
 Procedia Computer Science 20 (2013) 235 – 241

1877-0509 © 2013 The Authors. Published by Elsevier B.V.
Selection and peer-review under responsibility of Missouri University of Science and Technology
doi: 10.1016/j.procs.2013.09.267

ScienceDirect

Complex Adaptive Systems, Publication 3
Cihan H. Dagli, Editor in Chief

Conference Organized by Missouri University of Science and Technology
2013- Baltimore, MD

Autonomic Computing: A Framework to Identify Autonomy
Requirements

Mona A. Yahyaa, Manal A. Yahyaa, Dr. Ajantha Dahanayake*
aPrince Sultan University College for Women, King Abdullah Road, Riyadh 11586 Saudi Arabia

Abstract

Computing systems are ever growing in complexity. With that growth, the challenge of operating and maintaining them
increased. In certain conditions, these systems may exist in harsh and distant environments making such operations even more
difficult. To address the previous issues, the concept of autonomic computing originated. This concept, when applied fully will
result in machines capable of evolving and managing themselves. This research aims to develop a framework for software
engineers to apply autonomy in their Software Requirement Engineering phase by answering the question
the definition of auton . The findings shall ease the understanding of the complex problem of capturing
Adaptive requirements. This paper will present a proposed Requirements Engineering framework for Autonomic systems, in
addition to some examples of systems applying autonomy.

Keywords: Autonomic Computing; Self-Management; Adaptive Systems Requirements; Requirement Engineering

1. Introduction

Autonomic Computing (AC) is a relatively new term coined by IBM in the year of 2001. It describes systems that
are self-managing. The concept of autonomy was inspired by the autonomic nervous system that controls vital body

 Autonomic computing systems incorporate four main features: Self-
Configuration, Self-Healing, Self-Optimization, and Self-Protection [1], [2].

A Self-configured system configures itself according to the provided platform information to adopt the
environmental change. The Self-healing feature allows the system to detect and diagnose abnormal behaviour and
system failure then prepare an appropriate system repair accordingly. Moreover, self-optimization means that the
system is able to optimize all available resources automatically without searching for extra resources. Finally, self-
protection feature allows the system to protect itself from all unwanted behaviour and outside attacks [1], [2], [3].

* Corresponding author. Tel.: +966-11-494-8319.
E-mail address: ADahanayake@pscw.psu.edu.sa

Available online at www.sciencedirect.com

© 2013 The Authors. Published by Elsevier B.V.
Selection and peer-review under responsibility of Missouri University of Science and Technology

Open access under CC BY-NC-ND license.

Open access under CC BY-NC-ND license.

http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/

236 Mona A. Yahya et al. / Procedia Computer Science 20 (2013) 235 – 241

Some agents or systems are used every day without the AC features in them being recognized. An example is plug
and play feature which uses self configuration. Moreover, repair features of Microsoft Office are another AC
application. The repair feature uses self-healing procedures to fix the system whenever a problem occurs [9].

In 2001, IBM built a self-managing computing system to overcome the rapidly growing software complexity
problem. At 2005, IBM merged around 475 autonomic features into more than 75 products.

NASA is one of the leading organizations that build complex mission critical systems with autonomous
behaviour. To them, Autonomy provides great benefit; it helps developing spacecraft systems that can explore
regions of space where traditional crafts cannot explore. Some of the successful systems with autonomic features
developed by NASA are Deep Space 1, Earth Observing 1 and Mars Exploration Rovers.

The main idea is to give computing systems the capability to manage themselves given high-level objectives
from administrators [1]. These systems are most valuable in places that humans cannot reach due to distance or
danger. The main question in this research is
the complexity of such systems, we infer that it requires systematic collection of requirements on levels not
considered in conventional requirements engineering practices. Our research is concerned with exploring the
challenges associated with engineering the requirements of these systems; with a goal to provide software engineers
with a roadmap to identify and manage these requirements.

The remaining of the paper is structured as follows: part two will provide a history and background of autonomic
computing along with the related work done on adaptive systems. Part three describes our research methodology.
Part four is about the Challenges of Requirements Engineering for Autonomic Systems. Part five is our proposed
framework for Identifying Autonomy Requirements. Afterwards, we will discuss some future work and our findings
in part six. Part seven will conclude the research paper.

2. Related Work

Capturing requirements of an adaptive system is difficult. Much research was conducted in this topic but there
was no sufficient information on how to make a system autonomic. In [4], the authors suggested to use

ted an architecture for this
system which helps to use this approach. The paper also highlighted three basic methods to make a system
autonomic. Awareness Requirements
and Evolution Requirements to help in defining a proper design to be implemented in adaptive systems. Then, the
author proposed a goal-oriented modelling language to help analysts identify requirements of an adaptive system
and a runtime framework to help developers in implementing those requirements.

In [6], the authors explored the uncertainty condition in Dynamically Adaptive Systems (DAS). They used the
concept of threat modelling for the exploration of uncertainty environment that have great impact on DAS
requirements. Moreover, they provided a process that handles the requirements of a DAS.

A general model for self adaptive systems was discussed in [7]. The paper was about producing a general model

modelling that identifies requirements for adaptive systems. Goal modelling helps in identifying the functional and
non-functional requirements of an adaptive system.

Stakeholders usually tend to change their mind about system-to-be requirements. In [8], the authors argued about
 at runtime environment. They

used goal modelling to identify system requirements.
More studies on requirement engineering for autonomic systems are described in table 1.

237 Mona A. Yahya et al. / Procedia Computer Science 20 (2013) 235 – 241

Table 1. Studies on Requirements Engineering for Autonomic /Adaptive Systems

3. Research Methodology

An exploratory research methodology is used to answer the question of this paper. The procedure undertaken
involved as an initial phase: first, the collection of research papers discussing the idea of requirements engineering
for adaptive and autonomic systems. Second, the study of certain applications with autonomic capabilities [2], and
third, we reviewed some reports describing autonomic systems [16]. As a second phase a selection of papers in
direct relation to our topic were chosen, and the provided information was analyzed to derive an understanding. The
principles used in managing evolving requirements were identified. As a final phase we devised a framework that
explains to software analysts the main aspects to consider for accommodating software autonomy in the
requirements engineering phase.

4. Challenges of Requirements Engineering for Autonomic Systems

Meeting the vision of autonomic computing has placed many challenges on the software engineering practice.
These challenges are manifested in all development stages: design, implementation, testing, and verification and
validation. Autonomic computing design is a current research topic. According to [17], designing autonomic

Authors Study Description Tools, Languages, Approach Findings
Qureshi and Perini [10] Presented a scenario from the

tourism domain to explain how to
capture variability and flexibility
in requirements

Use goal-models and
ontologies to elicit
requirements

Proposed a characterization of
adaptive software. Variability and
alternative software behavior is
key to understanding adaptive
requirements

Silva Souza, Lapouchnain,
Robinson, Mylopoulos [11]

Attempted to formalize a new
class of requirements to address
adaptive requirements.

Goal Oriented RE (GORE).
Event engineering & Analysis
Toolkit (EEAT). Object
Constraint Language (OCL)

Proposed a new type of

elicitation and formalization of
such requirements.

Nauman A. Qureshi, Anna
Perini, Neil A. Ernst, John
Mylopoulos [12]

Authors presented a Travel
Companion system scenario to
explain their research as an
approach to enable requirements-
aware systems

Continuous adaptive
requirements engineering
approach (CARE) and RE

Proposed a goal-and user-
oriented framework for building
Self-Adaptive systems

N. Bencomo, J. Whittle,
P.Sawyer, A. Finkelstein,
E.Letier [13]

Authors studied the change of
requirement during runtime

- Defined a new concept

Alexei Lapouchnian, Sotirios
Liaskos,
John Mylopoulos, Yijun Yu
[4]

Authors studied the requirements
goal modeling and how to apply
autonomy on those requirements

- Proposed a way to use
requirements goal modeling and
gives a basic architecture that can
be used to develop autonomic
software

uza [5] The author looked at two different
types of requirements to help in
defining a proper design to be
implemented in adaptive systems

- Proposed a design for adaptive
system using goals requirements

Betty H.C. Cheng,
Pete Sawyer,
Nelly Bencomo,
Jon Whittle [6]

The authors introduce a goal
based modeling to develop
requirements for dynamically
adaptive systems

RELAX specification language Uncertainty must be handled
when developing for dynamically
adaptive systems

Pete Sawyer, Nelly Bencomo,
Jon Whittle, Emmanuel Letier,
Anthony Finkelstein [14]

The authors studied the
uncertainty in adaptive systems

- Proposed to use analogous
mechanisms to achieve
requirements reflection

Paola Inverardi, Marco Mori
[15]

The authors studied the foreseen
and unforeseen requirement
evolution during runtime

- Proposed a framework to handle
context-dependent requirements
at runtime

238 Mona A. Yahya et al. / Procedia Computer Science 20 (2013) 235 – 241

systems can be based on either hard computing or soft computing principals. A combination of these principles may
provide the solution to the design problem of autonomic systems.

conventional computing systems in which Software Requirements define specifically the actions captured from the
users and the required processing and output, autonomic systems should be context aware allowing for monitoring
the environment and adapting to the changes in it. That imposes a number of challenges on the Software engineer.

One of the main challenges is defining appropriate models to specify, understand, and implement autonomic
behavior. Engineers must understand the role of high level goals and how they will be decided upon and achieved
dynamically; they should also decide on the level of dynamism to incorporate into the software. High dynamism, in
which systems evolve and change throughout their lifetime, may lead to unexpected behavior [18]. As presented in
section 2, a number of research papers addressed the problem of autonomy requirements representation. Two main
concepts were most intriguing, Awareness Requirements and Requirements Reflection; with the first defining a new
type of requirements and the second proposing a way to analyze requirements at runtime. Autonomic systems
require the dynamic selection of optimal solutions from a number of alternatives at runtime. This selection is guided
by the occurring changes in the environment, an unattainable capability with static requirements [13]. Goal-oriented
modelling languages such as KAOS and i* are thought to be promising in this field since they integrate certain
aspects [13] allowing for automated reasoning about goals.

A second challenge recognized by the authors of [13] is the synchronization between requirements and
architecture. Changing requirements at runtime might affect the architecture of the software. That effect must be
managed carefully to ensure that the architectural components are changed smoothly so that no requirements or
goals are broken during the process. Consequently, Autonomy specific architectures have been formed. IBM
introduced what is now considered a prevalent architecture for autonomic systems [19], the MAPE architecture. This
architecture is composed of four key components: Monitor, Analyze, Plan, and Execute. Although it is widespread,
some researchers think that this architecture does not reflect autonomic systems completely [19]. Other architectures
are proposed, however with no solid achievement, such as the Intelligent machine Design (IMD) Architecture [19].

A major challenge with autonomic computing is dealing with uncertainty. The constantly changing environment,
and the efficiency of certain goals to attain the greater benefit impose a great challenge that must be well managed
during all stages of life-cycle including runtime [13].

5. Framework for Identifying Autonomy Requirements

This section presents the proposed framework for identifying Autonomy Requirements. As discussed earlier, the
focus of this paper is identifying Autonomy Requirements at the Requirements Engineering (RE) phase. The
framework developed shall be applied during the RE phase; although separate from the elicitation, analysis, and
validation of the base requirements.

6.1 Framework Elements

Following is a decomposition of the suggested framework. Inputs to the framework are the Requirements
specification and System Goals as defined by the stakeholders.

 System Environment: It is essential to analyze the environment in which the system will live. This will assist in

predicting the possible changes and required responses to be attained by the system.
 System Capability: By capabilities we mean what the system can do to interact with the environment in terms of

physical connections and data interaction.
 Level of Autonomy: autonomic computing is considered progressive in nature. There are five levels of

autonomy [17]: Basic, Managed, Predictive, Adaptive, and Autonomic. With the basic being the level in which
most IT systems are in nowadays; and the Autonomic level being the highest level. Deciding the level of
autonomy shall enable the engineers make correct choices on how the system in hand will be developed.

 Choice of Technology: a development technology might be dictated by the system requestors, or the domain in
which the software will operate. However, developing for autonomy requires a different development
environment that enables runtime adaptation. The XML-Based Autonomic Computing Expression Language
(ACEL) and Software Component Ensemble Language (SCEL) operating on a Java Runtime Environment are
two examples of technology supporting autonomic computing.

239 Mona A. Yahya et al. / Procedia Computer Science 20 (2013) 235 – 241

 Runtime Requirement Assessment: autonomic computing requires a mechanism to monitor and evaluate the
success or failure of achieving the system goals at runtime. This mechanism could be based on the chosen
technology or developed separately. Prior research has suggested a number of ways to this such as the definition
of Awareness Requirements [11], and the concept of requirements reflection [13].

 Decision-Making: understanding the runtime behavior of requirements helps in deciding about the action to be
taken by the system.

 Goal Achievement Alternatives: clarifying alternative ways to achieve goals is an essential part for developing
autonomic requirements. The uncertainty associated with the environment in which autonomic systems exist,
may hinder certain actions. However, that should not prevent the system from achieving the main goal.

Table 2. Autonomy Levels [17]

Level Administrator Role System Role
Basic Set Up, Monitor, Enhance System Execute Tasks
Managed Analyze information, Make decisions, take action Collect information in a consolidated view
Predictive Make decisions, take action Recognize patterns, provide advice on action
Adaptive Observe, ensure following policies Take the right action
Autonomic Monitor business processes, alter objectives Operation is governed by business policies

 Fig 1. Depicts the requirements abstraction for autonomic systems.

240 Mona A. Yahya et al. / Procedia Computer Science 20 (2013) 235 – 241

Table 3. Framework to Identify Autonomic Requirements

Framework to Identify Autonomic Requirements

Input Requirements Specifications, System Goals Output Autonomy Requirements to include in the Requirements Document

Aspects to Consider Description Objective Available Approaches

System Environment
Define the Environment in which the
developed system will exist in.

Capture environment
information

 Natural language representation of environment
elements

System Capabilities
Define the systems connections and
interaction with the environment.

Identify all
connections, sensors
and Effectors

 Analyze the base requirements of the system

Autonomy Level
Decide on the desired level of
autonomy, to determine functionality.

Minimize cost,
Increase efficiency
and dependability

 Five levels of Autonomy [17]: Basic, Managed,
Predictive, Adaptive, Autonomic

 Eight levels of Autonomy Assessment Scale [20]

Technology Choice
Describes the development
environment and programming
language.

Familarity of
technology or
available training

 Autonomic Computing Expression Language
(ACEL)

 Software Component Ensemble Language (SCEL)
 Agent-Oriented Programming Languages [21]

Runtime
Requirement
Assessment

Monitor and evaluate the success or
failure of achieving the system goals at
runtime.

Provide an acuurate
measure of
requirements success

 Awareness Requirements [11]
 The concept of requirements reflection [13].

Decision Making
Describe a mechanism for task
planning and decision making to
achieve goals

Optimize decision
making process

 Rule-Based approach
 Control Theory Approach
 Biology inspired processes

Alternatives to Goal
Achievement

Describe possible alternatives to
achieve goals

Provide more than
one path to goals

 Further Analysis of the goals

6. Discussion

We started this research with an avid curiosity to understand the development process of autonomic systems. This
process happened to be more complex than the development of conventional software. It required the achievement
of high level goals taking into consideration the changing environment. Defining the requirements for autonomic
systems requires identifying certain aspects surrounding and contributing to the system. It is not adequate to
consider only the base requirements and goals. The identification of elements from our proposed framework shall
support the system analyst further understand the problem and ease the definition of autonomy requirements. The
Application of the framework is out of the scope of this paper; it will be considered in future work.

7. Conclusion

Autonomic computing is a promising approach to the development of computing systems that aim to minimize
the effort done by IT personnel and reduce cost. At the present time, some computing systems are equipped with
basic autonomy features. However, achieving full autonomy is still far from being accomplished. Many studies

RE from the representation point of view. However, none attempted
to create a generic view of the elements surrounding such systems. In our work we explored the arena of autonomic
computing in an attempt to create a framework for software engineers to understand the aspects affecting the RE
process associated with developing such systems. The presented framework is based on prior research in the field;
however with upcoming research other factors may emerge and require the expansion of the framework.

Future work will focus on the application of this framework on a real case of autonomic system development to
evaluate its effectiveness. With practical examination, further enhancement to the framework may prove necessary.

241 Mona A. Yahya et al. / Procedia Computer Science 20 (2013) 235 – 241

Acknowledgement

This work was done as a required course for a Masters Degree in Software Engineering at Prince Sultan
University. We would like to thank our families for their constant support and patience in our pursuit of knowledge.

References

1. J. O. Kephart and D. M. Chess, "The Vision of Autonomic Computing," IEEE Computer Society, January 2003.

2. S. S. Laster and A. O. Olatunji, "Autonomic Computing: Towards a Self-Healing System," in American Society for Engineering Education,
Illinois, Indiana, 2007.

3.

4. A. Lapouchnian, S. Liaskos, J. Mylopoulos and Y. Yu, "Towards Requirements-Driven Autonomic Systems Design," in DEAS 2005, St.
Louis, Missouri, USA, May 21, 2005.

5. V. E. S. Souza, "A Requirements-Based Approach for the Design of Adaptive Systems," in ICSE, Zurich, Switzerland, 2012.

6. B. H. Cheng, P. Sawyer, N. Bencomo and J. Whittle, "A Goal-Based Modeling Approach to Develop Requirements of an Adaptive System
with Environmental Uncertainty," in DEAS 2005, East Lansing, Michigan 48824, USA, 2005.

7. D. B. Abeywickrama, N. Bicocchi and F. Zambonelli, "SOTA: Towards a General Model for Self-Adaptive Systems," in Enabling
Technologies: Infrastructure for Collaborative Enterprises (WETICE), 2012 IEEE 21st International Workshop on, Toulouse, 2012.

8. V. E. S. Souza, A. Lapouchnian and J. Mylopoulos, "(Requirement) Evolution Requirements for Adaptive Systems," in Software
Engineering for Adaptive and Self-Managing Systems (SEAMS), 2012 ICSE Workshop, Zurich, 2012.

9. "Chapter 1," in Autonomic & Grid Computing: What, Why, and How?, Retrieved April, 2013, pp. 1 - 35.

10. A. P. Nauman A. Qureshi, "Engineering adaptive requirements," in SEAMS '09 Proceedings of the 2009 ICSE Workshop on Software
Engineering for Adaptive and Self-Managing Systems, Vancouver, 2009.

11. A. L. W. N. R. Vítor E. Silva Souza, "Awareness Requirements for Adaptive Systems," in SEAMS '11 Proceedings of the 6th International
Symposium on Software Engineering for Adaptive and Self-Managing Systems, Waikiki, Honolulu, 2011.

12.4 N. A. Qureshi, A. Perini, N. A. Ernst and J. Mylopoulos, "Towards a Continuous Requirements Engineering Framework for Self-Adaptive
Systems," in First International Workshop on IEEE, Sydney, NSW, Sept 2010.

13. J. W. P. S. A. F. E. L. Nelly Bencomo, "Requirements Reflection: Requirements as Runtime Entities," in ICSE '10 Proceedings of the 32nd
ACM/IEEE International Conference on Software Engineering, New Your, 2010.

14. P. Sawyer, N. Bencomo, J. Whittle, E. Letier and A. Finkelstein, "Requirements-Aware Systems A research agenda for RE for self-adaptive
systems," in 2010 18th IEEE International Requirements Engineering Conference, 2010.

15. P. Inverardi and M. Mori, "Requirements Models at Run-time to Support Consistent System Evolutions," in 2nd International Workshop,
Trento, Aug. 2011.

16. G. Rabideau, D. Tran, S. Chien, B. Cichy, R. Sherwood, D. Mandl, S. Frye, S. Shulman, J. Szwaczkowski, D. Boyer and J. V. Gaasbeck,
"Mission Operations of Earth Observing-1 with Onboard Autonomy," in Space Mission Challenges for Information Technology, 2006.
SMC-IT 2006. Second IEEE International Conference, Pasadena, CA, Retrieved Feb, 2013.

17. A. S. Sandeep Kumar Chauhan, "Autonomic Computing: A Long Term Vision In Computing," Journal of Global Research in Computer
Science, vol. 3, no. 5, pp. 65-67, 2012.

18. G. J.C., v. d. Hoek and A. T. R.N., "Architectural Runtime Configuration Management in Support of Dependable Self-Adaptive Software"
In: Workshop on Architecting Dependable Systems. St. Louis (MO), USA, 2005.

19. R. J. A. M. P. Haffiz Shuaib, "A Framework for Certifying Autonomic Computing Systems," in ICAS 2011: The Seventh International
Conference on Autonomic and Autonomous Systems, Venice/Mestre, 2011.

20. R. W. Proud, J. J. H. and R. B. Mrozinski, "Methods for Determining the Level of Autonomy to Design into a Human Spaceflight Vehicle:
A Function Specific Approach," NASA Johnson Space Center, Houston, Texas, 2010.

21. -
Modeling and Applications, vol. 8, no. 2, May 2011.

