑙} and 𝑈/𝑅2 = {𝑞1, 𝑞2, . . . , 𝑞𝑚}. If a granule𝑝𝑖 (𝑖 = 1, 2, . . . , 𝑙) which is subdivided into many finer
subgranules 𝑞𝑖1 , 𝑞𝑖2 , . . . , 𝑞𝑖𝑚𝑖 by Δ𝑅 = 𝑅2 − 𝑅1, and 𝜇(𝑞𝑖1) =𝜇(𝑞𝑖2) = ⋅ ⋅ ⋅ = 𝜇(𝑞𝑖𝑚𝑖 ) = 𝜇, then 𝜇(𝑝𝑖) = 𝜇.
Proof. Obviously,𝜇(𝑝𝑖) = (|𝑞𝑖1 |/|𝑝𝑖|)𝜇(𝑞𝑖1)+(|𝑞𝑖2|/|𝑝𝑖|)𝜇(𝑞𝑖2)+⋅ ⋅ ⋅ + (|𝑞𝑖𝑚𝑖 |/|𝑝𝑖|)𝜇(𝑞𝑖𝑚𝑖 ), if 𝜇(𝑞𝑖1) = 𝜇(𝑞𝑖2) = ⋅ ⋅ ⋅ = 𝜇(𝑞𝑖𝑚𝑖 ) =𝜇𝑖, because |𝑝𝑖| = |𝑞𝑖1 | + |𝑞𝑖2 | + ⋅ ⋅ ⋅ + |𝑞𝑖𝑚𝑖 |, then 𝜇(𝑝𝑖) =(|𝑞𝑖1|/|𝑝𝑖|)𝜇 + (|𝑞𝑖2 |/|𝑝𝑖|)𝜇 + ⋅ ⋅ ⋅ + (|𝑞𝑖𝑚𝑖 |/|𝑝𝑖|)𝜇.

From Lemma 12, if the granule on the coarser granularity
is subdivided into many finer subgranules with the same
membership degree on the finer granularity, then the mem-
bership degree of the equivalence class is equal to the one of
its subequivalence classes.

Theorem 13. Given an information system 𝑆 = (𝑈,𝐶 ∪𝐷,𝑉, 𝑓), 𝑅1 ⊆ 𝑅2 ⊆ 𝐶. 𝑋 is a fuzzy set on 𝑈, 𝑈/𝑅1 ={𝑝1, 𝑝2, . . . , 𝑝𝑙} and 𝑈/𝑅2 = {𝑞1, 𝑞2, . . . , 𝑞𝑚}. If only granule𝑝𝑖 (𝑖 = 1, 2, . . . , 𝑙) is subdivided into many finer subgranules𝑞𝑖1 , 𝑞𝑖2 , . . . , 𝑞𝑖𝑚𝑖 by Δ𝑅 = 𝑅2 − 𝑅1, and 𝜇(𝑞𝑖1) = 𝜇(𝑞𝑖2) = ⋅ ⋅ ⋅ =𝜇(𝑞𝑖𝑚𝑖 ), then𝐻𝑅1
(𝑋) = 𝐻𝑅2

(𝑋).
Proof. From Lemma 12, Theorem 13 is easy to prove.

From Theorem 13, we can conclude that the uncertainty
will remain unchanged if the granules on the coarser gran-
ularity which are subdivided into many finer subgranules by
equal proportion on the finer granularity.

Theorem 14. Given information system 𝑆 = (𝑈,𝐶 ∪ 𝐷,𝑉, 𝑓),𝑅1 ⊆ 𝐶 and 𝑅2 ⊆ 𝐶. 𝑋 is a fuzzy set on 𝑈. If 𝑅1 ⊆𝑅2, 𝐻𝑅1
(𝑋) ≥ 𝐻𝑅2

(𝑋) holds.
Proof. Let 𝑈 = {𝑥1, 𝑥2, . . . , 𝑥𝑛} be a nonempty finite domain,𝑈/𝑅1 = {𝑝1, 𝑝2, . . . , 𝑝𝑙} and 𝑈/𝑅2 = {𝑞1, 𝑞2, . . . , 𝑞𝑚}. Because𝑅1 ⊆ 𝑅2, 𝑈/𝑅2≺𝑈/𝑅1. According to the conditions, for
simplicity, suppose only one granule 𝑝1 can be subdivided
into two finer subgranules (the more complicated cases can
be transformed into this case, so we will not repeat them
here). Without loss of generality, let 𝑝1 = 𝑞1 ∪ 𝑞2, 𝑝2 =𝑞3, 𝑝3 = 𝑞4, 𝑝𝑙 = 𝑞𝑚 (𝑚 = 𝑙 + 1); namely, 𝑈/𝑅2 ={𝑞1, 𝑞2, 𝑝2, 𝑝3, . . . , 𝑝𝑚}. We will prove this theorem in the
following:

Δ𝐻𝑅1−𝑅2
= 𝐻𝑅1

(𝑋) − 𝐻𝑅2
(𝑋)

= 4𝑛 (𝜇 (𝑝1) (1 − 𝜇 (𝑝1)) 󵄨󵄨󵄨󵄨𝑝1
󵄨󵄨󵄨󵄨

− 𝜇 (𝑞1) (1 − 𝜇 (𝑞1)) 󵄨󵄨󵄨󵄨𝑞1󵄨󵄨󵄨󵄨 − 𝜇 (𝑞2) (1 − 𝜇 (𝑞2)) 󵄨󵄨󵄨󵄨𝑞2󵄨󵄨󵄨󵄨)
= 4𝑛 (󵄨󵄨󵄨󵄨𝑞1󵄨󵄨󵄨󵄨 𝜇 (𝑞1)2 + 󵄨󵄨󵄨󵄨𝑞2󵄨󵄨󵄨󵄨 𝜇 (𝑞2)2 − 󵄨󵄨󵄨󵄨𝑝1

󵄨󵄨󵄨󵄨 𝜇 (𝑝1)2) .

(10)
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Because 𝜇(𝑝1) = (|𝑞1|/|𝑝1|)𝜇(𝑞1) + (|𝑞2|/|𝑝1|)𝜇(𝑞2), 𝜇(𝑝1)2 =(|𝑞1|2/|𝑝1|2)𝜇(𝑞1)2 + 2(|𝑞1||𝑞2|/|𝑝1|2)𝜇(𝑞1)𝜇(𝑞2) + (|𝑞2|2/|𝑝1|2)𝜇(𝑞2)2.
We have
Δ𝐻𝑅1−𝑅2

= 4 󵄨󵄨󵄨󵄨𝑞1󵄨󵄨󵄨󵄨 󵄨󵄨󵄨󵄨𝑞2󵄨󵄨󵄨󵄨𝑛 󵄨󵄨󵄨󵄨𝑝1
󵄨󵄨󵄨󵄨2 (𝜇 (𝑞1)2 − 2𝜇 (𝑞1) 𝜇 (𝑞2) + 𝜇 (𝑞2)2)

= 4 󵄨󵄨󵄨󵄨𝑞1󵄨󵄨󵄨󵄨 󵄨󵄨󵄨󵄨𝑞2󵄨󵄨󵄨󵄨𝑛 󵄨󵄨󵄨󵄨𝑝1
󵄨󵄨󵄨󵄨2 (𝜇 (𝑞1) − 𝜇 (𝑞2))2 ≥ 0.

(11)

Thus, 𝐻𝑅1
(𝑋) ≥ 𝐻𝑅2

(𝑋), where 𝐻𝑅1
(𝑋) = 𝐻𝑅2

(𝑋) when𝜇(𝑞1) = 𝜇(𝑞2).
FromTheorem 14, we know that the total uncertainty will

monotonically decrease with finer granularity in RFS model.

Theorem 15. Given an information system 𝑆 = (𝑈,𝐶 ∪𝐷,𝑉, 𝑓), for any 0 ≤ 𝛽 ≤ 𝛼 ≤ 1, 𝑅1 ⊆ 𝐶 and 𝑅2 ⊆ 𝐶.𝑋 is a fuzzy set on 𝑈. If 𝑅1 ⊆ 𝑅2 and only the granules
containing in 𝑃𝑂𝑆(𝛼,𝛽)𝑅1

(𝑋) are subdivided into many finer
equivalence classes by the attribute increment Δ𝑅 = 𝑅2 − 𝑅1,
then𝐻(𝐵𝑁𝐷(𝛼,𝛽)

𝑅1
(𝑋)) ≤ 𝐻(𝐵𝑁𝐷(𝛼,𝛽)

𝑅2
(𝑋)) hold.

Proof. Let 𝑈 = {𝑥1, 𝑥2, . . . , 𝑥𝑛} be a nonempty finite domain,𝑈/𝑅1 = {𝑝1, 𝑝2, . . . , 𝑝𝑙}, because 𝑅1 ⊆ 𝑅2, 𝑈/𝑅2≺𝑈/𝑅1.
According to the conditions, for simplicity, suppose only one
granule 𝑝1 can be subdivided into two finer subgranules byΔ𝑅 = 𝑅2−𝑅1 (themore complicated cases can be transformed
into this case, so we will not repeat them here). Without loss
of generality, let 𝑝1 = 𝑞1∪𝑞2, 𝑝2 = 𝑞3, 𝑝3 = 𝑞4, 𝑝𝑙 = 𝑞𝑚 (𝑚 =𝑙 + 1); namely, 𝑈/𝑅1 = {𝑞1, 𝑞2, 𝑝2, 𝑝3, . . . , 𝑝𝑙}. We will prove
this theorem in three cases in the following.

Case 1. If𝜇(𝑞1) ≤ 𝛽 and𝜇(𝑞2) ≤ 𝛽, namely, 𝑞1 ⊆ 𝑁𝐸𝐺(𝛼,𝛽)
𝑅2

(𝑋)
and 𝑞2 ⊆ 𝑁𝐸𝐺(𝛼,𝛽)

𝑅2
(𝑋), 𝐵𝑁𝐷(𝛼1,𝛽1)

𝑅1
(𝑋) = 𝐵𝑁𝐷(𝛼2,𝛽2)

𝑅2
(𝑋).

Because 𝑝2 = 𝑞3, 𝑝3 = 𝑞4, 𝑝𝑙 = 𝑞𝑚 (𝑚 = 𝑙 + 1),𝐻(𝐵𝑁𝐷(𝛼,𝛽)
𝑅1

(𝑋)) = 𝐻(𝐵𝑁𝐷(𝛼,𝛽)
𝑅2

(𝑋)).
Case 2. If 𝜇(𝑞1) ≥ 𝛼 and 𝜇(𝑞2) ≤ 𝛽, namely, 𝑞1 ⊆ 𝑃𝑂𝑆(𝛼,𝛽)𝑅2

(𝑋)
and 𝑞2 ⊆ 𝑁𝐸𝐺(𝛼,𝛽)

𝑅2
(𝑋), 𝐵𝑁𝐷(𝛼1,𝛽1)

𝑅1
(𝑋) = 𝐵𝑁𝐷(𝛼2,𝛽2)

𝑅2
(𝑋).

Because 𝑝2 = 𝑞3, 𝑝3 = 𝑞4, 𝑝𝑙 = 𝑞𝑚 (𝑚 = 𝑙 + 1),𝐻(𝐵𝑁𝐷(𝛼,𝛽)
𝑅1

(𝑋)) = 𝐻(𝐵𝑁𝐷(𝛼,𝛽)
𝑅2

(𝑋)).
Case 3. If 𝛽 < 𝜇(𝑞1) < 𝛼 and 𝜇(𝑞2) ≤ 𝛽, namely, 𝑞1 ⊆𝐵𝑁𝐷(𝛼,𝛽)

𝑅2
(𝑋) and 𝑞2 ⊆ 𝑁𝐸𝐺(𝛼,𝛽)

𝑅2
(𝑋), then 𝐵𝑁𝐷(𝛼1,𝛽1)

𝑅2
(𝑋) =

𝐵𝑁𝐷(𝛼2,𝛽2)
𝑅1

(𝑋) ∪ 𝑞1, 𝐻(𝐵𝑁𝐷(𝛼,𝛽)
𝑅2

(𝑋)) = 𝐻(𝐵𝑁𝐷(𝛼,𝛽)
𝑅1

(𝑋)) +
𝐻(𝑞1) > 𝐻(𝐵𝑁𝐷(𝛼,𝛽)

𝑅2
(𝑋)).

Theorem 16. Given an information system 𝑆 = (𝑈, 𝐶 ∪𝐷,𝑉, 𝑓), for any 0 ≤ 𝛽 ≤ 𝛼 ≤ 1, 𝑅1 ⊆ 𝐶 and 𝑅2 ⊆ 𝐶.𝑋 is a fuzzy set on 𝑈. If 𝑅1 ⊆ 𝑅2 and only the granules
containing in 𝑁𝐸𝐺(𝛼,𝛽)

𝑅1
(𝑋) are subdivided into many finer

equivalence classes by the attribute increment Δ𝑅 = 𝑅2 − 𝑅1,
then𝐻(𝐵𝑁𝐷(𝛼,𝛽)

𝑅1
(𝑋)) ≤ 𝐻(𝐵𝑁𝐷(𝛼,𝛽)

𝑅2
(𝑋)) hold.

Proof. Similar to Theorem 15, Theorem 16 is easy to prove.

According to Theorems 15 and 16, the uncertainty of
boundary region will increase only when the equivalence
classes contained in negative region or positive region are
subdivided with finer granularity in RFS model. This is not
in line with human cognitive habits.

Theorem 17. Given an information system 𝑆 = (𝑈, 𝐶 ∪𝐷,𝑉, 𝑓), for any 0 ≤ 𝛽 ≤ 𝛼 ≤ 1, 𝑅1 ⊆ 𝐶 and 𝑅2 ⊆ 𝐶.𝑋 is a fuzzy set on 𝑈. If 𝑅1 ⊆ 𝑅2 and only the granules
containing in 𝐵𝑁𝐷(𝛼,𝛽)

𝑅1
(𝑋) are subdivided into many finer

equivalence classes by the attribute increment Δ𝑅 = 𝑅2 − 𝑅1,
then𝐻(𝐵𝑁𝐷(𝛼,𝛽)

𝑅1
(𝑋)) ≥ 𝐻(𝐵𝑁𝐷(𝛼,𝛽)

𝑅2
(𝑋)) hold.

Proof. Let 𝑈 = {𝑥1, 𝑥2, . . . , 𝑥𝑛} be a nonempty finite domain,𝑈/𝑅1 = {𝑝1, 𝑝2, . . . , 𝑝𝑙} and 𝑈/𝑅2 = {𝑞1, 𝑞2, . . . , 𝑞𝑚}. Because𝑅1 ⊆ 𝑅2, 𝑈/𝑅2≺𝑈/𝑅1. According to the condition, for
simplicity, suppose only one granule 𝑝1 can be subdivided
into two finer subgranules by Δ𝑅 = 𝑅2 − 𝑅1 (the more
complicated cases can be transformed into this case, so we
will not repeat them here). Without loss of generality, let𝑝1 = 𝑞1 ∪ 𝑞2, 𝑝2 = 𝑞3, 𝑝3 = 𝑞4, 𝑝𝑙 = 𝑞𝑚 (𝑚 = 𝑙 + 1), namely,𝑈/𝑅1 = {𝑞1, 𝑞2, 𝑝2, 𝑝3, . . . , 𝑝𝑙}. We will prove this theorem in
four cases in the following.

Case 1. If 𝛽 < 𝜇(𝑞1) < 𝛼 and 𝛽 < 𝜇(𝑞2) < 𝛼, namely,𝑞1 ⊆ 𝐵𝑁𝐷(𝛼,𝛽)
𝑅2

(𝑋) and 𝑞2 ⊆ 𝐵𝑁𝐷(𝛼,𝛽)
𝑅2

(𝑋), 𝐵𝑁𝐷(𝛼1,𝛽1)
𝑅1

(𝑋) =
𝐵𝑁𝐷(𝛼2,𝛽2)

𝑅2
(𝑋). Because𝑝2 = 𝑞3, 𝑝3 = 𝑞4, 𝑝𝑙 = 𝑞𝑚 (𝑚 = 𝑙+1),

𝐻(𝐵𝑁𝐷(𝛼,𝛽)
𝑅1

(𝑋)) = 𝐻(𝐵𝑁𝐷(𝛼,𝛽)
𝑅2

(𝑋)).
Case 2. If 𝜇(𝑞1) ≥ 𝛼 and 𝜇(𝑞2) ≤ 𝛽, namely, 𝑞1 ⊆ 𝑃𝑂𝑆(𝛼,𝛽)𝑅2

(𝑋)
and 𝑞2 ⊆ 𝑁𝐸𝐺(𝛼,𝛽)

𝑅2
(𝑋), 𝐵𝑁𝐷(𝛼1,𝛽1)

𝑅1
(𝑋) > 𝐵𝑁𝐷(𝛼2,𝛽2)

𝑅2
(𝑋).

Because 𝑝2 = 𝑞3, 𝑝3 = 𝑞4, 𝑝𝑙 = 𝑞𝑚 (𝑚 = 𝑙 + 1),𝐻(𝐵𝑁𝐷(𝛼,𝛽)
𝑅1

(𝑋)) > 𝐻(𝐵𝑁𝐷(𝛼,𝛽)
𝑅2

(𝑋)).
Case 3. If 𝛽 < 𝜇(𝑞1) < 𝛼 and 𝜇(𝑞2) ≥ 𝛼, namely, 𝑞1⊆ 𝐵𝑁𝐷(𝛼,𝛽)

𝑅2
(𝑋) and 𝑞2 ⊆ 𝑃𝑂𝑆(𝛼,𝛽)𝑅2

(𝑋), 𝐵𝑁𝐷(𝛼1,𝛽1)
𝑅1

(𝑋) >
𝐵𝑁𝐷(𝛼2,𝛽2)

𝑅2
(𝑋). Because𝑝2 = 𝑞3, 𝑝3 = 𝑞4, 𝑝𝑙 = 𝑞𝑚 (𝑚 = 𝑙+1),

𝐻(𝐵𝑁𝐷(𝛼,𝛽)
𝑅1

(𝑋)) > 𝐻(𝐵𝑁𝐷(𝛼,𝛽)
𝑅2

(𝑋)).
Case 4. 𝛽 < 𝜇(𝑞1) < 𝛼 and 𝜇(𝑞2) ≤ 𝛽, namely, 𝑞1 ⊆𝐵𝑁𝐷(𝛼,𝛽)

𝑅2
(𝑋) and 𝑞2 ⊆ 𝑁𝐸𝐺(𝛼,𝛽)

𝑅2
(𝑋), 𝐵𝑁𝐷(𝛼1,𝛽1)

𝑅1
(𝑋) >

𝐵𝑁𝐷(𝛼2,𝛽2)
𝑅2

(𝑋). Because𝑝2 = 𝑞3, 𝑝3 = 𝑞4, 𝑝𝑙 = 𝑞𝑚 (𝑚 = 𝑙+1),
𝐻(𝐵𝑁𝐷(𝛼,𝛽)

𝑅1
(𝑋)) > 𝐻(𝐵𝑁𝐷(𝛼,𝛽)

𝑅2
(𝑋)).

According to Theorem 17, the uncertainty of boundary
region will decrease when only the equivalence classes
contained in boundary region are subdivided with finer
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granularity inRFSmodel.This is in linewith human cognitive
habits.

Theorem 18. Given an information system 𝑆 = (𝑈,𝐶 ∪𝐷,𝑉, 𝑓), 𝑅 ⊆ 𝐶, 𝑋 is a fuzzy set on 𝑈. If 0 ≤ 𝛽1 ≤ 𝛽2 ≤𝛼2 ≤ 𝛼1 ≤ 1, then the following properties hold:

(1) 𝐻(𝐵𝑁𝐷(𝛼1,𝛽1)
𝑅 (𝑋)) ≥ 𝐻(𝐵𝑁𝐷(𝛼2,𝛽2)

𝑅 (𝑋)).
(2) 𝐻(𝑃𝑂𝑆(𝛼2,𝛽1)𝑅 (𝑋)) ≥ 𝐻(𝑃𝑂𝑆(𝛼1,𝛽1)𝑅 (𝑋)).
(3) 𝐻(𝑁𝐸𝐺(𝛼1,𝛽2)

𝑅 (𝑋)) ≥ 𝐻(𝑁𝐸𝐺(𝛼1,𝛽1)
𝑅 (𝑋)).

Proof. Obviously, some of the equivalence classes in positive
region will be assigned to the boundary region as parame-
ter 𝛼 increases, so 𝐻(𝑃𝑂𝑆(𝛼,𝛽)𝑅 (𝑋)) will decrease. Similarly,
some of the equivalence classes in negative region will be
assigned to the boundary region as parameter 𝛽 decreases,
so 𝐻(𝑁𝐸𝐺(𝛼,𝛽)

𝑅 (𝑋)) will decrease. Some of the equivalence
classes in boundary region will be assigned to the negative
region or positive region as parameter 𝛼 increases and
parameter𝛽 decreases, so𝐻(𝐵𝑁𝐷(𝛼,𝛽)

𝑅 (𝑋))will decrease.
Theorem 18 indicates that the uncertainty of positive

region monotonically decreases as parameter 𝛼 increases, the
uncertainty of negative region monotonically decreases as
parameter 𝛽 decreases, and uncertainty of boundary region
monotonically increases with increasing 𝛼 and decreasing 𝛽.
Note. As to the monotonicity of 𝐻𝑅(𝑋), it can be used for
measuring uncertainty in RFS to a certain degree. However,
there still exist some deficiencies about𝐻𝑅(𝑋); for example, it
cannot provide enough information, which will be discussed
in the following section.

4. Modified Uncertainty Measure of
Rough Fuzzy Sets

According to the above discussion, 𝐻𝑅(𝑋) is monotonic
with finer approximation spaces in a hierarchical granular
structure, which can reflect the change rules of uncertainty
in RFS to a certain extent. However, there exist some
deficiencies about𝐻𝑅(𝑋). On the one hand,𝐻𝑅(𝑋) does not
provide enough information that is caused by the uncertainty
related to the granularity of partitions. This limitation will be
revealed by Example 19 in this section. One the other hand,𝐻𝑅(𝑋) cannot supply enough information to characterize
the two approximation spaces with the same fuzziness. In
particualr, the latter is very important for evaluating the
attribute significance in attribute reduct.

Example 19. Given an information system 𝑆 = (𝑈,𝐶 ∪𝐷, 𝑉, 𝑓), where 𝑈 = {𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6, 𝑥7}, 𝑅1, 𝑅2 ⊆𝐶 and 𝑋 = 0.3/𝑥1 + 0.5/𝑥2 + 0.7/𝑥3 + 0.9/𝑥4 +0.8/𝑥5 + 0.5/𝑥6 + 0.2/𝑥7 is a fuzzy set on 𝑈. Sup-
pose that 𝑈/𝑅1 = {{𝑥1, 𝑥2, 𝑥3}, {𝑥4, 𝑥5, 𝑥6, 𝑥7}}, 𝑈/𝑅2 ={{𝑥2}, {𝑥1, 𝑥3}, {𝑥4, 𝑥5, 𝑥6, 𝑥7}}, and 𝑈/𝐶 = {{𝑥2}, {𝑥1, 𝑥3},{𝑥4, 𝑥5}, {𝑥6, 𝑥7}}.

According to formula (8), we have

𝐻𝑅1
(𝑋) = 𝐻𝑅2

(𝑋) = 0.977. (12)

Therefore,𝐻𝑅(𝑋) cannot reflect the uncertainty caused by the
granularity of partition.

To overcome this limitation, wemodify formula (8) based
on the idea of combination entropy and combination gran-
ulation [42, 45], and the definition of combined fuzziness-
based uncertainty measure is as follows.

Definition 20. Given an information system 𝑆 = (𝑈, 𝐶 ∪𝐷,𝑉, 𝑓), and 𝑋 is a fuzzy set on 𝑈. The combined fuzziness-
based uncertainty measure is defined as follows:

𝐶𝐻𝑅 (𝑋) = 𝐻𝑅 (𝑋) ∗ 𝐺𝐾(𝑅) . (13)

Theorem 21 (see [25]). Given an information system 𝑆 =(𝑈,𝐶 ∪ 𝐷,𝑉, 𝑓), and 𝑋 is a fuzzy set on 𝑈. If 𝑅1 ⊂ 𝑅2 ⊆𝐶, 𝐺𝐾(𝑅1) > 𝐺𝐾(𝑅2) holds.
Theorem 22. Given an information system 𝑆 = (𝑈,𝐶 ∪𝐷,𝑉, 𝑓), 𝑋 is a fuzzy set on 𝑈. If 𝑅1 ⊂ 𝑅2 ⊆ 𝐶, 𝐶𝐻𝑅1

(𝑋) >𝐶𝐻𝑅2
(𝑋) holds.

Proof. If 𝑅1 ⊂ 𝑅2 ⊆ 𝐶, we have 𝐺𝐾(𝑅1) > 𝐺𝐾(𝑅2)
and 𝐻𝑅1

(𝑋) ≥ 𝐻𝑅2
(𝑋) by Theorem 21 and Theorem 14,

respectively. Then, we obtain 𝐶𝐻𝑅1
(𝑋) > 𝐶𝐻𝑅2

(𝑋).
According toTheorem 22, the combined fuzziness-based

uncertainty in Definition 20 is more accurate than the basic
fuzziness-based uncertainty, since it is equipped with strict
monotonicity.

Example 19 (continued). We have

𝐶𝐻𝑅1
(𝑋) = 0.498,

𝐶𝐻𝑅2
(𝑋) = 0.418. (14)

Obviously, 𝐶𝐻𝑅1
(𝑋) > 𝐶𝐻𝑅2

(𝑋).
Thus, 𝑈/𝑅2 ≺ 𝑈/𝑅1 󳨐⇒ 𝐶𝐻𝑅2

(𝑋) < 𝐶𝐻𝑅1
(𝑋).

In some special cases, the two rough approximation
spaces with the same uncertainty are not necessarily equal.
Consequently, it is hard to distinguish them, which is impor-
tant to evaluate the attribute significance in attribute reduc-
tion. Therefore, it is necessary to further modify formula
(13). Firstly, based on Definition 11, we have the following
definition.

Definition 23 (fuzzy distance). Given an information system𝑆 = (𝑈,𝐶 ∪ 𝐷,𝑉, 𝑓), 𝑅1, 𝑅2 ⊆ 𝐶, and 𝑋 is a fuzzy set on 𝑈.𝑈/𝑅1 = {𝑝1, 𝑝2, . . . , 𝑝𝑙} and 𝑈/𝑅2 = {𝑞1, 𝑞2, . . . , 𝑞𝑚} are two
rough approximation spaces on 𝑋. Then, the fuzzy distance
between 𝑈/𝑅1 and 𝑈/𝑅2 is defined as follows:

𝐷( 𝑈𝑅1

, 𝑈𝑅2

) = 12 (𝐷1 ( 𝑈𝑅1

, 𝑈𝑅2

) + 𝐷2 ( 𝑈𝑅1

, 𝑈𝑅2

)) , (15)

where

𝐷1 ( 𝑈𝑅1

, 𝑈𝑅2

) = 1√𝑛 (
𝑛∑

𝑖=1

(𝜇𝑅1
(𝑥𝑖) − 𝜇𝑅2

(𝑥𝑖))2)
1/2

(16)
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and

𝐷2 ( 𝑈𝑅1

, 𝑈𝑅2

) = 1√𝑛 (
𝑛∑

𝑖=1

(𝜇𝑅1
(𝑥𝑖) − 𝜇𝑅2

(𝑥𝑖))2)
1/2

. (17)

Theorem 24. Given an information system 𝑆 = (𝑈,𝐶 ∪𝐷,𝑉, 𝑓), 𝑅1 ⊆ 𝐶, 𝑅2 ⊆ 𝐶, and 𝑅3 ⊆ 𝐶, and 𝑋 is a fuzzy set
on 𝑈. If 𝑅1 ⊆ 𝑅2 ⊆ 𝑅3, 𝐷(𝑈/𝑅1 , 𝑈/𝑅2 ) ≤ 𝐷(𝑈/𝑅1 , 𝑈/𝑅3 )
holds.

Proof. Let𝑈 = {𝑥1, 𝑥2, . . . , 𝑥𝑛} be a nonempty finite universe;𝑈/𝑅1 = {𝑝1, 𝑝2, . . . , 𝑝𝑙}, 𝑈/𝑅2 = {𝑞1, 𝑞2, . . . , 𝑞𝑚}, and 𝑈/𝑅3 ={𝑟1, 𝑟2, . . . , 𝑟𝑠}. Because 𝑅1 ⊆ 𝑅2 ⊆ 𝑅3, 𝑈/𝑅1≺𝑈/𝑅2≺𝑈/𝑅3.
According to the condition, for simplicity, suppose only one
granule 𝑝1 can be subdivided into two finer subgranules and𝑞2 byΔ𝑅 = 𝑅2−𝑅1 and only one granule 𝑞1 can be subdivided
into two finer subgranules 𝑟1 and 𝑟2 by Δ𝑅 = 𝑅3 − 𝑅2 (the
more complicated cases can be transformed into this case, so
we will not repeat them here). Without loss of generality, let𝑝1 = 𝑞1 ∪ 𝑞2, 𝑝2 = 𝑞3, 𝑝3 = 𝑞4, . . . , 𝑝𝑙 = 𝑞𝑚 (𝑚 = 𝑙 + 1), 𝑞1 =𝑟1 ∪ 𝑟2, 𝑞2 = 𝑟3, 𝑞3 = 𝑟4, . . . , 𝑞𝑛 = 𝑟𝑠 (𝑠 = 𝑚 + 1), namely,𝑈/𝑅1 = {𝑞1, 𝑞2, 𝑝2, 𝑝3, . . . , 𝑝𝑙}, 𝑈/𝑅2 = {𝑟1, 𝑟2, 𝑞2, 𝑞3, . . . , 𝑞𝑚}.
Then, we have

𝐷1 ( 𝑈𝑅1

, 𝑈𝑅2

) = 1√𝑛 (
𝑛∑

𝑖=1

(𝜇𝑅1
(𝑥𝑖) − 𝜇𝑅2

(𝑥𝑖))2)
1/2

= 1√𝑛 ((𝜇𝑅1
(𝑝1) − 𝜇𝑅2

(𝑞1))2 󵄨󵄨󵄨󵄨𝑞1󵄨󵄨󵄨󵄨
+ (𝜇𝑅1

(𝑝1) − 𝜇𝑅2
(𝑞2))2 󵄨󵄨󵄨󵄨𝑞2󵄨󵄨󵄨󵄨)1/2 ,

𝐷1 ( 𝑈𝑅1

, 𝑈𝑅3

) = 1√𝑛 (
𝑛∑

𝑖=1

(𝜇𝑅1
(𝑥𝑖) − 𝜇𝑅3

(𝑥𝑖))2)
1/2

= 1√𝑛 ((𝜇𝑅1
(𝑝1) − 𝜇𝑅3

(𝑟1))2 󵄨󵄨󵄨󵄨𝑟1󵄨󵄨󵄨󵄨
+ (𝜇𝑅1

(𝑝1) − 𝜇𝑅3
(𝑟2))2 󵄨󵄨󵄨󵄨𝑟2󵄨󵄨󵄨󵄨

+ (𝜇𝑅1
(𝑝1) − 𝜇𝑅3

(𝑟3))2 󵄨󵄨󵄨󵄨𝑟3󵄨󵄨󵄨󵄨)1/2 .

(18)

Because 𝑞2 = 𝑟3, (𝜇𝑅1
(𝑝1) − 𝜇𝑅2

(𝑞2))2|𝑞2| = (𝜇𝑅1
(𝑝1) −𝜇𝑅3

(𝑟3))2|𝑟3|.
From Definition 2, 𝜇𝑅1

(𝑝1) − 𝜇𝑅2
(𝑞1) ≤ 𝜇𝑅1

(𝑝1) − 𝜇𝑅3
(𝑟1)

and 𝜇𝑅1
(𝑝1) − 𝜇𝑅2

(𝑞1) ≤ 𝜇𝑅1
(𝑝1) − 𝜇𝑅3

(𝑟2).
Because 𝑞1 = 𝑟1 ∪𝑟2, (𝜇𝑅1

(𝑝1)−𝜇𝑅2
(𝑞1))2|𝑞1| ≤ (𝜇𝑅1

(𝑝1)−𝜇𝑅3
(𝑟1))2|𝑟1| + (𝜇𝑅1

(𝑝1) − 𝜇𝑅3
(𝑟2))2|𝑟2|.

Thus, Δ𝐷 = 𝐷1(𝑈/𝑅1, 𝑈/𝑅3) − 𝐷1(𝑈/𝑅1, 𝑈/𝑅2) ≥ 0.
Then, we have

𝐷1 ( 𝑈𝑅1

, 𝑈𝑅2

) ≤ 𝐷1 ( 𝑈𝑅1

, 𝑈𝑅3

) . (19)

Similarly, one can draw

𝐷2 ( 𝑈𝑅1

, 𝑈𝑅2

) ≤ 𝐷2 ( 𝑈𝑅1

, 𝑈𝑅3

) . (20)

Therefore, we have

𝐷( 𝑈𝑅2

, 𝑈𝑅3

) ≤ 𝐷( 𝑈𝑅1

, 𝑈𝑅3

) . (21)

FromTheorem 24, we can easily find that formula (15) in
Definition 23 is a distance measurement between two fuzzy
sets, because it satisfies all conditions of Definition 11. Thus,
formula (15) is able to characterize the difference between two
rough approximation spaces. Then, we have the definition of
the improved uncertainty measure as follows.

Definition 25. Given an information system 𝑆 = (𝑈,𝐶 ∪𝐷,𝑉, 𝑓), 𝑅1 ⊆ 𝐶 and 𝑅2 ⊆ 𝐶, and 𝑋 is a fuzzy set on 𝑈. The
improved fuzziness-based uncertainty measure is defined as
follows:

𝑈𝑁𝐶𝑅 (𝑋) = 12 (𝐶𝐻𝑅 (𝑋) + 𝐷(𝑈𝑅 , 𝑈𝐶)) . (22)

Theorem 26. Given an information system 𝑆 = (𝑈,𝐶 ∪ 𝐷,𝑉, 𝑓), and𝑋 is a fuzzy set on𝑈. If 𝑅1 ⊂ 𝑅2 ⊆ 𝐶, 𝑈𝑁𝐶𝑅1
(𝑋) >𝑈𝑁𝐶𝑅2

(𝑋) holds.
Proof. If 𝑈/𝑅2 ≺ 𝑈/𝑅1, we have 𝐶𝐻𝑅1

(𝑋) > 𝐶𝐻𝑅2
(𝑋) by

Theorem 22. According to Theorem 24, we have 𝐷(𝑈/𝑅1,𝑈/𝐶) ≥ 𝐷(𝑈/𝑅2, 𝑈/𝐶). Then, we obtain 𝑈𝑁𝐶𝑅1
(𝑋) >𝑈𝑁𝐶𝑅2

(𝑋).
From Theorem 26, we learn that the modified fuzziness-

based uncertainty in Definition 25 is also strictly monotonic
with finer granularity.

Theorem 27. Given an information system 𝑆 = (𝑈,𝐶 ∪𝐷,𝑉, 𝑓), 𝑅 ⊆ 𝐶, and 𝑋 is a fuzzy set on 𝑈. Then, 0 ≤𝑈𝑁𝐶(𝛼,𝛽)
𝑅 (𝑋) ≤ 1.

Example 19(continued). We have

𝐷1 ( 𝑈𝑅1

, 𝑈𝐶) = 0.63,
𝐷1 ( 𝑈𝑅2

, 𝑈𝐶) = 0.6,
𝐷2 ( 𝑈𝑅1

, 𝑈𝐶) = 0.45,
𝐷2 ( 𝑈𝑅2

, 𝑈𝐶) = 0.4,
𝐷( 𝑈𝑅1

, 𝑈𝐶) = 0.54,
𝐷( 𝑈𝑅2

, 𝑈𝐶) = 0.5,
𝑈𝑁𝐶𝑅1

(𝑋) = 12 (0.498 + 0.54) = 0.519,
𝑈𝑁𝐶𝑅2

(𝑋) = 12 (0.418 + 0.5) = 0.459,

(23)

Obviously, 𝑈𝑁𝐶𝑅1
(𝑋) > 𝑈𝑁𝐶𝑅2

(𝑋).
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Thus, 𝑈/𝑅2 ≺ 𝑈/𝑅1 󳨐⇒ 𝑈𝑁𝐶𝑅2
(𝑋) > 𝑈𝑁𝐶𝑅1

(𝑋).
Theorem 28. Given an information system 𝑆 = (𝑈,𝐶 ∪𝐷,𝑉, 𝑓), for any 0 ≤ 𝛽 ≤ 𝛼 ≤ 1, 𝑅 ⊆ 𝐶, 𝑋 is a fuzzy set
on 𝑈. If 0 ≤ 𝛽1 ≤ 𝛽2 ≤ 𝛼2 ≤ 𝛼1 ≤ 1, then the following
properties hold:

(1) 𝑈𝑁𝐶(𝐵𝑁𝐷(𝛼1,𝛽1)
𝑅 (𝑋)) ≥ 𝑈𝑁𝐶(𝐵𝑁𝐷(𝛼2,𝛽2)

𝑅 (𝑋)).
(2) 𝑈𝑁𝐶(𝑃𝑂𝑆(𝛼2,𝛽1)𝑅 (𝑋)) ≥ 𝑈𝑁𝐶(𝑃𝑂𝑆(𝛼1,𝛽1)𝑅 (𝑋)).
(3) 𝑈𝑁𝐶(𝑁𝐸𝐺(𝛼1,𝛽2)

𝑅 (𝑋)) ≥ 𝑈𝑁𝐶(𝑁𝐸𝐺(𝛼1,𝛽1)
𝑅 (𝑋)).

Proof. Because 𝐺𝐾(𝑅) and 𝐷(𝑈/𝑅, 𝑈/𝐶) are independent of𝛼 and 𝛽, according to Theorem 18, Theorem 28 obviously
holds.

In the next section, we will present the advantages
of improved fuzziness-based uncertainty on evaluating the
attribute significance for a fuzzy-target information system.

5. An Application to Fuzzy-Target
Information System

The attribute significance is an important factor in attribute
reduction. The significance of an attribute is obtained by the
change value of uncertainty when the attribute is removed
from the whole attribute set. The larger the change is, the
more the significance of the attribute is.

Definition 29. Given an information system 𝑆 = (𝑈,𝐶 ∪𝐷,𝑉, 𝑓), 𝑟 ∈ 𝐶, and 𝑋 is a fuzzy set on 𝑈, the attribute
significance of 𝑟 can be defined as

𝑆𝑖𝑔𝐻 (𝑟, 𝐶, 𝐷) = 𝐻𝐶−{𝑟} (𝑋) − 𝐻𝐶 (𝑋) . (24)

Definition 30. Given an information system 𝑆 = (𝑈,𝐶 ∪𝐷,𝑉, 𝑓), 𝑟 ∈ 𝐶, and 𝑋 is a fuzzy set on 𝑈, the attribute
significance of 𝑟 can be defined as

𝑆𝑖𝑔𝐶𝐻 (𝑟, 𝐶, 𝐷) = 𝐶𝐻𝐶−{𝑟} (𝑋) − 𝐶𝐻𝐶 (𝑋) . (25)

Definition 31. Given an information system 𝑆 = (𝑈,𝐶 ∪𝐷,𝑉, 𝑓), 𝑟 ∈ 𝐶, and 𝑋 is a fuzzy set on 𝑈, the attribute
significance of 𝑟 can be defined as

𝑆𝑖𝑔𝑈𝑁𝐶 (𝑟, 𝐶, 𝐷) = 𝑈𝑁𝐶𝐶−{𝑟} (𝑋) − 𝑈𝑁𝐶𝐶 (𝑋) . (26)

In this section, we will present an example to illustrate
the application of the modified fuzziness-based uncertainty
to a fuzzy-target information table shown in Table 1 which is
artificial to address issues.

Example 32. From Table 1, we have 𝑈 = {𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5,𝑥6, 𝑥7, 𝑥8, 𝑥9, 𝑥10} and𝑋 = 0.1/𝑥1+0.2/𝑥2+0.5/𝑥3+0.5/𝑥4+0.5/𝑥5 + 0.6/𝑥6 + 0.7/𝑥7 + 0.8/𝑥8 + 0.9/𝑥9 + 0.2/𝑥10. Suppose

Table 1: A fuzzy-target information table.

Object 𝑐1 𝑐2 𝑐3 𝐷
𝑥1 2 1 0 0.1𝑥2 0 1 2 0.2𝑥3 1 0 0 0.5𝑥4 1 0 1 0.5𝑥5 0 1 0 0.5𝑥6 0 1 2 0.6𝑥7 0 1 2 0.7𝑥8 2 1 0 0.8𝑥9 2 1 0 0.9𝑥10 2 1 0 0.2

that 𝐶 = 𝑐1∪𝑐2∪𝑐3, 𝑅1 = 𝐶−{𝑐1}, 𝑅2 = 𝐶−{𝑐2}, 𝑅3 = 𝐶−{𝑐3},
then

𝑈/𝐶
= {{𝑥3} , {𝑥4} , {𝑥5} , {𝑥2, 𝑥6, 𝑥7} , {𝑥1, 𝑥8, 𝑥9, 𝑥10}} ,

𝑈/𝑅1

= {{𝑥3} , {𝑥4} , {𝑥2, 𝑥6, 𝑥7} , {𝑥1, 𝑥5, 𝑥8, 𝑥9, 𝑥10}} ,
𝑈/𝑅2

= {{𝑥3, 𝑥5} , {𝑥4} , {𝑥2, 𝑥6, 𝑥7} , {𝑥1, 𝑥8, 𝑥9, 𝑥10}} ,
𝑈/𝑅3 = {{𝑥3, 𝑥4} , {𝑥2, 𝑥5, 𝑥6, 𝑥7} , {𝑥1, 𝑥8, 𝑥9, 𝑥10}} .

(27)

According to formula (8), we have

𝐻𝐶 (𝑋) = 𝐻𝑅1
(𝑋) = 𝐻𝑅2

(𝑋) = 𝐻𝑅3
(𝑋) = 1, (28)

Therefore, we have

𝑆𝑖𝑔𝐻 (𝑐1, 𝐶, 𝐷) = 𝑆𝑖𝑔𝐻 (𝑐2, 𝐶, 𝐷) = 𝑆𝑖𝑔𝐻 (𝑐3, 𝐶, 𝐷)
= 0. (29)

According to formula (13), we obtain

𝐶𝐻𝑅1
(𝑋) = 𝐶𝐻𝑅3

(𝑋) = 0.36,
𝐶𝐻𝑅2

(𝑋) = 0.3,
𝐶𝐻𝐶 (𝑋) = 0.28.

(30)

Therefore,

𝑆𝑖𝑔𝐶𝐻 (𝑐1, 𝐶, 𝐷) = 𝑆𝑖𝑔𝐶𝐻 (𝑐3, 𝐶, 𝐷) = 0.08,
𝑆𝑖𝑔𝐶𝐻 (𝑐2, 𝐶, 𝐷) = 0.02. (31)

According to formula (22), we compute

𝑈𝑁𝐶𝑅1
(𝑋) = 0.243,

𝑈𝑁𝐶𝑅2
(𝑋) = 0.15,

𝑈𝑁𝐶𝑅3
(𝑋) = 0.227,

𝑈𝑁𝐶𝐶 (𝑋) = 0.14.
(32)
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Table 2: Comparison between different uncertainty measure and
attribute significance.

𝐻𝑅 𝐶𝐻𝑅 𝑈𝑁𝐶𝑅 𝑆𝑖𝑔𝐻 𝑆𝑖𝑔𝐶𝐻 𝑆𝑖𝑔𝑈𝑁𝐶𝑅1 1 0.36 0.243 0 0.08 0.103𝑅2 1 0.3 0.15 0 0.02 0.01𝑅3 1 0.36 0.227 0 0.08 0.087

HR(X)

CHR(X)

D(U/R3, C)

D(U/R1, C)

U/C

Figure 1: Explanation of modified uncertainty measure.

Therefore, we have

𝑆𝑖𝑔𝑈𝑁𝐶 (𝑐1, 𝐶, 𝐷) = 0.103,
𝑆𝑖𝑔𝑈𝑁𝐶 (𝑐2, 𝐶, 𝐷) = 0.01,
𝑆𝑖𝑔𝑈𝑁𝐶 (𝑐3, 𝐶, 𝐷) = 0.087.

(33)

For convenience, the above results are listed in Table 2.
FromTable 2, we can obtain the following conclusions: (i) the
three rough approximation spaces 𝑈/𝑅1, 𝑈/𝑅2, 𝑈/𝑅3 cannot
be discriminated by 𝐻𝑅; (ii) the 𝐶𝐻𝑅2

(𝑋) is different from𝐶𝐻𝑅1
(𝑋) and 𝐶𝐻𝑅3

(𝑋); (iii) although 𝐶𝐻𝑅1
(𝑋) = 𝐶𝐻𝑅3

(𝑋),𝑈𝑁𝐶𝑅 can distinguish 𝑈/𝑅1 and 𝑈/𝑅3. Furthermore, the
attribute significance of 𝑅1, 𝑅2, 𝑅3 based on the above uncer-
tainty measures is listed in Table 2.

The above conclusions can be further described intu-
itively by Figure 1. The dashed ellipse denotes the basic
fuzziness-based uncertaintymeasure𝐻𝑅 (𝑋).The solid ellipse
denotes the combined fuzziness-based uncertainty measure𝐶𝐻𝑅(𝑋). The red, green, blue, and black dots denote the
rough approximation spaces 𝑈/𝑅1, 𝑈/𝑅2, 𝑈/𝑅3, and 𝑈/𝐶,
respectively. Herein, 𝑈/𝑅1, 𝑈/𝑅2, and 𝑈/𝑅3 appear on the
dashed ellipse, because 𝐻𝑅1

(𝑋) = 𝐻𝑅2
(𝑋) = 𝐻𝑅3

(𝑋);
however, only 𝑈/𝑅1 and 𝑈/𝑅3 appear in the solid ellipse,
because 𝐶𝐻𝑅2

(𝑋) ̸= 𝐶𝐻𝑅1
(𝑋) = 𝐶𝐻𝑅3

(𝑋). Furthermore,𝑈/𝑅1 and 𝑈/𝑅3 will be distinguished as 𝐷(𝑈/𝑅1, 𝐶) ̸=𝐷(𝑈/𝑅3, 𝐶), leading to 𝑈𝑁𝐶𝑅1
(𝑋) ̸= 𝑈𝑁𝐶𝑅3

(𝑋).
Hence, according to the above results, if we take 𝐶𝐻𝑅(𝑋)

to compute the attribute significance, the significance of𝑐1 and 𝑐3 is equal, because 𝐶𝐻𝑅1
(𝑋) = 𝐶𝐻𝑅3

(𝑋). If we
take 𝑈𝑁𝐶𝑅(𝑋) to compute the attribute significance, the
significance of 𝑐1 and 𝑐3 can be distinguished. Therefore, the
deficiency mentioned in Section 4 of the traditional uncer-
tainty measure of rough fuzzy sets is overcome effectively.

6. Conclusions

Rough fuzzy sets are able to deal with uncertain concepts,
and the uncertainty of rough fuzzy sets usually comes
from three regions. Related research on the uncertainty of
rough sets and granular computing has been presented in
our previous papers [46–48]. Based on these researches,
in this paper, a basic fuzziness-based uncertainty measure
is introduced and the essence of the fuzziness for rough
fuzzy sets and its three regions in a hierarchical granular
structure is revealed. From the perspective of fuzzy distance,
we present a modified fuzziness-based uncertainty measure
for the rough fuzzy sets. The modified measure can not only
measure the information caused by the uncertainty related to
the granularity of partitions, but also provide the information
to distinguish the two approximation spaces with the same
uncertainty. A case study is adopted to show that our method
is more suitable for evaluating the significance of attributes.
These results can also be applied to the uncertainty measure
of probabilistic rough sets. They will have a wide variety
of applications, including measuring knowledge content,
constructing decision trees and building a heuristic function
in a heuristic reduct algorithm in rough set theory.
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