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This paper presents a new feature descriptor that is suitable for image matching under nonlinear intensity changes. The proposed
approach consists of the following three steps. First, a binary local patch clustering transform response is employed as the transform
space. The value of the new space exhibits a high similarity after changes in intensity. Then, a random binary pattern coding method
extracts raw feature histograms from the new space. Finally, the discrimination of the proposed feature descriptor is enhanced by
using a multiple spatial support region-based binning method. Experimental results show that the proposed method is able to

provide a more robust image matching performance under nonlinear intensity changes.

1. Introduction

With the rapid development of modern sensors and big data
technology, image matching has been applied to many com-
puter vision applications, such as multiple sensor fusion [1, 2],
3D reconstruction [3], and depth information estimation
[4, 5]. Nevertheless, when the intensity value of an image
pair contains an obvious nonlinear variation, image matching
becomes very challenging. Typical intensity changes include
changes in illumination [6, 7], different foci [8], flash versus
no-flash [9], multispectral images [10, 11], multimodalities
[12], and blurred images [13]. The most direct approach to
this challenging task is to construct a feature descriptor that
is effective for different types of image transformations.

Image matching under illumination changes has a very
important effect on the performances of visual object
detection, tracking, and recognition. The local relationship
between the intensity values of pixels is employed to construct
an illumination-independent feature descriptor, such as a
local binary pattern (LBP) [14] and relative family features,
namely, center symmetric local binary pattern (CS-LBP) [15]
and center symmetric local trinary pattern (CS-LTP) [16].
Local features extracted from intensity rankings rather than
raw intensity have become a more popular method recently

because intensity order distributions are invariant to mono-
tonic intensity changes [17]. In this regard, Tang proposed
an ordinal spatial intensity distribution (OSID) [17], which
uses the relative order of pixel intensity within a patch
to generate illumination-robust features. However, ordering
pixels by discrete intensity yields significantly different order
distributions when the illumination changes, thereby leading
to changes in the nonlinear intensity. To address this problem,
the exact order based descriptor (EOD) employed by Kim [18]
used an exact order method.

Image matching in multispectral cases is more challeng-
ing than in cases of illumination change. Long wavelength
infrared (LWIR) intensity variations are related to variations
in the temperatures of objects, while variations in the RGB
intensities come from colored objects and light reflections.
Due to their different natures, the nonlinear relationship of
the intensity values across these image types significantly
complicates image matching due to the resulting lack of
correlation between their respective gradients. Furthermore,
LWIR images appear smoother, with losses of detail and
texture [19], as Figure 1(c) shows. Thus, in multispectral
cases, many novel feature descriptors, such as the scale
invariant feature transform SIFT [20], lose their effectiveness.
Inspired by SIFT, many SIFT-like descriptors have been
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FIGURE 1: Example of the binary local patch clustering transform results with (a) illumination change, (b) different exposures, and (c)

multispectral images.

proposed for RGB/LWIR image matching. Cristhian [19]
describes the Edge Oriented Histogram (EOH) descriptor,
which is robust for characterizing multispectral key-points.
Additionally, Mouats employs multioriented and multiscale
Log-Gabor filters instead of multioriented Sobel descriptors
in order to construct a new and upgraded feature descriptor
PCEOH [21].

Local self-similarity (LSS) [22] is another novel method
for feature extraction that captures the local internal layouts
of self-similarities in the image. Inspired by LSS, Heinrich
proposed a modality independent neighbourhood descriptor
(MIND) [23] for multimodal image matching. Kim proposed
a dense adaptive self-correlation (DASC) [24] with a series of
adaptive self-similarity measures between patches sampled by
randomized receptive field pooling, for which the sampling
pattern was obtained through discriminative learning. How-
ever, every image patch has separate internal layout informa-
tion. Despite employing a machine-learning algorithm [25],
the fixed sampling pattern based self-similarity group feature
(DASC) could not achieve perfect performance across all test
images.

This paper presents a new descriptor called a random
binary pattern of patch clustering (RBPPC), which employs
binary local patch clustering transform responses as the
transform space of the input image. Then, groups of random
sampling responses in the new space are converted into dif-
ferent patterns as the “cluster bin” of the proposed histogram
feature descriptor. Finally, multiple spatial support regions
are designed in order to enhance the discrimination of the
proposed feature descriptor.

This paper is organized as follows. Section 2 introduces
the proposed RBPPC feature descriptor. Section 3 describes
the experimental process and results analysis. Finally, the
concluding remarks are given in Section 4.

2. Proposed Feature Descriptor

2.1. Binary Local Patch Clustering Transform. Instead of
constructing a descriptor with a series of self-similarity

measures directly, in this paper a binary local patch clus-
tering transform is proposed as the transform space, which
performs robustly to intensity changes. The typical intensity
changes include changes in illumination, different exposures,
and multispectral images. For the multispectral images (e.g.,
RGB/LWIR images) in particular, there is not only little
texture information but also low contrast in the LWIR image
compared to the RGB image. Therefore, a binary local path
clustering transform can generate a more similar transform
space.

Figure 1 shows an example of the response of the binary
local patch clustering transform to intensity changes. The
first row of Figure 1 shows the input image pairs, featuring
different types of intensity changes, and the second row
shows the response of the image pairs to the binary local
patch clustering transform. This example confirms that the
new transformed space can be less sensitive to intensity
changes than the raw intensity space. Therefore, building
a robust intensity change feature descriptor requires an
effective matching approach that confines the feature values
of the transformed space in response to the changes in
intensity.

The proposed binary local patch clustering transform
consists of the following five steps:

(1) Extract the feature vector sets with identical orders
from the source and reference images by employing a sliding
window in the same direction (from left to right and up to
down) as shown in Figure 2:

Fg = {PpPz"’ ’PN}

Fp = {Qsz’” ’QN}’

@

where Fg and Fj are the local feature vector sets of the
source and reference images, respectively. P; and Q; are the
feature vectors, which consist of the intensity values of the
i-th corresponding local image patches of the source and
reference images. N is the total number of local feature
vectors, as Figure 2 Step (2) shows.
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FIGURE 2: Binary local patch clustering distribution building process.

(2) Build a codebook of the source image using a K-means
clustering algorithm [26] from Fg:

b5 = {le’sz}’ (2)

where 0 represents the codebook of the source image, which
consists of two feature vectors. P;; and Pj, represent the
binary clustering centers extracted by K-means from F.
Therefore, P;; and P, are actually the j,-th and j,-th feature
vectors in Fj.

(3) Build a codebook of the reference image by sharing
the index information of the source image binary clustering
centers P and P,

Or = {kaQKz}
n=1,2},

©)
k?l = j?l

where 0y represents the codebook of the reference image
and j, is the codebook feature vector index of the corre-
sponding local patches in the source local feature set Fi.
The relationship established in (3) depicts the source and
reference codebooks that share the same clustering index
(k,=j,). Therefore, although the codebooks P, and Qj,
consist of different intensities, they represent the n-th local
patch clustering centers of the source image and reference
image, respectively. This simple method deals effectively with
the quantization problem caused by intensity differences.

(4) Generate the binary local patch clustering transform
response using codebook-based quantization:

Mg (x, y) = arg min {SSD (P (x,y),05 ()}
4)
Mg (%, y) = argmin {SSD (Q (. y) . 0 (k)} »

where Mg and My are the binary local patch clustering
transform responses of the source and reference images,
respectively. SSD presents the sum of the square differences
of the intensity values P(x, y) and Q(x, y) representing the
intensity features of the local patch located at the (x, y)
points in the source image patch and the reference image,
respectively. As a result, either the source or the reference
local patches are assigned a binary class label. Figure 2 shows
the entire processing of the binary local patch clustering
transform algorithm.

In order to illustrate the advantages of the proposed
binary local patch clustering transform algorithm (BLPCT),
three classical image binarization algorithms, namely, the
Otsu method, the Kittler method, and the Niblack method,
are employed as comparison objects. The comparison experi-
ment is set up as follows: 100 local image patch pairs under
intensity changes with different resolutions are randomly
selected from the DBI illumination changes database (Leu-
ven), as the first row of Figure 3 shows. Then, a similarity test
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FIGURE 3: Comparison performance of the different image binarization methods.
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TaBLE 1: Comparison experimental results of different binarization methods.

Proposed Otsu Kittler Niblack
Average 98.33% 90.31% 88.42% 90.14%
Similarity
Average 0.029 Sec 0.026 Sec 0.012 Sec 0.65 Sec
Running Time

TaBLE 2: Examples of the comparison experimental results of different image binarization methods.

Proposed Otsu Kittler Niblack
Test patch pair 1 98.33% 96.83% 88.42% 97.32%
Test patch pair 2 92.54% 91.77% 43.48% 97.09%
Test patch pair 3 97.85% 93.59% 96.26% 91.87%
Test patch pair 4 99.60% 94.68% 90.54% 91.91%
Average similarity 97.31% 91.72% 91.72% 89.54%

of patch pair binarization results, S;,,, is employed as an eval-
uation function (5) to evaluate the effectiveness of different
binarization algorithms. Finally, the average similarity of 100
image patch pair binarization results under intensity is used
as a qualitative evaluation indicator of their performances.

number of identical pixels

Sim = x100%.  (5)

total number of pixels
Table 1 shows the comparison experimental results of the
proposed method and the Otsu, Kittler, and Niblack methods.
The first row of Table 1 contains the average similarity of
different image binarization results for 100 random image
patch pairs under intensity changes. The second row of
Table 1 contains the average running time of the different
image binarization algorithms. From Table 1, we can clearly
see that the average similarity of the image binarization
results for the proposed method is obviously higher than
the average similarity for other classical image binariza-
tion algorithms, which illustrates that the proposed BLPCT
algorithm performs more effectively under intensity changes
compared with other conventional methods. Moreover, the
computational complexity is similar to the Otsu algorithm.

Figure 3 shows some experimental result examples of the
proposed binary local patch clustering transform (BLPCT)
and the classical Otsu, Kittler, and Niblack binarization algo-
rithms. Specifically, the first column of Figure 3 shows the test
image patch pair under intensity changes (the source image
patch and the reference image patch). The second column of
Figure 3 shows the proposed BLPCT responses of the test
image patch pair, and the third column of Figure 3 shows
the Otsu algorithm responses of the test image patch pair.
The fourth column shows the Kittler binarization algorithm
results of the test image patch pair, and the fifth column shows
the Niblack binarization algorithm results of the test image
patch pair.

The corresponding evaluation results are summarized
in Table 2. It is clear that the proposed binary local patch
clustering transform algorithm performs more effectively
than other classical image binarization algorithms under
intensity changes, since the average similarity of the BLPCT

responses under intensity changes is 6-7% higher than that
of other binarization algorithm responses.

In theory, according to the definition of the classical Otsu
algorithm [27], the image histogram is separated into two
groups using a gray value. When the variance of the two
divided groups becomes a maximum, the gray value is seen
as the best threshold. The algorithm utilizes the category
variance as the criterion and chooses the gray value as the
optimal threshold, which is the maximum of the variance
between the categories and the minimum of variance within
the categories. The Kittler algorithm [28] is also a gray level
threshold based image binarization method, whose goal is to
find the minimum error threshold. The Niblack algorithm
[29] employs the local mean and the standard deviation to
estimate the optimal threshold.

The proposed BLPCT algorithm is based on the local
image patch classification result. Compared with a global or
local intensity threshold, a local image patch can provide
more information, such as the neighbouring intensity rela-
tionship and the spatial position information, which is more
important to intensity changes.

2.2. Random Binary Pattern Coding Strategy. In order to con-
vert the response of a binary local patch clustering transform
to a feature histogram, this paper proposes a random binary
pattern coding method, defined as follows:

F (CDj (I)) = pattern index
(6)
®; (D) = {¢; (1), ¢; (D), ¢; (D, ¢; (D},

where F(® j(I )) represents the binary pattern index of the j-
th random sampling response of image I. ®;(I) is a random
binary pattern that consists of four sampling point responses
of image I (®;1(1), @ ,(I), @ ;5(1) and @ j4(1)).
Mathematically, ®;(I) presents a permutation of four
random sample point responses to input image I. Therefore,
given that the random sampling result of a binary local patch
clustering transform response is either 0 or 1, when applying
Q; (I) (6) to the binary local path clustering transform
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FIGURE 4: Illustration of the random binary pattern coding method.

TaBLE 3: F(®;(M)) of the binary local patch clustering transform
response.

@' (M) @’ (M) oM (M) F(®(M))
1 1 1 1 1
0 0 0 0 2
1 1 0 3
0 0 0 1 16

response M, the complete permutation of ®;(M) consists of
16 different patterns, as shown in Table 3.

The process of the random binary pattern coding method
is explained clearly in Figure 4.

With the pattern index in Table 3, a feature mapping
function 7 is defined to map the @;(I) permutation into a

16-dimensional feature vector V,¢', whose elements are all
0 except for the ith element, which is 1. The mathematical
definition of 7 is

n(F (CDj (I))) = V’16 = {0’”'0’1'_17(%%(1))’0’.“ ,0}_ (7)

Therefore, based on the above definitions, the histogram
feature of the proposed RBPPC can be defined by

Hggppc M) = Z 7'[ (F (CDJ' (M))) , (8)
j=1

where M represents the binary local patch clustering trans-
form response and n represents the random sampling time.
Figure 5 illustrates the histogram feature of the RBPPC
generation process. First, four points are randomly sampled
n times and the computing pattern index is calculated
according to (6) for each sampling response. Then, the
HRBPPC histogram is constructed by counting the pattern
index number with reference to (8).

Four random sampling points

Random binary pattern table

O OO0

1 1 1 1

0 0 0 0 2
1 1 1 0 3
1 1 0 4

.............
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0.06 v
[~] ‘1 Lt Q@ @

0
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FIGURE 5: Illustration of the histogram feature of the RBPPC
generation process.

2.3. Chamfer Distance-Based Spatial Constraint. With the
help of the proposed binary local patch clustering transform,
the transform space exhibits high similarity compared to the
original image space under intensity changes, as shown by the
above examples. However, there are still some tiny differences
between the transform responses of the source and reference
images. In other words, it is difficult for the binary local
patch clustering transform to provide an absolutely identical
transform space under intensity changes, such as those shown
in Figures 7(c) and 7(d).

Therefore, in order to extract features that are more
similar from the binary local patch clustering transform
space under intensity changes, the Chamfer distance [30]
response is applied in order to provide a spatial constraint for
the RBPPC descriptor extraction. This spatial constraint can
effectively enhance the robustness of RBPPC descriptor. The
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FIGURE 6: Example of the spatial constraint enhanced RBPPC histogram extraction process.
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FiGURe 7: Example of the RBPPC under different generation conditions for a multispectral image pair: (a) RGB source image, (b) LWIR
reference image, (c) M, from the source image (a), (d) My from the reference image (b), (e¢) Chamfer distance response of (a), (f) spatial
sampling point candidate regions, (g) RBPP C of the source image, (h) RBPPC of the reference image, (i) RBPPC of the source image with
the spatial sampling point candidate regions, (j) RBPPC of the reference image with the spatial sampling point candidate regions.

detailed process is described as follows: First, the Chamfer
distance map is extracted from the binary local patch cluster-
ing transform of the source image as shown in Figure 7(e).

T = Chamfer (M), )

where T is the Chamfer distance map and Mg presents the
local patch clustering transform response of the source image.

Then, the spatial sampling point candidate regions are
built from the Chamfer distance map T by a distance
threshold D,;, as follows:

Rson = {(x,7) | (%) € T&T(x, ) > Dy}, (10)

where R, represents the spatial sampling point candidate
regions that are shown by the yellow region of Figure 7(f).
Figure 6 shows the entire spatial constraint enhanced RBPPC

histogram feature extraction process. We can clearly see that,
with the help of the sampling candidate region R,,,,, the
RBPPC histogram features under intensity changes are more
similar.

Figure 7 shows an example of the RBPPC descriptor
with an RGB/LWIR image pair under different generation
conditions. Figures 7(g) and 7(h) show RBPPC histograms of
input image pairs without spatial sampling point candidate
region constraints, and there are obvious differences between
those two histograms. In contrast, as Figures 7(i) and 7(j)
show, when using spatial sampling point candidate region,
the RBPPC feature pairs extracted from the source and
reference images exhibit high similarity.

Moreover, Figure 8 shows an example of the RBPPC
descriptor with a different exposure image pair under dif-
ferent generation conditions and Figure 9 shows an example
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FIGURE 8: Example of the RBPPC under different generation conditions for an image pair with different exposures: (a) source image, (b)
reference image, (c) M, from the source image, (d) My, from the reference image (b), (¢) Chamfer distance response of (a), (f) spatial sampling
point candidate regions, (g) RBPPC of the source image, (h) RBPPC of the reference image, (i) RBPPC of the source image with the spatial
sampling point candidate regions, (j) RBPPC of the reference image with the spatial sampling point candidate regions.
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FIGURE 9: Example of the RBPPC under different generation conditions for an image pair with different illuminations: (a) source image, (b)
reference image, (c) M from the source image, (d) My, from the reference image (b), (e) Chamfer distance response of (a), (f) spatial sampling
point candidate regions, (g) RBPPC of the source image, (h) RBPPC of the reference image, (i) RBPPC of the source image with the spatial
sampling point candidate regions, (j) RBPPC of the reference image with the spatial sampling point candidate regions.

of the RBPPC descriptor with an image pair featuring
different illuminations. The second rows of Figures 7, 8, and
9 feature different RBPPC descriptor generation conditions
with and without spatial sampling point candidate region
constraints. These examples demonstrate that the similarity
of the proposed RBPPC descriptors for image pairs under
intensity change is markedly improved by using the Chamfer
distance transform based spatial sampling point candidate
regions.

2.4. Multiple Spatial Support Regions Binning Method. In
order to enhance the discrimination of the proposed RBPPC
feature descriptor, this study applies a multiple spatial region-
based binning method. Figure 10 shows 17 different spatial

support region binary masks designed to enhance the dis-
crimination of the proposed RBPPC descriptor. The white
parts of the spatial support region masks represent 1 while the
black parts of spatial support region masks represent 0.

The multiple spatial support region-based RBPPC his-
togram feature descriptor vectors are defined as follows:

Multi 1 2 17
HRII;PII’C = {HRBPPC’HRBPPC’ e ’HRBPPC}
X n
Hygppc = ). 7 (F (@ (X)) ()
j=r
Ci = Rgup ® RSam’
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where H'gpppc represents the RBPPC histogram of i-th
spatial support region. H%‘;:,tli,c represents the multiple spatial
support region-based RBPPC histogram feature descriptor
vectors, which consist of 17 H' ggppc. 77 is a mapping function,

which is defined to map a pattern index F(CIDj(X)) into a 16-

dimensional feature vector V4, as (7) shows.

Moreover, C; represents the actual spatial random point
sampling candidate regions of i-th actual spatial support
region for the binary local patch clustering transform
response M, and C; is generated with the following two
components, as (11) shows:

(1) the binary mask of the i-th spatial support region
R sup> Which is shown in Figure 10;

(2) the spatial sampling point candidate regions R
which are shown by the yellow regions of Figure 11.

Therefore, the multiple support region-based RBPPC
has (16%17-) 272-dimensional feature descriptor vectors. The
flowchart of the feature extraction of multiple spatial support
region-based RBPPC histograms is shown in Figure 11.
Figure 12 shows examples of the multiple support region
binning method enhanced RBPPC feature descriptor, used
with different types of image pairs.

sam>

3. Experimental Results

We implemented the proposed algorithm with MATLAB
2016b software and a desktop computer with a 3.30 GHz
Intel 5 processor. Three popular published image database
sets under intensity changes were employed as test data,
which consisted of illumination changes [31], different expo-
sures [8], and multispectral images (RGB/LWIR) [32]. These
datasets all provided the ground truth information about key-
point positions and their corresponding matching results.
To be specific, the illumination changes database (Leu-
ven) is a standard Oxford image matching dataset with
natural illumination changes, which consists of six out-
door scene images under various degrees of illumination
changes. These images are employed in this paper as the
image matching test DB1 (illumination changes), which is
shown in Figure 13(a). The second image matching test
DB2 (different exposures) consists of four image pairs with
obviously different exposures, and three image pair examples
are shown in Figure 13(c). The third image matching test DB3
(multispectral images) consists of 44 multispectral image
pairs (any image pair including an RGB image and an LWIR



10

(a2) (b2)

(d2)

w

(a3)

(b3) (c3) (d3)

Mathematical Problems in Engineering

RBPPC of source image RBPPC of reference image
0.04 0.04
0.02 0.02

0 Bl el el L L b 0 Mhial il adenlei L 1.0 b

0 50 100 150 200 250 300 0 50 100 150 200 250 300
(1) (1)

RBPPC of source image RBPPC of reference image

0.02 0.02
& 0.01

| §o d ao0|dlbeell (&1L o ool |[ S sotad (Blie alF|l %
Dod e ditd o[58 Topddime b Lot l
0 i) ~pd°%c4;f 9‘593-.‘:}‘# @%ngglm& s b RS

0 50 100 150 200 250 300 0 50 100 150 200 250 300
(e2) (f2)

RBPPC of source image RBPPC of reference image
0.06 0.06 3
0.04 0.04
0.02 | 0.02
| BEL L okl ot L kg B 5 0("“1_6?2- PehlapBd Lok
0 50 100 150 200 250 300 0 50 100 150 200 250 300
(e3) (3)
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(®)

FIGURE 13: Examples of image matching test data: (a) illumination changes DBI, (b) multispectral DB3, (c) different exposures DB2.

image with the same scene), and three examples are shown as
in Figure 13(b).

3.1. Parameters Analysis of the Proposed Feature Descriptor.
Figure 14 shows the results of an extensive analysis of the
RBPPC descriptor performance when varying its associated
parameters, namely, the codebook patch scale a, the random
sampling time 7, and the threshold of the Chamfer distance
D,

A successful image matching rate, P,,,,, is employed as
an evaluation indicator in order to evaluate its performance
quantitatively.

number of successfully matched points

rate —

total number of matching points (12)

x 100%.
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FIGURE 14: Image matching performance under varying parameters: (a) local patch size a, (b) threshold of the Chamfer distance D,;, (c)

random sampling time 7.

Note that, as Figure 14(a) shows, the matching performance
of the proposed algorithm is not affected strongly by the local
patch size a of a codebook with any of the test data types, since
the performance curve is so flat. Varying the threshold of
the Chamfer distance D,;, has a larger effect on performance,
as shown in Figure 14(b). With the illumination change
data, increasing the threshold causes the matching quality
to degrade. However, with the exposure change and the
multispectral data, increasing the threshold across a certain
range improves the matching quality. The reason for this
is that the local patch clustering transform generates more
similar responses under illumination changes than under
other kinds of intensity changes. The dissimilar region is
effectively removed by the large Chamfer distance threshold.
Therefore, with a large Chamfer distance threshold, better
matching quality is achieved under different exposures or
multispectral images. Moreover, if the Chamfer distance
is too large, the generated sampling candidate region will
become too small and the proposed histogram feature will
lose its discrimination; as a result, the matching quality will
fall down. Likewise, as Figure 14(c) shows, the matching
performance is also improved by increasing the random
sampling time n within a certain range for all test data types.

3.2. Comparison Experiments. The image matching perfor-
mances of the proposed RBPPC feature descriptor and other
conventional descriptors, EOH [19], DASC [24], LBP [17],
PCEOH [21], under intensity changes were compared. To
evaluate the performance of the feature descriptors while
avoiding bias due to the feature detector performance, we
follow a similar approach to [33]. We extract the key-point
descriptors from the source images and then project them
into the corresponding reference image pair using different
feature descriptor-based matching results. The ground truth
homography information is provided by published databases
[8, 31, 32] so that the ground truth and the performance
of the different descriptors can be evaluated. The histogram
intersection method [34] is employed as a matching measure
for the feature descriptor, defined in

dim __.
sim (fy, f,) = 1_(2;’—1 H:ilir;(fl’fz)>’ (13)

i=1 J1

where f, and f, are the histogram feature descriptors and dim
represents the dimensions of f; and f,.

The precision-recall curve [33] is selected as a common
criterion that is used to evaluate local feature descriptors. The
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FIGURE 15: Key-point matching performance examples of test DB3 (multispectral images) with RBBPC feature.

curve is based on the number of correct matches and the
total matches obtained for an image pair. “Recall” indicates
the ratio of the correct matches to the corresponding number
of the image pair. “Precision” denotes the ratio of the correct
matches to the total matches. The “Recall” and “Precision” are
defined in (14) and (15), respectively.

correct matches
recall =

x 100%, 14
corresponding matches ’ (14)

correct matches

1-precision =
P correct matches + flase matches (15)

x 100%.

Table 4 shows the image matching performances of the
different feature descriptors with different test data types.
It is clear that the performance of all the descriptors is
better with the illumination change dataset than the other
datasets. The reason for this is that the intensity changes
under global illumination changes are approximately linear.
However, the proposed RBPPC feature descriptor performs
more effectively for all datasets than the other conventional
methods, with high recall and low 1-precision.

Figures 15-17 show the key-point matching performances
of proposed RBBPC feature descriptors under different test
data types. Although there is a nonlinear intensity change
between every test image pair (illumination change, different
exposures, or multispectral images), key-point matching has
been performed well with the help of the proposed RBBPC
feature.

Figure 18 shows examples of the performances of the pro-
posed RBPPC and other four conventional feature descriptors
(EOH [19], LBP [17], DASC [24], and PCEOH [21]) under
nonlinear intensity changes, that is, with RGB/LWIR multi-
spectral image patch pairs.

4. Conclusions

A new feature descriptor is proposed in this paper for image
matching under intensity changes. In contrast to conven-
tional methods, a binary local patch clustering transform is
proposed to transform the spaces of the original intensity
change image pair. The values of the new spaces have higher
similarities than the raw intensities, and a random binary pat-
tern coding method converts the values of the transformed
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FIGURE 16: Key-point matching performance examples of test DB2 (different exposures) with RBBPC feature.

FI1GURE 17: Key-point matching performances examples of test DBI (illumination changes) with RBBPC feature.

spaces into feature histograms. Moreover, to enhance the
discrimination of the proposed RBPPC, a Chamfer distance-
based threshold is combined with a multiple spatial support
region mask. The experimental results demonstrate that,
given its high matching success rate, the proposed RBPPC
descriptor performs more effectively than the conventional
methods of image matching with intensity change image
pairs.
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