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Parameter estimation of chaotic systems plays a key role for control and synchronization of chaotic systems. At first, the parameter
estimation of chaotic systems is mathematically formulated as a global continuous optimization problem.Then through integrating
two differential mutation strategies, an improved greedy selection mechanism and a population diversity balance scheme, an
alternate iterative differential algorithm, called AIDE, is presented to solve the problem in this paper. Subsequently, experiments
are tested on a set of cases of parameter estimation of chaotic systems and the results show that AIDE is better than or at least equal
to DE/rand/1/bin, DE/best/1/bin, and other four well-known algorithms in all cases.

1. Introduction

In 1963, Lorenz first found the classical chaotic attractor
during the process of simulating the change of atmosphere
through a three-dimensional autonomous system [1]. After
that, the chaos theory is studied in detail bymany researchers.
In particular, control and synchronization of chaotic systems
have a promising prospect in various fields like information
science, medicine, biology, engineering, and so on. However,
the chaotic systems to be controlled usually have some
unknown parameters. Thus, the parameter estimation prob-
lem becomes the first key issue for solving the control and
synchronization of chaotic systems.

Recently, numerous researchers had givenmuch attention
to the parameter estimation of chaotic systems [2–18]. In par-
ticular, great achievements over the parameter estimation of
chaotic systems have been obtained by intelligent algorithms
recently. For example, Dai et al. [19] transformed the problem
of parameter estimation of chaotic systems into a global
optimization problem through designing a suitable objective
function and solved the optimization problem using genetic
algorithm. Likewise, Chang [3] employed the differential
evolution (DE) algorithm to estimate the unknown param-
eters of Rossler’s chaotic system. Next, Chang [4] proposed

an improved differential evolution algorithm to estimate the
unknown parameters of Chen and Lü systems. He et al.
[16] employed particle swarm optimization (PSO) algorithm
for solving the problem of parameter estimation of Lorenz
system and found that PSO is better than genetic algorithm
(GA). Gao and Tong [20] also proposed an improved particle
swarm optimization algorithm to effectively estimate the
unknown parameters of Lorenz system and Lorenz system
with noise. Meanwhile, a novel chaotic ant swarm (CAS for
short) algorithm was developed to estimate the unknown
parameters of Logistic and Lorenz systems by Li et al. [5].
Later, Chang et al. [6] introduced an evolutionary program-
ming (EP) algorithm to solve the problem of parameter esti-
mation of the unified chaotic systems including Lorenz, Lü,
and Chen systems. Furthermore, some problems of param-
eter estimation of chaotic systems with time delay or other
characteristics were also solved by some intelligent optimiza-
tion algorithms [7–9]. In order to increasingly improve the
accuracy of parameter estimation of chaotic systems, there
are still some researchers who have proposed some improved
PSO [10, 11], improved DE [2], and hybrid evolutionary
algorithms [12–14, 21] to identify the unknown parameters
of chaotic systems. In particular, Wang et al. [14] skillfully
hybridize Nelder-Mead Simplex Search (NM for short) and
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differential evolution (DE) to propose a hybrid algorithm,
called NMDE. NMDE was successfully used to identify the
unknownparameters of chaotic systems and obtained a better
convergence performance.

In order to further improve the accuracy of the parameter
estimation of chaotic systems, inspired by the existence of
a few big evolution eras and small evolution eras in nature,
we propose an alternate iterative differential evolution algo-
rithm, in which two mutation strategies with different search
abilities (exploration and exploitation) are employed to imi-
tate the evolutionary behaviour of big evolution era and small
evolution era, respectively.

The rest of the paper is organized as follows. In Sec-
tion 2, the problem description over parameter estimation is
described. In Section 3, the traditional differential evolution
algorithm is briefly described. Subsequently, an alternate
iterative differential evolution, called AIDE, is presented in
detail in Section 4. Nextly, comprehensive experiments are
conducted in Section 5 to validate the performance of AIDE.
Finally, a conclusion is drawn in Section 6.

2. Problem Description

In this paper, the following 𝑛-dimensional chaotic system is
considered:

�̇� = 𝐹 (𝑋,𝑋0, 𝜃0) , (1)

where 𝑋 ∈ R𝑛 represents the state vector of chaotic systems,
𝑋0 ∈ R𝑛 is an initial state, namely, the start point of evolution
of chaotic systems, 𝜃0 ∈ R𝐷 is the real parameters values of
chaotic systems, and 𝐷 is the number of the parameters [14,
16, 21, 22].

When estimating the unknown parameters of chaotic
systems, often suppose that the structure of the systems is
known in advance [12] and further suppose that all states of
the systems can be measured.Thus, the estimated system can
be described as follows:

�̇� = 𝐹 (𝑌,𝑋0, 𝜃) , (2)

where 𝑌 ∈ R𝑛 denotes a state vector of the estimated system
and 𝜃 ∈ R𝐷 is a parameter vector of the estimated system.

In this way, the problem of parameter estimation of
chaotic systems is to find a set of suitable parameters of 𝜃 and
make them very close to real values of 𝜃0. The corresponding
objective function is to minimize the error between the state
vector 𝑌 of the estimated system and the state vector𝑋 of the
original system. Accordingly, the problem can be converted
into an optimization problem. Generally, its objective can
be described by (3). The specific principle of parameter
estimation of chaotic systems is shown in Figure 1:
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where𝑀 represents the length of the sampled data for param-
eters estimation,𝑋

𝑘
and𝑌
𝑘
denote the state vector of the orig-

inal system and the estimated system at time 𝑘, respectively,
and ‖ ⋅ ‖ represents the 2-norm or the Euclidean norm.
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Figure 1:The principle of parameters estimation of chaotic systems.

3. Canonical Differential Evolution

In 1995, Storn and Price [23, 24] first proposed the differential
evolution (DE) algorithm, which is simple yet powerful
population-based and direct search algorithm. According to
the mutation strategies and the crossover operators (bin and
exp) of DE [24], it is very flexible and can be formed into
many variants. In order to classify the different variants, the
notation DE/𝑥/𝑦/𝑧 was introduced by Storn and Price [24].
Among a variety of variants, DE/best/1/bin is one of the most
popular variants and its exploitation ability is relatively good.
To some extent, it may speed up the convergence speed of
DE/best/1/bin. Like other population-based metaheuristics,
DE also first randomly produces an initial population, which
is composed of 𝑁

𝑝
𝐷-dimensional vector, so-called individ-

uals, which encode the candidate solutions; that is, 𝑥
𝑖

=

(𝑥
𝑖1, . . . , 𝑥𝑖𝐷), 𝑖 = 1, . . . , 𝑁

𝑝
. Thereafter, DE/best/1/bin enters

a loop of evolutionary operations: mutation, crossover, and
selection.

3.1. Mutation. For each target vector 𝑥
𝑖
, a mutant vector V

𝑖
is

generated according to the following equation:

V
𝑖
= 𝑥best +𝐹 ⋅ (𝑥

𝑎
−𝑥
𝑏
) , (4)

where 𝑖 = 1, 2, . . . , 𝑁
𝑝
, best is the index of the best individual

with the best fitness value, 𝑎, 𝑏 ∈ [1, 𝑁
𝑝
] are mutually

different random integer numbers and they are also different
from current index 𝑖, and the scale factor 𝐹 is a real constant
in the range of [0, 2] and it is used to control the amplification
of the differential variation (𝑥

𝑎
− 𝑥
𝑏
) [24].

3.2. Crossover. At this phase, DE/best/1/bin employs a bino-
mial crossover operator to generate a trial vector 𝑢

𝑖
according

to the following equation:

𝑢
𝑖𝑗
=

{

{

{

V
𝑖𝑗
, if rand [0, 1]

𝑗
⩽ Cr ∨ 𝑗 == 𝑗rand,

𝑥
𝑖𝑗
, otherwise,

(5)

where 𝑖 = 1, 2, . . . , 𝑁
𝑝
, 𝑗 = 1, 2, . . . , 𝐷, rand[0, 1]

𝑗
is a random

real number between [0, 1], and 𝑗rand ∈ {1, 2, . . . , 𝐷} is a
randomly chosen index to make sure that the trial vector 𝑢

𝑖

gets at least one parameter from the mutant vector V
𝑖
. The

crossover rate Cr is a predefined constant within the range
[0, 1], which controls the fraction of parameter values copied
from mutant vector [24].
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3.3. Selection. After crossover operation, the trial vector 𝑢
𝑖
is

compared to the target vector 𝑥
𝑖
using the greedy selection

mechanism. To be specific, the selection process can be
described by the following equation:

𝑥
⋆

𝑖
=

{

{

{

𝑢
𝑖
, if 𝑓 (𝑢

𝑖
) < 𝑓 (𝑥

𝑖
) ,

𝑥
𝑖
, otherwise,

(6)

where 𝑓(𝑥) denotes the objective of a solution 𝑥 and 𝑥
⋆

𝑖

represents a parent vector used to replace the target vector
𝑥
𝑖
in the next generation.

4. Alternate Iterative Differential Evolution

4.1.Motivation. In viewof pseudorandomness and sensitivity
to initial state values of chaotic systems, all these chaotic
behaviours may result in the objective function shown in (3)
having complex landscape, which is the biggest challenge for
parameter identification. Hence, better and robust evolution-
ary algorithm is needed to solve it.

In order to balance the exploration and exploitation
ability of DE, two different mutation strategies with different
searching abilities are employed in AIDE. Inspired by the
existence of a few big evolution eras and small evolution
eras in nature, together with the diversity of mutation strat-
egy of DE, we use two mutation strategies with different
searching abilities to simulate evolutionary behaviour of big
evolution era and small evolution era, respectively. In other
words, DE/best/1/bin with better exploitation ability is used
to simulate the evolution behavior of big evolution era.
Inspired by PSO,we presented a newmutation strategy, called
DE/pbest/1/bin, where pbest represents its own previous best
individual for each target individual 𝑥

𝑖
. In this way, the

exploration ability of DE/pbest/1/bin may be better than that
of DE/best/1/bin. For each target vector 𝑥

𝑖
, its own previous

best individual instead of the global best one is used to guide
the population evolution in DE/pbest/1/bin, which partially
prevents population from rapidly clustering in the vicinity
of the global best individual and avoids evolution stagna-
tion. DE/pbest/1/bin is employed to simulate evolutionary
behaviour of the small evolution era. Based on the analysis
mentioned above, an alternate iterative differential evolution
is presented to identify the unknown parameter of chaotic
systems.

4.2. Population Initialization Based on Opposition-Based
Learning. In order to further improve the performance of
evolutionary algorithm, an opposition-based learning (OBL)
technique proposed by Rahnamayan et al. [25, 26] is used to
initialize a population. The specific procedure is given as the
following steps.

Step 1. Randomly produce an initial population 𝑃 of 𝑁
𝑝

individuals.

Step 2. Generate the opposite-population OP of𝑁
𝑝
opposite

individuals according to OBL.

Step 3. Select 𝑁
𝑝
fittest individuals from 𝑃⋃OP as initial

population.

4.3. Improved Greedy Selection Mechanism. Inspired by har-
mony search (HS) algorithm [27, 28], the selection mecha-
nism of standard DE is changed according to the following
criteria:

(i) In the canonical differential evolution, the greedy
selection operation is carried out until the corre-
sponding trial vector 𝑢

𝑖
for each target vector 𝑥

𝑖
(𝑖 =

1, 2, . . . , 𝑁
𝑝
) is generated. In AIDE, the greedy selec-

tion operation is immediately conducted between
the trial vector and the target vector when some
trial vector is generated. In this way, the global
best individual or the personal best individual (the
previous best individual for each target vector) may
be updated more rapidly than ever; namely, their new
information helps to better guide the population to
evolve towards better solutions.

(ii) Different from the canonical differential evolution,
in AIDE, the new generated trial vector 𝑢

𝑖
is first

compared with the target vector 𝑥
𝑖
; if individual 𝑢

𝑖
is

not inferior to individual 𝑥
𝑖
, then 𝑢

𝑖
will replace 𝑥

𝑖
, or

else, the worst individual 𝑥
𝑤
of current population is

substitutedwith 𝑢
𝑖
directly, which is taking a cue from

the greedy selection scheme of HS. It should be noted
that a greedy selection between new generated 𝑢

𝑖
and

𝑥
𝑤
is performed in HS. But here 𝑢

𝑖
directly replaces

𝑥
𝑤
in order to maintain a good population diversity.

In the presented AIDE algorithm, the improved greedy
selection mechanism is employed.

4.4. Constraint Handling. When the 𝑗th variable of the 𝑖th
individual 𝑥

𝑖
violates the boundary constraints, the corre-

sponding 𝑗th component will be reset to a suitable value
according to the following criterion:

𝑥
𝑖𝑗

=

{

{

{

𝑥
min
𝑗

+ rand (0, 1) ⋅ (𝑥max
𝑗

− 𝑥
min
𝑗

) , if 𝑥
𝑖𝑗
< 𝑥

min
𝑗

,

𝑥
max
𝑗

− rand (0, 1) ⋅ (𝑥max
𝑗

− 𝑥
min
𝑗

) , if 𝑥
𝑖𝑗
> 𝑥

max
𝑗

.

(7)

4.5. Alternate Iterative Differential Evolution. According to
the aforementioned analysis, two mutation strategies are
employed in AIDE. One is DE/best/1, which is given in (4).
Inspired by PSO, a new mutation strategy, called DE/pbest/1,
is presented in AIDE. The mutation strategy DE/pbest/1 can
be described as follows:

V = 𝑥
pbest
𝑖

+𝐹 ⋅ (𝑥
𝑎
−𝑥
𝑏
) , (8)

where pbest is similar to that of PSO and denotes the index
of personal best individual for each target vector 𝑥

𝑖
and the

other variables are the same as those of (4).
From (4), the first term of the equation is the global

best individual, which means that the population evolves
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under the guidance of the global best individual and it owns
extremely strong exploitation ability. The search equation is
used to simulate the evolution behavior of big evolution era
in nature. In big evolution era, species in nature evolve very
rapidly from the low level to high level, from simplicity to
complexity, and from barbarity to civilization.

From (8), the first termof the equation is the personal best
individual of the corresponding target vector, which means
that the populationwill be directed by the previous best one of
each individual rather than the global best individual. Under
such circumstance, the evolution speed of population slows
down in contrast to the situation of guidance of (4). Equation
(8) is used to simulate the evolution behaviour of the small
evolution era in nature, which helps to further prevent the
population from clustering around the global best individual.
It should be noted that species in nature evolve slowly over
a period of time due to the effects of environmental change,
natural disaster, and so on.

As far as the time periods of the big evolution era and
the small evolution era are concerned, two constant num-
bers, limit𝐴 and limit𝐵, are introduced to denote them.
Namely, the DE/pbest/1/bin is carried out limit𝐵 times after
the DE/best/1/bin is performed limit𝐴 times; then the two
procedures are run alternately. Generally, the value of limit𝐴
is bigger than that of limit𝐵.

In order to further improve the diversity of AIDE,
inspired by the scout bees operation of artificial bee colony
(ABC) algorithm proposed by Karaboga and Basturk [29],
changed scout bees operation is introduced into AIDE. To be
specific, if the global best individual is not further improved
through a predetermined number of generations called limit,
then the first top (1/5)𝑁

𝑝
individuals are replaced by ran-

domly generated new individuals in order to maintain the
population diversity and avoid the stagnation of evolution.

According to the above improvements, the main proce-
dure of presented hybrid algorithmAIDE can be summarized
in Algorithm 1.

5. Experimental Study and Discussion

5.1. Typical Systems and Parameter Settings. In this section,
comprehensive experiments are conducted to verify the effec-
tiveness of AIDE. As a typical chaotic system, Lorenz system
is taken as an example. The Lorenz system is mathematically
formulated as follows:

�̇�1 = 𝑎 ⋅ (𝑥2 −𝑥1) ,

�̇�2 = 𝑏 ⋅ 𝑥1 −𝑥1 ⋅ 𝑥3 −𝑥2,

�̇�3 = 𝑥1 ⋅ 𝑥2 − 𝑐 ⋅ 𝑥3,

(9)

where 𝑎 = 10, 𝑏 = 28, and 𝑐 = 8/3 are the original param-
eters and the system displays a chaotic attractor as shown in
Figure 2.

During the process of parameter estimation for Lorenz
system, the fourth order Runge-Kutta algorithm is employed
to obtain state vector in our simulation, where the step size ℎ
is set to 0.01 and the length of samples is selected as𝑀 = 300.
At first, let Lorenz system evolve freely from a random initial
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Figure 2: The chaotic attractor of Lorenz system.

state and choose any point as the initial state 𝑋0 of system
after a period of transient process. Next, successive 𝑀 state
vectors of both the original system and the estimated system
are used to calculate the objective 𝐽 as shown in (3). Last, the
aim of minimizing the objective 𝐽 is to search a suitable set of
parameters 𝜃.

For a fair comparison, the searching ranges are set as
follows: 𝑎 ∈ [9, 11], 𝑏 ∈ [20, 30], and 𝑐 ∈ [2, 3], which are
also used in [14, 16, 21, 22]. In addition, the maximum cycle
numberMCN is taken as 100, and the population size𝑁

𝑝
is set

as 20, 40, and 120 when the number of unknown parameters
is 1, 2, and 3, respectively, in the literature [14]. That is, the
maximum number of function evaluations (maxFEs) is 2000
(20 ∗ 100), 4000 (40 ∗ 100), and 12000 (120 ∗ 100) when the
number of unknown parameters is 1, 2, and 3, respectively.
That is, for fixed population size in AIDE, that is, 𝑁

𝑝
= 40,

the MCN is set as 50 (2000/40), 100 (4000/40), and 300
(12000/40) when the number of unknown parameters is 1,
2, and 3, respectively.

In order to further demonstrate the effectiveness of AIDE,
it is first compared with DE/best/1/bin and DE/rand/1/bin.
The population size 𝑁

𝑝
is set to 40 for all cases of the three

algorithms. The maximum cycle number of the three algo-
rithms is the same as aforementioned. Some other common
parameters settings of the three algorithms are also similar to
each other; that is, Cr = 0.9 and 𝐹 = 0.5. What is more, in
AIDE, the parameter limit is set to 10, the parameter limit𝐴
is set to 1000, and the parameter limit𝐵 is set to 500 by trial
and error.

5.2. Comparison between AIDE, DE/best/1/bin,
and DE/rand/1/bin

5.2.1. Simulation on One-Dimensional Parameter Estimation.
First, experiments tested on three one-dimensional parame-
ter estimation cases are conducted.That is, only one parame-
ter among parameters 𝑎, 𝑏, and 𝑐 is unknown and needs to be
identified at a time. In addition, each algorithm is run twenty
times independently for each case, respectively.The statistical
results obtained by AIDE, DE/best/1/bin, and DE/rand/1/bin
for the three cases are listed in Table 1. Meanwhile, the
evolution process of unknown parameters (𝑎, 𝑏, and 𝑐) and
average of objective function values 𝐽 are plotted in Figure 3.
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(1) Initialize the population X using opposition-based learning
(2) Let𝑋𝑝𝑏𝑒𝑠𝑡 = {𝑥

𝑝𝑏𝑒𝑠𝑡

𝑖
, 𝑖 = 1, 2, . . . , 𝑁

𝑝
} represent the population composed of the best one of each individual (𝑥𝑝𝑏𝑒𝑠𝑡

𝑖
) in

history
(3) Set 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 = 1 //Iterative variable
(4) while 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 ⩽ 𝑀𝐶𝑁 do
(5) for 𝑖 = 1 to𝑁

𝑝
do

(6) Choose the best individual from the current population, and let best represent its index
(7) Generate two random integer numbers 𝑎, 𝑏 ∈ [1 ⋅ ⋅ ⋅ 𝑁

𝑝
] ∧ 𝑎 ̸= 𝑏 ̸= 𝑖

(8) if 𝑡𝑟𝑢𝑒𝐴 == 0 then
(9) Perform differential mutation according to (4)
(10) Set 𝑙𝑖𝑚𝑖𝑡𝐴 = 𝑙𝑖𝑚𝑖𝑡𝐴 − 1

(11) else
(12) Perform differential mutation according to (8)
(13) Set 𝑙𝑖𝑚𝑖𝑡𝐵 = 𝑙𝑖𝑚𝑖𝑡𝐵 − 1

(14) end if
(15) Do bound constraints handling according to (7)
(16) Generate trial vector 𝑢 according to (5) and compute its objective value
(17) if 𝑓(𝑢) is better than 𝑓(𝑥

𝑖
) then

(18) Replace 𝑥
𝑖
with 𝑢 immediately

(19) else
(20) Substitute the worst individual 𝑥

𝑤
in current population with 𝑢 immediately and 𝑤 is the index of the worst

individual
(21) if 𝑓(𝑢) is better than 𝑓(𝑥

𝑝𝑏𝑒𝑠𝑡

𝑤
) then

(22) 𝑥
𝑝𝑏𝑒𝑠𝑡

𝑤
= 𝑢 and 𝑓(𝑥

𝑝𝑏𝑒𝑠𝑡

𝑤
) = 𝑓(𝑢)

(23) end if
(24) end if
(25) if 𝑙𝑖𝑚𝑖𝑡𝐵 == 0 then
(26) Set 𝑡𝑟𝑢𝑒𝐴 = 0 and 𝑙𝑖𝑚𝑖𝑡𝐴 = 1000; //Big evolution
(27) else
(28) Set 𝑡𝑟𝑢𝑒𝐴 = 1 and 𝑙𝑖𝑚𝑖𝑡𝐵 = 500; //Small evolution
(29) end if
(30) end for
(31) //Disaster mutation
(32) if 𝑙𝑖𝑚𝑖𝑡2 > 𝑙𝑖𝑚𝑖𝑡 then
(33) Sort the population according to objective value order by ascent and replace the first (1/5)𝑁

𝑝
individuals with

randomly generated individuals
(34) Set 𝑙𝑖𝑚𝑖𝑡2 = 0
(35) end if
(36) Record the best solution found so far
(37) if the best solution is updated then
(38) Set 𝑙𝑖𝑚𝑖𝑡2 = 0
(39) else
(40) Set 𝑙𝑖𝑚𝑖𝑡2 = 𝑙𝑖𝑚𝑖𝑡2 + 1
(41) end if
(42) Set 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 = 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 + 1

(43) end while

Algorithm 1: The procedure of AIDE.

From Table 1, it can be seen that DE/rand/1/bin is worse
than both DE/best/1/bin and AIDE, which shows that the
convergence speed of DE/rand/1/bin is slow. Furthermore,
the objective values obtained by AIDE and DE/best/1/bin are
all zero, which means that the estimated value of 𝑎, 𝑏, and 𝑐

identified by AIDE and DE/best/1/bin is exactly equal to the
true value of the corresponding parameter, respectively. Nev-
ertheless, the convergence speed of DE/best/1/bin is slower
than that of AIDE, which can be found from Figure 3, which
indicates that the combination of the two mutation strategies

is more favourable to speed up the convergence of AIDE than
DE/best/1/bin itself.That is, sometimes the mutation strategy
DE/pbest/1/bin may work better than DE/best/1bin.

5.2.2. Simulation on Two-Dimensional Parameter Estimation.
Second, Experimental study about three two-dimensional
parameter estimation cases is carried out. At this time, two of
the three parameters are unknown and need to be identified.
The corresponding statistical results are listed in Tables 2–4,
respectively. The corresponding evolution processes of both
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Figure 3: The evolution process of Lorenz system with one unknown parameter.
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Table 1: Statistical results of different approaches for one-dimensional parameter estimation.

Approaches Index Best Mean Worst

DE rand 𝑎 10.000000000000009 9.999999999999984 10.000000000001773
𝐽 2.2985𝑒 − 027 1.6365𝑒 − 024 1.6950𝑒 − 023

DE best 𝑎 10.000000000000000 10.000000000000000 10.000000000000000
𝐽 0.000000000000000 0.000000000000000 0.000000000000000

AIDE 𝑎 10.000000000000000 10.000000000000000 10.000000000000000
𝐽 0.000000000000000 0.000000000000000 0.000000000000000

DE rand
̂
𝑏 27.999999999999936 28.000000000005393 27.999999999965191
𝐽 1.3657𝑒 − 024 1.0048𝑒 − 019 5.8964𝑒 − 019

DE best
̂
𝑏 28.000000000000000 28.000000000000000 28.000000000000000
𝐽 0.000000000000000 0.000000000000000 0.000000000000000

AIDE
̂
𝑏 28.000000000000000 28.000000000000000 28.000000000000000
𝐽 0.000000000000000 0.000000000000000 0.000000000000000

DE rand 𝑐 2.666666666666673 2.666666666666710 2.666666666666033
𝐽 4.4737𝑒 − 025 4.9702𝑒 − 022 3.7970𝑒 − 021

DE best 𝑐 2.666666666666667 2.666666666666667 2.666666666666667
𝐽 0.000000000000000 0.000000000000000 0.000000000000000

AIDE 𝑐 2.666666666666667 2.666666666666667 2.666666666666667
𝐽 0.000000000000000 0.000000000000000 0.000000000000000

DE rand stands for DE/rand/1/bin and DE best means DE/best/1/bin.

Table 2: Statistical results of different approaches for two-dimensional parameter identification (𝑎 and 𝑏 are unknown).

Index DE/rand/1/bin DE/best/1/bin AIDE

Best
𝑎 9.999999999999080 10.000000000000000 10.000000000000000
̂
𝑏 28.000000000000142 28.000000000000000 28.000000000000000
𝐽 8.4800𝑒 − 024 0.000000000000000 0.000000000000000

Mean
𝑎 9.999999999992522 9.999999999999996 10.000000000000000
̂
𝑏 28.000000000000107 28.000000000000000 28.000000000000000
𝐽 7.2633𝑒 − 021 1.0373𝑒 − 028 0.000000000000000

Worst
𝑎 9.999999999950955 9.999999999999954 10.000000000000000
̂
𝑏 28.000000000009916 28.000000000000011 28.000000000000000
𝐽 3.7208𝑒 − 020 1.2561𝑒 − 027 0.000000000000000

Table 3: Statistical results of different approaches for two-dimensional parameter identification (𝑎 and 𝑐 are unknown).

Index DE/rand/1/bin DE/best/1/bin AIDE

Best
𝑎 10.000000000000011 10.000000000000000 10.000000000000000
𝑐 2.666666666666698 2.666666666666667 2.666666666666667
𝐽 8.8682𝑒 − 024 0.000000000000000 0.000000000000000

Mean
𝑎 9.999999999999748 10.000000000000011 10.000000000000000
𝑐 2.666666666666668 2.666666666666665 2.666666666666667
𝐽 3.8628𝑒 − 022 2.0355𝑒 − 028 0.000000000000000

Worst
𝑎 10.000000000007114 10.000000000000023 10.000000000000000
𝑐 2.666666666666092 2.666666666666663 2.666666666666667
𝐽 3.7443𝑒 − 021 5.6290𝑒 − 028 0.000000000000000

unknown parameters and objective values are illustrated in
Figures 4–6, respectively.

FromTables 2–4, it can be seen that high-quality solutions
are obtained by AIDE and their values are all equal to the
corresponding true values. Although the best results found
by DE/best/1/bin are also equal to the true values, the worst
results obtained by DE/best/1/bin are all worse than those
of AIDE for the three cases, which shows that sometimes
DE/best/1/bin may result in premature convergence and

AIDE can achieve a good compromise between the explo-
ration and the exploitation. In contrast, the performance of
DE/rand/1/bin is the worst among the three methods. All
these can also be confirmed from Figures 4–6, respectively.

5.2.3. Simulation on Three-Dimensional Parameter Estima-
tion. In this section, three-dimensional parameter estima-
tion of Lorenz system is considered. In the case, the three pa-
rameters 𝑎, 𝑏, and 𝑐 are all unknown and need to be identified.
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Table 4: Statistical results of different approaches for two-dimensional parameter identification (𝑏 and 𝑐 are unknown).

Index DE/rand/1/bin DE/best/1/bin AIDE

Best
̂
𝑏 27.999999999994451 28.000000000000000 28.000000000000000
𝑐 2.666666666664585 2.666666666666667 2.666666666666667
𝐽 8.7373𝑒 − 021 0.000000000000000 0.000000000000000

Mean
̂
𝑏 28.000000000004341 28.000000000000000 28.000000000000000
𝑐 2.666666666667481 2.666666666666666 2.666666666666667
𝐽 4.2924𝑒 − 019 8.8037𝑒 − 029 0.000000000000000

Worst
̂
𝑏 28.000000000194063 28.000000000000000 28.000000000000000
𝑐 2.666666666707930 2.666666666666666 2.666666666666667
𝐽 1.6599𝑒 − 018 8.8037𝑒 − 028 0.000000000000000
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Figure 4:The evolution process of Lorenz system when parameters
𝑎 and 𝑏 are unknown.

The results are shown in Table 5 in terms of best, mean, and
worst of the results obtained in 20 independent runs by each
algorithm. The evolution processes of unknown parameters
and objective value are illustrated in Figure 7, respectively.

As shown in Table 5, all the results obtained by AIDE are
still equal to the true values. AIDE is superior to both DE/
rand/1/bin and DE/best/1/bin according to the mean value.
Comparatively, DE/rand/1/bin is slightly better thanDE/best/
1/bin in terms of the mean and worst values. Namely, as
parameter dimension increases, the performance of DE/best/
1/bin is not consistently better than that of DE/rand/1/bin
as before. This may be the reason that the guidance of the
global best individual leads to the premature convergence of
DE/best/1/bin. Instead, DE/rand/1/bin obtains a good con-
vergence performance as the iterative generation increases.
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Figure 5:The evolution process of Lorenz system when parameters
𝑎 and 𝑐 are unknown.

All in all, AIDE is more effective and robust than other two
algorithms, which can also be seen from Figure 7. All these
also demonstrate that the modifications of AIDE are effective
for balancing the exploration and exploitation ability of it.

5.2.4. Simulation on Lorenz System with Noise. Subsequently,
the three-dimensional parameter estimation of Lorenz sys-
temwith noise is considered again. As shown in Figure 1, each
system state vector (𝑥1, 𝑥2, 𝑥3) is added with white noise in
the range of [−0.1, 0.1] in the experiment. Then AIDE was
independently executed 20 times and the statistical results are
given in Table 6. The parameter settings of AIDE in the case
are the same as the aforementioned in Section 5.1.

From Table 6, it can also be observed that AIDE achieves
good results when noise exists. In addition, the relative
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Table 5: Statistical results of different approaches for three-dimensional parameter identification (𝑎, 𝑏, and 𝑐 are unknown).

Index DE/rand/1/bin DE/best/1/bin AIDE

Best

𝑎 10.000000000000000 10.000000000000000 10.000000000000000
̂
𝑏 28.000000000000000 28.000000000000000 28.000000000000000
𝑐 2.666666666666667 2.666666666666667 2.666666666666667
𝐽 0.000000000000000 0.000000000000000 0.000000000000000

Mean

𝑎 10.000000000000000 9.999999999999996 10.000000000000000
̂
𝑏 28.000000000000000 28.000000000000000 28.000000000000000
𝑐 2.666666666666666 2.666666666666666 2.666666666666667
𝐽 2.6737𝑒 − 029 2.7318𝑒 − 028 0.000000000000000

Worst

𝑎 10.000000000000007 9.999999999999941 10.000000000000000
̂
𝑏 27.999999999999996 28.000000000000014 28.000000000000000
𝑐 2.666666666666665 2.666666666666674 2.666666666666667
𝐽 1.4778𝑒 − 028 2.2160𝑒 − 027 0.000000000000000

Table 6: Statistical results of AIDE for three-dimensional parameter identification of Lorenz system with noise.

Methods Index Best Mean Worst

AIDE

𝑎 9.990801271058711 9.998131753034325 9.989687785636363
̂
𝑏 28.003818708942255 28.000608072179272 28.002414544105758
𝑐 2.667512761713986 2.666799322681526 2.667073063185854
𝐽 0.0077 0.0082 0.0085
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Figure 6:The evolution process of Lorenz system when parameters
𝑏 and 𝑐 are unknown.

errors between the estimated values and the true values of
parameters 𝑎, 𝑏, and 𝑐 are approximately equal to 1𝑒−4, 1𝑒−5,
and 1𝑒 − 5, respectively, in terms of the mean values.

5.3. Comparison between GA, PSO, NMDE, and AIDE. In
order to further validate the convergence performance of
AIDE, it is compared with other well-known algorithms
including genetic algorithm [19], particle swarmoptimization
[16], and NMDE [14] again.

In view of very good results obtained by NMDE, for
convenience, three-dimensional parameter estimation is con-
sidered in this section. The parameter settings of AIDE are
the same as the aforementioned. Namely, the population size
is set to 120 and the maximum generation is set to 100 for
GA, PSO, andNMDE,which is the same as those employed in
the literatures [14, 16]. Thus, there are about 300 generations
in AIDE when the population size is fixed to 40 for a fair
comparison.Next, the comparison results are listed inTable 7,
where the results of GA, PSO, and NMDE are directly taken
from the literatures [14, 16] for the sake of reliability.

From Table 7, it can be found that the best objective value
obtained byNMDE is equal to that searched by AIDE, but the
quality of best solutions (𝑎, 𝑏, and 𝑐) obtained by NMDE is
worse than that of solutions obtained by AIDE. In particular,
the worst results obtained by NMDE are obviously inferior to
those found by AIDE. However, NMDE is obviously superior
to both GA and PSO. Therefore, AIDE is the best algorithm
among the four approaches for parameter identification of
chaotic systems.

6. Conclusion

Through designing an appropriate objective function, param-
eter identification of chaotic systems is mathematically for-
mulated as a global multidimensional optimization problem.
Then, an alternate iterative differential algorithm, AIDE for
short, is presented to solve the global optimization problem.
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Figure 7: The evolution process of Lorenz system when parameters 𝑎, 𝑏, and 𝑐 are unknown.

Table 7: Statistical results of different methods for three-dimensional parameter identification of Lorenz system.

Index GA PSO NMDE AIDE

Best

𝑎 10.067167 9.995332 10.000003 10.000000000000000
̂
𝑏 27.922058 28.007146 28.000002 28.000000000000000
𝑐 2.663426 2.667013 2.666667 2.666666666666667
𝐽 4.310715 0.048645 0.000000 0.000000000000000

Mean

𝑎 10.139783 10.018417 10.000009 10.000000000000000
̂
𝑏 27.742735 27.993390 28.999980 28.000000000000000
𝑐 2.648585 2.666281 2.666666 2.666666666666667
𝐽 943.762894 4.182781 0.000007 0.000000000000000

Worst

𝑎 10.929003 10.608212 10.000223 10.000000000000000
̂
𝑏 26.127605 27.704424 27.999848 28.000000000000000
𝑐 2.560249 2.657231 2.666660 2.666666666666667
𝐽 6461.48006 39.406026 0.000033 0.000000000000000

Bold entities mean the best results.

First, a new mutation strategy DE/pbest/1 is proposed in
AIDE. Second, the new mutation strategy and DE/best/1
are run alternately in AIDE. Meanwhile, a greedy selection
mechanism is improved and employed. Last, a mutation
mechanism like scout bees operation of artificial bee colony
algorithm is introduced in order to better keep the population
diversity. When compared with two variants of DE, that is,
DE/rand/1/bin and DE/best/1/bin, the experimental results

show that AIDE is better than both DE/rand/1/bin and
DE/best/1/bin, which means that AIDE is effective to achieve
a compromise between the exploration and exploitation.
Subsequently, a comparison between AIDE and other four
famous metaheuristics is conducted. The comparison results
demonstrate that AIDE outperforms GA, PSO, and NMDE.
All these show that AIDE is an efficient and powerful tool for
parameter identification of chaotic systems.
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