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AbstractÐThis paper describes a new, promising technique of gray-scale character recognition that offers both noise tolerance and

affine-invariance. The key ideas are twofold. First is the use of normalized cross-correlation as a matching measure to realize noise

tolerance. Second is the application of global affine transformation (GAT) to the input image so as to achieve affine-invariant

correlation with the target image. In particular, optimal GAT is efficiently determined by the successive iteration method using

topographic features of gray-scale images as matching constraints. We demonstrate the high matching ability of the proposed GAT

correlation method using gray-scale images of numerals subjected to random Gaussian noise and a wide range of affine

transformation. Moreover, extensive recognition experiments show that the achieved recognition rate of 94.3 percent against rotation

within 30 degrees, scale change within 30 percent, and translation within 20 percent of the character width along with random

Gaussian noise is sufficiently high compared to the 42.8 percent offered by simple correlation.

Index TermsÐGray-scale character recognition, normalized cross-correlation, global affine transformation, noise-tolerant and affine-

invariant image matching, successive iteration method.

æ

1 INTRODUCTION

MOST current OCR systems binarize the input image as
the preprocessing operation because documents are

assumed to be ªblackº and ªwhite,º i.e., binary images.
However, most documents contain gray or different color
backgrounds, textured backgrounds, different types of ink,
and often suffer from severe gray-scale degradation
introduced by the imaging process [1], [2]. In such cases,
the conventional binarization process loses a significant
amount of information conducive to segmentation and
recognition. This is a real problem because demand is
increasing for the direct recognition of gray-scale characters
not only in degraded text but also in video frames and
WWW images.

There are two major approaches to the direct recognition
of gray-scale characters.

The first approach uses topographic features [1], [2]. If we
consider the gray-scale image to be a surface, then its
topographic features correspond to shape features of the
original image. For example, a thin stroke will produce
a ridge, a narrow gap will produce a saddle point, etc.
The topographic features of gray-scale images were

demonstrated to be effective for the segmentation and
recognition of touching and overlapping characters [3].
However, topographic features using gray-scale gradients
and curvatures on the image surface are sensitive to image
defects and noise.

The second approach relates to matched filters or correla-
tion-based matching [4], [5]. Representative of this kind of
method is the use of ªnormalized cross-correlation,º which
offers robustness against gray-scale degradation [6], [7]. In
particular, Iijima [8] founded the theory of definite canonica-
lization to provide a theoretical proof that the normalized
cross-correlation is robust against image blurring and
degradation. However, the correlation in itself is weak against
geometric image distortion-like affine transformation.

The ªperturbation methodº [9], [10], [11] and the
ªtangent-distanceº [12] were proposed with the express
aim of distortion-tolerant image matching. The perturbation
method tries to ªreverseº the distortion; the input image is
returned to one of the ªstandard templatesº by using a
preselected set of geometrical transformations like rotation
and slant and/or morphological operations of dilation and
erosion. The tangent distance measure absorbs any local
image distortion that is expressible by linear transformation
in each local area. However, both the perturbation method
and tangent distance technique cannot deal with unex-
pected or nonsmall affine transformation.

In our previous paper [13], we introduced the concept of
global affine transformation (GAT) as a general deformation
model to realize distortion-tolerant shape matching as
applied to binary images of characters. By extending the
concept of GAT for application to the matching of
gray-scale images, we proposed the promising technique
of affine-invariant correlation of gray-scale characters
using GAT iteration [14]. Conventional correlation-based
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matching was greatly reinforced in two ways: first, the use
of normalized cross-correlation as a noise-tolerant matching
measure.

Second is the application of GAT to the input gray-scale
image so as to realize affine-invariant correlation with the
target gray-scale image.

This paper demonstrates the high matching ability of the
proposed method using gray-scale images of numerals
subjected to random Gaussian noise and a wide range of
affine transformation including rotation, scale change,
shearing, and translation. Moreover, extensive recognition
experiments show that the proposed GAT correlation
method achieves far superior recognition rates to the
normalized cross-correlation without GAT and the conven-
tional normalized inner product of the two images.

Section 2 explains the normalized cross-correlation based
on definite canonicalization. Section 3 introduces the
formulation of affine-invariant correlation by GAT. In
Section 4, the successive iteration method for optimal
GAT determination is described in detail. Section 5 shows
the results of matching and recognition experiments using
gray-scale images of numerals. Section 6 discusses the effect
of topographic constraints on stabilizing GAT convergence,
the computational complexity of the proposed method, and
the problems of GAT in real-world applications.

2 NORMALIZED CROSS-CORRELATION USING

DEFINITE CANONICALIZATION

This paper deals with the direct matching of two gray-scale
images. We denote the two images as F, the input gray-
scale image, and G, the target gray-scale image or template,
and represent F and G by gray level functions f�rr� and
g�rr�, respectively, as follows:

F � ff�rr�g;G � fg�r�r�g; rr 2 K; �1�
where rr denotes a 2D loci vector defined in the bounded 2D
domain of K. Of course, gray level functions f�rr� and g�rr�
take on only nonnegative values. Here, we consider f�rr�
and g�rr� as two vectors in the image space with infinite
dimensions by assuming that a variable of rr is continuous in
the 2D domain of K.

The conventional and most popular matching measure
for the two images is the normalized inner product or
ªsimple similarity measureº S�f; g� defined by

S�f; g� � �f; g�= k f k � k g k

�
Z
K

f�rr� g�rr�drr=
Z
K

f�rr�2drr
Z
K

g�rr�2drr
� �1=2

;
�2�

where �f; g� denotes the inner product of the two vectors f
and g, and k � k denotes Euclidian norm. It is well-known
that if we denote the angle between the two vectors of f and
g by �, S�f; g� is represented simply by cos �. Although the
simple similarity measure S�f; g� is very easy to calculate,
its discrimination ability deteriorates considerably in the
presence of image defects and noise [7].

To resolve the above-mentioned problem, Iijima [8]
founded the theory of definite canonicalization. According
to definite canonicalization, all image vectors are projected

to the complementary space perpendicular to the uniform

vector c with the unit norm as follows:

f 0�rr� � f�rr� ÿ �c; f� c�rr�; g0�rr� � g�rr� ÿ �c; g� c�rr�;

c�rr� � 1=

Z
K

1 drr

� �1=2

:
�3�

Accordingly, we adopt the simple similarity measure

using f 0�rr� and g0�rr� given by

S�f 0; g0� � �f 0; g0�= k f 0 kk � k g0 k � cos �0; �4�
where �0 represents the angle between the two new vectors

f 0 and g0 obtained by definite canonicalization. Most

importantly, Iijima proved theoretically that S�f 0; g0� or

cos �0 provides robustness against image blurring and image

degradation.
Fig. 1 shows the meaning of definite canonicalization. In

general, when the image blurring operation is applied to the

input image F, its image vector f moves toward the

uniform vector c in the image space. Because the target

image vector g remains the same, the angle � between f and

g increases. As a result, the value of S�f; g� or cos � of (2)

gradually decreases as the degree of image blurring

increases. On the other hand, it is clear that the value of

S�f 0; g0� or cos �0 remains unchanged under the image

blurring operation, as shown in Fig. 1. This is an intuitive

explanation of the robustness of definite canonicalization

against image blurring.
By the way, we often use the normalized cross-correla-

tion [6], [7] defined by

C�f; g� �Z
K

�f�rr� ÿ ���g�rr� ÿ ��drr=Z
K

�f�rr� ÿ ��2drr
Z
K

�g�rr� ÿ ��2drr
� �1=2

;

� � �c; f�c�rr�; � � �c; g�c�rr�;

�5�

where � and � specify the mean gray levels of f�rr� and g�rr�
over K, respectively.

Interestingly enough, we can easily show that the simple

similarity measure after definite canonicalization, S�f 0; g0�
of (3) and (4), and the normalized cross-correlation, C�f; g�
of (5), are exactly the same. Therefore, according to the

above-mentioned effect of definite canonicalization, the

normalized cross-correlation of (5) as a matching measure

guarantees robustness against image blurring and image

degradation.
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Fig. 1. Definite canonicalization.



Moreover, we can assume that input and target images
have zero mean and unit norm through the following
simple transformation:R

K f�rr�drr � 0;
R
K g�rr�drr � 0;R

K f�rr�2drr � 1;
R
K g�rr�2drr � 1:

�6�

As a result, we obtain the matching measure of normal-
ized cross-correlation simply given by

C�f; g� �
Z
K

f�rr�g�rr�drr: �7�

However, we still have the problem that the correlation
measure in itself cannot compensate for geometric image
distortion such as affine transformation.

3 FORMULATION OF AFFINE-INVARIANT

CORRELATION BY GAT

This section introduces an objective function of affine-
invariant correlation using global affine transformation
(GAT).

Our previous paper [13] proposed the concept of
adaptive or category-dependent normalization using glo-
bal/local affine transformation (GAT/LAT) as applied to
binary images of handwritten characters. GAT was a
uniform affine transformation as applied to the input
binary image to generate the normalized input image. In
particular, the criterion of optimal GAT determination was
minimization of the mean of nearest-neighbor interpoint
distances between ªblackº points of the normalized input
image and the template. However, because the present
paper deals with gray-scale images, not binary ones, we
cannot adopt the above-mentioned criterion of optimal
GAT determination as applied to the matching of binary
images. Therefore, we propose a new computational model
of optimal GAT determination for matching gray-scale
images [14]. In particular, in order to realize both noise-
tolerant and distortion-tolerant image matching, we intro-
duce the new criterion of maximizing the normalized cross-
correlation of input and target images through GAT
application.

First, we define global affine transformation (GAT). GAT
is a uniform affine transformation as applied to an input
gray-scale image F to generate a GAT-superimposed input
gray-scale image F� � ff��rr�g and a loci vector rr with gray
level of f�rr� is transformed into a new loci vector rr� with
the same gray level of f�rr� as follows:

rr� � Arr� bb; rr 2 K �8�

f��rr�� � f��Arr� bb� � f�rr�; �9�
where A � �aa1aa2� is a 2� 2 matrix representing rotation,
scale change, and shearing; and bb � �bx; by�t is a 2D
translation vector. Here, aa1 and aa2 represent two basis
vectors of the affine-transformed space.

Fig. 2 illustrates the meaning of affine transformation.
Second, we define a fundamental objective function � of

optimal GAT for affine-invariant correlation using the
matching measure of normalized cross-correlation of (7) by

� �
Z
K

f��rr�g�rr�drr �
Z
K

f�rr�g�Arr� bb�drr ! max for A; bb;

�10�
which, however, requires exhaustive trial and error to
determine optimal A and bb because A and bb are directly
embedded in the variable of the specific gray-level function g.

To eliminate this trial and error step, we adopt an
equivalent objective function 	 by introducing a convolu-
tion operation using the Gaussian kernel of A and bb into as

	 �
ZZ

K

f�rr� g�rr0� exp�ÿ k Arr� bbÿ rr0 k2 =D� drrdrr0

! max for A; bb;

�11�

where D controls the spread of the Gaussian kernel. Here, it
is to be noted that unknown A and bb appear only in the
differentiable Gaussian kernel, not in the specific gray-level
function g. As a result, the procedure of 	 maximization in
(11) becomes much easier than that of � maximization in
(10). Moreover, it can be shown that 	 is equivalent to � in
the limit of D! 0 by noting that the Gaussian kernel
behaves like Dirac's delta function ��Arr� bbÿ rr0� for
sufficiently small D [15], which yields

	 �
ZZ

K

f�rr� g�rr0� exp�ÿ k Arr� bbÿ rr0 k2 =D� drrdrr0

!
ZZ

K

f�rr�g�rr0� ��Arr� bbÿ rr0�drrdrr0

�
Z
K

f�rr�g�Arr� bb�drr � � as D! 0:

Therefore, the appropriate control of the decrease in the
D value is crucial to the success of this objective function 	.
Here, we give the D value in a deterministic way as follows:

D � 1=2

(
meanrr 2 F

�
min
rr0 2 G

k rrÿ rr0 k2 and f�rr� � g�rr0�
�
�

meanrr0 2 G

�
min
rr 2 F
k rr0 ÿ rr k2 and g�rr0� � f�rr�

�)
:

�12�
Hence, D stands for the mean value of Euclidian distances
between nearest-neighbor points, one in F and the other in
G, with the same gray level. Also, as is explained in the next
section, the successive iteration method guarantees that the
D value decreases monotonically in the process of optimal
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basis vectors � and � are the arguments of new basis vectors aa1 and aa2

with respect to ee1 and ee2, respectively.



GAT determination. Moreover, because the D value is
controlled in a deterministic manner, we can say that the
proposed objective function 	 of (11) for affine-invariant
correlation contains no free parameter. This fact is
extremely beneficial from the practical viewpoint.

4 SUCCESSIVE ITERATION METHOD FOR OPTIMAL

GAT DETERMINATION

This section describes a strict computational model for
optimal GAT determination. The key idea is the successive
iteration method as applied to the maximization problem.
Moreover, we introduce matching constraints using the
topographic features of gray-scale images into the succes-
sive iteration method to stabilize and accelerate its
convergence.

4.1 Linear Equations for Optimal GAT
Determination

First of all, following the necessary condition of 	
maximization yields a set of simultaneous equations by
setting both derivatives of 	 with respect to each element of
A and bb equal to zero as

O � @	=@A

/
ZZ

K

f�rr�g�rr0� rr�Arr� bbÿ rr0�t

exp�ÿ k Arr� bbÿ rr0 k2 =D�drrdrr0;
�13�

00 � @	=@bb

/
ZZ

K

f�rr� g�rr0� �Arr� bbÿ rr0�

exp�ÿ k Arr� bbÿ rr0 k2 =D�drrdrr0;
�14�

where O denotes a 2� 2 zero matrix and (13) and (14)
constitute simultaneous equations for the six unknown
scalars of A and bb.

However, it is clear that we cannot solve (13) and (14)
analytically because these equations are nonlinear with
regard to unknown A and bb. It is well-known, compared to
directly solving a set of nonlinear equations, that it is much
easier and more effective to derive an equivalent set of linear
equations from the nonlinear equations and then apply the
successive iteration method to the obtained linear equations.

Hence, as the zeroth order approximation, we substitute
identity matrix I for A and zero vector 00 for bb in the
Gaussian kernel in (13) and (14). This allows us to obtain the
following set of simultaneous linear equations:

O �
ZZ

K

f�rr� g�rr0�rr�Arr� bbÿ rr0�t exp�ÿ k rrÿ rr0 k2 =D�drrdrr0;
�15�

00 �
ZZ

K

f�rr� g�rr0� �Arr� bbÿ rr0� exp�ÿ k rrÿ rr0 k2 =D�drrdrr0;
�16�

where these simultaneous linear equations are easily
solved by conventional techniques such as Gaussian
elimination [15].

4.2 Use of Topographic Features as Matching
Constraints

To start with, by examining the structure of the simulta-
neous linear equations of (15) and (16), we can extract the
following two characteristics:

1. The product of f�rr� and g�rr0� is integrated for
correlation by assuming that each point rr in F
corresponds to a point rr0 in G through GAT
operation. Also, there is an assumption that the loci
vector of Arr� bb is approximately equal to rr0.

2. The probability that each point rr in F corresponds to
a point rr0 in G is estimated as weighting factor by
the Gaussian kernel, exp�ÿ k rrÿ rr0 k2 =D�. This
weighting factor utilizes only position information
of rr and rr0 via Euclidian distance.

The first characteristic is the goal of affine-invariant
correlation by GAT in itself. However, regarding the second
characteristic, we can say that the position information of rr
and rr0 alone is insufficient for validating their correspon-
dence. Hence, we reinforce the matching constraints on rr
and rr0 as follows.

The key idea is the use of not only position information
but also topographic features as matching constraints. This
is because the similarity of shape characteristics is well-
estimated in terms of topographic features. Concretely, we
introduce an enhanced weighting function �rr; rr0� that
estimates the similarity in gray-scale gradients using the
topographic features of two points �rr� in F and �rr0� in G:

�rr; rr0� � maxf�rf�rr�;rg�rr0��; 0g � exp�ÿ k rrÿ rr0 k2 =D�;
�17�

where �rf�rr�;rg�rr0�� is the inner product of two gradient
vectors, rf�rr� and rg�rr0�. Using the factor �rr; rr0� has two
major advantages. First, �rr; rr0� equals zero when
�rf�rr�;rg�rr0�� � 0, i.e., the angle between two gradient
vectors is more than 90�. This satisfies the similarity in
directions of two gradient vectors. Second, when the angle
between two gradient vectors is less than 90�, the greater
the norms of rf�rr� and rg�rr0� are, the greater the value of
the weighting function of (17) is. As a result, �rr; rr0�
reinforces the contribution of steep regions or edges to
correlation matching while suppressing or neglecting the
contribution of flat regions or grounds.

Finally, we obtain the following set of simultaneous
linear equations using �rr; rr0�:

O �
ZZ

K

�rr; rr0�f�rr� g�rr0�rr�Arr� bbÿ rr0�tdrrdrr0; �18�

00 �
ZZ

K

�rr; rr0�f�rr� g�rr0� �Arr� bbÿ rr0�drrdrr0: �19�

4.3 Successive Iteration Method for Affine-Invariant
Correlation Determination

Instead of solving the nonlinear equations of (13) and (14)
directly, we apply the successive iteration method to the
linearized equations of (18) and (19) reinforced by
topographic constraints. The successive iteration method
[15] provides the iterative procedure for optimal GAT
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determination and calculation of affine-invariant correla-
tion as follows:

Start: Calculate the initial value of C0 � C�f; g� of (7)
between the original input and target gray-scale images,
F and G.

Loop: Determine the GAT components of A and bb by solving
the set of simultaneous linear equations of (18) and (19).
Next, generate the GAT-superimposed input gray-scale
image F� � ff��rr�g by (9) and substitute F� for the input
image F. At the same time, update the value of D of (12)
and �rr; rr0� of (17).

Pause: Calculate the updated value of C1 � C�f; g� of (7)
between the renewed F and G, and compare C1 with C0.
If the correlation value increases, i.e., C1 > C0, substitute
C1 for C0, and then go back to Loop; otherwise, output the
maximal correlation value of C0 as the final result of
affine-invariant correlation and stop.

In particular, the value of D of (12) decreases
monotonically through the above-mentioned iteration
process. Therefore, we can expect that the converged
correlation value and GAT components obtained by the
successive iteration method are approximately equivalent
to those obtained by the original fundamental objective
function � of (10).

5 EXPERIMENTAL RESULTS

In this section, we present results that confirm the high
matching and discrimination ability of the proposed
method; matching and recognition experiments were
conducted using gray-scale images of numerals subjected
to random Gaussian noise and a wide range of affine
transformation.

5.1 Target and Input Images

In the experiments, we used gray-scale images of numerals
as target images. For each of the 10 digits, a single character
image free of noise was selected as a target image. Target
images originally had 16 discrete gray levels (nonnegative
integers) and were transformed so as to have zero mean and
unit norm according to (3) and (6). Hence, gray level
functions of the images take real values 2 �ÿ1:0;�1:0�. The
spatial resolution of the character image was 32� 32. Also,
as we deal with digital images, the integral of any image
function h�rr� over the continuous 2D image domain K
reduces to the summation of the digital image function h�ii�
defined at integer loci vectors of ii � �ix; iy�t over the
digitized 2D domain of 1 � ix; iy � 32.

Fig. 3 shows the target gray-scale images of numerals. To
simplify the display, each point was denoted by either a
black circle or a double circle or a white circle or a dot or a
blank according to temporary quantization into five discrete
levels.

The input gray-scale images were artificially generated
by applying a wide range of affine transformation and
random Gaussian noise to the target images. The concrete
procedure for generating input images is as follows.

5.1.1 Affine Transformation Application

Arbitrary affine transformation, specified by A � �aa1 aa2�
and bb � �bx; by�t in Fig. 2, was applied to each target image
G � fg�jj�g to generate an input image F � ff�ii�g. In order
to assign gray levels to all discrete points of the input image
F, we need to apply the affine transformation ªbackwardsº
and make full use of interpolation. We used the well-known
technique of ªbilinear interpolationº [5] as the simplest such
method.

5.1.2 Random Gaussian Noise Addition

Random Gaussian noise n with zero mean and unit
variance was added to each point of the input image F to
generate the noise-added input image F0 � f f 0�ii� g as
follows:

f 0�ii� � f�ii� � � � � � n�ii�; � 2 �0; 1�; �20�
where � is a proportional constant and � denotes the
dynamic range of f .

The input gray-scale image F0 of (20), transformed again
to have zero mean and unit norm, is denoted by F.

Fig. 4 shows examples of input gray-scale images of
ªeight.º Figs. 4a, 4b, and 4c show artificial input images
generated by a pure rotation by � � ÿ� � �30� and noise, a
pure translation by bb � �3; 3�t and noise, and more general
affine transformation and noise, respectively, as applied to
the target image of ªeightº in Fig. 3. The proportional
constant of � controlling the magnitude of random
Gaussian noise was set at 0:7.

By the way, for the weighting function �rr; rr0� of (17), we
need to calculate gray-scale gradients of the digital images.
We used the Roberts operator [5] to estimate the norm and
direction of gray-scale gradients. Moreover, regarding the
direction of gray-scale gradients, we simply used the
popular 8-directional quantization in 45� steps.

5.2 Results of Matching Experiments

Fig. 5 shows an example of the process of affine-invariant
correlation using GAT iteration between the target image of
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Fig. 3. Target gray-scale images of numerals.

Fig. 4. Examples of artificial input gray-scale images of ªeight.º (a) Pure

rotation and noise. (b) Pure translation and noise. (c) More general

affine transformation and noise.



ªeightº in Fig. 3 and the input image of Fig. 4c generated by
the following affine parameters:

k aa1 k � 0:90; k aa2 k� 1:20; � � 15�;
� � ÿ30�; bx � 2; by � 3;

�21�

and random Gaussian noise of � � 0:7. Fig. 5a shows the

initial overlapping of the target and input images, where

the points belonging to the target image are denoted by

asterisks. Figs. 5b, 5c, and 5d show GAT matching results

after iterations of 1, 10, and 25, respectively. The GAT

iteration for this example converged at iteration 25. As

shown in Fig. 5, the matching degree increases gradually

with the GAT iteration number. Actually, we obtained the

series of monotonically increasing correlation values of

0:180, 0:251, 0:627, and 0:850 in this order in Figs. 5a, 5b, 5c,

and 5d. Regarding the converged result of Fig. 5d, we can

estimate the equivalent affine parameters as follows:

k aa01 k � 0:962; k aa02 k� 1:18; �0 � 14:1�;
�0 � ÿ29:8�; b0x � 1:94; b0y � 3:06;

which is very satisfactory compared to the correct values of

(21). Also, the converged correlation value of 0:850 at the

25th iteration is sufficiently high compared to the ideal

correlation value of 0:884 obtained by the exact inverse

transformation of (21).
Fig. 6 shows another example of the process of affine-

invariant correlation using GAT iteration between the target
image of ªfourº in Fig. 3 and the input image generated by
the following affine parameters:

k aa1 k � 1:20; k aa2 k� 1:10; � � ÿ20�;
� � 30�; bx � 2; by � ÿ2;

�22�

and random Gaussian noise of � � 0:7. Fig. 6a shows the
initial overlapping of the target and input images. Figs. 6b,
6c, and 6d show GAT matching results at iterations of 3,
9, and 19, respectively. We obtained the series of

monotonically increasing correlation values of 0:282, 0:394,
0:795, and 0:827 in this order in Figs. 6a, 6b, 6c, and 6d. The
estimated affine parameters for the result of Fig. 6d are
satisfactory as compared to the correct values of (23) as
follows:

k aa01 k � 1:27; k aa02 k� 1:30; �0 � ÿ18:8�;
�0 � 32:9�; b0x � 2:48; b0y � ÿ1:48;

Also, the converged correlation value of 0:827 after 19 GAT

iterations is sufficiently high compared to the ideal

correlation value of 0:895 obtained by the exact inverse

transformation of the affine parameters of (22).
Next, we show three kinds of quantitative results gained

by applying the proposed GAT correlation method to the

matching of the target images in Fig. 3 and artificial input

images corresponding to a wide variety of either pure

rotation or pure scale change or pure translation and

random Gaussian noise.
First, input images were artificially generated by

applying pure rotation and random Gaussian noise to

each target image in Fig. 3. The rotation angle, � � ÿ� in

Fig. 2, was varied from ÿ45 degrees to �45 degrees in five

degree steps; bb was taken as a zero vector. Also, random

Gaussian noise of � � 0:7 was added to each point of each

input image. Hence, the total number of input images was

10 digits times 19 rotation angles. GAT matching was then

applied to each input image against its correct target

image.
Fig. 7 shows the relation between the mean of normal-

ized cross-correlation values and the rotation angle along

with random Gaussian noise.
From Fig. 7, it is clear that, even if the initial correlation

value was less than 0:2, the proposed method achieved

correlation values that exceeded 0:7 through GAT iteration.
Second, input images were artificially generated by

applying pure scale change and random Gaussian noise to
each target image in Fig. 3. The corresponding affine
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Fig. 5. Example of the GAT matching process. (a) Initial input and target
images of ªeight.º (b), (c), and (d) GAT iterations of 1, 10, and 25.

Fig. 6. Example of the GAT matching process. (a) Initial input and target

images of ªfour.º (b), (c), and (d) GAT iterations of 3, 9, and 19.



transformation was as follows: A � �ee1 ee2� and bb � �0; 0�t,
where ee1 and ee2 represent the original unit basis vectors.

Here, the scale change parameter, �, was varied from 0:5 to

1:5 in 0:1 steps. Also, random Gaussian noise of � � 0:7 was

added to each point of each input image. Hence, the total

number of input images was 10 digits times 11 scale

changes. GAT matching was then applied to each input

image against its correct target image.

Fig. 8 shows the relation between the mean of normal-

ized cross-correlation values and the scale change along

with random Gaussian noise.
From Fig. 8, it is to be noted that the GAT correlation

method is more robust against image expansion than image

shrinking. This asymmetry is due to the introduction of the

Gaussian kernel, which brings about the effect of image

blurring in the weighting function �rr; rr0� of (17).
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Fig. 7. Relation between the mean of normalized cross-correlation values and the rotation (random Gaussian noise present).

Fig. 8. Relation between the mean of normalized cross-correlation values and the scale change (random Gaussian noise present).



Third, we show experimental results for pure translation
and noise. Input images were artificially generated by
applying translation and random Gaussian noise to the
target images. This time, the corresponding affine transfor-
mation was as follows: A � I and bb � �bx; by�t, where I is an
identity matrix and bx and by took integer values between
ÿ5 and �5. Also, random Gaussian noise of � � 0:7 was
added to each point of each input image. Hence, the total
number of input images was 10 digits times 121 transla-
tions. GAT matching was then applied to each input image
against its correct target image.

Fig. 9 shows the relation between the mean of normal-
ized cross-correlation values and the norm of translation, �,
along with random Gaussian noise. The norm of translation,
�, was defined by � � max �jbxj; jbyj�. Therefore, the value
of � ranged from zero to five.

From Fig. 9, it is clearly seen that the proposed method is
robust against a fairly large amount of translation. Actually,
even if the initial correlation value was less than 0:2, the
proposed method achieved correlation values in excess of
0:8 through GAT iteration.

Finally, from Figs. 7, 8, and 9, it is found that the
proposed GAT correlation method is more robust against
translation than against rotation or scale change. This is
because the matching stabilizing factor �rr; rr0� of (17)
requires high similarity in the directions of gray-scale
gradients of matched points.

5.3 Results of Recognition Experiments

In Section 5.2, we demonstrated the high matching ability of
the proposed method as applied to artificially generated
input images and their correct targets. However, it is clear
that the high matching ability itself does not necessarily
guarantee the high discrimination ability of the GAT

correlation method as applied to input and target images

belonging to not only the same but also different categories.
This section shows the results of extensive recognition

experiments conducted using artificial input images sub-

jected to combinations of rotation, scale change, and

translation, along with random Gaussian noise against

target images in Fig. 3. That is, GAT matching was applied

to each input image against all target images of the 10 digits

and the category of the target image with which the

maximal correlation value was achieved through GAT

application was output as the recognition result of the input

image.
From Fig. 7, the range of rotation was set at within

30 degrees in 5 degree steps. Also, from Fig. 8, the range of

scale change was set at between 0:7 and 1:3 in 0:1 steps.

Regarding translation, from Fig. 9, we set bx and by to take

integer values between ÿ4 and �4. Hence, the total number

of artificially generated input images per digit was

4; 459 � 13� 7� 49. Moreover, random Gaussian noise of

� � 0:7 was added to each point of each input image.
Fig. 10 shows the relation between the recognition rates

and the norm of translation, �, along with random

Gaussian noise. The corresponding recognition rates ob-

tained by using the normalized cross-correlation without

GAT and the normalized inner product of (2) are also

plotted. Here, we call these two conventional methods

ªsimple correlationº in contrast to the proposed method of

GAT correlation.
Fig. 10 clearly shows that the discrimination ability of

GAT correlation is far superior to that of simple correlation.

Actually, the achieved recognition rate of 94.3 percent

against rotation within 30 degrees, scale change within

30 percent, and translation of � � 3 or within 20 percent of
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Fig. 9. Relation between the mean of normalized cross-correlation values and the norm of translation (random Gaussian noise present).



the character width is very high compared to the
42.8 percent offered by simple correlation.

Three major causes for low GAT correlation are as
follows: The first is the well-known ªlocal optimumº
problem in determining optimal GAT by the successive
iteration method. The second is the excessive image
contraction that occurs when the values of D of (12) are
too large. The third is the limit of topographic constraints
using gray-scale gradients in �rr; rr0� of (17) when image
distortion and degradation spoils such gradient information.

6 DISCUSSION

In this section, we discuss three problems: how to stabilize
GAT convergence so as to avoid ªlocal optimum,º how to
suppress the computational complexity, and, finally, how
to confirm the GAT correlation method in real-world
applications.

6.1 GAT Stabilization

The successive iteration method described in Section 4 does
not guarantee that the GAT iteration process necessarily
gives a global optimal solution for maximizing the original
objective function � of (10). This is the well-known ªlocal
optimumº problem that is inherent in any kind of ªhill-
climbingº iteration method based on local constraints and
remains unsolved. However, as long as the exhaustive
combinatorial approach is intractable from the viewpoint of
computational cost, it is better to tackle the reinforcement of
the iteration methods themselves by introducing efficient
constraints.

From this viewpoint, the �rr; rr0� of (17) were added to (18)
and (19) as topographic constraints to realize optimal GAT
determination. In this section, we verify the effectiveness of
topographic constraints in the GAT correlation method.

In a comparison to the matching results for the case of
pure rotation along with random Gaussian noise described
in Section 5.2, we conducted GAT correlation experiments
using the same conditions but without using the topo-
graphic constraints. That is, we solved (15) and (16) instead
of (18) and (19).

Fig. 11 shows the relation between the mean of normal-
ized cross-correlation values and the rotation angle without
employing topographic constraints. The corresponding
results obtained by employing topographic constraints
shown in Fig. 7 are also plotted.

From Fig. 11, it is clearly found that the topographic
constraints substantially improve the converged correlation
values, especially when initial correlation values are low.
Moreover, we investigated the average number of GAT
iterations required for convergence in the abovementioned
experiments. The resulting average number of GAT itera-
tions without topographic constraints was 15:0. On the
other hand, the average number of GAT iterations with
topographic constraints was 19:2. This fact means that using
topographic constraints in GAT iteration is very effective in
avoiding ªlocal optimaº and continual increases in the
correlation values.

Generally speaking, we can say that the effective
matching constraints using appropriate shape character-
istics are indispensable for stabilizing and accelerating the
iterative shape matching process. In particular, such
shape characteristics must be invariant, even if only
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Fig. 10. Relation between the recognition rates and the norm of translation under rotation, scale change, and random Gaussian noise.



approximately, against the image distortion to be con-
sidered. In this sense, the present use of gray-scale
gradients as shape characteristics is one of the successful
challenges, but further reinforcement is needed. For
example, more global shape characteristics like line
densities [16] must be taken into consideration.

6.2 Computational Complexity

First, we present a computational complexity analysis of the
GAT correlation method. As described in Section 4, the
single matching cycle determines A and bb by solving the
following simultaneous linear equations:

O �
ZZ

K

�rr; rr0�f�rr� g�rr0�rr�Arr� bbÿ rr0�tdrrdrr0; �18�

00 �
ZZ

K

�rr; rr0�f�rr� g�rr0� �Arr� bbÿ rr0�drrdrr0: �19�

When dealing with digital images of size N �N , calculation
of �rr; rr0� takes O�N4� time. Thus, calculating the coeffi-
cients for unknown A and b by the multiplication and
addition of �rr; rr0�, f�rr�; g�rr0�, and rr takes O�N4� time in
like manner. Last, the simultaneous linear equations with
the six unknown scalars of A and bb are solved by
conventional techniques like Gaussian elimination [15].
Hence, the overall time required for the single matching
cycle is only proportional to N4 and poses no problem to
actual implementation. Of course, as the total matching
time is equal to the product of the single matching time and
the number of GAT iterations, the acceleration of GAT
convergence is desired.

Next, we discuss the trade-off between recognition time
and recognition ability of GAT correlation as compared to
simple correlation.

If we adopt simple correlation by preparing multiple
templates against rotation within 30 degrees in 5 degree
steps, scale change between 0:7 and 1:3 in 0:1 steps, and
translation of � � 3 in integer steps, the total number of
templates is 4; 459 � 13� 7� 49. The present recognition
time of GAT correlation is about 104 times larger than that
of simple correlation using a single template. In this
situation, simple correlation using 4; 459 templates per digit
is about two times faster than GAT correlation. As is clear, if
we try to prepare templates against a wide range of affine
transformation, including shearing, the number of tem-
plates needed for simple correlation would be enormous.
From this consideration, we can say that GAT correlation
provides a very powerful approach to the problem of affine-
invariant gray-scale character recognition.

6.3 Problems of GAT in Real-World Applications

We successfully tested the GAT correlation method using
artificial image data subjected to random Gaussian noise and
a variety of affine transformations with the correct solution
of exact affine parameters. Against this background, it is
necessary and interesting to discuss how practical the
proposed method is for real-world applications.

First of all, when dealing with real images, we should
clarify what kind of transformation or deformation must be
considered. The GAT correlation method suffices for any
application if only a single, particular font is subjected to a
specified range of affine transformation and the degrada-
tion common to real images. However, if the amount of

WAKAHARA ET AL.: AFFINE-INVARIANT RECOGNITION OF GRAY-SCALE CHARACTERS USING GLOBAL AFFINE TRANSFORMATION... 393

Fig. 11. Relation between the mean of normalized cross-correlation values and the rotation angle without employing topographic constraints.



residual deformation after GAT operation is not negligible
from the viewpoints of matching and discriminating
abilities, we have to tackle the nonlinear or nonrigid
deformation on real images in a definite manner using
more general deformation models. In our approach, we
adopt the local affine transformation (LAT) method [13] if it
is extended to gray-scale image matching after GAT
operation in a hierarchical way. Therefore, it is essential to
specify the deformation involved.

On the other hand, even if we can assume that the range
of deformation being considered in an actual application is
well-approximated by global affine transformation, we
must then address the following inherent problems in
order to make a success of the GAT correlation method:
appropriate generation or selection of templates, location
and isolation of input images to be matched with templates,
and rough normalization with regard to position and size as
applied to the input image as preprocessing. In particular,
the biggest challenge is to test the proposed GAT correla-
tion method to see whether it can realize both the isolation
and the discrimination simultaneously of a wanted char-
acter in a messy background.

7 CONCLUSION

Direct recognition of gray-scale characters without binar-
ization is very promising. However, no published technique
offers sufficient robustness against both gray-scale degra-
dation due to defects and noise and geometrical distortion
like affine transformation. To resolve this problem, we
proposed a new approach to GAT correlation. First, we
adopted normalized cross-correlation as a noise-tolerant
matching measure. Second, we introduced the concept of
global affine transformation (GAT) as applied to the input
image to absorb image distortion that is expressible by
uniform affine transformation. Finally, we formulated a
computational model for optimal GAT determination that
maximizes the normalized cross-correlation by the succes-
sive iteration method. In particular, adopting matching
constraints that use gray-scale gradients greatly stabilizes
and accelerates GAT convergence.

We have demonstrated successful experiments in which
the GAT correlation method was applied to the matching
and recognition of gray-scale images of numerals subjected
to random Gaussian noise and a wide variety of affine
transformation. From these results, we can conclude that
the proposed affine-invariant correlation method using
GAT iteration is a very promising tool for the direct
matching of degraded and distorted gray-scale character
images. Future work is to apply our GAT correlation
method to gray-scale character recognition of not only in
real-life paper documents but also the characters in video
frames and WWW images.
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