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All equipment must be maintained during its lifetime to ensure normal operation. Maintenance is one of the critical roles in the
success of manufacturing enterprises. This paper proposed a preventive maintenance period optimization model (PMPOM) to
find an optimal preventive maintenance period. Bymaking use of the advantages of particle swarm optimization (PSO) and cuckoo
search (CS) algorithm, a hybrid optimization algorithmof PSO andCS is proposed to solve the PMPOMproblem.The test functions
show that the proposed algorithm exhibits more outstanding performance than particle swarm optimization and cuckoo search.
Experiment results show that the proposed algorithm has advantages of strong optimization ability and fast convergence speed to
solve the PMPOM problem.

1. Introduction

Maintenance refers to restoring aging or faulty equipment
parts to a satisfactory operating condition. The primary goal
of maintenance is to avoid or mitigate the consequences
of failure of equipment. Maintenance is a critical role in
the success of manufacturing enterprises [1]. Manufacturing
enterprises require cost-effective and adaptive production
and maintenance strategies to capture market share [2].

Preventive maintenance (PM) is one of the most popular
maintenance policies recommended for the maintenance of
manufacturing systems because it is executed with a planned
interval aiming at improving machine conditions and pre-
venting unforeseen failures [3]. PM includes a set of activities
to improve the overall reliability and availability of a system.
PM activities are inspection, testing, diagnosis, disassembly,
assembly, cleaning, repair, and replacement. The ideal PM
would prevent all equipment failure before it occurs [4].

Preventive maintenance involves a trade-off between the
production losses caused by occupying production time and
the cost savings achieved by preventing system failure [5].
However, as a result of lack of experience in testing equip-
ment, methods, and maintenance personnel, the accuracy of
the PM period is still a key issue [6]. To solve this problem,
many PM optimization models have been developed to
search the optimal PM period under various conditions [7].

Optimization model is a mathematical model that refers
to choosing the best solution from all feasible solutions.
Finding an optimal PM period (optimal solution) is difficult
because of complexity of the optimization model. Recently,
many metaheuristic algorithms provide new solutions to
various complex optimization problems by imitating the self-
organization mechanism of natural biological communities
and the adaptive ability of evolution [8]. Metaheuristic algo-
rithms also have been proposed to solve the combinatorial
explosion problem of PM optimization models recently [9].
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Particle swarm optimization (PSO) [10] is ametaheuristic
algorithm inspired by the social behavior of populations with
collaborative properties.The PSO imitates this species collab-
oration and is widely used in solving mathematical opti-
mization problems. PSO exhibits easy understanding, simple
operation, and rapid searching. It has been successfully
applied to several fields [11]. Cuckoo search (CS) [12] is a
metaheuristic optimization algorithm inspired by the repro-
duction strategy of cuckoo species. Cuckoos lay their eggs
in the nests of other host birds, which may be of different
species. The host bird may discover strange eggs in its nest,
and it will either destroy the eggs or abandon the nest to
build a new one. This algorithm is enhanced by the so-called
Lévy flights rather than by simple isotropic random walks.
The effectiveness of CS over other methods such as GA and
PSO has been validated on benchmarked functions [12].

PSO has several advantages, such as fast convergence
speed, but it also has some defects, such as premature con-
vergence, and it easily falls into local optima. CS has several
advantages, such as few control parameters and high effi-
ciency, but it also has some defects, such as slow convergence
speed and low accuracy. A PSO and CS hybrid algorithm
should be developed as a hybrid algorithm with an outstand-
ing performance because of the complementation of PSO and
CS.

In this paper, a preventive maintenance period opti-
mization model (PMPOM) is proposed. PMPOM takes the
cost of shutdown caused by breakdown maintenance, pre-
ventive maintenance, and inspection maintenance as evalu-
ation indexes. PSO and CS hybrid optimization algorithm
PSOCS is proposed to solve PMPOM.The test functions and
application examples show that the proposed algorithm has
advantages of strong optimization ability and fast conver-
gence speed that can effectively solve the PMPOM.

The remainder of the paper is organized as follows.
Section 2 introduces related works. Section 3 introduces
PMPOM. Section 4 introduces PSOCS hybrid algorithm and
carries out algorithmperformance test. Section 5 uses PSOCS
algorithm to solve PMPOM problem. Section 6 provides the
conclusions and further works of the study.

2. Related Works

2.1. Particle Swarm Optimization. PSO is a population-based
metaheuristic algorithm that is inspired by the social behav-
ior of populations with collaborative properties. The PSO
imitates this species collaboration and is widely used in
solving mathematical optimization problems. The flow of
PSO is shown in Figure 1.

Population in PSO is represented as 𝑋 = {𝑋
1
, 𝑋
2
, . . . ,

𝑋
𝑁
}, where 𝑋

𝑖
is a particle that moves within a multidimen-

sional search space and strives for the optimal solution. A par-
ticle’s property includes position and velocity.The position of
a particle is a solution candidate. The velocity of a particle is
the information about direction and varying rate. A particle
thatmoveswithin a𝑑dimensional search space is represented
as𝑋
𝑖
= {𝑥
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Figure 1: Flowchart of PSO.

position 𝑝
𝑖𝑑
) and that of their neighboring particles (the best

position of population 𝑝
𝑔𝑑
). In this manner, all particles are

expected to gradually approach the global optimum.
Particle’s velocity is updated by using

V
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𝑟
2
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𝑖𝑑
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(1)

where V
𝑖𝑑
(𝑘 + 1) is the 𝑑th component of particle’s velocity

after the (𝑘 + 1)th update; 𝑝
𝑖𝑑

is currently the particle’s
best solution of 𝑑th component after the 𝑘th update; 𝑝

𝑔𝑑
is

currently the population’s best global solution of the𝑑th com-
ponent after the 𝑘th update; 𝜂

1
and 𝜂

2
are positive constant

parameters called acceleration coefficients, controlling the
movement steps of particles; 𝜔 is inertia weight that controls
the effect of previous values of particle’s velocity on next one.
𝑟
1
and 𝑟
2
are random variables with a range [0, 1].

To avoid the particle’s position beyond the search space,
maximum search velocity Vmax is introduced. If V𝑖𝑑(𝑘 + 1) >
Vmax, V𝑖𝑑(𝑘 + 1) = Vmax, and if V𝑖𝑑(𝑘 + 1) < −Vmax, then V

𝑖𝑑
(𝑘 +

1) = −Vmax.
Particle position is updated by using

𝑥
𝑖𝑑
(𝑘 + 1) = 𝑥

𝑖𝑑
(𝑘) + V

𝑖𝑑
(𝑘 + 1) , (2)

where 𝑥
𝑖𝑑
(𝑘 + 1) is the 𝑑th component of particle’s position

after the (𝑘+ 1)th update and V
𝑖𝑑
(𝑘 + 1) is the 𝑑th component

of particle’s velocity after the (𝑘 + 1)th update.
The update procedure consecutively iterates until a pre-

determined terminal condition is reached. Thereby, the best
solution is obtained. Using formulas (1) and (2), three factors
have a major effect on a particle’s update speed: (1) the
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distance between particle’s current position and particle’s best
solution, (2) the distance between particle’s current position
and population’s best global solution, and (3) the speed
before this iteration. The importance of the three factors is
determined by weight coefficients 𝜂

1
, 𝜂
2
, and 𝜔, respectively.

2.2. Cuckoo Search. CS is a new and efficient population-
based heuristic evolutionary algorithm for solving optimiza-
tion problems. CS has the advantages of simple implemen-
tation and few control parameters. This algorithm is based
on the obligate brood parasitic behavior of some cuckoo
species combined with the Lévy flight behavior of some
birds and fruit flies. It has been applied to solve a wide
range of real-world optimization problems, such as structural
optimization problem [13], shop scheduling problem [14, 15],
nonconvex economic dispatch problem [16], and short-term
hydrothermal scheduling problem [17].

Below are the approximation rules during the search
process [18].

(1) Each cuckoo lays one egg (solution) at a time and
dumps its egg in a randomly chosen nest.

(2) The best nests with a high-quality egg (better solu-
tion) will be carried over to the next generation.

(3) Thenumber of available host nests is fixed. A host bird
can discover an alien egg with a probability 𝑃

𝑎
[0, 1].

In this case, the host bird can either throw the egg
away or abandon the nest and build a completely new
nest.

From the implementation point of view, we can say that
each egg in a nest represents a solution, and each cuckoo
can lay only one egg (thus representing one solution). In
this case, no distinction exists among an egg, a nest, or a
cuckoo, because each nest corresponds to one egg, which also
represents one cuckoo.

In CS, each nest’s position or egg’s position can be
regarded as a solution, because each nest corresponds to
one egg. In the initial process, each solution is generated
randomly when generating the 𝑖th solution in the (𝑖 + 1)th
generation. Position is updated by using

𝑥
𝑖
(𝑘 + 1) = 𝑥

𝑖
(𝑘) + 𝛼 ⊗ 𝐿 (𝜆) , (3)

where 𝑥
𝑖
(𝑘 + 1) is the nest’s 𝑖th position of the 𝑘 + 1

generation in the population; 𝑥
𝑖
(𝑘) is the nest’s 𝑖th position

of the 𝑘 generation in the population; 𝛼 is a real number
that denotes the step size, which should be proportional to
the scales of the optimization problem; ⊗ represents entry-
wise multiplications; and 𝐿(𝜆) is the random search vector
produced by Lévy distribution.

The use of Lévy flights [19] for local and global searching
is a vital part of CS [12]:

𝐿 (𝜆) ∼ 𝑢 = 𝑡
−𝜆

(1 < 𝜆 < 3) . (4)

Here, the consecutive jumps/steps of a cuckoo essentially
form a random walk process, which obeys a power-law
step-length distribution with a heavy tail. Some of the new

solutions should be generated by Lévy walk around the best
solution, which will accelerate the local search. However, a
substantial fraction of the new solutions should be generated
by far field randomization whose locations should be far
enough from the current best solution. This approach will
ensure the system will not be trapped in a local optimum.

CS updates each generation solution by Lévy flight, and
a better solution is retained. Then, the retained solution
is eliminated randomly by discover probability 𝑃

𝑎
and is

updated. The above process is repeated until the algorithm
ends. The steps of the cuckoo algorithm are as follows.

Step 1. Theparameters, number of the bird’s nest, termination
condition of algorithm, search space dimension of algorithm
𝑑, step size 𝛼, and 𝑃

𝑎
are set.

Step 2. The population (randomly determining the position
of the nest) 𝑝(0) = [𝑥

(0)

1
, 𝑥
(0)

2
, . . . , 𝑥

(0)

𝑛
]
𝑇 is randomly initial-

ized.

Step 3. The initial population fitness value is calculated by
using objective function, and the optimal position of the nest
𝑥
(0)

𝑔𝑏
is determined.

Step 4. The position of the nest is updated by using formula
(16), and a new position is created. Then, the fitness value is
calculated by using the objective function. A better nest is
chosen between the new and the old nests as an individual in
the population. A new group of nest’s position is as follows:

𝑔
𝑘+1

= [𝑥
1
(𝑘 + 1) , 𝑥

2
(𝑘 + 1) , . . . , 𝑥

𝑛
(𝑘 + 1)]

𝑇

. (5)

Step 5. Randomize elimination mechanism. The parameter
𝑃
𝑎
reflects the probability whether the nest will be abandoned

or be updated. Thus, for the eggs that may be found by the
host, the location of the nest should be changed. Initially, an
𝑛-dimensional vector 𝑅

𝑛
= [𝑟
1
, 𝑟
2
, . . . , 𝑟

𝑛
] is produced. For

𝑟
𝑖
in 𝑅
𝑛
, each component of a vector follows a uniform

distribution with [0, 1] when 𝑟
𝑖
> 𝑃
𝑎
, randomly changing the

𝑖th nest position. Through a comparison between the fitness
values of the old and new nests, the better nest will be chosen
as a new generation of individuals in the population.The new
groupof nest’s position is produced as𝑝

𝑘+1
= [𝑥
1
(𝑘+1), 𝑥

2
(𝑘+

1), . . . , 𝑥
𝑛
(𝑘 + 1)]

𝑇.

Step 6. The best nest position is updated by using 𝑝
𝑘+1

.

Step 7. If the termination condition of the algorithm is sat-
isfied, the optimal output position of nest is achieved, and the
algorithm is terminated; otherwise, Step 4 is performed.

2.3. Preventive Maintenance. PM is one of the most impor-
tant strategies for equipment maintenance and has been a
concern of most scholars. In the past years, many period
optimizationmodels have been established. Chareonsuk et al.
[20] established the PMPOM to achieve the target with min-
imum operation costs and then studied the effect of equip-
ment operation cost and reliability by different maintenance
period. Vaurio [21] established an optimization model to
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achieve a targetwith efficiency and lowoperating costs, and to
study the effect of different maintenance period of the model.
Jiang and Ji [22] treated maintenance period optimization as
a multiobjective optimization problem, in which the equip-
ment operation cost, equipment life, effectivity, and reliability
are the optimization objective. Kalir [23] established prevent-
ive maintenance for semiconductor manufacturing.

PM optimization problem can be treated as a constrained
optimization problem. Recently, several new metaheuristic
algorithms have been implemented to solve the problem.
Samrout et al. [24] presented an ant colony to optimize the
maintenance periods.Moghaddam et al. [25] presented a new
multiobjective optimization model to determine the optimal
preventive maintenance and replacement schedules in a
repairable and maintainable multicomponent system. Yare et
al. [26] introducedmultiple swarm concepts for the modified
discrete PSO to form a robust algorithm for solving the pre-
ventivemaintenance schedule problem.Abdulwhab et al. [27]
used the GA optimization technique to maximize the overall
system reliability for a specified future time period, in which
a number of generating units are to be removed from service
for preventive maintenance. Berrichi et al. [28] presented an
algorithm based on the ant colony optimization paradigm to
solve the joint production andmaintenance scheduling prob-
lem. Verma and Ramesh [29] viewed the initial scheduling of
preventive maintenance as a constrained nonlinear multiob-
jective decision making problem. The optimization problem
is solved using an elitist GA, andmaintenance domain knowl-
edge is effectively incorporated in its implementation.

Each optimization algorithm has its own advantages and
disadvantages. Thus, many hybrid optimization algorithms
have been developed to solve the optimization problem.
Lin and Wang [30] presented a hybrid genetic algorithm to
optimize the periodic preventive maintenance model in a
series-parallel system. Leou [31] proposed a novel algorithm
for determining a maintenance schedule for a power plant.
This algorithm combines the GA with simulated annealing
to optimize maintenance periods andminimize maintenance
and operational cost. Ma et al. [32] proposed a hybrid swarm
intelligence algorithm to optimize the preventive mainte-
nance period. Kim and Woo [33] presented a methodology
for optimalmaintenance scheduling of generating units using
a hybrid algorithm that combines a scatter search and a GA.
Samuel andRajan [34] presented a hybrid PSO-basedGAand
hybrid PSO-based shuffled frog leaping algorithm to solve the
long-term generation maintenance scheduling problem.

3. Preventive Maintenance Period
Optimization Model

Suppose that equipment is newest at time 0. [0, 𝑡] is the
limited time zone in which equipment is running nonstop;
[0, 𝑡] is divided into 𝑛 preventive maintenance period, in
which each time span of the preventive maintenance period
is not necessarily equal. 𝑡

𝑖
is the 𝑖th preventive maintenance

period, where 𝑖 ∈ {1, 2, . . . , 𝑛}.
Minor maintenance [35] is a strategy used in case of

equipment failure during the preventive maintenance period
𝑡
𝑖
. This strategy cannot change equipment failure rate and

reliability. Minor maintenance time is very small and can be
neglected, unlike 𝑡

𝑖
.

The objective function of PM is as follows:

min 𝑓 =

𝑛

∑

𝑖=1

𝐶
𝑟
𝐹
𝑖
+

𝑛

∑

𝑖=1

𝐶
𝑝
(𝛼
𝑖
, 𝑡
𝑖
) +

𝑛

∑

𝑖=1

𝐶
𝑙
𝜃
𝑖
, (6)

where ∑𝑛
𝑖=1
𝐶
𝑟
𝐹
𝑖
is the cost of equipment shutdown caused

by breakdown maintenance, 𝐶
𝑟
is the average maintenance

cost of the equipment after the failure occurs, 𝐹
𝑖
is failure

probability functions within 𝑡
𝑖
, ∑𝑛
𝑖=1
𝐶
𝑝
(𝛼
𝑖
, 𝑡
𝑖
) is the cost

of equipment shutdown caused by preventive maintenance,
𝐶
𝑝
(𝛼
𝑖
, 𝑡
𝑖
) is preventivemaintenance cost functionwithin 𝑡

𝑖
,𝛼
𝑖

is age reduction factor [36],∑𝑛
𝑖=1
𝐶
𝑙
𝜃
𝑖
is the cost of equipment

shutdown caused by inspection and maintenance, 𝐶
𝑙
is the

cost of equipment shutdown caused by overhaul in unit time,
and 𝜃
𝑖
is the time of preventive maintenance in 𝑡

𝑖
.

In this paper, failure probability function 𝐹
𝑖
follows

the Weibull distribution. Its probability density function is
calculated by using

𝑓 (𝑡) =
𝑚

𝜂
(
𝑡

𝜂
)

𝑚−1

exp [−(𝑡
𝑚

𝜂
)] , (7)

where 𝜂 and 𝑚 are the scale parameter and shape parameter
of the inherent attribute of the equipment, respectively. The
value of 𝜂 and 𝑚 can be calculated by using statistics and
analysis of historical fault data.

Failure probability is calculated by using

𝜆 (𝑡) =
𝑚

𝜂
(
𝑡

𝜂
)

𝑚−1

. (8)

Failure probability within 𝑇
𝑖
is calculated by using

𝐹
𝑖
= ∫

𝑇𝑖

0

𝜆
𝑖
(𝑡) 𝑑𝑡, (9)

where 𝜆
𝑖
(𝑡) is failure probability within 𝑡

𝑖
and is a function of

age reduction factor 𝛼
𝑖
. The mathematical expression of 𝜆

𝑖
(𝑡)

can be obtained as follows:
𝜆
1
(𝑡) = 𝜆 (𝑡) ,

𝜆
2
(𝑡) = 𝜆 (𝑡 + 𝑡

1
− 𝛼
1
𝑡
1
) ,

𝜆
3
(𝑡) = 𝜆 (𝑡 + 𝑡

2
− 𝛼
2
𝑡
2
) .

(10)

And then
𝜆
𝑖
(𝑡) = 𝜆 (𝑡 + 𝑡

𝑖−1
− 𝛼
𝑖−1
𝑡
𝑖−1
)

= 𝜆(𝑡 +

𝑖−1

∑

𝑘=1

𝑡
𝑘
−

𝑖−1

∑

𝑘=1

𝛼
𝑘
𝑡
𝑘
)

= 𝜆(𝑡 +

𝑖−1

∑

𝑘=1

(1 − 𝛼
𝑘
) 𝑡
𝑘
) , 𝑖 = 1, 2, . . . , 𝑛.

(11)

Therefore

𝐹
𝑖
= ∫

𝑡𝑖

0

𝜆
𝑖
(𝑡) 𝑑𝑡 = ∫

𝑡𝑖

0

𝜆(𝑡 +

𝑖−1

∑

𝑘=1

(1 − 𝛼
𝑘
) 𝑡
𝑘
)𝑑𝑡,

𝑖 = 1, 2, . . . , 𝑛.

(12)
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A finite time PMPOMas formula (13) is the cost of equip-
ment shutdown caused by breakdown maintenance, preven-
tive maintenance, and inspection:

min 𝐶
𝑟

𝑛

∑

𝑖=1

∫

𝑡𝑖

0

𝜆(𝑡 +

𝑖−1

∑

𝑘=1

(1 − 𝛼
𝑘
) 𝑡
𝑘
)𝑑𝑡

+

𝑛

∑

𝑖=1

𝐶
𝑝
(𝛼
𝑖
, 𝑡
𝑖
) +

𝑛

∑

𝑖=1

𝐶
𝑖
𝜃
𝑖

(13)

s.t.
𝑛

∑

𝑖=1

𝑡
𝑖
+

𝑛

∑

𝑖=1

𝜃
𝑖
< 𝑇, 𝑖 = 1, 2, . . . , 𝑛 (14)

𝑇
𝑙
≤ 𝜃
𝑖
, 𝑖 = 1, 2, . . . , 𝑛, (15)

where 𝑇
𝑙
is the minimum time for the preventive mainte-

nance.
The optimization objective is theminimizedmaintenance

and production costs caused by downtime. The constraint is
preventive maintenance operation time.The number of deci-
sion variables (2𝑛 + 1) and the mathematical expressions (14)
and (15) of the constraint conditions are also dynamic. Mak-
ing the optimization problem is more complex than making
a general multiobjective nonlinear optimization problem
because of the effect of dynamic change. Therefore, using a
high-efficiency method is necessary to solve this problem.

4. PSO-CS Hybrid Algorithm

4.1. PSOCS Hybrid Algorithm Model. The PSO has advan-
tages such as easy understanding, simple operation, and rapid
searching. However, in solving a large complex problem, PSO
becomes easily trapped in local optimum. This weakness
must be overcome to extend the practicability of PSO. CS
has advantages such as few control parameters and high effi-
ciency, but it also has some defects, such as slow convergence
speed and low accuracy. In CS, high randomness of the Lévy
flightmakes the search process quickly jump from one area to
another area. Thus, the global search ability of the algorithm
is very strong. However, given the high randomness of the
Lévy flight, the algorithm initiates a blind search process,
convergence speed becomes slow, and the searching efficiency
is significantly reduced close to the optimal solution.

To improve the performance of CS, PSO is introduced in
the update process of CS. Thus, a PSOCS hybrid algorithm is
developed. PSOCSfirst uses Lévy flights in the search space to
search, and then it uses the position of the PSO update mode
to accelerate the particles to the optimal solution conver-
gence. At the same time, the random elimination mechanism
of CS can successfully escape local optima, thereby improving
the performance of searching for the optimal solution.

Algorithm terms are defined as follows.

(1) Population and Population Size (sizepop). The population
is composed of a certain number of individuals; the total
number of individuals is the population size, with sizepop.

Cuckoo search mode

Particle swarm search mode

Update global optimal value and individual optimal value

Start

Yes

No

Set parameter and initialize population

Calculate the initial fitness value of population

Random elimination mechanism

Reach the terminal conditions?

Output optimal solution; end algorithm

Figure 2: Flowchart of PSOCS.

(2) Fitness. Fitness is an index of individual quality. In general,
a large fitness value corresponds to a good result, and vice
versa.

(3) Search Space Upper Bound (Ub) and Search Space Lower
Bound (Lb). Ub and Lb are the upper bound and lower bound,
respectively, of the search space for the optimization problem.

(4) Maximum Search Velocity (Vmax) and Minimum Search
Velocity (Vmin). Speed is limited as the algorithm performs a
search. Consider Vmax = 𝑎 ∗ Ub, where 𝑎 is the adjustment
coefficient in the range of (0, 1). Consider Vmin = 𝑏∗Lb, where
𝑏 is also the adjustment coefficient in the range of (0, 1).

(5) PSO Search Mode. In this mode, an individual updates its
position and velocity by using the process of PSO.

(6) Cuckoo Search Mode. An individual updates its position
by using the process of CS. An individual in CS has no speed
and velocity updating formula, whereas an individual in
PSO search mode has both position and velocity. Individual
velocity in the cuckoo search mode is not updated, and the
current velocity of the individual is the velocity updated by
PSO search mode.

(7) Discovery Probability. Through the random elimination
mechanism in cuckoo search mode, the host has probability
𝑃
𝑎
of finding foreign eggs.
A flowchart of PSOCS is shown in Figure 2. Its procedure

is as follows.

Step 1. The parameter is set, and the population is initialized.
The parameters sizepop, run, Ub, Lb, 𝑎, 𝑏, 𝑃

𝑎
, 𝜂
1
, 𝜂
2
, 𝜔max,
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Table 1: Test functions.

ID Function expression Search range Theoretical optimal value

1 𝑓
1
(𝑥) =

10

∑

𝑖=1

𝑥
2

𝑖
[−100, 100] min (𝑓

1
(𝑥)) = 0

2 𝑓
2
(𝑥) =

10

∑

𝑖=1

󵄨󵄨󵄨󵄨𝑥𝑖
󵄨󵄨󵄨󵄨 +

10

∏

𝑖=1

󵄨󵄨󵄨󵄨𝑥𝑖
󵄨󵄨󵄨󵄨 [−100, 100] min (𝑓

2
(𝑥)) = 0

3 𝑓
3
(𝑥) =

10

∑

𝑖=1

(

𝑖

∑

𝑗=1

𝑥
𝑖
)

2

[−100, 100] min (𝑓
3
(𝑥)) = 0

4 𝑓
4
(𝑥) = 0.5 +

sin2√𝑥2
1
+ 𝑥
2

2
− 0.5

[1 + 0.001 (𝑥
2

1
+ 𝑥
2

2
)]
2

[−5, 5] min (𝑓
4
(𝑥)) = 0

and 𝜔min are set. Population is initialized randomly, which
includes initialization position 𝑝 and velocity V of individual.

Step 2. The initial fitness value of the population is calculated
by using the objective function, and the fitness value and
position of the global optimal individual are determined.

Step 3. Cuckoo search mode is initiated. The position of the
individual in Lévy flight search is updated by using formula
(16), and a new individual is produced. The fitness values of
new and old individuals are compared; the better result is
selected as a new-generation individual.

Step 4. PSO search mode is initiated.The position and veloc-
ity of the individual are updated, and then a new individual is
produced. The position is updated by using formula (1), and
the velocity is updated by using formula (2). Before updating
the velocity, the inertia weight coefficient needs to be updated
by using

𝜔 = 𝜔max − (𝜔max − 𝜔min) ∗
iter
run

, (16)

where iter and run are the current iteration times and max-
imum iteration times of the algorithm, respectively. 𝜔max
and 𝜔min are the maximum and minimum inertia weights,
respectively. In a comparison of the fitness values of new and
old individuals, the one with the better result is selected as a
new individual, and the global optimal individual is updated.

Step 5. An 𝑛-dimensional vector 𝑅
𝑛
= [𝑟
1
, 𝑟
2
, . . . , 𝑟

𝑛
] is pro-

duced, and 𝑟
𝑖
obeys a uniform distribution with [0, 1]. When

𝑟
𝑖
> 𝑃
𝑎
, a new individual is randomly produced by using

formula (17). In a comparison between the fitness values of
the old and new nests, the better one will be selected as a new
generation of individuals in the population:

Temp
𝑖
= Lb + (Ub − Lb) ∗ rand 𝑛 (1, 𝑑) . (17)

Step 6. The global and individual optimal values are updated.
The optimal positions of all the individuals and whole
populations are updated.

Step 7. If the end condition of the algorithm is satisfactory,
then the optimal position of the nest is outputted, and the
algorithm is terminated; otherwise, Step 3 is performed.

4.2. Algorithms Test. In this paper, four test functions [37]
are chosen to test the performance of the algorithm, and
the results are compared with those of PSO and CS to
verify the performance of the algorithm. The selected four
test functions are shown in Table 1. The environment of the
simulation experiment is as follows: CPU is an Intel Core i5-
3470 @ 3.20GHz with 4GB of RAM, the computer system
platform is a Windows 7 32-bit operating system, and the
program is written in Matlab.

The basic parameters of the algorithm are as follows:
population size is 25, the maximum number of iterations of
function 𝑓

1
(𝑥) is 1000, the maximum number of iterations of

function 𝑓
2
(𝑥) is 1000, the maximum number of iterations of

function 𝑓
3
(𝑥) is 2000, the maximum number of iterations

of function 𝑓
4
(𝑥) is 5000, 𝜔max = 0.7, 𝜔min = 0.4, 𝜂

1
= 0.2,

𝜂
2
= 0.5, 𝜔max = 0.3 ∗ Ub, and 𝜔min = 0.3 ∗ Lb.
The tests use PSO, CS, and PSOCS to optimize the

functions in Table 1, and every function is optimized by
repeating the tests 50 times. The average optimization results
are shown in Table 2. After optimization was repeated 50
times, the minimum fitness value is the best value (optimal
individual of algorithm), the maximum fitness value is the
worst value, and the average fitness value is the average value.
Fitness value square deviation is the mean square deviation
that was obtained after optimization was performed 50 times
and is shown in

𝜎 = √
1

50

50

∑

𝑖=1

(𝑠
𝑖
− 𝑠)
2

, (18)

where 𝑠
𝑖
denotes the results after 50 optimization iterations

and 𝑠 is the average value.
Table 2 shows that for the test functions 𝑓

1
(𝑥), 𝑓

2
(𝑥),

𝑓
3
(𝑥), and 𝑓

4
(𝑥), the global optimal solution found by PSO

and CSO is not ideal with the current population size and
number of iterations. To obtain better results, the size of
the larger population needs to be set, and more iteration
is needed. The global optimal solution found by PSOCS is
infinitely close to the theoretical optimumof the test function.
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Table 2: Average fitness value of optimization results for PSO, CS, and PSOCS.

Test function Algorithms Minimum fitness value Maximum fitness value Average fitness value Fitness value square deviation

𝑓
1
(𝑥)

CS 4.1797 × 10
3

2.2880 × 10
4

1.5607 × 10
4

3.7549 × 10
3

PSO 5.3129 × 10
3

2.3924 × 10
4

1.5416 × 10
4

4.1414 × 10
3

PSOCS 4.4090 × 10
−24

1.2366 × 10
−20

2.0111 × 10
−21

3.0248 × 10
−21

𝑓
2
(𝑥)

CS 433.4732 722.1931 555.8759 62.9874
PSO 7.0584 × 10

9
2.9650 × 10

14
2.5924 × 10

13
5.3873 × 10

13

PSOCS 1.6394 × 10
−14

1.7799 × 10
−11

6.5228 × 10
−13

2.5319 × 10
−12

𝑓
3
(𝑥)

CS 4.2811 × 10
3

2.0117 × 10
4

1.5079 × 10
4

3.7231 × 10
3

PSO 9.6441 × 10
3

4.2375 × 10
4

2.1081 × 10
4

7.4645 × 10
3

PSOCS 1.4565 × 10
−13

1.2702 × 10
−8

9.2612 × 10
−10

2.2172 × 10
−9

𝑓
4
(𝑥)

CS 1.3793 × 10
−5 0.0097 0.0020 0.0022

PSO 4.8710 × 10
−5 0.0107 0.0084 0.0033

PSOCS 0 0.0097 0.0019 0.0033

0

5
0

5
0

0.2

0.4

0.6

0.8

1

−5 −5

Figure 3: Value distribution map of 𝑓
4
(𝑥).

The optimization results of 𝑓
4
(𝑥) indicate poor optimiza-

tion performance of PSO, CSO, and PSOCS under current
parameter settings. The value distribution map of 𝑓

4
(𝑥) in

search space is shown in Figure 3. The figure shows that
many local optimum points exist, and being trapped in local
optima is easy. The average fitness value and fitness value
square deviation are the two key indicators of the stability
of the algorithm. Table 2 shows that the average fitness value
of the test functions is close to the minimum fitness value,
and fitness value square deviation is within the ideal range.
Therefore, the algorithm is more stable than PSO and CSO.

4.3. Algorithm Performance Comparison. With the average
fitness value, average optimal fitness value, and average stan-
dard deviation fitness value taken as the evaluating indicators,
this paper tests PSOCS performancewith changes in iteration
times. The average fitness value is the average fitness value of
results obtained after 50 times of optimization. The average
optimal fitness value is the average optimal value obtained
after 50 times of optimization.The average standard deviation

fitness value is the average standard deviation fitness value
obtained after 50 times of optimization.The change trends of
the three evaluating indicators with the increase of iteration
times are shown in Figures 4, 5, and 6, respectively. Charts (a),
(b), (c), and (d) in Figures 4, 5, and 6 show the performance
of the evaluation indicators in the test functions 𝑓

1
(𝑥), 𝑓
2
(𝑥),

𝑓
3
(𝑥), and 𝑓

4
(𝑥), respectively.

It can be seen from Figure 4 that the optimization ability
of PSOCS in the four test functions is better than that of CS
and PSO, and the optimal solution is infinitely close to the
theoretical optimal solution.

The performance of CS is different from the test function.
It can find the optimal solution in the test function 𝑓

2
(𝑥)

quickly. However, the performance of the other three test
functions is not satisfactory, and more iteration is needed to
find a satisfactory result.

The optimization ability of PSO is the worst of the three
algorithms on the test functions.The result that was obtained
after 1000 iterations is almost the same as the optimal values
of the initial population. As the number of iterations increase,
PSO is unable to effectively improve the quality of the
optimization results.

The stability and convergence rate of the algorithm can
be tested based on the average fitness value and average
standard deviation fitness value with the increased number
of iterations. Figures 4, 5, and 6 show that PSO shows good
stability and convergence rate in 𝑓

2
(𝑥), but not in the other

test functions. PSOCS has a fast convergence speed and is
close to 0 with fewer iterations.The performance of CS in the
test functions is between that of PSO and PSO.

The above analysis indicates that the performance of
PSOCS is improved greatly by integrating CS and PSO.
Moreover, the stability, convergence speed, and optimization
ability of PSOCS are better than those of CS and PSO.
Furthermore, PSOCS requires few iterations to search for the
optimal results. PSOCS is efficient, stable, and fast and can
effectively solve the problem of continuous space optimiza-
tion.Therefore, it can also be used to solve the problem of the
optimization of the preventive maintenance period.
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Figure 4: Change trend of average optimal fitness value.

Table 3: Parameter setting.

Parameters 𝑇 𝐶
𝑙

𝐶
𝑟

𝑇
𝑙

𝐶
𝑝
(𝛼
𝑖
, 𝑡
𝑖
) 𝛼
𝑖
, 𝑖 = 1, 2, . . . , 𝑛

Value 1000 h 2000 560 3 h 200 + 25𝛼
𝑖
𝑡
𝑖

0.95

5. PSOCS for PMPOM

We use PSOCS to solve the preventive maintenance period
optimization problem. Historical fault data analysis shows
that the equipment fault time approximately follows theWei-
bull distribution with the parameters 𝑚 = 2 and 𝜂 = 50.
The rest of the parameters are shown in Table 3. With the
above data and (9), (12), and (13), the constrained preventive
equipment within the [0, 1000] maintenance model can be
obtained.

The PSOCS parameters are as follows: sizepop = 25, run
= 300, 𝜔max = 0.7, 𝜔min = 0.4, 𝜂

1
= 0.2, 𝜂

2
= 0.5, 𝑃

𝑎
= 0.25,

search range is [0, 1000], and speed range is [−300, 300].

Table 4: Optimization results.

PM times Cost PM operation time 𝜃
𝑖

0 224000 —
1 168340 3
2 137620 3
3 111640 3
4 103570 3
5 102820 3
6 106320 3
7 110490 3

The optimization results are shown in Table 4. The curve
of the optimization results is shown in Figure 7. The above
optimization results indicate that the minimum total cost is
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Figure 5: Change trend of average fitness value.

102820 and the four preventivemaintenance period 𝑔𝐵𝑒𝑠𝑡 are
185.98, 216.63, 225.62, and 212.05.

When the maintenance time is 4, PSOCS is applied to
solve the problem. The average fitness and optimal fitness of
the population that changes with iteration times are shown
in Figure 8. The standard deviation of population fitness that
changes with iteration times is shown in Figure 9.

Figure 8 shows that PSOCS can search the optimal
solution in fewer than 100 iterations. The curves of the aver-
age and optimal fitness almost coincide, which shows that the
algorithm has converged. Figure 9 shows that the standard
deviation of the population fitness declined rapidly and
reaches down to 0. Figure 10 shows the optimal fitness of
the population (sizepop = 25). From Figure 10, the optimal
fitness of each individual is 102820. This result indicates that
the algorithm has a fast convergence rate and good stability.

The test proves that PSOCS can effectively solve the main-
tenance period optimization problem based on the optimiza-
tion model proposed in this paper.

6. Conclusions and Further Works

In this paper, a PSOCS hybrid algorithm is developed to solve
a finite time PMPOM in which the costs of equipment shut-
down caused by breakdownmaintenance, preventivemainte-
nance, and inspection are used as evaluation indexes. Com-
pared with PSO and CS, PSOCS has the advantages of fast
convergence speed, strong searching ability, and the ability
to solve the problem of multidimensional continuous space
optimization by using test functions. A test example shows
that PSOCS can effectively solve the maintenance period
optimization problem based on the proposed optimization
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Figure 6: Change trend of average standard deviation fitness value.
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Figure 7: Optimization results of test.

model. Furthermore, we established the PMPOM based on
economic and reliability indicators. This model can be con-
sidered a multiobjective optimization problem, which is
addressed by using PSOCS.
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