
Queueing Syst (2013) 74:65–104
DOI 10.1007/s11134-012-9326-6

On scheduling a multiclass queue with abandonments
under general delay costs

Barış Ata · Mustafa H. Tongarlak

Received: 2 January 2012 / Revised: 3 July 2012 / Published online: 7 September 2012
© Springer Science+Business Media, LLC 2012

Abstract We consider a multiclass queueing system with abandonments and general
delay costs. A system manager makes dynamic scheduling decisions to minimize
long-run average delay and abandonment costs. We consider the three types of delay
cost: (i) linear, (ii) convex, and (iii) convex–concave, where the last one corresponds
to settings where customers may have a particular deadline in mind but once that
deadline passes there is increasingly little difference in the added delay. The dynamic
control problem for the queueing system is not tractable analytically. Therefore, we
consider the system in the conventional heavy traffic regime and study the approx-
imating Brownian control problem (BCP). We observe that the approximating BCP
does not admit a pathwise solution due to abandonments. In particular, the celebrated
cµ rule and its extension, the generalized cµ rule, which is asymptotically optimal
under convex delay costs with no abandonments, are not optimal in this case. Con-
sequently, we solve the associated Bellman equation, which yields a dynamic index
policy (derived from the value function) as the optimal control for the approximating
BCP. Interpreting that control in the context of the original queueing system, we pro-
pose practical policies for each of the three cases considered and demonstrate their
effectiveness through a simulation study.

Keywords Dynamic control of multiclass queueing systems · Abandonments ·
Heavy traffic analysis · General delay costs

Mathematics Subject Classification 60K25 · 90B36 · 90B22 · 68M20

B. Ata · M.H. Tongarlak (!)
Kellogg School of Management, Northwestern University, Evanston, IL 60208, USA
e-mail: m-tongarlak@kellogg.northwestern.edu



66 Queueing Syst (2013) 74:65–104

1 Introduction

This paper studies dynamic scheduling of a multiclass queue with abandonments in
the heavy traffic regime. The objective is to minimize the average delay and abandon-
ment costs. We consider three types of delay cost: (i) linear delay costs, (ii) convex
delay costs, and (iii) convex–concave delay costs. A linear delay cost models the
situation in which customers’ marginal delay cost is constant. A convex delay cost
is appropriate for situations where customers have a general idea on their desirable
“deadline” and longer delays than their deadline are increasingly unattractive. Delays
shorter than a customer’s implicit deadline are attractive but not unduly so.

Convex–concave delay costs were first introduced by Ata and Olsen [4], and fur-
ther analyzed by Akan et al. [1] and Ata and Olsen [5]. A convex–concave, or “S-
shaped”, cost curve models the situation where customers have a particular deadline
in mind but once that deadline has passed, the longer delays are increasingly less
unattractive, i.e. in that range the delay cost function is concave. Indeed, Leclerc
et al. [40] argue through various behavioral experiments that the shape of the delay
cost function depends on the context effects. It follows from their experiments that
the delay cost function is concave in the range where the delay is relatively long,
while it can be convex otherwise.

As shown in [4], for convex–concave delay costs the convex hull of the delay cost
function serves as a lower bound to the system costs. The key idea behind designing
good policies for the convex–concave delay costs is to asymptotically approach the
cost incurred by the convex hull of the delay cost function.

Our work extends the existing work in several significant ways and makes the
following contributions. First, in each of the cases considered, by solving a Bell-
man equation, we provide a novel dynamic index policy, which crucially depends on
the derivative of the value function (or the shadow price of workload). Second, we
highlight the important role abandonments play in controlling queueing systems. In-
deed, under abandonments, the familiar cµ rule, cf. [19, 32, 35], and a generalization
of that for convex delay costs (Gcµ rule), cf. [57], are not optimal. This is one of
the important insights of our paper. To see why these are no longer (asymptotically)
optimal, note that the (asymptotic) optimality of cµ or Gcµ policies (under no aban-
donments) hinges on the following two simple observations: (i) the evolution of the
workload (i.e. hours of work remaining for the server) is independent of the schedul-
ing discipline used as long as the scheduling policy is work-conserving; (ii) given a
particular workload level in the system, the goal is to distribute the workload among
various job classes so as to minimize the delay cost rate. The former assertion is
no longer true under abandonments, because jobs of various classes may abandon
at different rates, and hence, it makes a difference whether the workload is kept in
one class versus another. In other words, the inclusion of abandonments may turn a
“greedy” scheduling policy into a “nongreedy” one. While in a greedy scheduling
policy, the server gives priority to the jobs with the highest immediate cost rate, this
is not necessarily the case under a nongreedy policy. Under a nongreedy policy the
server may serve jobs that do not have the highest immediate cost rate, but perhaps
have a high abandonment rate and thus allows the system to forgo future abandon-
ment costs. Namely, abandonments crucially change the system behavior and calls for



Queueing Syst (2013) 74:65–104 67

a more sophisticated style of analysis to characterize the optimal scheduling policy,
which we undertake in this paper.

Our third contribution is to propose practical policies for the original queueing
system. We test their performance against benchmarks (including cµ,Gcµ rules etc.)
and show that our proposed policies can offer significant benefits. Fourth, the convex–
concave case presents additional challenges, which we overcome using the convex
hull approach developed in [4]. The contribution of our paper (in the case of convex–
concave delay costs) over Ata and Olsen [4], Akan et al. [1] and Ata and Olsen [5]
is that it extends those to incorporate the abandonment behavior which is a crucial
model element in many practical settings. Finally, we also provide a novel method
for constructing a solution to the Bellman equation arising in the analysis, which
may be of interest in its own right.

The rest of the paper is structured as follows. Section 2 reviews the related lit-
erature. Section 3 introduces the scheduling problem. The approximating Brownian
control problem is introduced in Sect. 4 and solved in Sect. 5. Section 6 proposes
policies for the original queueing system, which are tested in Sect. 7. Section 8 con-
cludes. Appendix A provides a formal derivation of the approximating Brownian con-
trol problem, while Appendix B provides various auxiliary results and the technical
proofs.

2 Literature review

There is a vast literature that considers the analysis, design and control of queue-
ing networks; see [18] for a classical survey and [55] for a more recent survey.
An important stream of research uses heavy traffic approximations to study schedul-
ing problems in a dynamic stochastic environment; see, for example, [3, 10, 11, 16,
25–31, 36–39, 42, 46–52, 56, 57, 59–66]. Also see [33] for an overview of due-date
improvement policies, which relates to design and control of queueing systems.

The objective of minimizing delay costs plays a prominent role in the literature
on scheduling multiclass queueing systems. In the case of linear delay cost rates,
the cµ rule assigns static priority levels to jobs in increasing order of their index
ckµk . This rule minimizes the delay cost in systems with Poisson arrivals and lin-
ear delay cost rates, cf. [19, 32, 35]. This result is extended to convex and convex–
concave delay costs in an asymptotic sense: In heavy traffic, a dynamic version of
the cµ rule minimizes convex delay costs asymptotically, see [57]; similarly, a dy-
namic cost-balancing policy based on convex-hull functions minimizes the delay cost
rate incurred under convex–concave delay costs; see [1]. Both Van Mieghem [57] and
Akan et al. [1] are based on the following simple observations: (i) the evolution of the
workload (as measured by hours of work remaining in the system for the server) is
independent of scheduling discipline used (as long as the scheduling policy is work-
conserving); (ii) given a particular workload level in the system, both policies strive
to distribute the workload among various job classes so as to minimize the instan-
taneous delay cost rate.1 Combining these two features leads to an asymptotically

1Akan et al. [1] also establish the incentive compatibility of their proposed scheduling rule when customers
are strategic.



68 Queueing Syst (2013) 74:65–104

optimal pathwise policy, i.e. independent of the second order problem data; e.g. vari-
ance of interarrival and service times.

The recent survey [58] provides a thorough overview of the literature on the anal-
ysis of queueing systems with abandonments. In addition to the references covered in
[58], recent work by Atar et al. [8, 9] prove optimality of cµ/θ index policy for over-
loaded queues with abandonments. Overloaded queues are of interest due to their ap-
plicability to various important problems, including deceased donor organ transplant
waiting lists; see for example [7]. Atar et al. [8, 9] focus on fluid scale optimality
for overloaded queues, whereas our focus is on diffusion scale optimality for criti-
cally loaded systems for which such static priority rules will not be optimal as will
be discussed next.

As mentioned earlier the key to the results of [1, 57] was that the evolution of
the workload was independent of the scheduling policy. This is no longer true under
abandonments. Jobs of various classes may abandon at different rates and they reduce
the workload in the system at different rates. Hence, it makes a difference whether the
workload is kept in one class versus another. In other words, abandonments crucially
change the system behavior and call for a more sophisticated style of analysis to
characterize the optimal scheduling policy. More specifically, the inclusion of aban-
donments may turn a “greedy” scheduling policy into a “nongreedy” one. While in
a greedy scheduling policy, the server gives priority to the jobs with the highest im-
mediate cost rate, this is not necessarily the case under a nongreedy policy. Under
a nongreedy policy the server may serve jobs that do not have the highest immedi-
ate cost rate, but perhaps have a high abandonment rate and thus allow the system to
forgo future abandonment costs. This observation underscores the contribution of our
work. Indeed, abandonments require comparing the immediate cost of current actions
with the future impact of these actions through the dynamic programming approach,
which helps assess the “shadow price” of workload displacements. In what follows,
we solve the associated Bellman equation and propose a policy based on that solution,
which makes the current-future cost trade-off optimally. Interestingly, the proposed
policy crucially depends on the value function derived from the Bellman equation
and the second order problem data, hence, is not a pathwise solution.

The asymptotic analysis of our problem lends itself to a drift rate control problem
on the positive real line. There have been several related papers in recent years which
consider controlling the drift rate of a diffusion. Ata et al. [6] study the drift rate con-
trol of a reflected diffusion on a bounded interval under general costs of drift control.
The authors derive closed-form expressions for the optimal policy and various other
quantities of interest. Ata [2] applies a similar framework to an order fulfillment prob-
lem in make-to-order manufacturing and characterizes the optimal admission control
problem as a nested-threshold policy, where explicit formulas are derived for the
thresholds.

Two closely related papers [21, 54] consider scheduling for parallel server sys-
tems. Rubino and Ata [54] consider a general parallel server system with abandon-
ments and admission control. There are linear holding costs, abandonment penalties,
costs for turning jobs away, and delay constraints, which are replaced with upper
bounds on queue lengths in the asymptotic formulation. Rubino and Ata [54] solve
the limiting Brownian control problem under the long-run average cost formulation.



Queueing Syst (2013) 74:65–104 69

The authors then propose a policy for the general parallel server system and show its
effectiveness through simulations.

Ghamami and Ward [21] consider a similar setting (though the authors consider
a discounted objective). The authors take the analysis to the next level and provide
a proof of asymptotic optimality for their proposed policy. It turns out that proving
the asymptotic optimality of their proposed policy is challenging because the work-
load moves between different classes too frequently. Indeed, the usual state-space
collapse result between the scaled queue length and the workload process does not
seem to hold. Nonetheless, Ghamami and Ward [21] are able to prove the asymptotic
optimality of their proposed policy using novel proof ideas.

In other related work, Ormeci-Matoglu and Vande Vate [45] consider the drift
rate control problem with changeover costs and establish the optimality of band con-
trol policies. Ghosh and Weerasinghe [22] consider the optimal drift rate control and
choice of the optimal buffer size. The authors solve a limiting version of this problem
explicitly, and propose a policy for the original system based on this policy. Ghosh
and Weerasinghe [22] also establish the asymptotic optimality of this policy in the
heavy traffic limit; also see [15].

Among the drift rate control problems referenced above Rubino and Ata [54] is
closest to our work; both papers consider ergodic control. However, this paper differs
from Rubino and Ata [54] in several important ways. Firstly, Rubino and Ata [54]
consider only linear delay costs whereas we consider linear, convex, and convex–
concave delay costs. This difference leads to substantially different structural in-
sights. Secondly, Rubino and Ata [54] considers the drift rate control problem on a
bounded interval which simplifies the solution of the Bellman equation considerably.
In contrast, we consider the problem on the entire positive real line, which neces-
sitates a new approach to solve the Bellman equation. Lastly, Rubino and Ata [54]
also has an admission control capability whereas we do not allow that to facilitate
comparison with the familiar cµ and the generalized cµ (Gcµ) scheduling rules.

3 The model

We consider a multiclass queue serving K classes of delay sensitive jobs, who differ
in their delay costs. A system manager makes sequencing decisions, choosing the
order in which jobs are processed. A class k job has a delay cost of ck(τ ) associated
with an experienced delay of τ . The delay cost function ck(·) is increasing (for all k),
i.e. shorter delays are more desirable. In what follows, we will consider three cases:
(i) ck is linear; (ii) ck is convex; (iii) ck is convex–concave.

An important feature of the model is that jobs in the system may abandon, resulting
in a penalty of ak for the system manager per abandoned class k job. We assume that
each class abandons after an exponentially distributed amount of time with rate γk .
(Each abandonment takes place independently of all other abandonments, service
completions and arriving jobs.) We assume that the job at the head of each queue
does not abandon. Then denoting the number of class k jobs in the system at time t
by Qk(t) for k = 1, . . . ,K and letting N1(·), . . . ,NK(·) be K independent, rate-one
Poisson processes, the cumulative number of class k jobs abandoning up to time t ,
denoted by Γk(t), is given by



70 Queueing Syst (2013) 74:65–104

Γk(t) = Nk

(∫ t

0
γk

[
Qk(s) − 1

]+
ds

)
, k = 1, . . . ,K.

The vector-valued process Γ = (Γk) will be called the abandonment process.
The sequencing decisions take the form of cumulative control process. We restrict

attention to head-of-the-line and non-idling (or work-conserving) policies. In partic-
ular, let Tk(t) be the cumulative time that the server spends on serving class k jobs up
to time t . Then the vector process T = (Tk) denotes the system manager’s sequencing
policy. Clearly, T (·) is nondecreasing and satisfies

0 ≤
K∑

k=1

[
Tk(t) − Tk(s)

]
≤ (t − s), 0 ≤ s ≤ t < ∞. (1)

For concreteness, we assume that the system is empty initially; and class k jobs
arrive at the system at rate λk according to a Poisson process {Ak(t) : t ≥ 0}. Simi-
larly, associated with each class k, there is a Poisson process {Sk(t) : t ≥ 0} with rate
µk where Sk(t) denotes the number class k jobs served up to time t if the server were
continuously serving class k jobs during [0, t]. The mean processing time of a class
k job is mk = 1/µk .

Given the system manager’s sequencing policy T , the queue length process Qk

for class k evolves as follows:

Qk(t) = Ak(t) − Sk

(
Tk(t)

)
− Γk(t), t ≥ 0. (2)

The vector-valued process Q = (Qk) will be called the queue length process. Also
let L(t) denote the cumulative amount of time the server k is idle during [0, t]. Then

L(t) = t −
K∑

k=1

Tk(t), t ≥ 0. (3)

To facilitate future analysis, we define the workload W(t) in the system as

W(t) =
K∑

k=1

mkQk(t). (4)

A sequencing policy T must satisfy the following:

T is non-anticipating with respect to Q, (5)

T is non-decreasing and continuous with T (0) = 0, (6)

L is non-decreasing and continuous with L(0) = 0, (7)

L(t) increases only if W(t) = 0, (8)

Qk(t) ≥ 0, t ≥ 0, k = 1, . . . ,K. (9)

Let τk(t) denote the delay experienced by a class k customer arriving at time t .
Note that τk(t) is a rather complex function of the policy employed. Although we do
not attempt to express it explicitly, in what follows we adopt a simple approximation
via the snapshot principle of Reiman [53].

We define C(t) as the cumulative delay cost experienced by the jobs arriving until
t plus the abandonment costs during [0, t], i.e.



Queueing Syst (2013) 74:65–104 71

C(t) =
K∑

k=1

∫ t

0
λkck

(
τk(s)

)
ds +

K∑

k=1

akΓk(t), t ≥ 0. (10)

Then the system manager’s problem can be stated as follows: Choose the scheduling
policy T so as to

min lim
t→∞

1
t
E

[
C(t)

]
subject to (1)–(3) and (5)–(10).

In what follows, we consider the following cases. Firstly, we assume that ck(·) is lin-
ear. Secondly, we assume that ck(·) is strictly convex with ck(0) = c′

k(0) = 0 for
all k. Finally, we assume that the delay cost ck(·) is convex–concave which cor-
responds to ck(·) being convex on an interval [0, dk] and concave on [dk,∞) for
k = 1, . . . ,K . The basic idea is that dk represents a customer’s deadline and he is
increasingly more impatient up to this deadline and increasingly more tolerant of ad-
ditional delays once the deadline has passed. We assume in the convex–concave case
that limx→∞ c′

k(x) = c > 0, and that ck(0) = c′
k(0) = 0. We also make the following

technical assumption in the convex case: For some M < ∞,

lim
x→∞ c′

k(x) ≤ M. (11)

Note that this assumption is made for purely technical reasons and is needed only in
Lemma 2. (All other results can be generalized to the case M = ∞.) More impor-
tantly, (11) does not change the structure of the policies proposed or the insights.

Unfortunately, none of the cases is analytically tractable. Moreover, the convex–
concave case presents additional challenges, which we overcome using a convex hull
approach. To be specific, let hk denote the convex hull of ck , i.e. hk is the maximal
convex function hk ≤ ck . Clearly, hk = ck in the case of linear or convex delay costs.
In the case of convex–concave delay cost, defining

bk = inf
{
x ≥ 0 : c′

k(x) ≥ c
}
,

it is easy to see that

hk(x) =
{

ck(x) for x < bk,

(x − bk)c + ck(bk) otherwise.

Note that in this case the convex hull hk is linear beyond bk and has slope c. Although
ck(x) > hk(x) for x > bk , we argue below that using a clever sequencing rule, the
system manager can achieve this effective slope of c. To be more specific, the system
manager can obtain the convex hull function hk as the realized delay cost, instead of
the higher delay cost ck .

We will replace ck by hk in all three cases and consider the following problem:
Choose T (·) so that

min lim
t→∞

1
t
E

[
H(t)

]
subject to (1)–(3) and (5)–(10), (12)

where

H(t) =
K∑

k=1

∫ t

0
λkhk

(
τk(s)

)
ds +

K∑

k=1

akΓk(t), t ≥ 0,



72 Queueing Syst (2013) 74:65–104

and hk is a convex increasing function and we allow for the possibility that it corre-
sponds to the convex hull of a convex–concave function.

Note that in the cases of linear and convex delay costs (12) is equivalent to (10),
whereas in the case of convex–concave delay costs it corresponds to a lower bounding
problem, where the delay cost functions are convex (though they may only be weakly
convex for large delays). More importantly, in all cases, the solution to (12) facilitates
a solution to (10). So, we next consider (12). Unfortunately, the formulation (12) is
still not tractable analytically. Therefore, we will replace it with an approximate, yet
far more tractable formulation in the large capacity asymptotic regime, which we
describe in the next section.

4 Approximating Brownian control problem

In deriving Brownian approximations, one considers a sequence of closely related
systems indexed by a parameter, whose formal limit is the approximating Brownian
control problem. More specifically, consider a sequence of systems indexed by n =
1,2, . . . ; a superscript n will be attached to the quantities of interest corresponding
to the nth system. The asymptotic regime we focus on is the one where the server
speeds up proportionally to n in the nth system. More specifically, we assume

µn
k = nµk. (13)

We also assume that the arrival rates grow with n such that

λn
k = nλk − ηk

√
n, (14)

where ηk > 0, and that
K∑

k=1

λk/µk = 1, (15)

which is the usual heavy traffic assumption, cf. [24]. Assumptions (13)–(15) lead to a
large, balanced-flow system for n large. For such systems, the workload in the system
is expected to be of order 1/

√
n. Thus, we scale the delay costs as follows:

cn
k (·) = cn

k (
√

n·)√
n

for all k,n.

It is easy to check that the convex hull hn
k(·) of cn

k (·) is given by the following:

hn
k(·) = hn

k(
√

n·)√
n

for all k,n. (16)

Note that it is optimal to serve jobs within a class on a FCFS basis, because hk is
convex for all k. Then by the snapshot principle of Reiman [53], we can approximate
the actual delay experienced by a class k customer at time t by

τn
k (t) ≃ Qn

k(t)

λn
k

for all k, t, (17)

which becomes accurate in the heavy traffic limit.



Queueing Syst (2013) 74:65–104 73

We also introduce the centered allocation process Yn for the nth system as

Yn
k (t) = λn

k

µn
k

t − T n
k (t), (18)

whose (scaled) formal limit will arise as the control process in the approximating
Brownian control problem.

The original problem of interest, cf. (12), can be viewed as a specific element
of this sequence of problems determined by the particular choice of the parameter
n. The underlying assumption of the Brownian approximations is that the system pa-
rameter corresponding to the original problem is large enough so that various (scaled)
performance-relevant processes of the original system can be approximated by the
corresponding processes of the Brownian control problem. One arrives at the approx-
imating Brownian control problem by scaling various processes and taking the formal
limit as n → ∞, which is outlined in Appendix A.

Defining Bk as a (−ηk,σk) Brownian motion, where σk = √
2λk , for k = 1, . . . ,K ,

the Brownian control problem can be stated as follows: Choose the control processes
Ŷ , L̂ so as to

min lim
t→∞

1
t
E

[∫ t

0

K∑

k=1

(
λkhk

(
Q̂k(s)

λk

)
+ akγkQ̂k(s)

)
ds

]

(19)

subject to

Q̂k(t) = Bk(t) −
∫ t

0
γkQ̂k(s) ds + µkŶk(t) ≥ 0 for all k, t ≥ 0, (20)

L̂(t) =
K∑

k=1

Ŷk(t), t ≥ 0, (21)

L̂ is nondecreasing and continuous with L̂(0) = 0, (22)

L̂ increases only if Q̂k = 0 for all k, (23)

L̂, Ŷ are nonanticipating with respect to Bk (k = 1, . . . ,K). (24)

The process Ŷ is the formal limit of the (scaled) sequence of controls Yn as n →
∞. Similarly, the queue length process Q̂ and the cumulative idleness process L̂ are
formal limits of their (scaled) counterparts in the sequence of systems considered.

Next, we advance a one-dimensional workload formulation, which is equivalent
to (19)–(24). To this end, we first formulate a reduced Brownian control problem by
replacing (20) with (26)–(27) below, relaxing (20). Then viewing the processes Q̂ and
L̂ as controls, the reduced Brownian control problem, which has the one-dimensional
state descriptor Ŵ = {Ŵ (t) : t ≥ 0}, can be stated as follows: Choose a policy (Q̂, L̂)
that is nonanticipating with respect to B so as to

min lim
t→∞

1
t
E

[∫ t

0

K∑

k=1

(
λkhk

(
Q̂k(s)

λk

)
+ akγkQ̂k(s)

)
ds

]

(25)

subject to



74 Queueing Syst (2013) 74:65–104

Ŵ (t) = B(t) −
∫ t

0

(
K∑

k=1

γkmkQ̂k(s)

)

ds + L̂(t), (26)

Ŵ (t) =
K∑

k=1

mkQ̂k(t), (27)

Q̂(t) ≥ 0, (28)

L̂ is nondecreasing and continuous with L̂(0) = 0, (29)

L̂ increases only when Ŵ = 0, (30)

where B(t) = ∑K
k=1 mkBk(t) for t ≥ 0 whose drift rate is −η = −∑K

k=1 mkηk and
infinitesimal variance is σ 2 = ∑K

k=1 2λkm
2
k . The following proposition is immediate

and establishes the equivalence of these formulations from which it is clear that the
two formulations have the same objective.

Proposition 1 The Brownian control problem stated in (19)–(24) is equivalent to the
reduced Brownian control problem (25)–(30) in the following sense. Every feasible
policy (Q̂, L̂) for the reduced Brownian control problem yields a policy (Ŷ , L̂ ) for
the Brownian control problem with the same cost; and for every feasible policy (Ŷ , L̂)
for the Brownian control problem, there is a policy (Q̂, L̂) for the reduced Brownian
control problem which has lower (or the same) cost.

Next, we further simplify the reduced Brownian control problem to arrive at the
workload formulation. To that end, define

A(x) =
{

q ≥ 0 :
K∑

k=1

mkqk = x

}

,

θ(q) = η +
K∑

k=1

γkmkqk, (31)

g(q) =
K∑

k=1

[
λkhk

(
qk

λk

)
+ akγkqk

]
. (32)

A policy for the workload formulation consists of a process L̂(·) and a work-
load configuration function q : R2

+ → RK
+ , which describes how the workload is dis-

tributed among various classes2 at all times. An admissible policy (L̂, q) must jointly
satisfy

Ŵ (t) = B(t) −
∫ t

0
θ
(
q
(
s,W(s)

))
ds + L̂(t) ≥ 0, t ≥ 0, (33)

2We do allow randomized workload configuration functions, that is, an admissible workload configuration
function q may be sample-path dependent. This dependence, however, is suppressed for notational brevity.
Moreover, we construct an optimal workload configuration function in Sect. 5, which is stationary and
deterministic.



Queueing Syst (2013) 74:65–104 75

q
(
s, Ŵ (t)

)
∈ A

(
Ŵ (t)

)
, t ≥ 0, (34)

L̂ is nondecreasing and continuous with L̂(0) = 0, (35)∫ ∞

0
Ŵ (s) dL̂(s) = 0. (36)

The workload problem can then be stated as follows: Choose L̂ and q(·, ·) so as to

min lim
t→∞

1
t
E

[∫ t

0
g
(
q
(
s, Ŵ (s)

))
ds

]
subject to (33)–(36). (37)

In the workload formulation, the system manager tracks the workload process Ŵ
and makes sure it is nonnegative using the control L̂. Given the workload Ŵ (t) at
time t , she also decides how to distribute that workload among the various classes k =
1, . . . ,K so that

∑K
k=1 mkQ̂k(t) = Ŵ (t) which then results in an effective holding

cost rate of g(Q̂(t)) = ∑K
k=1 λkhk(Q̂k(t)/λk) + ∑K

k=1 akγkQ̂k(t), where the first
term is the delay cost rate while the second term is the cost of abandonments.

The following proposition shows that the workload formulation is equivalent to
the reduced Brownian control problem, and hence it is equivalent to the Brownian
control problem too by Proposition 1, for purposes of optimal control.

Proposition 2 The workload formulation (37) is equivalent to the reduced Brownian
control problem (25)–(30) in the following sense: Every admissible policy (q , L̂)
of the workload formulation there corresponds to an admissible policy (Q̂, L̂) for
the reduced Brownian control problem and these two policies have the same cost.
Similarly, for any admissible policy (Q̂, L̂) of the reduced Brownian control problem,
there exists an admissible policy (q , L̂) for the workload formulation, and its cost
is less than or equal to that of the policy (Q̂, L̂ ) for the reduced Brownian control
problem.

Propositions 1 and 2 make it clear that it suffices to solve the workload formula-
tion, which we undertake in the next section, to solve the Brownian control problem.

5 Solving the workload problem

To characterize the optimal policy for the workload problem, we next consider the
associated Bellman equation. The following definitions are needed to introduce the
Bellman equation:

Ã =
{

y ∈ RK
+ :

K∑

k=1

mkyk = 1

}

,

ψ(x,p) = min
y∈Ã

{
K∑

k=1

(
λk

x
hk

(
ykx

λk

)
+ akγkyk

)
− p

K∑

k=1

γkmkyk

}

,

x > 0,

p̄ = sup
{
p > 0 : lim

x→∞ψ(x,p) > 0
}
.

(38)



76 Queueing Syst (2013) 74:65–104

Defining C2[0,∞) as the space of functions f : [0,∞) → R that are twice con-
tinuously differentiable, the Bellman equation can be stated as follows: Find a convex
function f ∈ C2[0,∞) and a constant β > 0 such that the following holds:

β = min
q∈A(x)

{
1
2
σ 2f ′′(x) − θ(q)f ′(x) + g(q)

}
, (39)

subject to the boundary conditions

f ′(0) = 0 and lim
x→∞f ′(x) = p̄. (40)

Here one interprets β as a guess at the minimum average cost and the unknown
function f is often called the relative value function in average cost dynamic pro-
gramming. The Bellman equation is introduced primarily to motivate our solution
approach; the properties of the Bellman equation that we require will be proved from
first principles. To facilitate our analysis, define

φ(x, v) = min
q∈A(x)

{
g(q) − vθ(q)

}
for x ≥ 0 and v ∈ R.

Note as an aside that φ(x, v) = xψ(x, v) − ηv. Since the Bellman equation (39)–
(40) does not involve the unknown function f itself, it is really a first order equation.
Defining C1[0,∞) as the space functions that are continuously differentiable, setting
v(x) = f ′(x) for x ≥ 0, and using the definition of φ one can equivalently state the
Bellman equation as follows: Choose a non-decreasing function v ∈ C1[0,∞) and a
constant β satisfying

β = 1
2
σ 2v′(x) + φ

(
x, v(x)

)
for x ≥ 0, (41)

subject to the boundary conditions

v(0) = 0 and lim
x→∞v(x) = p̄. (42)

Solving the Bellman equation (41)–(42) directly appears challenging, because
one needs to pin down the average cost β using the second boundary condition
limx→∞ v(x) = p̄. To the best of our knowledge, there is no direct method for solv-
ing (41)–(42). In what follows, we provide a constructive existence proof, which also
facilitates computation of the value function and the corresponding optimal policy;
it reveals important structural insights too. To this end, we next consider a family
of auxiliary Bellman equations, whose solutions will eventually help construct the
solution to the Bellman equation (41)–(42) by taking their limit appropriately.

To be specific, we consider a family of auxiliary Bellman equations parametrized
by a penalty parameter p; see (43)–(44). Once we solve the auxiliary Bellman equa-
tion for each p, we pass to a limit as p ↗ p̄, and characterize the limits of the aux-
iliary value functions and other related quantities (in Sect. 5.2). To this end, Proposi-
tion 6 verifies the monotonicity of various quantities in p so that the limits are well
defined as p ↗ p̄. Proposition 7 verifies useful properties of these limits; and the
main result (Proposition 8) shows that the limit of the auxiliary value functions (as
p ↗ p̄) solve the Bellman equation (41)–(42); also see Corollary 2. We propose a
candidate policy based on this solution and verify its optimality in Theorem 1.



Queueing Syst (2013) 74:65–104 77

As mentioned above, a key step in solving the Bellman equation (41)–(42) is to
solve the auxiliary Bellman equation (43)–(44), which is done in Sect. 5.1. To solve
the auxiliary Bellman equation (for a fixed penalty parameter p), we consider a fam-
ily of initial value problems (IVP) parametrized by x̂. Proposition 3 shows that the
IVP has a unique solution, which strictly increases in the parameter x̂, and that for
each fixed parameter x̂ the solution increases to its maximum over [0, x̂]. The last
observation is useful in constructing a smooth solution by the smooth-pasting ap-
proach. To be more specific, because the derivative at the maximum is zero, pasting
the solution to the IVP with a constant function from then on (continuously) yields
a smooth solution to the auxiliary Bellman equation. To this end, Proposition 4 and
Corollary 1 help pick the “right” parameter x̂ = x(p) so that the solution to the IVP
for that parameter essentially solves the auxiliary Bellman equation for the penalty
parameter p. Indeed, using this solution to the IVP and the parameter x(p), (48)
constructs the candidate solution, and Proposition 5 verifies that it indeed solves the
auxiliary Bellman equation (for each fixed p).

In our analysis, we also use various lemmas to prove the results. Lemmas 3, 4,
and 5 (see Appendix B) establish the elementary properties of ψ and p̄ and are used
extensively throughout the paper. Lemma 2 (stated before Theorem 1 and proved in
Appendix B) is used to show that a term vanishes asymptotically in proving Theo-
rem 1, which in turn verifies the optimality of the proposed policy. Lemma 1 estab-
lishes (Lipschitz) continuity of ψ and used in Propositions 4 and 5 to establish the
existence of a solution to the IVP and the continuity of that solution in the parameter
x̂, respectively. It is also used in Proposition 8 to establish a uniform convergence
result. Lemmas 6 and 7 establish monotonicity of φ(·,p) under certain conditions,
and are used in Corollary 1 and Proposition 3, respectively.

5.1 A family of auxiliary Bellman equations

For each p ∈ (0, p̄), the auxiliary problem can be stated as follows: Find a nonde-
creasing v ∈ C1[0,∞), and constants β(p) > 0, x(p) > 0 such that

β(p) = 1
2
σ 2v′(x) + φ

(
x, v(x)

)
, x ∈

[
0, x(p)

]
, (43)

subject to the boundary conditions

v(0) = 0 and v(x) = p for x ≥ x(p). (44)

Consider an auxiliary system whereby our original problem is modified so that
the system manager can turn away arriving jobs but incurs a rejection penalty of p

for doing so per such job. Interestingly, (43)–(44) is the Bellman equation for this
problem. Intuitively, as p ↗ p̄, the system manager does not turn away jobs in the
limit, which is precisely how we tackle our problem. We solve (43)–(44) for each p,
and let p → p̄. Then we prove that the limit yields a solution to the Bellman equation
(41)–(42), solving our problem.

The auxiliary problem mentioned in the preceding paragraph is related to the prob-
lem studied in [54]. But it has two important differences. First Rubino and Ata [54]



78 Queueing Syst (2013) 74:65–104

consider only linear delay costs whereas we consider linear, convex, and convex–
concave delay costs. This difference leads to substantially different structural in-
sights. Second, Rubino and Ata [54] consider the drift rate control problem on a
bounded interval which simplifies the solution to the Bellman equation considerably.
In contrast, we consider the problem on the entire positive real line, which necessi-
tates a new approach to solve the Bellman equation.

As a preliminary to solving the auxiliary Bellman equation, define

x(p) = inf
{
x ≥ 0 : ψ(x,p) >

ηp

x

}
for p ∈ (0, p̄).

Lemma 5 (in Appendix B) characterizes useful properties of x(p),ψ , and φ.
To construct a solution to the auxiliary Bellman equation (43)–(44) for p ∈ (0, p̄),

consider the following initial value problem parametrized by x̂ ≥ x(p), denoted by
IVP(x̂): Find a continuously differentiable function v such that

φ(x̂,p) = 1
2
σ 2v′(x) + φ

(
x, v(x)

)
for x ≥ 0 (45)

subject to the initial condition

v(0) = 0. (46)

The following proposition characterizes important properties of the IVP(x̂).

Proposition 3 For p ∈ (0, p̄) and x̂ > x(p), the following hold:

(i) IVP(x̂), stated in (45)–(46), has a unique solution, denoted by vx̂ .
(ii) vx̂(x) is strictly increasing in x̂ for all x > 0.

(iii) vx̂(·) strictly increases to its maximum on [0, x̂].

Then replacing the notation vx̂(·) with vx̂(·;p) to emphasize its dependence on p
and defining

ζ(x̂;p) = sup
0≤x≤x̂

vx̂(x;p), (47)

the following proposition characterizes its important properties, which in turn helps
us pin down the solution to the auxiliary Bellman equation (43)–(44).

Proposition 4 For p ∈ (0, p̄), ζ(·;p) is strictly increasing and continuous on
(x(p),∞) with ζ(x(p);p) = 0 and limx̂→∞ ζ(x̂;p) = ∞.

The next corollary follows from Proposition 4.

Corollary 1 There exists a unique x(p) > x(p) such that ζ(x(p);p) = p, and
vx(p)(·) is strictly increasing on (0, x(p)) with v′

x(p)(x(p);p) = 0.

Then letting β(p) = φ(x(p),p) and defining

v(x;p) =
{

vx(p)(x;p), 0 ≤ x ≤ x(p),

p, x > x(p),
(48)

the following proposition solves the auxiliary Bellman equation.



Queueing Syst (2013) 74:65–104 79

Proposition 5 The function v(·;p) (given in (48)) and the constants x(p) and β(p)

jointly solve the auxiliary Bellman equation (43)–(44).

Building on Proposition 5, in the next subsection we vary p and construct a solu-
tion to the Bellman equation (41)–(42) as p ↗ p̄.

5.2 Varying p and the solution to the Bellman equation

Firstly, we establish the monotonicity of the solution to the auxiliary Bellman equa-
tion.

Proposition 6 The following hold:

(i) x(p) is strictly increasing on (0, p̄).
(ii) β(p) is strictly increasing on (0, p̄).

(iii) v(x;p2) > v(x;p1) for 0 < p1 < p2 < p̄ and x > 0.

Then the following limits are well defined (though they may be +∞). Let

β∗ = lim
p→p̄

β(p), x̄ = lim
p→p̄

x(p) and v∗(x) = lim
p→p̄

v(x;p) for x ≥ 0.

(49)

The next proposition characterizes useful properties of these limits.

Proposition 7 The following hold:

(i) β∗ < ∞.
(ii) x̄ = ∞.

(iii) v∗(x) < ∞ for all x ≥ 0, and limx→∞ v∗(x) = p̄.

Next, we provide a solution to the Bellman equation, for which the following
lemma is used crucially.

Lemma 1 ψ(x, v) is decreasing in v and continuous in (x, v). Moreover, it is Lips-
chitz continuous in v with Lipschitz constant cL = maxk γk .

The following proposition provides a solution to the Bellman equation.

Proposition 8 The function v∗(·) and the constant β∗ defined in (49) jointly solve
the Bellman equation (41)–(42).

Proof Recall that ψ(x, v) is Lipschitz continuous in v uniformly in x (see Lemma 1)
and that φ(x, v) = xψ(x, v) − ηv. Therefore, φ(x, v) is Lipschitz continuous in v

(uniformly in x on compact intervals, i.e. when x ∈ [0,K],K > 0). Also note that
since v(·;p) is increasing in p by Proposition 6 (iii), that v∗(x) < ∞ for all x ≥ 0,
and v(x,p) ↗ v∗(x) as p → p̄, we conclude by Dini’s theorem (see Billingsley [12])
that v(·;p) converges to v∗(·) uniformly over compact intervals.



80 Queueing Syst (2013) 74:65–104

Next, fix K > 0 and let p0 < p̄ be such that x(p0) > K , and note that for p > p0,
we have v(0,p) = 0 and

β(p) = 1
2
σ 2v′(x;p) + φ

(
x, v(x;p)

)
, x ∈ [0,K],

which gives

1
2
σ 2v(x;p) = β(p)x −

∫ x

0
φ
(
s, v(s;p)

)
ds, x ∈ [0,K].

Then letting p → p̄

1
2
σ 2v∗(x) = β∗x − lim

p→∞

∫ x

0
φ
(
s, v(s;p)

)
ds, x ∈ [0,K].

One can interchange the limit and the integral since φ(s, v(s;p)) converges uni-
formly in s (on [0,K]) as p → ∞, which follows from the uniform convergence of
v(·;p) on [0,K] and the Lipschitz continuity of φ(s, ·) uniformly in s ∈ [0,K]. Then
we conclude that

1
2
σ 2v∗(x) = β∗x −

∫ x

0
φ
(
s, v∗(s)

)
ds, x ∈ [0,K].

Since the preceding argument can be repeated for all K > 0, we conclude that

1
2
σ 2v∗(x) = β∗x −

∫ x

0
φ
(
s, v∗(s)

)
ds, x ≥ 0,

which shows that v∗(·) is continuously differentiable and solves the differential equa-
tion below

1
2
σ 2v′(x) = β∗ − φ

(
x, v(x)

)
, x ≥ 0 subject to v(0) = 0.

Moreover, since limx→∞ v∗(x) = p̄ by part (iii) of Proposition 7, v∗(·) and β∗ solve
the Bellman equation (41)–(42). !

To construct a solution to the Bellman equation (39)–(40), define

f (x) =
∫ x

0
v(u)du, x ≥ 0.

Then the following corollary provides a solution to the Bellman equation formally.

Corollary 2 The function f and the constant β∗ solve the Bellman equation
(39)–(40).

5.3 Proposed solution for the workload formulation and its optimality

Given a solution to the Bellman equation, for every x ≥ 0, our candidate for the
optimal workload configuration is the minimizer of the right-hand side of (39). Let

q∗(x) = argmin
q∈A(x)

{
g(q) − θ(q)f ′(x)

}
, x ≥ 0.



Queueing Syst (2013) 74:65–104 81

In Sects. 6.1–6.3, we characterize q∗(·) explicitly for each of the cases considered and
propose a scheduling policy based on those characterizations. Note that q∗(x) simply
distributes the workload into various classes so as to minimize g(q)−θ(q)f ′(x). The
second feature of our candidate policy is that it imposes a reflecting barrier for the
workload process at zero by the control L∗. The evolution of the workload process
W ∗ under the candidate policy (q∗(·),L∗) can be described as follows.

W ∗(t) = B(t) −
∫ t

0
θ
(
q∗(W ∗(s)

))
ds + L∗(t), t ≥ 0.

Moreover, the control L∗ and the workload process W ∗ jointly satisfy

W ∗(t) ≥ 0, t ≥ 0,
∫ t

0
W ∗(s) dL∗(s) = 0, t ≥ 0, (50)

L∗ is continuous and non-decreasing with L∗(0) = 0.

Note that the candidate policy is stationary. Theorem 1 establishes the optimality
of the policy (q∗(·),L∗) using the following technical result proved in the appendix.

Lemma 2 For any workload process W associated with an admissible policy (q,L),
we have

lim
t→∞

E[f (W(t))]
t

= 0.

Theorem 1 The candidate policy (q∗(·),L∗) associated with the workload configu-
ration function q∗(·) and the reflecting barrier at zero is optimal for the workload
problem (12), and it has long-run average cost of β∗.

Proof The candidate policy (q∗(·),L∗) is admissible because it satisfies (33)–(36).
To check its optimality we show that its long-run average cost is β∗, and the long-
run average cost associated with any other admissible policy is greater than or equal
to β∗.

First, consider the candidate policy (q∗(·),L∗). The cumulative cost incurred up
to time t > 0 under the candidate policy, denoted by H ∗(t), is given by

H ∗(t) =
∫ t

0
g
(
q∗(W ∗(s)

))
. (51)

A straightforward application of Ito’s lemma gives

E
[
f

(
W ∗(t)

)]
= E

[∫ t

0

(
−f ′(W ∗(s)

)
θ
(
q∗(W(s)

))
+ 1

2
σ 2f ′′(W ∗(s)

))
ds

]

+ E
[∫ t

0
f ′(W ∗(s)

)
dL∗(s)

]
. (52)

Combining (51) and (52) gives



82 Queueing Syst (2013) 74:65–104

E
[
H ∗(t) − β∗t + f

(
W ∗(t)

)]

= E
[∫ t

0

{
g
(
q∗(W ∗(s)

))
− f ′(W ∗(s)

)
θ
(
q∗(W ∗(s)

))

+ 1
2
σ 2f ′′(W ∗(s)

)
− β∗

}
ds

]

+ E
[∫ t

0
f ′(W ∗(s)

)
dL∗(s)

]
.

Since W ∗(t) ≥ 0 under the candidate policy, the first term on the right-hand side
is zero by (39). Also it follows from (50) that L∗ increases only when W ∗ = 0, so
the second term on the right is zero too since f ′(0) = 0. Then it also follows from
Lemma 2 that

lim
t→∞

E[H ∗(t)]
t

= β∗.

Next, we will show that no admissible policy can achieve a long-run average cost less
than β∗. To this end, fix an admissible policy (q(·),L(·)). Recall that every admissible
policy, and hence L must be continuous (cf. (35)). Then a straightforward application
of Ito’s lemma, cf. Sect. 4.7 of Harrison [23], gives

E
[
f

(
W(t)

)]
= E

[∫ t

0

(
−f ′(W(s)

)
θ
(
q
(
s,W(s)

))
+ 1

2
σ 2f ′′(W(s)

))
ds

]

+ E
[∫ t

0
f ′(W(s)

)
dL(s)

]
. (53)

The cumulative cost incurred up to time t > 0 under the policy (q,L) is given by

H(t) =
∫ t

0
g
(
q
(
s,W(s)

))
ds. (54)

Then for t > 0, combining (53) and (54) gives the following:

E
[
H(t) − β∗t + f

(
W(t)

)]

= E
[∫ t

0

{
g
(
q
(
s,W(s)

))
− f ′(W(s)

)
θ
(
q
(
s,W(s)

))

+ 1
2
σ 2f ′′(W(s)

)
− β∗

}
ds

]

+ E
[∫ t

0
f ′(W(s)

)
dL(s)

]
. (55)

The right-hand side of (55) is nonnegative. The first term is nonnegative by (39). The
second term is zero since f ′(0) = 0 and Lincreases only when W = 0. Thus,

E[H(t)]
t

≥ β∗ − E[f (W(t))]
t

.

Then by Lemma 2, we conclude

limt→∞
1
t
E

[
H(t)

]
≥ β∗,



Queueing Syst (2013) 74:65–104 83

proving that no admissible policy (q , L) can achieve a long-run average cost less
than β∗. !

6 Proposed policies

Recall that the optimal scheduling policy is determined through q∗(·), which, in turn,
is given by

q∗(x) = argmin
q∈A(x)

{
g(q) − θ(q)v(x)

}
. (56)

Next, in each of the cases considered, we will solve (56) and propose a scheduling
policy accordingly.

6.1 The linear delay cost case

Using (31)–(32) and the change of variable zk = qkmk/x for k = 1, . . . ,K , (56) leads
to

z∗(x) = argmin

{
K∑

k=1

(
ck + akγk

mk
− γkv(x)

)
zk : z ≥ 0,

K∑

k=1

zk = 1

}

,

from which it is clear that the solution is of bang-bang type. Also, defining

K∗(v) = min

{
K∑

k=1

(
ck + akγk

mk
− γkv

)
zk : z ≥ 0,

K∑

k=1

zk = 1

}

,

it is easy to see that K∗(·) is a piecewise linear convex function. Let 0 = s0 < s1 <

· · · < sJ < p̄ (for some J ≤ K) be K∗(·)’s breakpoints and i1, . . . , iJ ∈ {1, . . . ,K}
be the indices such that

K∗(v) =
cij + aij γij

mij

− γij v for v ∈ (sj−1, sj ].

Then define

xj = v−1(sj ), j = 1, . . . , J,

where v−1 is the inverse of v(·). Clearly, 0 = x1 < · · · < xJ < ∞, and z∗
ij
(x) = 1 for

x ∈ (xj−1, xj ].
The scheduling policy we propose strives to keep all workload in class ij when

the workload is between thresholds xj−1 and xj . For concreteness, we propose the
following policy: When the workload is in (xj−1, xj ], give the lowest priority to class
ij and prioritize the other classes with respect to their class index (smaller indices
have higher priority).



84 Queueing Syst (2013) 74:65–104

6.2 The convex delay cost case

As in the linear case, the change of variable zk = qkmk/x for k = 1, . . . ,K , reduces
(56) to finding the maximizer of the following optimization problem:

min
K∑

k=1

{
λkhk

(
zkx

mkλk

)
+ akγkx

mk
zk

}
− xv(x)

K∑

k=1

γkzk

subject to

K∑

k=1

zk = 1, (57)

z ≥ 0. (58)

By the necessary and sufficient KKT conditions, see [14], z∗ is optimal if and only if
there exists δk ≥ 0 for k = 1, . . . ,K , and ν such that (57)–(58) hold, and that

δkzk = 0 for k = 1, . . . ,K,

x

mk
h′

k

(
x

mkλk
zk

)
+ x

akγk

mk
− xv(x)γk − δk + ν = 0.

Note that whenever zk > 0, we must have δk = 0 so that

1
mk

h′
k

(
x

mkλk
zk

)
+ akγk

mk
− v(x)γk = −ν

x
.

Since the right-hand side is the same for every nonempty class, the left-hand side
must be identical for every nonempty class as well. Therefore, we propose the policy
that gives priority to the class for which the left-hand side is largest. To be more
specific, the server must give priority to the nonempty class for which

1
mk

(
hn

k

)′
(

Qn
k

λn
k

)
+ akγk

mk
− v

(
Ŵn

)
γk (59)

is largest and does not idle unless the system is empty.
Next, we consider two special cases in which (59) reduces to pathwise rules:

Special Case I: Identical abandonment rates, i.e. γk = γ for all k. In this case, the
server must give priority to the nonempty class for which

1
mk

(
hn

k

)′
(

Qn
k

λn
k

)
+ akγ

mk

is largest. Note that the value function no longer plays a role.



Queueing Syst (2013) 74:65–104 85

Special Case II: Identical abandonment rates and abandonment penalties per hour
of processing requirement, i.e. γk = γ and ak/mk = a for all k. Then the server must
give priority to the nonempty class for which

1
mk

(
hn

k

)′
(

Qn
k

λn
k

)

is largest, which is the Gcµ rule.
In the next subsection, we propose a scheduling policy for the convex–concave

case, which presents additional challenges. The proposed policy exploits the convex
hull approach proposed by Ata and Olsen [4] (also see [5]), and combines the index
rule (59) with the policies proposed in [4, 5].

6.3 The convex–concave delay cost case

The idea behind the proposed scheduling policy is to ensure that when the workload
is w, a cost rate of

K∑

k=1

{
λkhk

(
q∗
k (w)

λk

)
+ akγkq

∗
k (w)

}

is incurred asymptotically. When the workload is small, all classes are kept in the
convex cost region and a modified version of the dynamic index rule (introduced for
the convex case) is in operation. When the workload is large, however, a different
approach is needed. To ensure asymptotic optimality each class is divided into two
artificial subclasses so that the cost rate of the convex hull is incurred. In particular, we
artificially segment class k into subclasses ka and kb , and give “priority” to subclass
ka over subclass kb while providing a small but positive amount of service capacity
to subclass kb.

It is easiest to describe and implement the proposed policy in a discrete-review
framework, see, for example, Ata and Kumar [3] for discrete-review policies for con-
trolling stochastic networks. Here we choose a review-period of length κn for each
system. Namely, we let

κn = z1n
α1,

where 1/2 < α1 < 1 and z1 > 0 is a tuning parameter.
In the nth system, the system manager reviews the system status at times tnj = jκn

for j = 0,1,2, . . . . At the beginning of each period, she decides how to allocate
resources during that period so that she can process jobs present in the system at time
tnj as prescribed by this plan (and any new arrivals should there be sufficient capacity).
To describe the resource allocation decisions in each period, define subperiod lengths

lnf = z2n
α2,

lnkb
= z3n

α3, k = 1, . . . ,K,

lnka
= λk

µk

(

κn − lnf −
K∑

k=1

lnkb

)

, k = 1, . . . ,K,

where 1−α1 > α3 > α2 and α2 ∈ ( 1−α1
2 ,1−α1) and z2, z3 > 0 are tuning parameters.



86 Queueing Syst (2013) 74:65–104

In each period, the server works on classes 1 through K(in that order) sequentially.
For each class k, the server spends up to lnka

time units working on class ka first (until
she idles because class ka queue is depleted), then she spends up to lnkb

time units
working on class kb (until she idles because the queue is depleted). Then the server
proceeds to serving class k + 1 in the same manner. Once the server finishes serving
classes 1, . . . ,K in this way, the remainder of the period is spent in the “flexible”
mode, whereby whenever the server finishes processing a job, she next works on
class k for which the following is largest (for the current workload level):

1
mk

(
hn

k

)′
(

Qn
k(t)

λn
k

)
+ akγk

mk
− v

(
Ŵn(t)

)
γk,

where the server works on class kb if it is nonempty; otherwise she works on class ka .
Clearly, the service policy is nonidling.

The system manager updates her routing decision at the review points. To be
more specific, at each review point tnj for j = 1,2, . . . the system manager ob-
serves the system status. Let Qka (·) and Qkb(·) be the queue-lengths of subclasses
ka and kb , respectively, so that Qk(·) = Qka (·) + Qkb(·). She routes the first ⌊µkl

n
ka

⌋
class k jobs to subclass ka and routes the next ⌈µkl

n
kb

⌉ jobs to subclass kb. Then
the next [⌊λkbk

√
n⌋ − Qn

ka
(tnj )]+ jobs are again routed to class ka . Any further

class k arrivals are routed to subclass kb. Note that this routing policy ensures that
Qn

ka
(t) ≤ λkbk

√
n + µkτ

n
ka at all times. Note that when the backlog is small, each

class operates in the convex region of its delay cost curve. Further, most of the work-
load is kept in subclass a; and subclass b receives a small number of jobs. However, as
the backlog in class k increases, it is class kb that absorbs the added backlog, possibly
experiencing quite long delays, while subclass a is kept at a moderate length.

7 A simulation study

In this section, a numerical example with two classes is presented to illustrate the
effectiveness of the proposed policies, and the importance of accounting for aban-
donments in designing scheduling policies. For brevity, we focus attention on the
convex delay cost case, and compare our policy (see Sect. 6.2) with the generalized
cµ policy. In the analysis to follow we choose the system parameter n = 100. In the
base case we consider, jobs of each class arrive according to a Poisson process with
rate of λn

k = 95 per hour, and the processing times are exponentially distributed with
a mean of half an hour for both classes so that µn

k = 200 per hour (for k = 1,2). Jobs
of each class abandon at the rate of γk = 1; each abandonment costs ak = 0.2. The
delay costs are given by

cn
1(x) = x2 and cn

2(x) = 2x2.

In what follows, we compare the performance of our proposed policy with that
of the generalized cµ rule. Note that the base case we consider corresponds to the
special case II of Sect. 6.2 because γ1 = γ2 and a1/m1 = a2/m2. Hence, the two
policies are identical. Therefore, in what follows we vary γ1 and compare the two
policies.



Queueing Syst (2013) 74:65–104 87

Fig. 1 The value function v(·) for the case of γ1 = 10

Table 1 Long-run average costs under generalized cµ rule and proposed policy as a function of γ1. The
first column corresponds to the base case, in which proposed policy coincides with the generalized cµ
rule. Standard errors of costs are in the order of 0.001, and thus are not shown for expositional clarity

γ1 1 2 5 10

Generalized cµ 1.934 2.303 3.251 4.383

Proposed policy 1.934 2.212 2.650 3.061

It is straightforward to see that the generalized cµ rule strives to achieve the fol-
lowing form of state space collapse:

Qn
1 ≈ 2Qn

2

so that the instantaneous delay cost rate is minimized. Clearly, the generalized cµ

rule prescribes keeping two thirds of the workload in class 1 and one third of it in
class 2.

Although our policy coincides with the generalized cµ policy in the base case,
for γ1 ≠ γ2, it will differ from it as dictated by the index rule given in (59), which
requires computing the relative value function v(·). It is straightforward to derive
the limiting system parameters (with n = 100): λ1 = λ2 = 1,m1 = m2 = 0.5,σ 2 =
1,η = 0.5, a1 = a2 = 0.2,γ2 = 1; c1(x) = 0.1x2 and c2(x) = 0.2x2. We will con-
sider γ1 ∈ {1,2,5,10}. Using these parameters, we solve for v(·) numerically; it is
shown in Fig. 1 for the case of γ1 = 10. Repeating this for different values of γ1,
Table 1 provides the comparison of the long-run average costs under the two policies.
Table 2 provides a breakdown of the costs across delay costs versus abandonment
costs for each policy. To be specific, Table 1 shows how long-run average costs under
generalized cµ rule and proposed policy change as γ1 varies. The first column corre-
sponds to the base case, in which γ1 = γ2 = 1 and the long-run average costs under
the two policies are equal. In the rest of the columns, i.e. for γ1 ≠ γ2, the proposed
policy leads to lower long-run average costs than the generalized cµ policy. This is
because the abandonment cost is much lower when the proposed policy is used while
the delay cost is slightly higher; and the difference in abandonment costs is more sig-
nificant than that of delay costs (see Table 2). Also note that, as the abandonment rate
for class 1 increases, the long-run average costs under both policies increase since the



88 Queueing Syst (2013) 74:65–104

Table 2 Long-run average delay costs and abandonment costs under generalized cµ rule and proposed
policy as a function of γ1. The first column corresponds to the base case, in which proposed policy co-
incides with the generalized cµ rule. Standard errors of costs are in the order of 0.001, and thus are not
shown for expositional clarity

γ1 1 2 5 10

Generalized cµ delay costs 0.589 0.418 0.231 0.137

Proposed policy delay costs 0.589 0.472 0.411 0.377

Generalized cµ abandonment costs 1.345 1.885 3.020 4.246

Proposed policy abandonment costs 1.345 1.740 2.239 2.684

(a) γ1 = 1

(b) γ1 = 10

Fig. 2 The histograms of Q1/(Q1 + Q2) under generalized cµ policy for γ1 = 1 and γ1 = 10. The
percentage of time there is no workload in the system is not shown in these histograms, and equal to
19.96 % and 32.05 %, respectively, when γ1 = 1 and γ1 = 10

cost of abandonments outweigh the savings realized in delay costs due to abandon-
ments. It is also useful to look at the histogram of Q1/(Q1 + Q2) under each policy
for γ1 = 1 and γ1 = 10; see Figs. 2 and 3.



Queueing Syst (2013) 74:65–104 89

(a) γ1 = 1

(b) γ1 = 10

Fig. 3 The histograms of Q1/(Q1 + Q2) under proposed policy for γ1 = 1 and γ1 = 10. The percentage
of time there is no workload in the system is not shown in these histograms, and equal to 19.96 % and
25.67 %, respectively, when γ1 = 1 and γ1 = 10

Figure 2 shows how generalized cµ policy strives to distribute the workload so as
to minimize the delay cost rate, i.e. to keep close to two thirds of the workload in class
1 most of the time, regardless of whether the abandonment rates for two classes are
equal or not. As the abandonment rate of class 1 increases, more class 1 jobs abandon
as they wait. Yet the generalized cµ policy strives to keep most of the workload in
class 1, which leads to more class 1 abandonments, and a shorter class 1 queue than
the server wishes (under the generalized cµ rule). Hence, the server increases the
class 1 queue length by reducing its priority, which then leads to even more class
1 abandonments. In summary, ignoring the abandonments leads the generalized cµ

policy to an erroneous cycle of scheduling decisions, causing it to be significantly
suboptimal, cf. Table 1.

Our proposed scheduling policy gives priority to the nonempty class for which
(59) is largest, thus incorporates abandonment behavior into scheduling considera-
tions. That is, the server may serve jobs that do not have the highest immediate delay
costs rate, but perhaps have a high abandonment rate and thus allow the system to
forgo future abandonment costs. Therefore, the proposed policy strives to keep close



90 Queueing Syst (2013) 74:65–104

to two thirds of the workload in class 1, when the abandonment rates for two classes
are equal (much like the generalized cµ policy—Figs. 2a and 3a are identical), and
keep a much lower percentage of the workload in class 1, when the abandonment
rates for class 1 is higher (see Fig. 3b).

8 Concluding remarks

We study dynamic scheduling of a multiclass queue with abandonments in the heavy
traffic regime, where the objective is to minimize long-run average delay and aban-
donment costs. Three types of delay costs are considered: (i) linear delay costs,
(ii) convex delay costs, and (iii) convex–concave delay costs. Since the dynamic
control problem for the queueing system is not tractable analytically, we study the
system in the conventional heavy traffic regime. Upon observing that the associated
approximating Brownian control problem does not admit a pathwise solution due to
abandonments, we solve the associated Bellman equation. The solution to the Bell-
man equation yields a dynamic index policy as the optimal control for the approx-
imating Brownian control problem. We interpret that solution in the context of the
original queueing system by proposing practical policies for each of the three cases
considered and illustrate their effectiveness through a simulation study.

This paper makes the following contributions to the growing literature on the anal-
ysis and control of queueing systems with abandonments: First, in each of the cases
considered, it derives a novel dynamic index policy by solving a Bellman equation,
which depends on the second order problem data. Second, it highlights the impor-
tant role abandonments play in controlling the queueing systems by showing that
the pathwise policies cµ, the generalized cµ, and the cost balancing policy of Akan
et al. [1] are no longer (asymptotically) optimal under abandonments. Third, it pro-
poses simple, hence implementable, policies for the queueing system and illustrates
their effectiveness in a simulation study. Fourth, the convex–concave case presents
additional challenges which are overcome by the convex hull approach. Finally, it
provides a novel method for constructing a solution to the Bellman equation arising
in the analysis, which may be of interest in its own right.

Several possible generalizations and related questions are left for future research.
First, we expect that the analysis of the convex case can be extended to allow
limx→∞ c′

k(x) = ∞. It appears that all of our results except for Lemma 2 go through
or can easily be extended in that case. However, given its technical nature and that the
additional insights are limited, this case is not attempted here. Second, one can extend
the analysis of the convex–concave case to allow limx→∞ c′

k(x) ≠ limx→∞ c′
j (x) for

k ≠ j . Third, another possibility is to consider general abandonment distributions.
We expect that the derivative of the cumulative abandonment time distribution at zero
will govern the abandonment behavior along the lines of Dai and He [20] and Mandel-
baum and Momcilovic [41]. Fourth, yet another possibility is to consider hazard-rate
scaling for the abandonments. We expect the analysis of this case to be challenging
as it may lead to non-linear system dynamics.

Indeed, recent work by Kim and Ward [34] has considered this direction for
GI/GI/1 +GI queue with two customer classes. The authors assume general aban-
donment distributions; the objective is to minimize long-run average abandonment



Queueing Syst (2013) 74:65–104 91

costs. Kim and Ward [34] consider this challenging problem in heavy traffic, and
derive its approximating Brownian control problem, which has non-linear state dy-
namics. The authors solve the approximating Brownian control problem by solving
the associated Bellman equation. Kim and Ward [34] also propose a policy for the
original queueing system based on the solution of the Brownian control problem and
illustrate its effectiveness by a simulation study.

Finally, another interesting future research direction is to prove asymptotic op-
timality of the proposed policies. We expect this to be challenging for especially
the linear cost case (and the convex–concave cost case whose convex hull is linear
for large delays), because the usual state-space collapse may not hold. The asymp-
totic optimality proofs rely typically on establishing the weak convergence of the
vector-valued (scaled) queue length process, which, in turn, typically involves show-
ing (i) the workload process converges; (ii) a state space collapse result holds whereby
the vector-valued queue length process can be computed (or lifted up) from the lower
dimensional workload process. Ghamami and Ward [21] observes that under linear
delay/holding costs the optimal policy moves the workload between classes too fre-
quently; see Remark 6.5 and the related discussion of Ghamami and Ward [21] for a
detailed description of the “chatter” phenomenon. Therefore, for the cases with the
linear and convex–concave delay costs, we expect to see a similar challenge. How-
ever, one may possibly adopt the approach of Ghamami and Ward [21] to prove the
asymptotic optimality of the proposed policies. As a matter of fact, Ghamami and
Ward [21] overcome this difficulty by showing that the integrals of the queue length
processes converge. We expect that similar ideas can be used here too, which is left
for future research. We also expect the asymptotic analysis to be somewhat easier for
the case of convex delay cost. Indeed, we expect the usual state-space collapse result
hold in that case.

Appendix A: Formal derivation of the approximating Brownian control
problem

To facilitate the derivation of the Brownian control problem, note by the functional
strong approximations, cf. [17], that

An
k(t) = λn

k t +
√

λn
k B̂n

k (t) + o
(√

n
)

for all k,n, (60)

Sn
k (t) = µn

k t +
√

µn
k B̃n

k (t) + o
(√

n
)

for all k,n, (61)

where B̂k , B̃kfor (k = 1, . . . ,K) are independent standard Brownian motions and
o(

√
n)/

√
n → 0 as n → ∞.

Also, define the following scaled quantities for n ≥ 0 and t ≥ 0:

Ŷ n(t) = √
nYn(t), L̂n(t) = √

nLn(t),

Γ̂ n(t) = Γ n(t)√
n

, Q̂n(t) = Qn(t)√
n

,

Ŵn(t) = Wn(t)√
n

, Ĉn(t) = Cn(t)√
n

, and Ĥ n(t) = Hn(t)√
n

.



92 Queueing Syst (2013) 74:65–104

The following observation facilitates our derivation as well: For k = 1, . . . ,K

Γ̂ n
k (t) = 1√

n
Nk

(√
n

∫ t

0
γk

[
Q̂n

k(s) − 1√
n

]+
ds

)
, t ≥ 0. (62)

The strong law of large numbers for Poisson processes implies that Nk(
√

nt)/√
n → t as n → ∞ almost surely for t ≥ 0 and k = 1, . . . ,K . Therefore, we will

replace Γ̂ n
k (t) by

∫ t
0 γkQ̂

n
k (s) ds in deriving the approximating Brownian control

problem.
Then substituting (18), (60) and (61) into (2) and replacing Γ̂ n

k (t) by
∫ t

0 γkQ̂
n
k(s) ds

in (2), we arrive at the following:

Q̂n
k(t) = −µkt +

√

2λk + o(
√

n)√
n

Bk(t) −
∫ t

0
γkQ̂

n
k(s) ds + µkŶ

n
k (t) + o(

√
n)√
n

,

(63)

where Bk is a standard Brownian motion. Similarly, it follows from (18) that

L̂n(t) =
K∑

k=1

Ŷ n
k (t) + o(

√
n)√
n

, (64)

and (7) and (9) translate into the following under scaling:

L̂n(t) is nondecreasing with L̂n(0) = 0, (65)

Q̂n(t) ≥ 0. (66)

Also, using (16), the snapshot principle (17) and substituting
∫ t

0 γkQ̂
n
k (s) ds for

Γ̂ n
k (t), the scaled cost function is approximated by

Ĥ n(t) =
∫ t

0

K∑

k=1

(
λkhk

(
Q̂n

k(s)

λk

)
+ akγkQ̂

n
k(s)

)
ds. (67)

Moreover, it follows from (4) and (62)–(64) that

Ŵn(t) = B(t) −
∫ t

0

(
K∑

k=1

γkmkQ̂
n
k(s)

)

ds + L̂n(t) + o(
√

n)√
n

, (68)

where B(t) = ∑K
k=1 mkBk(t) for t ≥ 0.

We arrive at the approximating Brownian control problem by passing to the limit
in (63)–(68) formally. Namely, assuming Ŷ n → Y as n → ∞, we conclude that
Q̂n → Q, Ŵn → W and Ĥ n → H as n → ∞, where

Q̂k(t) = Bk(t) −
∫ t

0
γkQ̂k(s) ds + µkŶk(t), (69)

Ŵ (t) = B(t) −
∫ t

0

(
K∑

k=1

γkmkQ̂k(s)

)

ds + L̂(t), (70)



Queueing Syst (2013) 74:65–104 93

Ĥ (t) =
∫ t

0

(
K∑

k=1

λkhk

(
Q̂k(s)

λk

)
+ akγkQ̂k(s)

)

ds, (71)

L̂(t) =
K∑

k=1

Ŷk(t), (72)

Q̂(t) ≥ 0, (73)

L̂(t) is nondecreasing with L̂(0) = 0, (74)

and the approximating Brownian control problem can be stated as

min lim
t→∞

1
t
E

[
Ĥ (t)

]
subject to (69)–(74).

Appendix B: Auxiliary results and proofs of technical results

Proof of Lemma 1 It is immediate from (38) that ψ(x, v) is decreasing in v. Also
note from (31)–(32) that

ψ(x, v) = min
y∈Ã

{
g(xy) − vθ(xy)

x

}
, (75)

where the minimand is continuous in x, y, and v (for x > 0; and defining ψ(0, v) = 0
extends continuity everywhere). Consider two pairs (x1, y1) and (x2, y2), and assume
without loss of generality that ψ(x1, v1) ≤ ψ(x2, v2). Clearly, there exist y1, y2 such
that

ψ(xi, vi) = g(xiy
i) − viθ(xiy

i)

xi
.

Then it follows from (75) that

ψ(x1, v1) ≤ ψ(x2, v2) ≤ g(x2y
1) − v2θ(x2y

1)

x2
.

Thus,

∣∣ψ(x1, v1) − ψ(x2, v2)
∣∣ ≤

∣∣∣∣
g(x2y

1) − v2θ(x2y
1)

x2
− g(x1y

1) − v1θ(x1y
1)

x1

∣∣∣∣,

from which the continuity of ψ follows since g, θ are continuous.
For the Lipschitz continuity of ψ in v, we can repeat the same steps with x1 =

x2 = x, which gives

∣∣ψ(x1, v2) − ψ(x2, v1)
∣∣ ≤ |v2 − v1|

K∑

k=1

mkγky
1
k ≤ cL|v2 − v1|. !



94 Queueing Syst (2013) 74:65–104

Proof of Lemma 2 Let X(t) be the reflected Brownian motion on [0,∞) with drift
rate −η < 0 and infinitesimal variance σ 2. For any admissible policy, we have

E
[
f

(
W(t)

)]
≤ E

[
f

(
X(t)

)]

because f is monotone and X(t) is stochastically larger than W ∗(t), where the latter
assertion follows because there are no abandonments involved in the evolution of
process X(·). Therefore, it suffices to show that

lim
t→∞

E[f (X(t))]
t

= 0.

To establish this, recall that p̄ < ∞. Then since v∗(x) is increasing with
limx→∞ v∗(x) = p̄, we conclude that v∗(x) ≤ p̄ for all x. Thus, f (x) ≤ p̄x. Then

E[f (X(t))]
t

≤ p̄

t
E

[
X(t)

]
.

But we also have (see [23]) that

E
[
X(t)

]
→ E

[
X(∞)

]
=

∫ ∞

0
xe−ηx dx = 1

η
< ∞.

Therefore, E[f (X(t))]/t → 0 as t → ∞. !

The following lemma is immediate from the convexity of hk (for k = 1, . . . ,K)
and establishes that ψ is monotone.

Lemma 3 ψ(x,p) is strictly increasing in x in the cases of convex or convex–
concave delay costs, whereas it is independent of x in the linear delay cost case.

Lemma 4 p̄ = mink limx→∞(h′
k(x) + akγk)/γkmk < ∞.

Proof of Lemma 4 For notational convenience, let α = mink limx→∞(h′
k(x) +

akγk)/γkmk . For any p > α, it is easy to see that ψ(x,p) < 0. Thus p̄ ≤ p for all
p > α, which implies p̄ ≤ α. Next, we argue that p̄ ≥ α − ϵ for ϵ > 0. To this end,
fix ϵ > 0, then there exists x0 such that

h′
k(x) + akγk

γkmk
> α − ϵ, x > x0.

Thus ψ(x,α − ϵ) > 0 so that p̄ ≥ α − ϵ for ϵ > 0, from which we conclude that
p̄ ≥ α. !

Lemma 5 The following hold:

(i) x(p) < ∞ for p ∈ (0, p̄).
(ii) ψ(x(p),p) = ηp/x(p).

(iii) x(p) is strictly increasing in p.
(iv) limp→p̄ x(p) = ∞.
(v) ψ(x,p) > ηp/x for x > x(p).

(vi) φ(x,p) is strictly increasing in x for x > x(p).



Queueing Syst (2013) 74:65–104 95

Proof of Lemma 5

Part (i) Since p < p̄ and ψ is monotone in x, there exist ϵ > 0 sufficiently small
and x1 < ∞ sufficiently large such that ψ(x,p) ≥ ϵ for all x ≥ x1. Sim-
ilarly, there exists x2 < ∞ sufficiently large such that ηp/x ≤ ϵ/2 for all
x ≥ x2. Then letting x0 = max{x1, x2} < ∞,

ψ(x0,p) − ηp

x0
≥ ϵ

2
> 0,

and thus, x(p) < x0 < ∞ by the monotonicity of ψ(x,p) in x.
Part (ii) Suppose not. Then ψ(x(p),p) > ηp/x(p) which contradicts the fact that

x(p) is the infimum since ψ(x(p) − ϵ,p) > ηp/(x(p) − ϵ) for ϵ > 0 suf-
ficiently small.

Part (iii) This is clear from the fact that ψ(x,p) − ηp/x is strictly increasing in x
and strictly decreasing in p.

Part (iv) Suppose not. Then there exists M > 0 such that x(p) ≤ M for all p < p̄,
which implies ψ(M, p̄) ≥ ηp̄/M . But then ψ(2M,p̄) − ηp̄/(2M) > 0 be-
cause ψ(x,p) − ηp/x is strictly increasing in x. Thus, we conclude that
ψ(2M,p̄ + ϵ) > η(p̄ + ϵ)/2M for ϵ > 0 sufficiently small, which contra-
dicts the fact that p̄ is the supremum of p > 0 such that limx→∞ ψ(x,p) >
0. Therefore, x(p) → ∞ as p → p̄.

Part (v) This follows from part (ii) and the fact that ψ(x,p) − ηp/x is strictly in-
creasing in x.

Part (vi) Recall that

φ(x,p) = x
[
ψ(x,p) − ηp/x

]
.

Then the result follows from the facts that ψ(x,p)−ηp/x ≥ 0 for x ≥ x(p)
and that it is strictly increasing in x.

!

Lemma 6 Let x2 > x1 > 0 and p ∈ (0, p̄). Suppose either φ(x2,p) > 0 or
φ(x1,p) > 0. Then φ(x2,p) > φ(x1,p).

Proof of Lemma 6 First, assume φ(x2,p) > 0 and recall that

φ(x2,p) = min
y∈Ã

{
K∑

k=1

[
λk hk

(
ykx2

λk

)
+ akγkykx2

]
− p

K∑

k=1

γkmkykx2 − pη

}

= x2 min
y∈Ã

{
K∑

k=1

[
λk

x2
hk

(
ykx2

λk

)
+ akγkyk

]
− p

K∑

k=1

γkmkyk

}

− pη.

let y∗
k be the minimizer of the right-hand side. Then

φ(x2,p) = x2

{
K∑

k=1

[
λk

x2
hk

(
y∗
k x2

λk

)
+ akγky

∗
k

]
− p

K∑

k=1

γkmky
∗
k

}

− pη,

where the first term on the right-hand side is positive because φ(x2,p) > 0. Thus, we
conclude that



96 Queueing Syst (2013) 74:65–104

φ(x2,p) > x1

{
K∑

k=1

[
λk

x2
hk

(
y∗
k x2

λk

)
+ akγky

∗
k

]
− p

K∑

k=1

γkmky
∗
k

}

− pη

≥ x1

{
K∑

k=1

[
λk

x1
hk

(
y∗
k x1

λk

)
+ akγky

∗
k

]
− p

K∑

k=1

γkmky
∗
k

}

− pη

≥ x1 min
y∈Ã

{
K∑

k=1

[
λk

x1
hk

(
ykx1

λk

)
+ akγkyk

]
− p

K∑

k=1

γkmkyk

}

− pη

= φ(x1,p),

where the first inequality follows since the first term on the right-hand side is positive,
the second inequality follows from convexity of hk(·) and that hk(0) = 0, and the
third one follows from the min operation.

Alternatively, assume φ(x1,p) > 0. Then note that

φ(x2,p) = x2 min
y∈Ã

{
K∑

k=1

[
λk

x2
hk

(
ykx2

λk

)
+ akγkyk

]
− p

K∑

k=1

γkmkyk

}

− pη

= x2

x1
x1 min

y∈Ã

{
K∑

k=1

[
λk

x2
hk

(
ykx2

λk

)
+ akγkyk

]
− p

K∑

k=1

γkmkyk

}

− pη

≥ x2

x1
x1 min

y∈Ã

{
K∑

k=1

[
λk

x1
hk

(
ykx1

λk

)
+ akγkyk

]
− p

K∑

k=1

γkmkyk

}

− pη

> x1 min
y∈Ã

{
K∑

k=1

[
λk

x1
hk

(
ykx1

λk

)
+ akγkyk

]
− p

K∑

k=1

γkmkyk

}

− pη

= φ(x1,p),

where the first inequality follows from convexity of hk(·) and that hk(0) = 0, whereas
the next inequality follows since the first term on the right-hand side is positive and
x2/x1 > 1. !

Lemma 7 Let v be the unique solution to IVP(x̂) for x̂ > x(p) and p ∈ (0, p̄). Sup-
pose there exists x∗ ∈ [0, x̂] such that v′(x∗) = 0. Then

φ
(
x, v

(
x∗)) > φ

(
x∗, v

(
x∗)) for x > x∗.

Proof of Lemma 7 Recall that φ(x, v) = xψ(x, v) − ηp. Since v′(x∗) = 0, it fol-
lows from (45) that φ(x∗, v(x∗)) = φ(x̂,p) > 0, which implies ψ(x∗, v(x∗)) >

ηv(x∗)/x∗ > 0. Then for x > x∗, we have ψ(x, v(x∗)) ≥ ψ(x∗, v(x∗)) > 0 by
Lemma 3. Therefore for x > x∗,

φ
(
x, v

(
x∗)) = xψ

(
x, v

(
x∗)) − ηv

(
x∗)

> x∗ψ
(
x∗, v

(
x∗)) − ηv

(
x∗)

= φ
(
x∗, v

(
x∗)). !



Queueing Syst (2013) 74:65–104 97

Proof of Proposition 2 First let (q, L̂) be an admissible policy for the workload prob-
lem with the associated workload process W , and define Q̂(t) = q(t,W(t)). It is
straightforward to check that (Q̂, L̂) is an admissible policy for the reduced Brow-
nian control problem; and the two policies have the same cost. Next, let (Q̂, L̂) be
an admissible policy for the reduced BCP. Then choose the workload configuration
function q such that q(t,W(t)) = Q(t) for t ≥ 0. (Recall that we allow the workload
configuration function q to depend on the sample path.) Clearly, (q, L̂) is an admis-
sible policy for the workload problem, and its cost is less than or equal to that of the
policy (Q̂, L̂) for the reduced Brownian control problem. !

Proof of Proposition 3 Part (i). It follows from Lemma 1, the fact that φ(x, v) =
xψ(x, v) − ηv, and Picard’s iteration arguments; see pages 89–98 of Boyce and
DiPrima [13], that there exists δ > 0 such that we have a unique continuously dif-
ferentiable solution vx̂ on [0, δ]. This result can be extended to the entire interval
[0,K] for all K > 0 (and hence to [0,∞)) by mimicking the arguments on page 192
of Mandl [43].

Part (ii). Let x̂2 > x̂1 > x(p). We want to show that vx̂2(x) > vx̂1(x) for all x > 0,
where

1
2
σ 2vx̂i

(x) = φ(x̂i , p)x −
∫ x

0
φ
(
s, vx̂i

(s)
)
ds, i = 1,2. (76)

Suppose that vx̂1(x) ≥ vx̂2(x) for some x > 0. Let x∗ = inf{x ≥ 0 : vx̂1(x) ≥ vx̂2(x)}.
If x∗ > 0, then our hypothesis and the continuity of vx̂1 and vx̂2 guarantee that
vx̂1(x

∗) = vx̂2(x
∗), and that vx̂1(x) ≤ vx̂2(x) on [0, x∗]. Then it follows from (76)

that
1
2
σ 2[vx̂2

(
x∗) − vx̂1

(
x∗)] =

(
φ(x̂2,p) − φ(x̂1,p)

)
x∗

−
∫ x∗

0

[
φ
(
s, vx̂2(s)

)
− φ

(
s, vx̂1(s)

)]
ds.

Since φ(s, ·) is nonincreasing (by Lemma 1), and φ(x̂2,p) > φ(x̂1,p) (by part (vi))
of Lemma 5), we have

0 = vx̂2

(
x∗) − vx̂1

(
x∗) ≥ 2

σ 2

[
φ(x̂2,p) − φ(x̂1,p)

]
x∗ > 0,

which is a contradiction.
If x∗ = 0, then there exists a sequence {xn} such that xn ↓ 0 as n → ∞ and

vx̂1(xn) ≥ vx̂2(xn). In particular,

vx̂1(xn)

xn
≥ vx̂2(xn)

xn
for n ≥ 1.

Because vx̂1(0) = vx̂2(0), taking the limit as n → ∞ gives v′
x̂2

(0) ≤ v′
x̂1

(0), which in
turn implies φ(x̂2,p) ≤ φ(x̂1,p) by (45), contradicting the fact that x̂2 > x̂1 > x(p)

by part (vi) of Lemma 5.
Therefore, x̂2 > x̂1 > x(p) implies vx̂1(x) < vx̂2(x) for all x > 0.
Part (iii) To show that vx̂ strictly increases to its maximum on [0, x̂], we proceed

in two steps: The first step is to show that vx̂ weakly increases to its maximum, that



98 Queueing Syst (2013) 74:65–104

is, it is not decreasing at any point before it reaches its maximum. Suppose not. Then
by continuity of vx̂ and its derivative, there exist x1, x2 ∈ [0, x̂] such that

x1 < x2,

0 = v′
x̂ (x1) < v′

x̂ (x2), (77)

vx̂(x1) = vx̂(x2). (78)

Then (45) and (77) imply that

φ
(
x1, vx̂(x1)

)
= φ(x̂,p) − 1

2
σ 2v′

x̂ (x1) > φ(x̂,p) − 1
2
σ 2v′

x̂ (x2) = φ
(
x2, vx̂(x2)

)
.

Comparing this with (78), we have φ(x1, vx̂(x1)) > φ(x2, vx̂(x1)), which contradicts
Lemma 7. Therefore, vx̂ must increase weakly to its maximum value on [0, x̂].

As the second step, we show that vx̂ cannot be constant on any interval. Thus,
we conclude that it must strictly increase to its maximum. To see this, suppose that
vx̂ is constant on some interval [x1, x2]. Then v′

x̂
(x) = 0 for x ∈ [x1, x2], and there-

fore, it follows from (45) that φ(x, vx̂(x)) = φ(x̂,p) for x ∈ [x1, x2]. However, since
φ(x1, vx̂(x1)) = φ(x̂,p) > 0 and v′

x̂
(x1) = 0, one can argue from Lemma 7 that

φ
(
x, vx̂(x1)

)
> φ

(
x1, vx̂(x1)

)
for x ∈ (x1, x2]. (79)

But then we also have from (45) and v′
x̂
(x) = 0 for x ∈ (x1, x2] that

φ
(
x, vx̂(x1)

)
= φ

(
x, vx̂(x)

)
= φ(x̂,p),

which contradicts (79). Thus, vx̂ cannot be constant on any interval, and we conclude
that it strictly increases to its maximum on [0, x̂]. !

Proof of Proposition 4 That ζ(·;p) is strictly increasing follows from part (ii) of
Proposition 3 and (47). Also note from part (ii) of Lemma 5 and the fact that
φ(x, v) = xψ(x, v) − ηv that φ(x(p),p) = 0. Combining this with the fact that
φ(0,0) = 0 gives vx(p)(·;p) ≡ 0. Therefore, ζ(x(p);p) = 0.

To show that limx̂→∞ ζ(x̂;p) = ∞ for p ∈ (0, p̄), note that

1
2
σ 2vx̂(x) = φ(x̂,p)x −

∫ x

0
φ
(
s, vx̂(s)

)
ds,

from which it follows that for x > 0 sufficiently small (so that vx̂(s) ≥ 0 for all s ∈
(0, x))

ζ(x̂;p) ≥ vx̂(x) ≥ σ 2

2

[
φ(x̂,p)x −

∫ x

0
φ(s,0) ds

]
.

That is,

ζ(x̂;p) ≥ σ 2

2

[
φ(x̂,p)x −

∫ x

0
φ(s,0) ds

]
. (80)

Moreover, as x̂ → ∞, we have φ(x̂,p) → ∞ because φ(x̂,p) = x̂ψ(x̂,p) − ηp

and limx̂→∞ ψ(x̂,p) > 0 since p < p̄. Therefore, the right-hand side of (80) tends to
infinity, and hence, ζ(x̂,p) → ∞.



Queueing Syst (2013) 74:65–104 99

To prove that ζ is continuous, we first prove that vx̂(x) is continuous in x̂, uni-
formly over compact intervals [0,K], K > 0. To this end, let x̂ > x(p) and {x̂n} be a
sequence converging to x̂ where x̂n ≥ x(p). It suffices to show that vx̂n

(x) → vx̂(x)

as n → ∞ uniformly in x (over compact intervals). Recall that ψ(x, v) is Lipschitz
continuous in v uniformly in x (see Lemma 1) and that φ(x,p) = xψ(x, v) − ηv.
Therefore, φ(x, v) is Lipschitz continuous in v (uniformly in x when x ∈ [0,K], i.e.
over compact intervals). Pick K sufficiently large so that x̂n ≤ K < ∞ for all n. Then
we write

1
2
σ 2∣∣vx̂n

(x) − vx̂m
(x)

∣∣ ≤
∣∣φ(x̂n,p) − φ(x̂m,p)

∣∣x

+
∫ x

0

∣∣φ
(
s, vx̂n

(s)
)
− φ

(
s, vx̂m

(s)
)∣∣ds,

≤
∣∣φ(x̂n,p) − φ(x̂m,p)

∣∣K + cK

∫ K

0

∣∣vx̂n
(s) − vx̂m

(s)
∣∣ds,

where cK is the uniform Lipschitz constant of φ(x, ·) for x ∈ [0,K]. Then by Gron-
wall’s inequality, cf. p. 78 of Oksendal [44], it follows that

∣∣vx̂n
(x) − vx̂m

(x)
∣∣ ≤ 2

σ 2

∣∣φ(x̂n,p) − φ(x̂m,p)
∣∣KcK exp

{
2cKx/σ 2},

≤ 2
σ 2 KcK exp

{
2cKK/σ 2}∣∣φ(x̂n,p) − φ(x̂m,p)

∣∣.

Therefore the sequence of functions {vx̂n
} is a Cauchy sequence (uniformly in

x ∈ [0,K]). Then for each x ∈ [0,K], we have

1
2
σ 2 lim

n→∞vx̂n
(x) = lim

n→∞φ(x̂n,p)x − lim
n→∞

∫ x

0
φ
(
s, vx̂n

(s)
)
ds.

One can interchange the limit and the integral since φ(s, vx̂n
(s)) converges uni-

formly in s as n → ∞, which follows from the uniform convergence of vx̂n
(on

[0,K]) and the Lipschitz continuity of φ uniformly in s ∈ [0,K]. Then since φ(·,p)

is also continuous, the following holds:

1
2
σ 2ṽ(x) = φ(x̂,p)x −

∫ x

0
φ
(
s, ṽ(s)

)
ds, x ∈ [0,K],

which shows that ṽ is continuously differentiable and solves the initial value prob-
lem IVP(x̂) on [0,K]. By the uniqueness of the solution to the initial value problem
IVP(x̂) it follows that ṽ = vx̂ . Therefore, vx̂n

→ vx̂ as n → ∞ uniformly over com-
pact intervals.

We now combine these results to prove that ζ(·;p) is continuous. To this end, fix
x̂1 > x(p) and let ϵ > 0. Since vx̂(x) is continuous in x̂ on compact intervals [0,K]
for each K > 0, there exists δ(K) ∈ (0, x(p)) such that |vx̂1(x) − vx̂2(x)| < ϵ/2 for
all x ∈ [0,K] whenever |x̂1 − x̂2| < δ(K). Also for K > x(p), define

φ(K,p) = inf
{
x ∈ [0, x̂], x̂ ∈

[
x(p),K

]
: φ

(
x, vx̂(x)

)}
,

and observe that

φ(K,p) < φ(K,p).



100 Queueing Syst (2013) 74:65–104

Moreover, observe from (45)–(46) that for all x̂ ∈ (x(p),K] and x1, x2 ∈ [0, x̂] that

vx̂(x2) − vx̂(x1) ≤ σ 2

2

[
φ(K,p) − φ(K,p)

]
(x2 − x1). (81)

Let K be sufficiently large, i.e. K ≥ 2x̂1, and define

δ̂(K) = min
{
δ(K),

ϵ

σ 2[φ(K,p),φ(K,p)]

}
,

and consider x̂2 such that |x̂1 − x̂2| < δ̂(K). Consider the following two cases:
Case 1: x̂2 < x̂1. Then ζ(x̂2) < ζ(x̂1). Choose x∗

1 such that vx̂1(x
∗
1 ) = ζ(x̂1). Then

by (81) and definitions of x∗
1 and ζ it follows that

ζ(x̂2) = max
0≤x≤x̂2

vx̂2(x) ≥ vx̂2

(
x∗

1 ∧ x̂2
)
.

Then consider the following two subcases:
Case 1a: x∗

1 ≤ x̂2. Then ζ(x̂2) ≥ vx̂2(x
∗
1 ) ≥ vx̂1(x

∗
1 ) − ϵ/2 = ζ(x̂1) − ϵ/2.

Case 1b: x∗
1 > x̂2. Then since x∗

1 ∈ (x̂2, x̂1], we have by (81) that

ζ(x̂1) ≥ vx̂2(x̂2) ≥ vx̂1(x̂2) − ϵ/2 ≥ vx̂1

(
x∗

1
)
− ϵ = ζ(x̂1) − ϵ.

Therefore, in either case we have ζ(x̂1) ≥ ζ(x̂2)−ϵ, and combining this with ζ(x̂2) ≤
ζ(x̂1) gives |ζ(x̂2) − ζ(x̂1)| < ϵ.

Case 2: x̂2 > x̂1. Then ζ(x̂1) < ζ(x̂2). Choose x∗
2 such that vx̂2(x

∗
2 ) = ζ(x̂2). Then

by (81) and definitions of x∗
1 and ζ , it follows that

ζ(x̂1) = max
0≤x≤x̂1

vx̂1(x) ≥ vx̂1

(
x∗

2 ∧ x̂1
)
.

Then consider the following two subcases:
Case 2a: x∗

2 ≤ x̂1. Then ζ(x̂1) ≥ vx̂1(x
∗
2 ) ≥ vx̂2(x

∗
2 ) − ϵ/2 = ζ(x̂2) − ϵ/2.

Case 2b: x∗
2 > x̂1. Then since x∗

2 ∈ (x̂1, x̂2], we have

ζ(x̂1) ≥ vx̂1(x̂1) ≥ vx̂2(x̂1) − ϵ/2 ≥ vx̂2

(
x∗

2
)
− ϵ = ζ(x̂2) − ϵ.

Therefore, in either case we have ζ(x̂1) ≥ ζ(x̂2)−ϵ, and combining this with ζ(x̂1) ≤
ζ(x̂2) gives |ζ(x̂2) − ζ(x̂1)| < ϵ.

Combining cases 1 and 2, we conclude that ζ is continuous. !

Proof of Corollary 1 It is clear from Proposition 4 that there exists x(p) such that
ζ(x(p);p) = p. Moreover, by Proposition 3, vx(p)(·) increases strictly to its maxi-
mum value of p on the interval [0, x(p)]. Denote this maximum by x∗. We argue that
x∗ = x(p). Suppose not, i.e. x∗ < x(p). Then

φ
(
x(p),p

)
= φ

(
x∗, vx(p)

(
x∗)) = φ

(
x∗,p

)
,

which is a contradiction by Lemma 6. Thus x∗ = x(p). Moreover, it follows from
(44) that v′(x(p)) = 2/σ 2[φ(x(p),p) − φ(x(p), vx(p)(x(p))] = 0. !

Proof of Proposition 5 Note that by construction v(·;p) solve the initial value prob-
lem IVP(x(p)) on [0, x(p)], and by Corollary 1, v(·;p) is continuously differentiable
on [0,∞). Hence the result follows. !



Queueing Syst (2013) 74:65–104 101

Proof of Proposition 6 Part (i). Suppose not. Then there exist 0 < p1 < p2 < p̄ such
that x(p2) ≤ x(p1). Then

0 < φ
(
x(p2),p2

)
≤ φ

(
x(p1),p2

)
< φ

(
x(p1),p1

)
,

where the first inequality follows from Lemma 3, part (ii) of Lemma 5 and
that φ(x, v) = xψ(x, v) − ηv, the second inequality follows from part (vi) of
Lemma 5, and the last inequality follows since φ(x, ·) is strictly decreasing. Since
φ(x(p2),p2) < φ(x(p1),p1), we can argue as in the proof of part (ii) of Proposi-
tion 3 that

vx(p1)(x;p1) > vx(p2)(x;p2) for all x > 0. (82)

Then by definition of v(·;p) it follows that

p1 = v
(
x(p1),p1

)
≥ v

(
x(p2),p1

)
> v

(
x(p2),p2

)
= p2. (83)

To be more specific, the first inequality follows from part (iii) of Proposition 3 and
that x(p1) ≥ x(p2), and the second inequality follows from (82). But (83), i.e. p1 >
p2 is clearly a contradiction. Therefore x(p) is strictly increasing on (0, p̄).

Part (ii). Let 0 < p1 < p2 < p̄ and consider

φ
(
x(p1),p1

)
= 1

2
σ 2v′

x(p1)
(x) + φ

(
x, vx(p1)(x)

)
subject to vx(p1)(0) = 0,

(84)

φ
(
x(p2),p2

)
= 1

2
σ 2v′

x(p2)
(x) + φ

(
x, vx(p2)(x)

)
subject to vx(p2)(0) = 0.

(85)

Suppose β(p2) = φ(x2(p2),p2) ≤ φ(x(p1),p1) = β(p1). Then we can argue as in
the proof of part (ii) of Proposition 3 that vx(p2)(x) ≤ vx(p1)(x) for all x > 0. Then
using (84)–(85) and the fact that φ(x, v) is strictly decreasing in v, we conclude that
v′
x(p2)

(x) < v′
x(p1)

(x) for all x > 0. Note, however, that

v′
x(p1)

(
x(p1)

)
= 0 ≥ v′

x(p2)

(
x(p1)

)
,

which implies x(p2) ≤ x(p1) because vx(p2)(·) increases strictly to its maximum (at
x(p2)) and v′

x(p2)
(x(p2)) = 0. But clearly x(p2) ≤ x(p1) contradicts part (i). Thus,

β(p2) > β(p1).
Part (iii). Since β(p2) > β(p1) for 0 < p1 < p2 < ∞, this follows along the lines

of the proof of part (ii) of Proposition 3. !

Proof of Proposition 7 Part (i). Note that β(p) is the long-run average cost in an
auxiliary problem where the system manager can turn away arriving jobs, but incurs
a rejection penalty of p for doing so per such job. (Given Proposition 5, it is straight-
forward to verify this along the lines of Theorem 1 of Rubino and Ata [54].) In this
auxiliary system, consider the feasible policy which keeps all workload in buffer 1
and never turns away any jobs. Let Ŵ and Q̂ denote the (limiting) workload and
queue-length process under this policy (Q̂k = 0 for k = 2, . . . ,K). Clearly we have

β(p) ≤ limt→∞
1
t
E

[
H(t)

]
,



102 Queueing Syst (2013) 74:65–104

where

H(t) =
∫ t

0

[
λ1h1

(
Ŵ (s)

λ1m1

)
+ a1γ1

m1
Ŵ (s)

]
ds, t ≥ 0.

Also consider the reflected Brownian motion X(t) on [0,∞) with drift rate η < 0 and
infinitesimal variance σ 2. Note that X(t) is stochastically larger than W(t). Thus, by
monotonicity of h2(·)

1
t
E

[
H(t)

]
≤ 1

t
E

[∫ t

0

[
λ1h1

(
X(s)

λ1m1

)
+ a1γ1

m1
X(s)

]
ds

]
,

but the right-hand side converges to (see [23]):

E
[
λ1h1

(
X(∞)

λ1m1

)
+ a1γ1

m1
X(∞)

]
< ∞,

because X(∞) has an exponential distribution with mean σ 2/2m. This gives a uni-
form upper bound on β(p). Thus, β∗ < ∞.

Part (ii). Recall that x(p) > x(p) by construction, and that limp→p̄ x(p) = ∞ by
part (iv) of Lemma 5. Hence the result follows.

Part (iii). Recall that by construction 0 ≤ v(x;p) ≤ p for all x ≥ 0. Then letting
p → p̄ gives

0 ≤ v∗(x) ≤ p̄ for all x ≥ 0. (86)

Since p̄ < ∞ by Lemma 4, this proves that v∗(x) < ∞ for all x ≥ 0. Also note that

v
(
x(p);p

)
≤ v∗(x(p)

)
≤ p̄. (87)

Since v∗(·) is nondecreasing, which it inherits from v(·;p), and that x(p) ↗ ∞ as
p → p̄, we conclude from (86)–(87) that limx→∞ v∗(x) = p̄. !

References

1. Akan, M., Ata, B., Olsen, T.L.: Congestion-based leadtime quotation for heterogeneous customers
with convex–concave delay costs: optimality of a cost-balancing policy based on convex hull func-
tions. Oper. Res. (2011). doi:10.1287/opre.1120.1117

2. Ata, B.: Dynamic control of a multiclass queue with thin arrival streams. Oper. Res. 54(5), 876–892
(2006)

3. Ata, B., Kumar, S.: Heavy traffic analysis of open processing networks with complete resource pool-
ing: asymptotic optimality of discrete review policies. Ann. Appl. Probab. 15(2), 331–391 (2005)

4. Ata, B., Olsen, T.L.: Near-optimal dynamic leadtime quotation and scheduling under convex–concave
customer delay costs. Oper. Res. 57(3), 753–768 (2009)

5. Ata, B., Olsen, T.L.: Congestion-based leadtime quotation and pricing for revenue maximization with
heterogeneous customers. Working Paper, Northwestern University, Evanston, IL (2011)

6. Ata, B., Harrison, J., Shepp, L.: Drift rate control of a Brownian processing system. Ann. Appl.
Probab. 15(2), 1145–1160 (2005)

7. Ata, B., Skaro, A., Tayur, S.: Organjet: overcoming geographical disparities in access to deceased
donor kidneys in the United States. Working Paper, Northwestern University, Evanston, IL (2011)

8. Atar, R., Giat, C., Shimkin, N.: The cµ/θ rule for many-server queues with abandonment. Oper. Res.
58(5), 1427–1439 (2010)

9. Atar, R., Giat, C., Shimkin, N.: On the asymptotic optimality of the cµ/θ rule under ergodic cost.
Queueing Syst. 67(2), 127–144 (2011)



Queueing Syst (2013) 74:65–104 103

10. Bell, S., Williams, R.: Dynamic scheduling of a system with two parallel servers in heavy traffic with
resource pooling: asymptotic optimality of a threshold policy. Ann. Appl. Probab. 11, 608–649 (2001)

11. Bell, S., Williams, R.: Dynamic scheduling of a parallel server system in heavy traffic with complete
resource pooling: asymptotic optimality of a threshold policy. Electron. J. Probab. 10, 1044–1115
(2005)

12. Billingsley, P.: Convergence of Probability Measures, 2nd edn. Wiley-Interscience, New York (1999)
13. Boyce, W., DiPrima, R.: Elementary Differential Equations and Boundary Value Problems. Wiley,

New York (1992)
14. Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press, Cambridge (2004)
15. Budhiraja, A., Ghosh, A.P., Lee, C.: An ergodic rate control problem for single class queueing net-

works. SIAM J. Control Optim. 49, 1570–1606 (2011)
16. Celik, S., Maglaras, C.: Dynamic pricing and lead-time quotation for a multiclass make-to-order

queue. Manag. Sci. 54(6), 1132–1146 (2008)
17. Chen, H., Yao, D.D.: Fundamentals of Queueing Networks: Performance, Asymptotics, and Opti-

mization. Springer, New York (2001)
18. Conway, R.W., Maxwell, W., Miller, L.: Theory of Scheduling. Addison-Wesley, Reading (1967)
19. Cox, D., Smith, W.: Queues. Methuen, London (1961)
20. Dai, J., He, S.: Customer abandonment in many-server queues. Math. Oper. Res. 35(2), 347–362

(2010)
21. Ghamami, S., Ward, A.R.: Dynamic scheduling of an N-System with reneging. Working Paper (2010)
22. Ghosh, A.P., Weerasinghe, A.: Optimal buffer size and dynamic rate control for a queueing network

with reneging in heavy traffic. Stoch. Process. Appl. 120, 2103–2141 (2010)
23. Harrison, J.M.: Brownian Motion and Stochastic Flow Systems. Wiley, New York (1985)
24. Harrison, J.M.: Brownian models of queueing networks with heterogeneous customer populations.

In: Fleming, W., Lions, P.L. (eds.) Stochastic Differential Systems, Stochastic Control Theory and
Applications. IMA Volumes in Mathematics and its Applications, vol. 10, pp. 147–186. Springer,
New York (1988)

25. Harrison, J.M.: Heavy traffic analysis of a system with parallel servers: asymptotic analysis of
discrete-review policies. Ann. Appl. Probab. 8, 822–848 (1998)

26. Harrison, J.M., Wein, L.M.: Scheduling networks of queues: heavy traffic analysis of a simple open
network. Queueing Syst. 5(4), 265–280 (1989)

27. Harrison, J.M., Wein, L.M.: Scheduling networks of queues: heavy traffic analysis of a two-station
closed network. Oper. Res. 38, 1052–1064 (1990)

28. Harrison, J.M., Zeevi, A.: Dynamic scheduling of a multi-class queue in the Halfin–Whitt heavy traffic
regime. Oper. Res. 52, 243–257 (2004)

29. Iglehart, D.L., Whitt, W.: Multiple channel queues in heavy traffic I. Adv. Appl. Probab. 2(1), 150–177
(1970)

30. Iglehart, D.L., Whitt, W.: Multiple channel queues in heavy traffic II: sequences, networks, and
batches. Adv. Appl. Probab. 2(2), 355–369 (1970)

31. Iglehart, D.L., Whitt, W.: Multiple channel queues in heavy traffic III: random server selection. Adv.
Appl. Probab. 2(2), 370–375 (1970)

32. Kakalik, J.: Optimal dynamic operating policies for a service facility. Technical Report. OR Center,
MIT, Cambridge, MA (1969)

33. Keskinocak, P., Tayur, S.: Due date management policies. In: Simchi-Levi, D., Wu, S.D., Shen, Z.M.
(eds.) Handbook of Quantitative Supply Chain Analysis: Modeling in the E-Business Era. Interna-
tional Series in Operations Research and Management Science, pp. 485–556. Kluwer Academic,
Norwell (2004)

34. Kim, J., Ward, A.R.: Dynamic scheduling of an GI/GI/1 + GI queue with two customer classes.
Working Paper, Marshall School of Business, University of Southern California (2011)

35. Klimov, G.P.: Time-sharing service systems I. Theory Probab. Appl. 19(3), 532–551 (1974)
36. Kocaga, Y.L., Ward, A.R.: Admission control for a multi-server queue with abandonment. Queueing

Syst. 6(3), 275–323 (2010)
37. Kostami, V., Ward, A.R.: Managing service systems with an offline waiting option and customer

abandonment. Manuf. Serv. Oper. Manag. 11(4), 644–656 (2009)
38. Kumar, S.: Two-server closed networks in heavy traffic: diffusion limits and asymptotic optimality.

Ann. Appl. Probab. 10, 930–961 (2000)
39. Laws, C.: Resource pooling in queueing networks with dynamic routing. Adv. Appl. Probab. 24, 699–

726 (1992)



104 Queueing Syst (2013) 74:65–104

40. Leclerc, F., Schmitt, B.H., Dube, L.: Waiting time and decision making: is time like money? J. Con-
sum. Res. 22(1), 110–119 (1995)

41. Mandelbaum, A., Momcilovic, P.: Queues with many servers and impatient customers. Math. Oper.
Res. (2012). doi:10.1287/moor.1110.0530

42. Mandelbaum, A., Stolyar, A.L.: Scheduling flexible servers with convex delay costs: heavy-traffic
optimality of the generalized cµ-rule. Oper. Res. 52(6), 836–855 (2004)

43. Mandl, P.: Analytic Treatment of One-Dimensional Markov Processes. Springer, Berlin (1968)
44. Oksendal, B.: Stochastic Differential Equations: An Introduction with Applications, 5th edn. Springer,

New York (1998)
45. Ormeci-Matoglu, M., Vande Vate, J.: Drift control with changeover costs. Oper. Res. 59, 427–439

(2011)
46. Plambeck, E., Ward, A.: Optimal control of a high-volume assemble-to-order system. Math. Oper.

Res. 31(3), 453–477 (2006)
47. Plambeck, E., Ward, A.: Optimal control of a high-volume assemble-to-order system with maximum

leadtime quotation and expediting. Queueing Syst. 60(1), 1–69 (2008)
48. Plambeck, E., Kumar, S., Harrison, J.M.: A multiclass queue in heavy traffic with throughput time

constraints: asymptotically optimal dynamic controls. Queueing Syst. 39(1), 23–54 (2001)
49. Randhawa, R.S., Kumar, S.: Usage restriction and subscription services: operational benefits with

rational users. Manuf. Serv. Oper. Manag. 10(3), 429–447 (2008)
50. Randhawa, R.S., Kumar, S.: Multi-server loss systems with subscribers. Math. Oper. Res. 34(1), 142–

179 (2009)
51. Reed, J.E., Tezcan, T.: Hazard rate scaling for the GI/M/N + GI queue. Working paper (2009)
52. Reed, J., Ward, A.R.: Approximating the GI/GI/1 + GI queue with a nonlinear drift diffusion: hazard

rate scaling in heavy traffic. Math. Oper. Res. 33(3), 606–644 (2008)
53. Reiman, M.I.: Open queueing networks in heavy traffic. Math. Oper. Res. 9(3), 441–458 (1984)
54. Rubino, M., Ata, B.: Dynamic control of a make-to-order parallel-server system with cancellations.

Oper. Res. 57(1), 94–108 (2009)
55. Stidham, S.J.: Analysis, design and control of queueing systems. Oper. Res. 50(1), 197–216 (2002)
56. Stolyar, A.L.: Maxweight scheduling in a generalized switch: state space collapse and workload min-

imization in heavy traffic. Ann. Appl. Probab. 14(1), 1–53 (2004)
57. Van Mieghem, J.A.: Dynamic scheduling with convex delay costs: the generalized cµ rule. Ann. Appl.

Probab. 5(3), 809–833 (1995)
58. Ward, A.: Asymptotic analysis of queueing systems with reneging: a survey of results for fifo, single

class models. Surv. Oper. Res. Manag. Sci. 17(1), 1–14 (2012)
59. Ward, A.R., Glynn, P.W.: A diffusion approximation for a Markovian queue with reneging. Queueing

Syst. 43(1/2), 103–128 (2003)
60. Ward, A.R., Glynn, P.W.: Properties of the reflected Ornstein–Uhlenbeck process. Queueing Syst.

44(2), 109–123 (2003)
61. Ward, A.R., Glynn, P.W.: A diffusion approximation for a GI/GI/1 queue with balking of reneging.

Queueing Syst. 50(4), 371–400 (2005)
62. Wein, L.M.: Optimal control of a two-station Brownian network. Math. Oper. Res. 15(2), 215–242

(1990)
63. Wein, L.M.: Scheduling networks of queues: heavy traffic analysis of a two-station network with

controllable inputs. Oper. Res. 38, 1065–1078 (1990)
64. Wein, L.M.: Due-date setting and priority sequencing in a multiclass M/G/1 queue. Manag. Sci. 37(7),

834–850 (1991)
65. Wein, L.M.: Dynamic scheduling of a multiclass make-to-stock queue. Oper. Res. 40, 724–735 (1992)
66. Wein, L.M., Veatch, M.: Scheduling a make-to-stock queue: index policies and hedging points. Oper.

Res. 44, 634–647 (1996)


