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suppression to perceptual improvement with attention. J Neuro-
physiol 108: 2352-2362, 2012. First published August 15, 2012;
doi:10.1152/jn.00347.2012.—Systems and cognitive neuroscience
aim at understanding the neurophysiological mechanisms that under-
lie cognition and behavior. Many studies have revealed the involve-
ment of many types of neural signals in diverse cognitive and
behavioral phenomena. Here, we go beyond establishing such in-
volvement and address two fundamental, yet largely unaddressed,
questions: /) exactly how much does a given neural signal contribute
to a cognitive or behavioral phenomenon of interest; and 2) to what
extent are distinct neural signals independently related to this phe-
nomenon? We recorded brain activity using magnetoencephalography
while human participants performed a cued somatosensory detection
task. Using a novel method, we then quantified the contribution (in a
predictive but not causal sense) of two well-established neural phe-
nomena to the improvement in perception with attentional orienting.
In our sample, the anticipatory suppression of extracranially recorded
oscillatory a- and B-band amplitudes from contralateral primary
somatosensory cortex could account for maximally 29% of the atten-
tion-induced improvement in tactile perception. In addition, although
amplitude suppressions in the a- and (-frequency bands both con-
tributed to this improvement, their contribution was largely shared.
These data reveal the upper limit of the cognitive/behavioral relevance
of this type of signal and show that at least 71% of the perceptual
improvement with attention must be accounted for by other signals.

attentional orienting; behavioral relevance; magnetoencephalography;
neuronal oscillations; somatosensory perception

SYSTEMS AND COGNITIVE NEUROSCIENCE aim at understanding the
neurophysiological mechanisms that underlie cognition and
behavior. To date, this has resulted in a wealth of knowledge
concerning the involvement of particular neural signals in
cognitive functions and behavior. Despite this progress,
studies up to now have left two fundamental questions
largely unaddressed. First, how much does a given neural
signal contribute to a cognitive or behavioral phenomenon
of interest? Second, to what extent are distinct neural signals
independently related to this phenomenon?

We report on a study in which both of these questions were
addressed. In particular, we quantified the contribution of
well-established neural phenomena (anticipatory suppression
of oscillatory amplitude in sensory cortex occurring in multiple
frequency bands) to a well-established behavioral phenome-
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non: the improvement in perception that occurs with attentional
orienting.

Knowing when and where a stimulus will occur allows for
orienting of attention and improves perception (Posner 1980).
Such attentional orienting involves a prestimulus modulation
of oscillatory electromagnetic signals with their amplitude
being lower over relevant compared with irrelevant sensory
cortex. This has been established for posterior a-band (814
Hz) oscillations during visual (Foxe et al. 1998; Gould et al.
2011; Siegel et al. 2008; Snyder and Foxe 2010; Thut et al.
2006; Worden et al. 2000; Wyart and Tallon-Baudry 2008) and
somatosensory «- and B-band (15-30 Hz) oscillations during
tactile (Anderson and Ding 2011; Haegens et al. 2011a; Jones
et al. 2010; van Ede et al. 2010, 2011) orienting of attention.
These modulations are specific to the timing (Rohenkohl and
Nobre 2011; van Ede et al. 2011) and features (Snyder and
Foxe 2010) of an expected stimulus, and their deployment
depends on stimulus probability (Gould et al. 2011; Haegens
et al. 2011a). These properties suggest that oscillatory ampli-
tude modulation reflects an important mechanism underlying
the orienting of attention. This is further supported by the
observation that low amplitude in the - and (3-band is asso-
ciated with an enhancement in /) cortical excitability (Haegens
et al. 2011b; Romei et al. 2008; Sauseng et al. 2009), 2) blood
oxygenation level-dependent (BOLD) activity (Ritter et al.
2009; Scheeringa et al. 2011), and 3) psychophysical perfor-
mance in visual (Thut et al. 2006; van Dijk et al. 2008) and
tactile (Haegens et al. 2011a; Jones et al. 2010; van Ede et al.
2011) tasks.

Despite this coherent picture, two fundamental aspects re-
main unclear. First, exactly how much of the improvement in
perception with attentional orienting can be accounted for by
these anticipatory amplitude modulations? Although we ac-
knowledge that the relation between prestimulus amplitude and
perception has previously been investigated with quantitative
measures (e.g., correlation coefficients), inferences have so far
remained qualitative. Specifically, it was assessed whether a
correlation of interest was statistically significant, allowing the
qualitative inference of whether a relation existed between the
two variables (“establishing involvement”). As we will outline
in our DISCUSSION, based on these conventional correlational
analyses, only this type of qualitative inference is justified. In
the present paper, our goal is not qualitative but quantitative
inference. In other words, our goal is determining the effect
size. A second fundamental aspect that has remained unclear is
to what extent modulations in the a- and the $-band indepen-
dently contribute to the improvement in perception that occurs
with attentional orienting. To address these two questions, we
developed a novel method that allows for a quantification of
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the cognitive/behavioral relevance (in a predictive but not
causal sense) of a particular set of neural signals. In contrast to
conventional quantitative measures (in casu the correlation
coefficient), our method produces a quantification that is af-
fected by neither noise in our predictor variables (i.e., our
amplitude estimates) nor variability in our criterion variable
(detection responses) that is independent of the cognitive
variable under investigation (attentional orienting; see DISCUS-
sioN). We applied our method to extracranial signals that were
acquired during a somatosensory detection task using magne-
toencephalography (MEG). In our sample, the anticipatory
suppression of the rolandic a- and (-band oscillatory ampli-
tudes together accounted for maximally 29% of the improve-
ment in tactile perception with attentional orienting. Moreover,
although amplitude suppressions in both frequency bands con-
tributed to this improvement, their contributions were largely
shared.

MATERIALS AND METHODS
Participants and Experimental Design

Our study was conducted in accordance with the Declaration of
Helsinki and approved by the local ethics committee (CMO Regio
Arnhem-Nijmegen). Informed written consent was obtained from all
subjects.

Fourteen healthy subjects (5 male; 22—49 yr) participated in the
study. Two subjects were excluded from analysis: for one subject, no
stable behavioral performance could be obtained, and the other one
fell asleep.

Subjects performed a somatosensory detection task in which the
spatial and temporal locations of target stimuli was either cued or not
(Fig. 1). The central event in a trial was the occurrence of a brief
auditory stimulus (50 ms, white noise) that was paired with an
electrotactile stimulus (0.5-ms electric pulse close to threshold inten-
sity) in half of the trials. This tactile stimulus was delivered using
either of two constant-current, high-voltage stimulators (type DS7A;
Digitimer) to the left or right thumb. Stimulus intensity was set before
the experiment. For this, we used a Bayesian staircase algorithm
(QUEST; Watson and Pelli 1983) that adjusts the stimulus intensity
such that the hit rate in the cued condition (see below) was ~80% (see
also Fig. 2A). This algorithm was implemented in the MATLAB (The
MathWorks) Psychophysics Toolbox (Brainard 1997). Intensities
were 1.400 = 0.066 and 1.747 = 0.077 mA for the left and the right
hand, respectively.

In the experiment, subjects indicated whether a tactile stimulus was
presented at the time of the central event, which was marked by a brief
auditory stimulus. In the uncued condition, it was made as difficult as
possible to predict the time of the central event as well as the location
at which the tactile stimulus might occur. Concerning time, we drew
the interval between a response and the next central event from a
truncated negative exponential distribution (mean 3.5 s; limited to the

range 2.5-12 s). A negative exponential distribution has a hazard rate
(the probability of an event at time ¢ given that it has not occurred yet)
that does not depend on this time ¢ and therefore is unpredictable.
Concerning location, the tactile stimulus could, in case of a stimulus-
present trial, occur at either thumb. In the cued condition, the time of
the central event and the location at which the tactile stimulus might
occur were fully predictable: 1.5 s before the central event, an
auditory cue (150 ms, pure tone) was presented, informing with 100%
validity about the time (after 1.5 s) and location (left/right thumb) at
which the stimulus might occur. Cue pitch (500/1,000 Hz) informed
location and was counterbalanced across participants. Cued and un-
cued trials were randomly interleaved. In total, one-third of the trials
were cued.

Participants indicated whether a stimulus was presented by press-
ing a button with the left or the right index finger. To indicate the
presence of a tactile stimulus, subjects pressed a button on the side
where a lateralized auditory response-mapping tone (150 ms, 1,000
Hz) was presented, and to indicate its absence, they pressed the button
on the other side. This mapping of the perceptual decision onto the
response was varied from trial to trial to prevent specific motor
preparation in the anticipation period of interest. Auditory feedback
was presented, indicating hits and misses (50 ms upgoing, respec-
tively, downgoing frequency sweeps between 500 and 1,000 Hz).

Participants completed ~1,000 trials in 2 consecutive MEG ses-
sions lasting ~70 min each. Within each block (72 trials), cue
presence, cue side, stimulus presence, and stimulus side were coun-
terbalanced. After each session, a primary somatosensory cortex (S1)
localizer experiment was performed: 200 suprathreshold stimuli were
delivered to each thumb. The day before the experiment, subjects
practiced the task for approximately 1 h.

Data Acquisition and Preprocessing

The MEG system (CTF MEG; MISL, Coquitlam, British Colum-
bia, Canada) contained 275 axial gradiometers and was housed in a
magnetically shielded room. We also recorded bipolar surface elec-
tromyogram (EMG) from the flexors of the forearm (cf. van Ede et al.
2011). Localization coils, fixed to anatomic landmarks (nasion and
left and right ear), determined head position. All data were low-pass
filtered (300-Hz cutoff), digitized at 1,200 Hz, and stored for offline
analysis. Line noise was removed offline using a discrete Fourier
transform filter. Epochs contaminated by artifacts were removed
based on visual inspection. T1-weighted MR images were acquired,
and subject-specific, single-shell models (Nolte 2003) for source
reconstruction were calculated.

Data Analysis

Data were analyzed using FieldTrip (Oostenveld et al. 2011), an
open-source MATLAB toolbox developed at the Donders Institute for
Brain, Cognition and Behaviour (Nijmegen, The Netherlands).

Frequency analysis. We calculated oscillatory amplitude by means
of the Fourier transform with and without time resolution. For calcu-
lations with time resolution (Fig. 2C), we used a 500-ms sliding time
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— & %\5 N < QQ\ \d \6@ ® - and location (left/right thumb) of the upcoming event
éb' N &’b 06\' was either cued or uncued. This event consisted of a
brief tone that, in half of the trials, was paired with an
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7/ > AND METHODS). Uncued and cued trials were randomly
25-12s .
L W or @ - interleaved.
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window (advanced in steps of 50 ms) and a Hanning taper. Nontime-
resolved amplitude estimates (Figs. 3—-5) were calculated for the a-
and the (-band using the multitaper method (Percival and Walden
1993). The a-band was defined as 8—14 Hz for all subjects, whereas
the B-band (which is more variable in frequency) was individually
determined per subject based on the poststimulus response (cf. van
Ede et al. 2010, 2011). On average, 3-bands ranged from 16 to 28 Hz.

Source reconstruction. We reconstructed oscillatory brain activity
originating from putative S1. This involved three steps. First, we used
the localizer data to find, per participant, the left and right sources that
showed the strongest response to right and left tactile stimuli, respec-
tively. This was done in source space using beamforming (dynamic
imaging of coherent sources; Gross et al. 2001). Beamforming recon-
structs source power using spatial filters that have unit gain for the
point source of interest while maximally attenuating other sources.
This is accomplished by taking the cross-spectral density matrix into
account. Per voxel (0.5-cm resolution), we calculated the difference
between the B-band amplitudes recorded after left and right thumb
stimulation. The maximum and minimum voxels in this contrasted
volume were used as loci for left and right sources of interest (S1; cf.
Haegens et al. 2011a; van Ede et al. 2011). We then estimated optimal
spatial filters for reconstructing activity from left and right S1, again
using beamforming (now using the cross-spectral density for the 5- to
50-Hz band, calculated across all epochs of interest). Finally, we
applied the obtained filters to our time-domain data (275 channels) to
reduce it to 1 left and 1 right virtual S1 channel.

Quantifying the contribution of amplitude to behavior. For every
trial, we calculated four prestimulus amplitude estimates: a- and
B-amplitude in left and right S1. To allow pooling of data over
recording sessions and hemispheres, we normalized all amplitude
estimates by linearly transforming them to the percentage change
from the mean amplitude in the uncued condition of the respective
session and hemisphere. Amplitudes from left and right S1 were
reassigned as contralateral or ipsilateral to the stimulus.

Our quantification procedure, which was performed per subject,
involved the following steps. First, we modeled the relation between
perceptual performance and prestimulus amplitude using linear (for
reaction times) and logistic regression (for hit rate) in the uncued trials
(Fig. 3, A-C, middle). Second, we quantified the anticipatory ampli-
tude modulation in the cued condition. This modulation is the differ-
ence between the mean amplitudes in the cued and the uncued trials
(red and blue vertical lines in Fig. 3, A and B, bottom). Third, we used
the amplitude-perception regression coefficients from step [ to
predict the improvement in perceptual performance that would
follow from the anticipatory modulation from step 2. Finally, we
compared this prediction with the actual improvement that occurred
with cueing. By dividing the predicted improvement with the ob-
served improvement (and multiplying it by 100), we quantified how
much of the improvement in perception with attentional orienting can
be accounted for by anticipatory amplitude modulation: the percent-
age explained improvement.

Because the regression lines of the cued and uncued condition were
roughly linear and parallel over the range in which our amplitudes
occurred (Fig. 3), our quantification could be based on the regression
line of only the uncued condition together with the average attention-
induced change in amplitude and perception in the cued condition. If
the regression lines would not have been linear and parallel, one
would have to use a calculation that is more generally applicable (i.e.,
to nonlinear and nonparallel regression lines). This more general
calculation comes from the statistical literature on the contribution of
covariates (to correct for them) when estimating treatment effects in
observational studies (Maris 1998; Rubin 1974, 1977). The formal
theory behind this literature also applies to other estimation problems,
such as ours, and involves estimating the extent to which the differ-
ence between groups (cued and the uncued trials) on some dependent
variable (detection performance) can be explained by a another
variable (oscillatory amplitude).

Our logistic regression modeled the probability of a hit as a
function of prestimulus amplitude according to:
exp(B0 + B1 X amplitude)

P(hit) =
(hit) 1 + exp(B0 + B1 X amplitude)

We also performed logistic regression using two predictor variables,
the single-trial o~ and -band amplitudes. For this, we added a 32 X
amplitude term in the exponent. Coefficients were estimated using the
maximum likelihood criterion.

Correcting for noisy-amplitude estimates. Noise in our amplitude
estimates will attenuate the slopes of the amplitude-perception regres-
sion lines that form the basis of our quantification. To obtain a
veridical (i.e., noise-free) quantification, the slope-attenuating effect
of this noise must be corrected for. We did this in two ways.

First, we corrected single-trial amplitudes for variability in single-
trial head position (which was derived from our localization coils) by
1) calculating head position as the Euclidian distance between the
center of the head and the center of the MEG helmet, 2) modeling the
relation between head position and amplitude using linear regression,
and 3) using these regression coefficients (per subject, session, and
frequency band) to correct single-trial amplitudes for variability in
single-trial head position. We used this metric of height in the helmet
because we expected amplitude estimates from left and right S1
(which are positioned at the top center of the helmet) to be most
affected by it (this might be different for different cortical regions).
Because head height accounted for only a small percentage of the
variance in amplitude across trials (<5%), we decided not to perform
more sophisticated head-position correction algorithms.

Second, we corrected for noise in the single-trial estimates. For
this, we used a simulation approach (depicted in Fig. 5, A—C) with
which we derived which true amplitude-perception regression slope
formed the basis of our observed slope, given the observed amount of
noise. First, we log-transformed our amplitude estimates such that
their distribution closely approximated a normal distribution (Fig. 5, A
and D). As before, we linearly transformed them as percentage change
from the mean amplitude in the uncued trials. Second, we estimated
the sampling variance of these log- and linearly transformed ampli-
tude estimates. For this, we made use of the fact that the multitaper
method calculates multiple independent Fourier coefficients per trial,
one per taper. Per trial, we calculated the log- and linearly transformed
amplitudes of these taper-specific Fourier coefficients, calculated their
variance across tapers, and divided this variance by the number of
tapers to estimate the trial-specific sampling variance. We then aver-
aged this quantity across trials. It is crucial to specify under which
conditions this trial-averaged sampling variance estimate is unbi-
ased, that is, under which conditions it neither over- nor underes-
timates the true sampling variance. We will consider this point in detail
below. In the third step, we used the estimated sampling variance to
reconstruct the true log-amplitude distribution as a normal distribution
with mean equal to the observed mean and variance equal to the
observed across-trial variance minus the estimated sampling variance
(Fig. 5A). Using this distribution together with the noise distribution
(normal distribution with 0 mean and variance equal to the estimated
sampling variance), by means of simulation, we derived which true
amplitude-perception regression slope would, after adding noise, yield
the empirically observed 1 (Fig. 5, B and C).

In our simulation method, we used a 1-dimensional grid (100 steps)
of regression coefficients centered on the empirically observed coef-
ficient. For every point in this grid, we randomly drew trial-specific
amplitudes from our reconstructed true distribution and assigned
every trial to be a hit or miss depending on the probability of a hit
given the simulated regression coefficient and the drawn amplitude
value. We then randomly drew noise from our noise distribution,
added it to the amplitudes drawn from the reconstructed true distri-
bution, performed a logistic regression, and calculated the simulated
percentage explained improvement. To obtain a reliable estimate, we
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repeated all the above steps for the full grid numerous times. After
every repetition, we calculated, for each grid point, the running
average of the simulated percentage explained improvement. We then
identified the best grid point as the point for which this running
average was closest to the empirically observed percentage. Absolute
deviations were as small as 0.109 = 0.024% for the single predictor
model and 0.015 = 0.004% for the dual-predictor model (discussed
below). We continued until the 95% confidence interval (calculated
across simulations) of this simulated percentage for the best grid point
fell within £1%. As our estimate of the true regression slope, we
took the regression coefficient belonging to the best grid point.
With this estimated true regression coefficient, the true percentage
explained improvement was derived. These simulations were per-
formed for each participant separately, and outcomes were aver-
aged across participants.

This quantification of the explained improvement is only unbiased
if the signal is stationary, because only in this case our estimate of the
true amplitude-perception regression slope is unbiased. This is be-
cause only under this assumption of a stationary signal can we rely on
the standard theory of multitaper estimation to obtain an unbiased
estimate of the single-trial noise variance from the Fourier coefficients
of the multiple independent tapers (Percival and Walden 1993, p. 360,
point 2; Thomson 1982, section IV). Under violation of this assump-
tion, the noise of the signal is overestimated because part of the within-
trial variance across tapers is due to the nonstationarity of the true
underlying signal. This leads to an overestimation of the true amplitude-
perception regression slope and thereby also the percentage explained
improvement. It is important to realize that the percentage explained
improvement is potentially overestimated but cannot be underesti-
mated. For this reason, it is a conservative strategy to consider our
quantification as the maximal percentage explained improvement.
Because perfect stationarity is unlikely to hold, the real percentage
explained improvement likely lies between the percentages that are
obtained before and after noise correction.

Finally, we extended our simulations to the combined - and
B-amplitude model by drawing from bivariate normal distributions.
Besides the sampling variances of the a- and the 8-log amplitudes, we
also calculated their sampling covariance, making use of the within-
trial covariance across the tapers. Likewise, we calculated the cova-
riance across trials. This allowed us to reconstruct noise and true
bivariate distributions required for our simulation. Simulated percent-
age explained improvement was calculated using multiple logistic
regression, and simulations were performed for a 2-dimensional grid
(25 X 25 steps) containing coefficients for o and . As our estimate
of the true pair of regression coefficients, we took the pair of
coefficients belonging to the best grid point.

Statistics

All reported statistical tests were performed across subjects by
means of 1-sample or paired-samples #-tests (2-tailed, o = 0.05). All
reported measures of spread are =1 SE.

RESULTS

Attentional Orienting Improves Perception and Involves
Suppression of Contralateral Oscillatory a- and B-Band
Amplitude

As depicted in Fig. 2, A and B, orienting attention improved
perception by increasing the hit rate from 52 * 3% (mean over
subjects = SE) in the uncued to 81 * 2% in the cued condition
[#(11) = 8.491, P < 0.001] and by decreasing reaction times
from 685 = 83 ms in the uncued to 513 * 40 ms in the cued
condition [#(11) = —3.291, P < 0.01]. False alarm rates did
not differ between conditions [uncued 27 * 3%; cued 24 =+

3%; t(11) = 1.023, P = 0.328] and were lower than hit rates
for all subjects. This indicates performance well above chance.

It is well-established that attentional orienting to upcoming
sensory events involves an anticipatory modulation of oscilla-
tory amplitude within sensory cortex (Anderson and Ding
2011; Foxe et al. 1998; Gould et al. 2011; Haegens et al.
2011a; Jones et al. 2010; Rohenkohl and Nobre 2011; Siegel
et al. 2008; Snyder and Foxe 2010; Thut et al. 2006; van Ede
et al. 2010, 2011; Worden et al. 2000; Wyart and Tallon-
Baudry 2008). To verify this in our data, we computed time-
and frequency-resolved oscillatory amplitudes for the recon-
structed source signals originating from left and right S1 (see
MATERIALS AND METHODS). Figure 2C shows the time-frequency
representation of oscillatory amplitude in S1 following a cue to
the contralateral side, expressed as the percentage change from
the uncued condition. Orienting attention to an upcoming
tactile event involved an attenuation of oscillatory amplitude in
both the a- and the B-band [contralateral a: #(11) = —5.523,
P < 0.001; contralateral 3: #(11) = —7.215, P < 0.001].
Figure 2D shows source reconstructions of this anticipatory
modulation, separately for anticipation of a left and a right
thumb stimulus. Consistent with previous findings (van Ede et
al. 2011), the anticipatory suppression occurs predominantly
contralateral to the cued hand and includes S1.

We now asked how much of the perceptual improvement
can be accounted for by these neural signals.

Quantifying the Contribution of Anticipatory Amplitude
Suppression to Perceptual Improvement with Attention

Spontaneous fluctuations in oscillatory amplitude are corre-
lated with perceptual performance (Jones et al. 2010; Linken-
kaer-Hansen et al. 2004; van Dijk et al. 2008). We capitalized
on this relation to quantify the contribution of anticipatory
amplitude suppression to attentional improvement.

Figure 3 illustrates the rationale of our quantification (see
also MATERIALS AND METHODS). First, we used data from the
uncued condition to estimate the relation between prestimulus
amplitude and perceptual performance in the absence of atten-
tional orienting (red data points). For visualization of this
relation, we sorted trials by amplitude and grouped them into 8
nonoverlapping bins (cf. Jones et al. 2010; Linkenkaer-Hansen
et al. 2004). As can be seen at the fop of Fig. 3, there is a
close-to-monotone relation between prestimulus amplitude and
perceptual performance, with lower prestimulus amplitude pre-
dicting higher perceptual performance. As part of our quanti-
fication, we modeled this relation at the level of the single-trial
data. As adequate models for these empirically observed close-
to-monotone relations, we used logistic regression for detec-
tion responses (hit/miss; a dichotomous variable) and linear
regression for reaction times (a continuous variable; Fig. 3,
middle). These models will be denoted as amplitude-perception
regression lines. Our rationale is as follows: if perception were
fully determined by a- and B-band amplitudes, then attention-
induced changes in perception should be fully accounted for by
attention-induced changes in these variables. In this case, the
amplitude-perception regression lines should overlap between
the cued and the uncued conditions. Alternatively, the degree
to which these regression lines do not overlap (as quantified by
the vertical distance between them) indicates the degree to
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which attention-induced changes in perception cannot be ex-
plained by these variables.

Before describing the steps in our quantification, note that
the relations between amplitude and perception are highly
similar for the uncued (red data points) and the cued (blue data
points) conditions. This shows that the relation between am-
plitude and perception is itself not altered by attentional cue-
ing. Moreover, for the ranges in which our amplitudes oc-
curred, the cued and uncued regression lines were roughly
linear and parallel. Because of this, our quantification could be
based on the regression line of only the uncued condition
together with the average attention-induced change in ampli-
tude and perception in the cued condition (see MATERIALS AND
METHODS).

Our quantification involved three steps (numbered 1-3 in
Fig. 3). First, we quantified the anticipatory amplitude suppres-
sion as the difference between the mean amplitudes in the cued
and uncued condition (blue and red vertical lines in Fig. 3, A
and B, bottom). Second, we used the amplitude-perception
regression line from the uncued condition to predict the im-
provement in perception that would follow from this anticipa-
tory amplitude suppression in the cued condition (i.e., the
leftward shift along the regression line equal to the decrease in
amplitude after cueing; Fig. 2C). Third, we calculated the
percentage of the attentional improvement that can be ex-
plained by the amplitude suppression (denoted the percentage
explained improvement) by taking the ratio of predicted over
actual attentional improvement and scaling it as a percentage.
As illustrated by the vertical distance between the amplitude-

N
o

-1.0 -0.5 0
Time [s]

perception regression line and the mean cued amplitude (blue
data point), only part of the attentional improvement can be
explained by the anticipatory amplitude suppression. For ex-
ample, according to the relation between amplitude and per-
ception in Fig. 3A, top, the anticipatory amplitude suppression
in the a-band would lead to an improvement of ~5% in hit
rate. The actual improvement was ~65%, and therefore the
anticipatory amplitude suppression explains 5 + 65 X 100 =
7.7% of the attentional improvement.

The percentage explained improvement was calculated for
each subject and averaged subsequently. Explained improve-
ment was highest for contralateral amplitudes: for the a-band
this was 5.8 £ 1.5% (P < 0.005), and for the B-band this was
7.0 £ 1.5% (P < 0.001).

For reaction times (Fig. 3C), only contralateral [-band
amplitude predicted behavior [#(11) = 2.938, P < 0.05] and
explained 12.5 = 6.0% of the attentional improvement. This
phenomenon was less robust, and therefore we will exclusively
focus on hit rate in the following.

We investigated to what extent a- and 3-band amplitude in
the contralateral hemisphere contributed independently to the
explained improvement. We found that combining contralat-
eral a and 8 explained only an additional 1.7 £ 0.8% [#(11) =
2.065, P = 0.063] of the improvement compared with using
only contralateral 3 (an increase in explained improvement
from 7 to 8.7%). This small and nonsignificant improvement is
a consequence of the fact that amplitude fluctuations in the a-
and B-band are highly correlated, and therefore their influence
on somatosensory perception is not unique. In fact, we ob-
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Fig. 3. Rationale for the quantification of the percentage of attentional improvement explained by amplitude suppression. A, fop: hit rate as a function of
prestimulus amplitude in the a-band. Trials from the uncued (red) and cued (blue) condition were separately sorted by amplitude and grouped into 8 bins. Data
are normalized as the percentage change from the mean in the uncued condition. The dark blue data point shows mean amplitude and hit rate in the cued condition,
which was used for calculation of the percentage explained improvement. Error bars indicate SE. Middle: fitted regression slope, analog to binned data on fop.
Slope is depicted for the average subject. In practice, quantification was performed per subject. P(hit) represents the probability of a correct detection. Bottom:
distribution of prestimulus amplitudes, separately for cued and uncued trials. Vertical dashed lines indicate mean amplitude. B: same as A for amplitudes in the
B-band. C: same as A showing reaction time (in hit trials) as a function of 8-band amplitude. Quantification of the percentage explained improvement involved
1) estimating the anticipatory amplitude suppression, 2) calculating the predicted improvement in perception that would follow from this anticipatory suppression,
and 3) comparing the predicted improvement with the observed improvement. This calculation was based on the fitted regression lines (middle).

served an average across-trial correlation between a- and We may have underestimated the explained improvement
B-amplitude of 0.564 = 0.038. (Because of the inherent unre- because our predictor variables may not have been the most
liability of the amplitude estimates, this correlation underesti- predictive ones. To assess this, we investigated to what extent
mates the true correlation. We will correct for this later.) the explained improvement depends on the spatial, spectral,

>

Fig. 4. Explained improvement is frequency-specific
and depends on the duration of the time window.
2 A: percentage explained improvement in hit rate as a
function of the frequency of the prestimulus amplitude.

Amplitude was estimated in a 1-s prestimulus window
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Fig. 5. Correcting for noise reveals maximal explained improvement. A: observed amplitude, derived noise, and reconstructed true amplitude distributions used
in the simulation procedure. The observed distribution involves log-transformed amplitude and resembles a normal distribution. The noise distribution is modeled
as a normal distribution with SD equal to the SE calculated across tapers. The true amplitude distribution is modeled as a normal distribution with variance equal
to the difference between the observed and the noise variance. o, 0,ise» aNd O, refer to the SD of the observed, noise, and true distributions. u Refers to
their means. nTapers refers to the amount of tapers used in the estimation of oscillatory amplitude. B: true slopes were estimated by simulating the effect of adding
the observed amount of noise to numerous (see grid between A and B) noise-free slopes. B1(1), B1(2), and B1(N) refer to the logistic regression coefficients (see
MATERIALS AND METHODS) used in simulations 1, 2, and N. See MATERIALS AND METHODS for the amount of simulations (V) performed. C: the simulated noise-free
slope that, after adding noise, most closely resembled our observed slope was taken as the estimated true slope. With this slope, estimated true percentage
explained improvement was calculated. Data in A—C represent the average participant (we actually performed this simulation per participant and averaged the
outcomes). For our multiple-predictor model (involving both a- and B-amplitude), we performed similar simulations using bivariate observed, noise, and true
distributions. D: logistic regression fits for the originally observed, head-position-corrected, and combined head-position- and noise-corrected (estimated true)
relation between prestimulus B-amplitude and hit-rate probability. Bottom shows log-transformed amplitude distributions, which approximate normal
distributions (a requirement for our simulations). E: percentage explained improvement using the original, head-position-corrected, and estimated true slopes.
Error bars indicate SE. a- And $-band amplitudes were used as combined predictors and estimated over 950- and 250-ms windows for uncued and cued data,
respectively (Fig. 4).

and temporal aspects of our predictor variables. First, it may be
that the S1 sources, which were extracted using a localizer, did
not reflect the perceptually relevant a- and 3-band amplitudes.
We therefore extracted sources from the spatial topography of
the anticipatory modulation (Fig. 2D) and performed the same
analysis. With these new sources, we obtained highly similar
results (a: 4.9 = 1.5%; B: 7.1 £ 1.8%). Second, also pertaining
to the spatial aspect, instead of unilateral amplitudes, we tested
amplitude lateralization (the difference between contra- and
ipsilateral S1 amplitude; cf. Thut et al. 2006) as a predictor.
Fluctuations in amplitude lateralization did not predict perfor-
mance (a: 1.8 = 0.9%, P = 0.066; B: 0.5 = 1.2%, P = 0.669).

Third, we performed a frequency-resolved analysis of the
percentage explained improvement, of which the results are
depicted in Fig. 4A. We found that « and B are the only
frequency bands that contribute to the prediction. Finally, we
investigated the dependence of our results on the prestimulus
time windows used to estimate oscillatory amplitude. In line
with studies in other groups (Jones et al. 2010; Linkenkaer-
Hansen et al. 2004), we had initially used a 1-s prestimulus
window for both cued and uncued trials. We now indepen-
dently varied the duration of the two windows: the prestimulus
window in the uncued trials used to estimate the regression
slope and the prestimulus window in the cued trials used to
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estimate the anticipatory modulation. Figure 4B shows the
explained improvement as a function of both window dura-
tions, which we obtained using the combined model with
contralateral «- and 3-band amplitude as predictors. The rela-
tion between amplitude and hit rate in the uncued condition is
relatively stable for time windows >600 ms. However, the
anticipatory suppression in the cued trials increases with
shorter time windows leading to a higher percentage explained
improvement. After a cue, it takes some time to suppress
oscillatory amplitudes, and hence the closer the window to the
actual stimulus, the stronger the modulation (Fig. 4C; see also
Fig. 2C). Using the best selection of time windows (950 ms
uncued and 250 ms cued), the explained improvement was 13.1 =
4.0% (compared with the 8.7 * 1.8% using the original time
windows; Fig. 4, B and C, ).

Correcting for Noisy-Amplitude Estimates

Up to this point, we have treated our amplitude estimates as
an accurate representation of neuronal activity. However, in
fact, these estimates reflect a combination of true amplitudes
(i.e., produced by a- and B-oscillations originating from con-
tralateral S1) and noise. This is important to consider because
noise in the predictor variable biases the slope of the regression
line toward 0. This phenomenon is known as regression atten-
uation. This implies that noise in the amplitude estimates will
lead to an underestimation of the slope of the true amplitude-
perception regression lines and therefore of the explained
improvement. (Note that variability in the criterion variable
around the regression line does not affect our quantification;
see DISCUSSION).

We dealt with this concern in two ways, one dealing with
across-trial and another with within-trial noise. First, we cor-
rected for the across-trial amplitude fluctuations caused by
trial-by-trial fluctuations in head position (i.e., height of the
head in the MEG helmet). Fluctuations in head position ac-
counted for <5% (r* = 0.048 = 0.015) of the total variance in
amplitude across trials. Correcting single-trial amplitudes
based on single-trial head positions did not alter the slope of
the amplitude-perception regression lines [a: #(11) = 0.392,
P = 0.703; B: «(11) = —0.318, P = 0.757].

Second, we corrected for within-trials noise. For estimation
of the noise variance, we made use of the fact that the
multitaper method (Percival and Walden 1993) of spectral
estimation provides multiple independent amplitude estimates
from a single data window, namely one per taper (see MATERI-
ALS AND METHODS). Using a simulation approach (see MATERIALS
AND METHODS), we reconstructed the true (noise-free) ampli-
tude-perception regression slope with which we could estimate
the true percentage explained improvement. (Note that this
percentage is only true under the assumption of signal station-
arity. Alternatively, it may be considered an upper bound to the
percentage explained improvement; see MATERIALS AND METH-
ops). Specifically, we drew data from a reconstructed true
amplitude distribution (Fig. 5A) and investigated the conse-
quences of adding the empirically observed amount of noise
(Fig. 5B). By simulating multiple amplitude-perception regres-
sion slopes and adding noise to these, we derived which true
amplitude-perception regression slope would have yielded the
one that was actually observed (Fig. 5C). This is called the
estimated true amplitude-perception relation. Figure 5C shows

the fitted logistic regression lines belonging to the originally
observed (noise-dependent and thus attenuated), the head-
position-corrected, and the estimated true slopes, all three
obtained using (B-amplitude as predictor.

We performed similar simulations using the model with both
a- and B-amplitudes as predictors. For these simulations, we
used bivariate true and noise distributions for which the cova-
riance structures were determined by the true amplitude cor-
relation (across trials) and the noise correlation (across tapers),
respectively. Because the within-trial noise of a- and 3-band
amplitude estimates were largely uncorrelated (r = 0.048 =
0.009), we had previously underestimated the signal correla-
tion: the estimated true correlation was 0.791 = 0.037. Figure
5D shows the results for this combined model. When correct-
ing for noise in our amplitude estimates, anticipatory suppres-
sion of oscillatory amplitudes can account for maximally 29 *
8.8% of the improvement in perception that occurs with atten-
tional orienting.

DISCUSSION

Systems and cognitive neuroscience have been very success-
ful in identifying neural signals that are involved in cognitive
functions and behavior. This is an important first step in
understanding the neurophysiological mechanisms by which
cognition and behavior are realized. An essential next step is
quantifying how much particular signals, either alone or in
combination, contribute to cognition and behavior. Here, we
employed a novel method that produces such a quantification
by using the relation between spontaneous neural and behav-
ioral fluctuations to determine how much of the task-induced
behavioral modulation can be explained by the cooccurring
neural modulations. We show that /) extracranially recorded
amplitude modulations from contralateral primary sensory cor-
tex can, at best, account for 29% of the perceptual improve-
ment with attentional orienting, and 2) distinct aspects of this
signal, a- and (-band oscillatory amplitudes, have a largely
shared contribution.

Discussing the results of our study, one can focus on the
explained or the unexplained part of the attentional improve-
ment. The maximal percentage explained (29%) was obtained
from local oscillatory amplitudes extracted from extracranial
signals that were recorded using MEG. It is commonly be-
lieved that this oscillatory activity reflects synchronized post-
synaptic currents (Hari and Salmelin 1997) with amplitude
suppression resulting from desynchronization of these currents
(Naruse et al. 2010; Pfurtscheller and Lopes da Silva 1999).
Crucially, postsynaptic currents are not related in a one-to-one
fashion to neuronal spiking, the signal for targeted communi-
cation between brain areas. From this perspective, it is reveal-
ing that a signal that depends on desynchronization of neuronal
input, and that is recorded extracranially, might explain up to
29% of the attentional improvement. An important question
therefore pertains to how anticipatory desynchronization in S1
influences the efficacy by which upcoming sensory information
(coded as spiking activity) is represented and transmitted
between brain areas. Concerning representation, desynchroni-
zation might reduce common (noise) fluctuations between
neurons, thereby increasing the coding capacity of the neuronal
population (Zohary et al. 1994). Indeed, the desynchronized
state is a fundamental aspect of cortical processing (Harris and
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Thiele 2011), and a reduction of correlated spike-rate fluctua-
tions by attention has been observed in sensory cortex (Cohen
and Maunsell 2009; Mitchell et al. 2009). Concerning trans-
mission, recordings in multiple layers of sensory cortex have
revealed that attention-induced desynchronization of a-oscil-
lations occurs primarily in infragranular layers (Buffalo et al.
2011). Because these layers project to upstream areas (Buffalo
et al. 2011), the observed anticipatory desynchronization in S1
might reflect preparatory regulation of the efficacy by which
thalamic relay nuclei can impact on S1 (Suffczynski et al.
2001).

At the same time, our data show that at least 71% of the
attentional improvement must be explained by signals from
different areas and/or different types of signals. Importantly,
this holds only for signals that are at least partially uncorrelated
with the amplitude modulations that we observed. For exam-
ple, a frontoparietal control region might be involved in ori-
enting of attention (Bressler et al. 2008), but its signals will not
explain additional attentional improvement if its only function
is to induce amplitude modulations in sensory cortex (Capo-
tosto et al. 2009). Concerning signals from different areas,
there may be a central role for the thalamus (Saalmann and
Kastner 2011). Consistent with this, thalamic activity is mod-
ulated by attention (O’Connor et al. 2002), and ongoing fluc-
tuations in thalamic BOLD activity predict somatosensory
detection (Boly et al. 2007). Next, secondary somatosensory
cortex (S2) is also modulated by attention (Chapman and
Meftah el 2005; Steinmetz et al. 2000). Importantly, attentional
modulation in S1 and secondary somatosensory cortex may
occur independently (Chapman and Meftah el 2005), allowing
for additional explained improvement. Finally, previous stud-
ies have suggested that perception is influenced by the balance
in activity between relevant (contralateral) and irrelevant (ip-
silateral) cortical areas (Drevets et al. 1995; Thut et al. 2006;
but see Cohen and Maunsell 2011). However, this could not be
confirmed in our study: /) the anticipatory modulation only
involved a contralateral suppression (Fig. 2D; in line with van
Ede et al. 2011); and 2) the balanced amplitude measure
(contralateral — ipsilateral) did not predict performance. Con-
cerning different types of signals, additional attentional im-
provement is likely accounted for by signals on a finer spatial
scale (e.g., anticipatory spike-rate increases; Luck et al. 1997;
Meftah el et al. 2009). Note here that such different signal
types might explain additional attentional improvement, not
because of differences in signal quality (because noise is
corrected for in our quantification) but because they are sen-
sitive to distinct neural processes. An important goal for future
experiments will be to reveal the extent to which these signals
and the observed oscillatory amplitude suppression indepen-
dently contribute to attentional improvement.

We found that both a- and B-band amplitude modulations
explain the attentional improvement: amplitude in both fre-
quency bands is suppressed during tactile anticipation (present
study; Anderson and Ding 2011; Jones et al. 2010; van Ede
et al. 2011) and is related to perceptual performance (present
study; Haegens et al. 2011a; Jones et al. 2010; van Ede et al.
2011). However, because a- and [(-band amplitudes were
highly correlated, their contributions to somatosensory percep-
tion and its improvement with attentional orienting were
largely shared. This contrasts with a number of observations
that suggest a dissociation between «- and 3-band oscillations:

compared with a-band oscillations, (-band oscillations 1)
localize more anterior (Salmelin and Hari 1994), 2) are mod-
ulated with a higher temporal flexibility during temporal ori-
enting of somatosensory attention (van Ede et al. 2011), and 3)
rebound earlier after tactile input (Cheyne et al. 2003). Open
questions remain with respect to the functional overlap be-
tween a- and (3-band oscillations and their underlying neuro-
physiological mechanisms (Jones et al. 2009).

A common method to establish the involvement of a neural
signal in behavior is demonstrating its correlation with that
behavior. However, we believe that demonstrating a correla-
tion is inferior to the quantification proposed in this paper. The
main problem with the correlation coefficient is its dependence
on sources of variability that are not of interest from the
perspective of the phenomenon under investigation (in our
case, behavioral improvement with attention). This becomes
most clear when this irrelevant variability is reduced by trial-
averaging the neural and behavioral measures. For example,
we observed that binned prestimulus (-amplitude (Fig. 3B)
correlated almost perfectly (r = —0.976) with hit rate. This
contrasts with the trial-by-trial correlation between hit rate and
B-amplitude, which was as low as —0.078 = 0.020. There are
two reasons for this low correlation: /) the measured neural
signals are inherently unreliable; and 2) single-trial fluctuations
in behavioral responses to an identical stimulus are partly
determined by stochastic fluctuations that are irrelevant to the
neural mechanisms that underlie some cognitive phenomenon
of interest (e.g., in our setup, electrical conductivity fluctua-
tions at the thumb due to sweating, which are most likely
unrelated to attention). This 2nd reason is the most important 1
because the attenuating effect of the unreliability of the mea-
sured neural signals (the 1st reason) can be corrected for in a
similar way as we did for our quantification. The crucial point
is that, in contrast to conventional correlational analyses, be-
havioral variability due to irrelevant stochastic fluctuations
does not affect our quantification. In fact, this variability
contributes to the variability around the regression lines,
whereas our quantification only depends on the vertical dis-
tance between these regression lines.

As pointed to above, our quantification is not affected by
fluctuations in variables that affect behavior as long as these
fluctuations occur independently of our experimental condi-
tions (i.e., the cued and uncued conditions). This holds true
even for cognitively relevant fluctuations such as those in-
volved in motivation. Throughout the experiment, motivation
might fluctuate, and this may affect behavior. (This may occur
via fluctuations in amplitude, which might contribute to the
slopes of our perception-amplitude regression lines.) Crucially,
however, if these fluctuations occur independently of the ex-
perimental conditions, they will leave the ratio between the
predicted and the actual improvement unaltered. (Analogously,
our quantification is unaffected by the motivation of the sub-
ject: subjects who pay more attention with cueing will have a
larger shift in both amplitude and perception but not a larger
ratio between the 2.) Alternatively, those variables for which
fluctuations do depend on our experimental conditions (e.g.,
motivation might be higher in cued trials) are considered
attentional by definition, and these will go into our quantifica-
tion. As desired, the part via which such variables influence
perception through amplitude modulations will go into the
explained part, whereas the part via which they influence
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perception through neural processes that are not reflected in
this signal will go into the unexplained part.

The knowledge provided by a cognitive or systems neuro-
science experiment relies on the relations between a cognitive
state or behavior and a limited set of neural signals, none of
which reflect all relevant aspects of neuronal processing. To
evaluate the scope of any such observed relation, it is thus
important to take explicitly into account the degree to which
the investigated signal is behaviorally relevant. Unfortunately,
for many signals, a quantification of this relevance has not been
established yet. In our study, we used oscillatory amplitudes
that were recorded extracranially using MEG and carefully
scanned the spatial, spectral, and temporal dimensions of this
signal (Fig. 4). We demonstrate substantial behavioral rele-
vance. At the same time, our quantification reveals the degree
to which relevant neuronal processes are invisible in extracra-
nially (MEG) recorded oscillatory amplitudes and thus must be
explored in different signals or, alternatively, in different
aspects of the same signal such as oscillatory amplitude and
phase (e.g., Busch et al. 2009).

The paradigm that is introduced here can be more widely
applied to investigate the contribution of other neural signals to
attentional improvement. First, contribution of similar signals
in different sensory modalities can be investigated (e.g., occip-
ital « in a visual task). Second, instead of behavioral perfor-
mance, the response variable can be a neurophysiological
signal that is affected by attention (e.g., an evoked response).
Third, the neurophysiological signal that is used to predict
behavior can be recorded during stimulus processing rather
than during anticipation. Fourth, other signals, such as BOLD
or spiking activity, can be used to represent the brain state. In
addition, by combining multiple predictors in a regression
model, it is possible to investigate to what extent distinct
signals independently contribute to the response variable. This
can be used to investigate, for example, whether frontoparietal,
thalamic, and sensory regions independently contribute to the
attentional improvement and also whether this holds for BOLD
and simultaneously recorded electrophysiological signals or
anticipatory and stimulus-induced signals.

Concluding, we have, to our knowledge, for the first time
quantified the cognitive/behavioral relevance of a particular
neural signal in the context of attentional orienting: MEG-
recorded anticipatory «- and (3-band amplitude modulations
have a largely shared contribution and account for maximally
29% of the improvement in perception that occurs with atten-
tional orienting. Our study reveals the behavioral relevance of
extracranially recorded oscillatory signals, and our method
provides a new means to quantify how much a particular set of
neural signals contribute to cognitive, behavioral, and neuro-
physiological phenomena.
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