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Although the emerging field of functional connectomics relies in-
creasingly on the analysis of spontaneous fMRI signal covariation to
infer the spatial fingerprint of the brain’s large-scale functional net-
works, the nature of the underlying neuro-electrical activity remains
incompletely understood. In part, this lack in understanding owes to
the invasiveness of electrophysiological acquisition, the difficulty in
their simultaneous recording over large cortical areas, and the
absence of fully established methods for unbiased extraction of
network information from these data. Here, we demonstrate a novel,
data-driven approach to analyze spontaneous signal variations in
electrocorticographic (ECoG) recordings from nearly entire hemi-
spheres of macaque monkeys. Based on both broadband analysis
and analysis of specific frequency bands, the ECoG signals were
found to co-vary in patterns that resembled the fMRI networks
reported in previous studies. The extracted patterns were robust
against changes in consciousness associated with sleep and anes-
thesia, despite profound changes in intrinsic characteristics of the
raw signals, including their spectral signatures. These results
suggest that the spatial organization of large-scale brain networks
results from neural activity with a broadband spectral feature and is
a core aspect of the brain’s physiology that does not depend on the
state of consciousness.
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Introduction

In the absence of sensory input, much of the brain remains
remarkably active, including even cortical regions dedicated
to the processing of sensory signals. A large body of evi-
dence, drawing primarily from functional magnetic resonance
imaging (fMRI) studies, has shown that large-scale brain activ-
ity measured in the absence of explicit sensory input (here
referred to as “spontaneous” activity) exhibits spatial covaria-
tions that resemble the functional networks that co-activate
during behavioral tasks (Fox and Raichle 2007). Although the
study of this activity may offer opportunities to chart the
brain’s major functional networks under both healthy (Fox and
Raichle 2007) and pathological (Zhang and Raichle 2010) con-
ditions, neither its neural origins nor ultimate role is well under-
stood (Leopold and Maier 2012).

Further understanding will almost certainly require electro-
physiological studies, which, in principle, allow a more direct
measurement of neuronal signaling and provide information
not available with fMRI. For example, electrophysiological re-
cordings better capture the temporal structure of neuronal activ-
ity, allowing the study of spectral difference that may exist

between functional networks (Siegel et al. 2012). Indeed, a
number of electrophysiological studies have investigated spon-
taneous activity (He et al. 2008; Nir et al. 2008; Breshears et al.
2010; Liu et al. 2010; Schölvinck et al. 2010; Brookes et al. 2011;
Hipp et al. 2012; Wang et al. 2012) and found some evidence for
a spectral distinction between the spontaneous activity in differ-
ent brain regions (He et al. 2008; Nir et al. 2008; Breshears et al.
2010; Schölvinck et al. 2010; Hipp et al. 2012; Wang et al. 2012).
Nevertheless, the relationship between these spectral features
and the functional specificity of the fMRI networks remains
unclear. This is in part due to the fact that the electrophysio-
logical studies that best capture spectral information require
invasive (intracranial) recordings and often have very limited
spatial coverage of the electrophysiological signals. In addition,
the region-by-region-based analysis approach commonly applied
in these studies does not allow capturing the correlational struc-
ture of the activity in an unbiased manner (He et al. 2008; Nir
et al. 2008; Breshears et al. 2010; Liu et al. 2010; Schölvinck et al.
2010; Hipp et al. 2012; Wang et al. 2012).

To address these shortcomings, we investigated large-scale
covariation of electrophysiological signals with electrocortico-
graphy (ECoG) arrays implanted over an extensive portion of
the left hemispheric surface of macaque monkeys, whose
spontaneous brain activity has been extensively studied with
fMRI (Vincent et al. 2007; Moeller et al. 2009; Hutchison et al.
2011; Hutchison and Everling 2012; Wey et al. 2013) and was
found to have covariational structures that resemble those
found in human (Hutchison and Everling 2012; Wey et al.
2013). The ECoG data, which covered a broad spectral range,
were analyzed with a novel data-driven clustering approach,
which has previously been used for analyzing resting-state
fMRI signals (Liu et al. 2012). This was done across various
behavioral states, including eyes-closed wakefulness, sleep,
ketamine/medetomidine anesthesia and propofol anesthesia.

Materials and Methods

Subjects andMaterials
A chronically implanted customized multichannel ECoG electrode
array (Unique Medical, Japan) was employed for neural recording (Na-
gasaka et al. 2011). Each electrode consisted of a 3-mm diameter plat-
inum disc that was insulated with a layer of silicone except for a small
(0.8 mm diameter) disc-shaped area at its center. The array covered a
large cortical area with approximate inter-electrode distance of 5 mm.
The array was implanted in the subdural space in 4 adult macaque
monkeys (monkeys C, G, and K are Macaca fuscata, and monkey S is
Macaca mulatta). The position of ECoG electrodes in monkeys C, K,
and S was manually remapped onto the brain of monkey G (Figs 1a
and 2a). 128-channel ECoG electrodes were implanted in the left
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hemisphere, covering a contiguous area that included frontal, parietal,
temporal, and occipital lobes (Fig. 2a). A reference electrode consisting
of a rectangular platinum plate was placed in the subdural space
between ECoG array and dura mater. A ground electrode was placed in
the epidural space (see [Nagasaka et al. 2011] for the detailed descrip-
tion). ECoG signal was recorded at a sampling rate of 1 kHz by the
Cerebus data acquisition system (Blackrock, UT, USA).

All experimental and surgical procedures were performed in accord-
ance with the experimental protocols (No. H24-2-203(4)) approved by
the RIKEN ethics committee and the recommendations of the Weather-
all report, “The use of non-human primates in research”.

Experimental Procedures
A total of 20 experiments were conducted over different days and
monkeys (Supplementary Table 1). Each experiment included the
eyes-closed waking condition and 1 of the following 3 conditions: keta-
mine/medetomidine anesthesia, propofol anesthesia, or natural sleep.
Ketamine is an N-methyl-D-aspartate antagonist known to induce a
state of anesthetic dissociation. It is commonly combined with the α-2
adrenergic agonist medetomidine to improve muscle relaxation and
analgesia. During the ketamine/medetomidine condition, monkeys

were seated in a dedicated chair with arms and head movement re-
stricted and eyes covered by an eye mask. The monkey was sitting
calmly, and the ECoG signals were recorded for up to 20 min during
this eyes-closed condition. After that, we started to monitor heart rate.
Ketamine (∼5.0 mg/kg for Macaca fuscata, ∼8.8 mg/kg for Macaca
mulatta) and medetomidine (∼0.016 mg/kg for Macaca fuscata,
∼0.053 mg/kg for Macaca mulatta) were then given through intramus-
cular injection whereas heart rate was kept below 120 beats per
minute. The loss of consciousness (LOC) was defined behaviorally: this
was done by recording the time point at which the monkey became un-
responsive (i.e., absence of somatic movement) to touching its nostril
and philtrum by a rolling pin and to opening the monkey’s hands.
After LOC was established, neural activity, which is characterized by
slow-wave activity, was recorded for ∼25 min with heart rate and
breathing monitored carefully. In contrast to the ketamine/medetomi-
dine combination, propofol is thought to induce general anesthesia
primarily by potentiating GABAA ion channels. The experiments with
the propofol anesthesia were conducted in a similar manner with the
intravenous injection of propofol (5.2 mg/kg for Macaca fuscata)
instead of ketamine/medetomidine.

For the experiments that included the natural sleep condition,
electro-oculography (EOG) and electromyography (EMG) signals were

Figure 1. Analysis flow illustrated with data from a representative session. (a) Spatial topography of 128 electrodes in monkey S with 4 exemplary ones (14, 23, 31, and 53)
marked in color; (b) raw ECoG signals acquired during a 5-min eyes-closed session with an enlarged 5-s segment for the exemplary electrodes; (c) preprocessed spectrograms of
the exemplary electrodes suggest relationship not simply explained by volume conduction effect: distant pairs (14 versus 23, and 31 versus 53) show similar spectrograms whereas
the adjacent pair (23 versus 31) displays distinct patterns; (d) BLPs can be derived by averaging the spectrogram within specific frequency ranges; (e) cross-electrode correlations of
the spectrogram or BLPs (β-BLP for the example here) form a matrix whose row (and column) values represent correlation values of specific electrode with all others (here called
profile); map representation of correlation profiles of the exemplary electrodes (white stars) suggests 2 covariation structures whose boundary lies between the electrodes 23 and
31; (f ) clustering electrodes based on the similarity of their correlation profiles and then reordering the matrix accordingly reveal several diagonal blocks that correspond to different
covariation structures, whose topographic distribution and correlation strength can be then represented with group-averaged correlation maps.
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also recorded at a sampling rate of 1 kHz by the Cerebus data acquisi-
tion system. The EOG signal was recorded from muscles of the right
eye in the horizontal direction. Two electrodes (Nihon Kohden, Dis-
posable electrode for ECG Monitoring M-150) were put on the tail and
the inner corner of right eye, respectively, and the potential difference
between them was used as EOG signal. Another 2 electrodes were
put on the chin, and their potential difference was used as EMG signal.
The data were first acquired continuously for up to 1.5 h with the
eyes-covered monkey sitting in a quiet and dark environment, and the
slow-wave oscillations appeared intermittently in ECoG during this
time period. After that, the light was turned on and the experimenter
made noise to wake up the monkey, and the noise was repeated as
long as the slow-wave activity appeared in the real-time ECoG record-
ing. The data acquisition was continued under this eyes-closed condi-
tion for ∼10 min. After that, the eye mask was removed and the data
were acquired for another 10 min with the monkey’s eyes opened.

Definition of Sleep State
In order to distinguish waking and sleeping conditions, we monitored
the presence of slow -wave activity. We did not attempt to distinguish
different sleep states, as we had difficulty in detecting clear sleep spin-
dles and K-complexes that would be required for this. Nevertheless,
we observed strong, intermittent slow-wave oscillations, which were
generally associated with decreased EOG and EMG signals. To define
sleep, we quantified slow-wave activity as follows.

First, we estimated δ-band (1− 4 Hz) ECoG power within 1-s time
bins (shifted every 200 ms) using the multi-taper method (Thomson
1982) implemented in Chronux, a Matlab package for the analysis of

neural data (Mitra and Bokil 2008). This δ-band power was normalized
by the median value of δ-band power under the eyes-opened condition.
The normalized δ-band power was binarized according to an arbitrary
threshold of 3, which we regarded as a level of significant slow-wave ac-
tivity. We further estimate the spatial extent to which the slow-wave os-
cillations spread using a spatial synchronization index (SSI), defined as
the cross-electrode average of the binarized δ-band power. A high SSI is
associated with strong slow-wave activity (Supplementary Fig 1) as well
as low levels of EOG and EMG (Supplementary Figs 1 and 2).

We defined the sleeping state as time periods when the SSI ex-
ceeded 0.3, which means that at this stage more than 30% electrodes
have δ-band activity at least 3 times higher than the median level of
δ-band activity under the eye-opened condition.

Temporal Variation of ECoG Power
The raw ECoG signals were first visually inspected. Serious line-noise
contaminations were observed for 1 or 2 channels in some experi-
ments, and these channels were excluded from further analysis. For
the remaining channels, the primary frequency (50 Hz) and harmonics
(multiples of 50 Hz) of the line noise were removed using a
sine-wave-fitting method provided by Chronux. The ECoG signals
were re-referenced to the common mean of all the channels, with the
data from 1 experiment of Monkey S also being re-referenced using La-
placian method separately (Nunez and Pilgreen 1991). Examination of
the raw voltage traces from the electrode array (Fig. 1b) revealed that
ECoG activity was coordinated across recording sites over a large range
of spatial and temporal scales, consistent with findings from other
studies (Nir et al. 2008; Liu et al. 2010; Hipp et al. 2012). Based on

Figure 2. Spatial patterns of broadband ECoG power covariation. (a) Spatial topography of electrode coverage in individual monkeys is presented on cortical surface rendering
reconstructed from the anatomical MRI of Monkey G. Exemplary ECoG raw signals from 2 electrodes in the Monkey C underwent a dramatic transition from a high-frequency,
low-amplitude voltage pattern during eyes-closed wakefulness to a low-frequency, high-amplitude one under ketamine/medetomidine anesthesia (b), which is confirmed by distinct
power spectra under these 2 conditions (c). However, correlation patterns of broadband ECoG power during (d) the eyes-closed wakefulness and (e) ketamine/medetomidine
anesthesia similarly resemble ( f ) the fMRI resting-state networks (RSNs) from isoflurane-anesthetized macaques (adapted from [Hutchison et al. 2011]). Corresponding patterns or
RSNs are aligned in the same row.
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previous work, we focused analysis on slow fluctuations of
band-limited power signals (BLPs), which may have particular rele-
vance to fMRI hemodynamic signal (Logothetis et al. 2001). Multi-taper
time-frequency transformation (Thomson 1982) (parameters: window
length, 1 s; step, 0.2 s; and the number of tapers, 5) was applied to
each channel using Chronux functions, resulting in spectrograms re-
presenting temporal evolution of ECoG powers at any specific fre-
quency between 1 and 100 Hz with a spectral resolution of ∼1 Hz. The
power was converted into decibel (dB) units with a logarithmic oper-
ation. To balance the degrees of freedom for the subsequent correl-
ation analysis, the spectrograms were divided into 5-min sessions. For
the sleep condition, the time periods not defined as the sleep (the time
periods with the SSI <0.3) were removed before dividing the whole
spectrogram into multiple sessions.

To compensate for the unequal spectral power of the ECoG signal at
different frequencies (often following an ∼1/f dependency, in part re-
sulting from mechanistical (nonbiological) origins inherent to the re-
cording technique), the ECoG power at each frequency bin was
centered by removing the mean and then normalized by the temporal
standard deviation; as a result, the normalized spectrograms showed
the same fluctuation amplitude for each frequency. To reduce contribu-
tions from global power changes of non-neuronal origin, the cross-
electrode average was subtracted from the spectrogram of each elec-
trode. It is worth noting that this procedure may remove some global
signals with neuronal origin as well (Schölvinck et al. 2010); however,
this was not a major concern as the main goal of the analysis was the
characterization of region-specific information. To derive BLP signals,
each normalized spectrogram was averaged within the following fre-
quency bands: δ, 1− 4 Hz; θ, 5− 8 Hz; α, 9− 12 Hz; β, 13− 30 Hz; and
γ, 31− 100 Hz. Covariation of the resulting signals provided a measure
of synchrony over timescales matching those of hemodynamic changes
and allowed for an assessment of the spatial organization of slow, spon-
taneous neural modulations in the hemisphere. Note that this analysis
method differs the more common practice of computing neural covari-
ation based on the moment-to-moment changes of the raw traces (e.g.,
magnitude-squared coherence of the voltage), which depends upon
precise and consistent phase relationship over millisecond timescale.

Clustering-Based Correlation Analysis
The correlation analysis was adapted from a clustering method used pre-
viously for the analysis of resting-state fMRI signals (Liu et al. 2012).
First, an inter-electrode cross-correlation matrix was generated by deter-
mining the correlation between signals from each pair-wise combination
of electrodes based on either the normalized spectrogram (correlations
were calculated based on the whole spectrogram, referred to as the
broadband power later) or BLP, and its rows/columns then represent
correlation profiles (spatial correlation maps) of different electrodes
(Fig. 1e). If region-specific correlations exist, the electrodes in the same
correlation structures are expected to exhibit similar correlation profiles:
strong correlations with electrodes inside the structure and weak correla-
tions with electrodes outside (Fig. 1e). Based on this notion, the electro-
des were classified into multiple groups based on the similarity of their
correlation profiles using k-means clustering method (Forgy 1965). Clus-
tering is a procedure for classifying a set of objects into different groups
such that within-group differences are smaller than across-group differ-
ences. The k-means clustering partitioned the rows/columns of the cor-
relation matrix {p1, p2,…, pn} into k clustersR = {R1, R2,…, Rk} such that
the sum of within-cluster distances J is minimized

J ¼
Xk
i¼1

X
pj[Ri

dðpj ;miÞ

where μi is the mean of correlation profiles in Ri, and d(•) represents
the distance between 2 profiles, defined as 1 minus their Pearson’s cor-
relation coefficient.

After clustering, the electrode correlation profiles (the rows/
columns of the correlation matrix) were averaged within groups while
excluding the diagonal elements (to reduce possible biases caused by
auto-correlations), and the resulting maps show how the correlation
strength of this group of electrodes varied across space (Fig. 1f). For

the group-level analysis, the correlation matrices of individual
monkeys were first expanded by spatially interpolating the correlation
profiles (rows/columns) to high-dimensional space of the electrodes
from all the monkeys (or from Monkey C and G for the propofol anes-
thesia and sleep conditions). The expanded correlation matrices were
averaged across experiments and individuals, and the clustering ana-
lysis was then applied to the final average. After reshuffling the rows/
columns of the correlation matrix according to the clustering results,
block structures along the diagonal appeared, reflecting a structural or-
ganization of the inter-region correlations (Fig. 1f).

To determine the number of clusters k, both the Bayesian information
criterion (BIC) (Schwarz 1978) and silhouette index (Rousseeuw 1987)
were calculated at k values ranging from 2 to 50. While the BIC and sil-
houette index in general monotonically change as k increases, the
changes decelerated when k exceeded values in the range of 6–10. The
k-means clustering was then repeated using k values within this narrow
range, and the results were compared. It was found that the results for k
equal to 9 or 10 tend to include correlation structures with similar correl-
ation profiles/maps. Therefore, kwas fixed at 8 for the final analysis.

Power Spectral Analysis
To investigate spectral differences across clusters and conditions, the
spectrograms were first averaged over time to obtain power spectra for
each electrode. This was done prior to frequency normalization that
counteracts the effect of ∼1/f power dependency (see above). The mean
of each spectrum was then subtracted to eliminate inter-electrode varia-
tions in absolute power level, which could be caused by differences in
electrode sensitivity or in brain activity level (Manning et al. 2009). For
each experiment, the spectra were then averaged, according to network
parcellation results of the clustering analysis, to represent the power
spectra for different functional clusters. The results from individual ex-
periments were further averaged to generate the group-level results. The
above-mentioned analysis was also repeated without mean subtraction
step (Supplementary Fig. 3) or with averaging according to a fixed
network parcellation (Supplementary Fig. 4). This fixed network parcel-
lation was an intersection of the parcellations under the eyes-closed con-
dition and ketamine/medetomidine anesthesia, with the exclusion of
1 network that has only a few electrodes after intersection operation.

The power spectra of ECoG BLPs were also investigated. After the
removal of the line-noise and re-referencing to the common mean, the
continuous ECoG signals acquired under different conditions were
band-pass-filtered into the frequency bands specified earlier. The amp-
litude of the band-pass-filtered signals was extracted using the Hilbert
transform, and their power spectra were then estimated using the
multi-taper method with a window length of 300 s. The BLP was not
extracted directly from the spectrograms because the time-frequency
analysis used to generate them introduces an effective low-pass filter-
ing, and as a result, the high-frequency fluctuations in BLPs may be un-
derestimated. The BLP power spectra of different electrodes were then
averaged for each experiment according to the network parcellations
derived from the clustering analysis and further averaged across
experiments to generate the group-level results.

Statistical Analysis of Network-Specific Power Spectra
Based on the division of k electrode groups (clusters), the power spec-
trum of a particular electrode can be indicated as Sij(f), where i is the
index of groups and j is the within-group index for electrodes. For each
experiment, we quantified the between-network differences at a speci-
fic frequency f0 using the mean between-group-sum-of-square (MBGSS),
a statistic commonly used in one-way ANOVA

MBGSSð f0Þ ¼
Pk

i¼1 nið�Sið f0Þ � �Sð f0ÞÞ2
k� 1

¼
Xk
i¼1

Pk
i¼1 Sijð f0Þ

� �2
niðk� 1Þ �

Pk
i¼1

Pni
j¼1 Sijð f0Þ

� �2
nðk� 1Þ

where ni is the number of electrodes in group i and n is the total number
of electrodes. This statistic follows a chi-square distribution with the
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degrees of freedom equal to k− 1. A MBGSS line can be calculated to re-
present MBGSS values as a function of frequency f. The MBGSS lines can
be averaged across experiments but the degrees of freedom needs to be
adjusted accordingly by multiplying the number of experiments. The
ratio of averaged MBGSS lines under 2 different conditions, whose values
follow the F distributions under the null hypothesis, can then be used to
test whether the between-network difference is significantly higher
under 1 of the conditions.

Similarly, we used the mean residual-sum-of-square (MRSS) to
quantify the within-network variations in spectral power.

MRSSð f0Þ ¼
Pk

i¼1

Pni
j¼1 ðSijð f0Þ � �Sið f0ÞÞ2

n� k

¼ 1
n� k

Xk
i¼1

Xni

j¼i

Sijð f0Þ2 �
Xk
i¼1

Pni

j¼i
Sijð f0Þ

 !

ni

20
BBBB@

1
CCCCA

The smaller this quantity is, the better the model fits the data, and the
more similar the spectra within the same group are. For a single experi-
ment, this statistic follows a chi-square distribution with the degree of
freedom of n− k, which also needs to be adjusted when averaging
across experiments. The MRSS lines were computed for 2 models (par-
cellations) R and R′, and their ratio was then used to test whether the
within-group variation in power spectra is significantly smaller if we
divide the electrodes following 1 of the models (Supplementary Fig. 5).

Results

Slow Fluctuations in ECoG Power Replicate fMRI
Resting-State Networks
Analysis of the spatio-temporal structure of the ECoG signals
based on broadband power (see Materials and Methods) re-
vealed 6–10 clusters of electrodes with similar power variation
during eye-closedwakefulness, ofwhich the 8-cluster resultwas
the most robust across animals (see Materials and Methods).
These clusters (Fig. 2d) were localized in the prefrontal, frontal
opercular, dorsal precentral, superior temporal, supramargi-
nal, parietal, occipito-temporal, and occipital cortex. These
correlational patterns could be derived from just a few minutes
of data collection in individual animals. In addition, their
spatial distribution was virtually independent of signal prepro-
cessing steps such as local electrode voltage re-referencing (to
minimize volume conduction effects) or subtraction of the
mean power signal (to remove the contribution of global elec-
trophysiological fluctuations) (Supplementary Fig. 6). Visual
comparison of the clustering results with a previous fMRI
study of the anesthetized macaque (Fig. 2f) revealed a striking
correspondence of the cluster patterns with 8 of 11 patterns of
fMRI signal covariation (Hutchison et al. 2011). The similarity
of these covariational patterns, derived in one case from hemo-
dynamic responses and in the other from the power fluctua-
tions in the ECoG signal, suggests that the fMRI resting-state
networks (RSNs) may reflect regional electrophysiological
power fluctuations in the cerebral cortex.

To investigate whether the observed correlational patterns
originated from electrical activity in specific spectral frequency
bands, a possibility indicated byearlierwork (Mantini et al. 2007;
Hipp et al. 2012; Siegel et al. 2012), we restricted the power
signals to conventional spectral bands, commonly known as δ,
θ, α, β, or γ (see Materials and Methods) (Fig. 1d–f). Applying
our clustering method to each frequency band individually re-
sulted in maps that were, by and large, similar to one another

(Fig. 3 and Supplementary Fig. 7). The most obvious difference
was the stronger long-range correlation in the γ-BLP compared
with the other frequency ranges, which was observed in coup-
ling between frontal, temporal, and parietal areas in individual
monkeys (Fig. 4a), and was also visible in certain γ-BLP-
derived clusters at the group level (Fig. 3 and Supplementary
Fig. 7: note the uppermost cluster in the γ column). The general
similarity of the maps derived from different frequency bands
suggests that the neurophysiological mechanisms underlying
the power correlations are broadband in nature.

The Effects of Sleep and Anesthesia on ECoG-Derived
Networks
Repeating the above-mentioned analysis under conditions of
sleep and anesthesia demonstrated that functional clusters
were remarkably robust to both natural and artificial changes
to the conscious state. For example, the ECoG-derived net-
works obtained during wakefulness (Fig. 2d) showed a close
correspondence to those obtained during ketamine/medeto-
midine anesthesia (Fig. 2e), as well as propofol anesthesia and
natural sleep (Supplementary Fig. 8b). Moreover, and despite
significant changes in the overall spectral characteristics of the
raw ECoG signals (Fig. 2b,c), it was still possible to derive the
same networks from each of the frequency bands (Fig. 3b, Sup-
plementary Fig. 7). This similarity extended to the long-range
coupling of γ-range power observed duringwakefulness (upper-
most clusters in the γ column), which is surprising given the
known diminution of γ-range power during diminished states of
consciousness (John et al. 2001).

We then examined to what extent the basic characteristics of
spontaneous activity are similar or different across different net-
works. We found that during wakefulness, there was a substan-
tial variation in the spectral composition between the different
functional clusters (Fig. 5a, see also Supplementary Fig. 5),
which is in agreement with a previous observation of regional
variation in the power spectrum of the neural signal over the
cortical surface (Rosanova et al. 2009). This variation was most
pronounced in the ∼5− 25 Hz frequency range, corresponding
roughly to the α and β bands, which showed highest relative
power in the occipital and lateral cortex and the lowest in the
frontal and medial areas, consistent with previous findings (Ro-
sanova et al. 2009). Importantly, these spectral signatures were
unique to the waking state. During natural sleep and under each
of the 2 anesthetic regimes, the entire cortex was characterized
by a distinct, state-specific spectrum, in each case with higher
amplitude in low-frequency components, which was similar
across the different networks (Fig. 5b, Supplementary Figs. 4
and 9). This reduction of network-specific spectral signatures
was highly significant and strongest for the propofol anesthesia
regime (Fig. 5c, see also Supplementary Fig. 3).

Finally, we performed spectral analysis on ECoG BLPs, in
addition to those on raw voltage traces (Fig. 5). No any network-
specific patterns were found except for the β- and γ-BLPs under
ketamine/medetomidine anesthesia (Supplementary Fig. 10). In
general, the BLP modulations were dominated by a very low-
frequency component with temporal characteristics comparable
to those of fMRI signals (Biswal et al. 1995; Fox and Raichle
2007). In contrast to the robustness of maps derived from the
BLP covariation, the spectrum of BLP fluctuations differed
markedly between the conditions and also depended strongly
on the frequency band of the underlying BLP.
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Discussion

In the current study, we investigated the nature of spontaneous
neuro-electrical activity by adapting an analysis method previ-
ously used for the extraction of patterns of correlated activity

in fMRI data (Liu et al. 2012). Applied to large-scale ECoG re-
cordings from macaque, slow (seconds-scale), correlated fluc-
tuations were observed in spatial clusters, many of which
resembled those found with fMRI. Similar clusters were found

Figure 3. Spatial patterns of ECoG power covariation at different frequency bands during (a) the eyes-closed wakefulness and (b) ketamine/medetomidine anesthesia. Gray dots
indicate electrode locations and white lines show the brain contour.
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when pre-filtering the data in any of the classical spectral fre-
quency bands. In the following, each of these findings will be
discussed in more detail.

Functional ECoG Clusters and the Similarity to fMRI
Networks
Although the nature of the fMRI and ECoG data (they were
derived from different studies) precluded a detailed quantita-
tive comparison, the apparent similarity between the covaria-
tional patterns between these different modalities is consistent
with previous observations using ECoG recordings over more
limited regions of the human cortex (He et al. 2008; Nir et al.
2008; Wang et al. 2012). These observations suggest that spon-
taneous variations in the ECoG and fMRI may originate from
the same or similar neurophysiological phenomenon. Judged
from the ECoG data, the timescale of this phenomenon appears
to be in the order a few seconds, much slower than the 1–100
millisecond timescale at which much of the cortico-cortical
communication occurs. Possible candidates that may occur on
this slow timescale are neuromodulatory processes such as
fluctuations in local arousal and awareness (Marrocco et al.
1994; Jones 2003) and purely homeostatic process associated
with so-called slow waves (Massimini et al. 2004).

Broadband Characteristics of Network Activity
Rather unexpectedly, similar spatial clusters were found for
each of the spectral frequency bands investigated (Fig. 3, Sup-
plementary Fig. 7), with the exception of a modest increase in
long-range connections for the γ-band. This contrasts to previ-
ous findings of band-specific correlations in the α–β range
(Brookes et al. 2011; Hipp et al. 2012; Wang et al. 2012) or γ
range (He et al. 2008; Nir et al. 2008). The discrepancy could
have multiple reasons. Poor sensitivity of skull recordings to
high-frequency γ-band, which could be further aggravated
with typical orthogonalization procedure, may explain the lack
of correlations in this particular range when using magnetoen-
cephalography (Brookes et al. 2011; Hipp et al. 2012). Mean-
while, quantitative differences in spatial specificity (Nir et al.
2008) and correlation strength (Wang et al. 2012) risk over-
interpretation as exclusive contributions from dominant fre-
quency bands. Owing to the broad coverage of the electrode
array and thus the removal of global nonspecific correlation,
we were able to focus on the spatial organization of region-
specific correlations, which are clearly independent of spectral
frequency.

A possible explanation for the apparent broadband nature
of neuro-electrical process underlying the observed network
activity is the presence of neuromodulatory and homeostatic
process mentioned above, each of which can lead to an overall
increase of firing rate (Cash et al. 2009; Lewis et al. 2012), inde-
pendent of spectral frequency. These and other processes with
broadband character could have an event-like neurophysio-
logical signature including the well-known phenomena of
slowwaves and K-complexes, both of which may have a similar
cortical origin (Steriade et al. 1993; Cash et al. 2009). Another
possibility is the occurrence of so-called avalanches, which
have been studied extensively in a range of electrophysiology
preparations (Plenz and Thiagarajan 2007). These were found
to occur during both waking and anesthesia and to modulate
spectral power in a wide frequency range (Hahn et al. 2010;
Thiagarajan et al. 2010). In addition, their spatial extent is
thought to reflect the underlying neuronal connectivity and
cover local as well as remote cortical regions (Plenz and Thia-
garajan 2007). Preliminary fMRI evidence for avalanche-like
spontaneous activity has been reported recently in human
brain (Tagliazucchi et al. 2012; Liu et al. 2013; Liu and Duyn
2013; Petridou et al. 2013), raising the possibility that it may be
a common source for the ECoG and fMRI findings in macaque.
Dedicated analysis to identify the presence of such activity in
the ECoG data will be required to confirm the contribution, if
any, of event-like activity (e.g. slow waves, K-complexes, or
avalanches) to the spatial patterns found in the ECoG data.

(In)dependence of Correlational Structure on Conscious
State
An intriguing finding is the similarity in cluster distribution
between the various states of consciousness. This parallels
findings from fMRI, whose network structures also appear
largely immune to changes in consciousness (Vincent et al.
2007; Horovitz et al. 2008; Boly et al. 2009; Wey et al. 2013).
This is difficult to understand in light of the profound influ-
ences that sleep and anesthesia have on nearly all other aspects
of brain physiology, including the raw ECoG signals that serve
as the basis of the covariation analysis. Based on previous elec-
trophysiological findings, there is every reason to believe that
sleep and anesthesia disrupt some of the spatial structure in
cortical activity. How to explain this apparent contradiction?

One possibility is that state of reduced consciousness during
sleep and anesthesia indeed disfacilitates some of the cortico-
cortical communication typical of the normal waking condi-
tion, but other neuro-electrical phenomena may persist (or get
facilitated) and use the same neuro-anatomical substrate. For
example, given the close relationship between the brain’s ana-
tomical connectivity and functional network architecture
(Honey et al. 2009; Adachi et al. 2012), it is possible that differ-
ent types of brief electrophysiological events are propagated
along the same anatomical connections during different states
of consciousness, in each case resulting in a broadband pattern
of covariation with a spatial distribution reflecting the anatom-
ical connections. Clearly more research is needed in this area.

Spectral Changes with Changes in Consciousness
In contrast to invariant cluster distribution across the various
conditions of consciousness, notable spectral changes were
observed. During wakefulness, individual clusters exhibited
unique spectral shapes, with the most prominent differences

Figure 4. Long-range γ-BLP correlation at individual level. (a) 3 examples of
single-session patterns from 3 monkeys consistently show long-range correlations
among the frontal, superior temporal, and parietal regions; and (b) the long-range
correlation between a few electrodes at the frontal eyes field (FEF, white arrows) and
the visual association areas are also consistently observed across individuals.
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in the α–β frequency ranges (Fig. 5). During sleep and anesthe-
sia, these differences largely disappeared, and the different
clusters adopting a common spectral shape that depends on
specific condition. It is therefore tempting to speculate that
one hallmark of the conscious state is a differentiation in the

spectral composition of activity in the various functional net-
works. Our observation that the signature of individual net-
works most prominently involves the 5–25 Hz frequency range
may owe to differing levels of top-down input to each region,
which previously has been associated with modulation in that

Figure 5. Dependence of spectral difference between networks on brain state. Electrodes are assigned to 8 networks based on the ECoG broadband power covariations and
displayed using different colors (blue to red from anterior to posterior). The demeaned power spectra are averaged across electrodes belonging to the same network and displayed
together for (a) the eyes-closed wakefulness, (b) ketamine/medetomidine anesthesia, propofol anesthesia, and sleep conditions. (c) The upper panel shows the MBGSS lines that
quantify cross-network difference in power spectra, and the lower panel presents the ratio of 2 MBGSS lines, that is, the F-lines. The dashed lines are F-values (wakefulness versus
ketamine/medetomidine: F140,77 versus propofol: F140,28 and versus sleep: F140,35) corresponding to a significance level of P<0.01. Shadows represent areas within 1 S.E.M.
across experiments (n= 20, 11, 4, and 5 for the wakefulness, ketamine/medetomidine, propofol, and sleep conditions, respectively).
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frequency range (von Stein et al. 2000; Buschman and Miller
2007; Klimesch et al. 2007; Palva and Palva 2007). A reduction
of such top-down input with reductions in consciousness may
explain the observed spectral changes. However, in absence of
further electrophysiological and behavioral evidence, these
suggested explanations remain entirely speculative.

Implications for fMRI Measurement of “functional
connectivity”
The invariance of ECoG clusters and fMRI networks across dif-
ferent brain conditions puts into question their relevance to be-
havior. However, it should be realized that the current findings
are limited to the spatial distribution of clusters, rather than the
underlying level of activity. It is possible that quantitative level
of synchronization in each network may depend on condi-
tion, and there is indeed evidence for this from several fMRI
studies (Boly et al. 2008; Horovitz et al. 2009; Zhang and
Raichle 2010). Therefore, signal correlation derived from fMRI
(or ECoG for that matter) may provide a behaviorally relevant
measures of “functional connectivity”. At the same time, an
exploration of resting-state fMRI signals in aspects other than
correlations is probably needed in order to obtain more state-
sensitive information. A candidate measure that may be useful
in this regard is the dynamic aspect of inter-areal synchroniza-
tion, which has been shown to provide extra network informa-
tion that is not available with simple static correlations (Chang
and Glover 2010; Rack-Gomer and Liu 2012; Liu et al. 2013;
Liu and Duyn 2013).

Supplementary Material
Supplementary material can be found at: http://www.cercor.oxford-
journals.org/.
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