
Ann Oper Res (2006) 147:143–174

DOI 10.1007/s10479-006-0064-1

MCS—A new algorithm for multicriteria optimisation in
constraint programming

F. Le Huédé · M. Grabisch · C. Labreuche · P. Savéant

Published online: 22 August 2006
C© Springer Science + Business Media, LLC 2006

Abstract In this paper we propose a new algorithm called MCS for the search for solutions to

multicriteria combinatorial optimisation problems. To quickly produce a solution that offers

a good trade-off between criteria, the MCS algorithm alternates several Branch & Bound

searches following diversified search strategies. It is implemented in CP in a dedicated

framework and can be specialised for either complete or partial search.

Keywords Multicriteria optimization . Multicriteria decision making . Constraint

programming

1. Introduction

The practice and development of Operations Research and Artificial Intelligence have shown

that, in many cases, two complex issues have to be taken into account when addressing real-

life optimisation problems. First, industrial problems are often highly combinatorial and it

is often difficult to solve them fast. Secondly, the preference relation between solutions to a

problem is generally complex and depends on several conflicting criteria.

On the one hand, Constraint Programming (CP) has been designed to solve combinato-

rial problems and successfully applied to large instances. It follows the Branch & Bound

F. Le Huédé (�) . C. Labreuche . P. Savéant
THALES Research and Technology France, domaine de Corbeville, 91401 Orsay cedex
e-mails: fabien.lehuede@thalesgroup.com

C. Labreuche
e-mail: christophe.labreuche@thalesgroup.com

P. Savéant
e-mail: pierre.saveant@thalesgroup.com

M. Grabisch
LIP 6, Université Pierre et Marie Curie (UPMC), 8, rue du Capitaine Scott 75015 Paris
Université Paris I Panthéon-Sorbonne
e-mail: Michel.Grabisch@lip6.fr

Springer

144 Ann Oper Res (2006) 147:143–174

principles and uses constraint propagation to efficiently explore the solution space and find

an optimal solution. Unfortunately, complex subjective preferences are not easy to model

in CP and CP solvers do not use any dedicated method for solving problems with elaborate

preference relations between solutions. However, in many optimisation problems such as

scheduling, transportation, timetabling and planning problems, the best solutions are often

those that offer a good compromise between economic, political, social and commercial

considerations.

On the other hand, MultiCriteria Decision Making (MCDM) proposes several method-

ologies and tools that are able to provide an accurate model of the preferences of an expert.

Research in this area focuses mainly on constructing appropriate models for preference rep-

resentation, and on the methodological aspects to be considered when making a correct

elicitation of subjective preferences. MCDM models evaluate or rank a given set of solutions

(also called alternatives). However, when this set is implicitly described, the evaluation of

each alternative can be difficult due to the complexity of the problem or the size of the solution

set.

When simultaneously addressing the preference modelling and combinatorial aspects of

multicriteria combinatorial optimisation problems, a first technique consists in returning sev-

eral diversified non-dominated solutions, from which an expert will be able to choose the

best. In an automated or semi-automated decision context, the intervention of a decision

maker during the solving process is generally impossible or very limited. In most cases,

the software has to return a single solution and more time has to be spent on building an

accurate model of an expert’s preferences beforehand. In this context, optimisation algo-

rithms have to integrate the main characteristics of the established relation in order to be

able to solve the problem within an acceptable time. Our overall objective is to combine

the preference modelling capacities of MCDM methods with the power of CP search algo-

rithms to solve multicriteria combinatorial optimisation problems under automatic decision

requirements.

A first study allowed us to integrate an MCDM model in CP thanks to a global constraint

that propagates a multicriteria aggregation function (Le Huédé et al., 2002). In this article, we

address the problem of guiding a Branch & Bound algorithm towards good solutions, when

the quality of a solution depends on several conflicting criteria. In CP, this guiding is carried

out by a pair of heuristics that determines the selection order of decision variables and the

separation process of the variables’ domains. These two heuristics describe the search tree.

We call “search strategy” the combination of these heuristics with an exploration strategy.

When dealing with multiple conflicting criteria, the improvement of one criterion generally

causes the degradation of another. Hence, a strategy that is good for optimising one criterion

is often quite weak for optimising another. In addition, due to interaction and compensation

phenomena, a good solution generally offers a trade-off between criteria. In this context, it

is rarely possible to identify logical and systematic principles for the definition of a good

Branch & Bound search strategy.

Although this study has been carried out in the context of CP, the problems that are

addressed and the proposed algorithms can generally be applied to any Branch & Bound

approach when used in a multicriteria optimisation context.

1.1. Related work

Multi-Objective optimisation problems have been extensively studied (e.g., see (Ehrgott and

Gandibleux, 2002) for a detailed state of the art). Nevertheless, few techniques really integrate

MCDM models in order to return a solution that is optimal with respect to a multicriteria

Springer

Ann Oper Res (2006) 147:143–174 145

objective function. In addition, the latest surveys also show that the Branch & Bound technique

is seldom used for solving multicriteria optimisation problems.

1.1.1. Multi-objective optimisation in Constraint Programming

In Gavanelli (2002), M. Gavanelli proposes an interesting implementation of the ε-constraint

algorithm (Chankong and Haimes, 1983) in CP, using Point Quad-Trees for the filtering and

the storage of Pareto-optimal solutions.

The PICPA algorithm (Barichard and Hao, 2003) is based on evolutionary concepts and

interval constraint propagation to determine both a precise region of the objective space that

bounds the Pareto-optimal front, and a set of approximate solutions that are well spread into

this region.

In Junker (2002), the Preference Based Search (PBS) algorithm addresses multi-objective

optimisation problems which lack a clear monotonic aggregation function. It searches ei-

ther balanced, extreme or Pareto-optimal solutions in a constraint satisfaction problem. The

preference formalism used in this framework allows the user to express that some criteria

are more important than others or that compromises between criteria should be found by

using the leximin approach. Given a set of such preferences between the criteria of the prob-

lem, a master algorithm selects some criteria that are used as optimisation objectives in a

constraint-based solver. Following the ε-constraint method (Chankong and Haimes, 1983),

the algorithm proceeds through successive mono-objective optimisations in order to explore

the search space and find the set of non-dominated solutions (each mono-objective optimi-

sation uses a dedicated labelling strategy). The PBS preference formalism is particularly

suitable when the preference model has to be simple (such as for configuration problems on

the Internet). In our context, the drawback of this method is that it does not allow modelling

very precise preference relations. As a result, the algorithm returns sets of incomparable

solutions and is not suitable for automated decision. However, this approach brings to the

fore the principle that a search on a criterion has to be processed with a dedicated labelling

strategy or, in more general terms, a dedicated search strategy.

A more pragmatic approach considers solving a scheduling problem with three objectives

aggregated by a weighted sum (Focacci and Godard, 2002). This approach aims at finding

good solutions within a limited time. It introduces a framework for the simultaneous setting

of bounding constraints on the criteria and on the overall evaluation in order to speed up the

discovery of good solutions in the Branch & Bound process. Different bounding constraints

can be used (such as imposing an improvement of an objective or tolerating a degradation

of 10% of this objective). The authors compare the use of bounding constraints in several

algorithms. The best method iteratively runs two Branch & Bound processes; each process is

given a limited time and focuses the search on a given criterion by means of various bounding

constraints. This has been validated by experiments on scheduling problems. However, even

if it can speed up some searches, adding bounds on the objectives of the problem is very likely

to suppress solutions. Although the same search strategy is used for the different Branch &

Bound algorithms, there is clearly a advantage in guiding the search in diversified parts of

the tree to find a good solution to the whole problem more quickly.

1.2. Contribution of this paper

Due to the complexity of defining a good search strategy for multicriteria problems and

considering related work on this subject, we propose a new framework called MCS (Mul-

tiCriteria Search). This is based on a generic algorithm that alternates searches following

Springer

146 Ann Oper Res (2006) 147:143–174

various mono-criterion strategies to find solutions of increasing quality with respect to the

multicriteria preference relation. One of the major innovations of this algorithm is the criteria
choice heuristic. This mechanism determines which criterion it is most interesting to improve

with respect to the last solution, the upper bounds of the criteria and the aggregation function.

It allows the algorithm to use the appropriate strategy for guiding the search towards diver-

sified solutions. In addition, according to Focacci and Godard (2002), local constraints can

be specified to explicitly constrain the search in order to improve a given criterion. Finally,

defining the stopping condition allows the user either to construct a partial search algorithm

or to ensure optimality.

In the following section of this paper, we provide some important background informa-

tion on MCDM and we summarise the main principles of the propagation of a multicriteria

aggregation function in CP. The other sections present the MCS algorithm and the compo-

nents of the framework. To use this framework, we propose several functions for building

different instances of the generic algorithm. The notion of criterion choice heuristic is further

developed in Section 5 and we give two interesting heuristics. Section 6 presents two kinds of

local constraint and a stopping condition to ensure that an optimal solution is found. Finally,

we present our latest work on the specialisation of MCS for partial search. Regarding vali-

dation, we experimented the different instances of the MCS framework on the examination

timetabling problem.

2. Modelling multicriteria preferences

In this paper, we focus on the Multi-Attribute Utility Theory (MAUT) framework (Keeney

and Raiffa, 1976). In this framework, the value of a solution is expressed through an overall

evaluation, computed by an aggregation function according to its performances on the criteria.

Since many functions can be used to aggregate a set of values, we introduce the properties

of a multicriteria aggregation function that are the most desirable in order to give a good

representation of multicriteria preferences. In addition, we introduce the Choquet integral

aggregation function. This function is a very general aggregation function which can model

a wide range of decisional behaviours. In particular, it is parameterised by a set function,

called fuzzy measure or capacity, for which efficient elicitation processes have been created

(Grabisch and Roubens, 2000; Labreuche and Grabisch, 2003). Finally, for the integration

of an MCDM model in CP, we recall four conditions, previously introduced in Le Huédé

et al. (2002). These conditions ensure the arc-consistency of a global constraint that models

a multicriteria aggregation function.

2.1. Preference modelling in Multicriteria Decision Making

Multicriteria Decision Making (MCDM) models subjective preferences in order to automate

the determination of a preferred solution out of a set of alternatives. Hence, solving a typical

multicriteria decision problem consists in modelling the way an expert ranks a set of potential

solutions, described by a set of attributes or points of view. To achieve this objective, the

Multi-Attribute Utility Theory is mainly concerned with the construction of additive utility

functions.

Let us denote by N = {1, . . . , n} the set of criteria. We assume a set of solutions or

alternatives S among which the decision maker must choose. Each solution is associated

with a vector a ∈ � of which components ai ∈ �i , i ∈ {1, . . . , n} represent the value of the

solution for each point of view to be taken into account in the decision making process (we

Springer

Ann Oper Res (2006) 147:143–174 147

may also abusively talk about “a solution a ∈ �”). A component ai is called the attribute of a

solution. Typically, in a multi-objective optimisation context, each attribute would correspond

to an objective function. According to these attributes, the modelling of the decision makers

preferences � is achieved through an overall utility function u : � → IR such that:

∀a, b ∈ �, a � b ⇔ u(a) ≥ u(b), (1)

where � is a complete preorder.

Classically, this overall evaluation function is split into two parts (Keeney and Raiffa,

1976):

– The utility functions, denoted u1(a1), . . . , un(an), map each attribute to a single satisfac-

tion scale E ∈ IR. They model the performance of a solution on the criteria and ensure

commensurateness between criteria, which is essential when several values have to be

aggregated.

– The aggregation function aggregates the values returned by u1, . . . , un and establishes the

overall evaluation:

∀a ∈ �, u(a) = H(u1(a1), . . . , un(an))

where ui : �i → E and H : En → E . ui (ai) is called the utility or score of the alternative a
on the criterion i .

A common value for the satisfaction scale E is the [0, 1] interval. Establishing commen-

surateness between criteria allows us to work with comparable values. For example, this

implies that we are able to express that a makespan of 20 days corresponds to the same level

of satisfaction as a maximum tardiness of 3 days. Furthermore, when using compensatory

aggregators (such as the weighted sum), it is important to work on a scale of difference. This

means that the difference between two values on the same criterion has to make sense. For

example, it means deciding if an increase of one day in the delay of completion of a schedule

leads to the same decrease of satisfaction when this schedule is 15 days long or has been

already delayed by 50 days.

To construct utility functions in the MAUT framework, we use the MACBETH method-

ology (Bana e Costa and Vansnick, 1994) (and its associated software), which is based on

measurement theory. In particular, it takes into account the subjective character of the pref-

erences that are modelled. To build a utility function, MACBETH asks the user to give some

reference levels for a criterion and some general indications on the difference of satisfaction

between values of this attribute.

2.2. Properties of a multicriteria aggregation function

Aggregation functions are used to make a synthesis of a set of elements. In decision aid,

an aggregation function aggregates commensurate values which model criteria satisfaction

levels. Additive aggregation functions, usually used in MAUT, suppose preferential indepen-
dence between criteria, which is seldom the case in decision making. As a result, we propose

using an enhanced version of this theory, with a more general aggregation function. Indeed,

some essential requirements have to be met by the aggregation function H. Among these

important properties, which are detailed in Marichal (1998), we denote:

Springer

148 Ann Oper Res (2006) 147:143–174

– Monotonicity (M): H should be an increasing function. That is to say:

xi > x ′
i ⇒ H(x1, . . . , xi , . . . , xn) ≥ H(x1, . . . , x ′

i , . . . , xn).

Indeed, if one solution is better than another on at least one criterion and has equal

performances on the other criteria, it cannot be of lesser quality than the other solution.

This property is called Strict Monotonicity when the right side of the implication is a strict

inequality.

– Continuity (C): H should be continuous with respect to its argument as the preferences

of the expert generally evolve progressively.

– Stability for positive linear transformation (H(r x1 + t, . . . , r xn + t) = r H (x1, . . . , xn) +
t), with r > 0, t ∈ IR.

This implies that the order obtained with the aggregation function is not modified when

the same linear transformation is applied to utilities.

In addition, H has to be consistent with the preferences of the expert and should satisfy

(1) when � is defined. Consequently, if we want to use the same parametric model in several

applications, the aggregation function has to be very flexible. It has to be able to model

the importance of a criterion, but also interaction and compensation effects between criteria.

Furthermore, in decision aid, the “black box” approach cannot be accepted. Given a model, we

need some information on the relative importance of the criteria or on interaction phenomena.

We say that H has to be semantically interpretable.

2.3. The Choquet integral

One of the most commonly used aggregation functions is the weighted sum. However, using

this operator supposes that each criterion acts independently on the quality of a solution.

In multicriteria decision problems, some more general aggregation functions such as the

Choquet integral (Choquet, 1953; Grabisch, 1996) are often necessary in order to take into

account not only the importance of each criterion, but also interaction phenomena between the

criteria. In order to generalise the weighted sum, (Sugeno, 1974) proposes assigning weights

not only to each criterion separately, but also to any coalition of criteria. This weighting

corresponds to a set function called “fuzzy measure”.

Definition 1 (Fuzzy measure (Sugeno, 1974)). Let P(N) be the power set of N . A fuzzy

measure μ on N is a function μ : P(N) → [0, 1], satisfying the following axioms.

(i) μ(∅) = 0, μ(N) = 1.

(ii) A ⊂ B ⊂ N implies μ(A) ≤ μ(B).

Here, μ(A) represents the degree of importance of the subset of criteria A ⊂ N . In the

MCDM methodology, the fuzzy measure is established in order to model the decision

maker preferences (Grabisch and Roubens, 2000). Then, the mono-dimensional utilities

u1, . . . , un are aggregated with the Choquet integral to produce the overall evaluation of an

alternative.

Springer

Ann Oper Res (2006) 147:143–174 149

Definition 2 (The Choquet integral (Choquet, 1953)). Let μ be a fuzzy measure on N , and

u = (u1, . . . , un) ∈ [0, 1]n . The Choquet integral of u with respect to μ is defined by:

Cμ(u1, . . . , un) =
n∑

i=1

u(i)

[
μ

(
A(i)

) − μ
(

A(i+1)

)]
, (2)

where (i) indicate a permutation on N such that u(1) ≤ · · · ≤ u(n), A(i) = {(i), . . . , (n)} and

A(n+1) = ∅.

The Choquet integral is continuous, increasing, idempotent, stable for positive linear

transformation and linear for a given order of its components. An axiomatisation of its use

for preference modelling has been introduced by Marichal in Marichal (1998).

The combined use of the Choquet integral and fuzzy measures enables very precise pref-

erence models to be built. In particular, solutions that are not supported (i.e., Pareto optimal

solutions that cannot be reached by a weighted sum, whatever the weights may be), can be

found by the Choquet integral if they offer a better compromise than other solutions. Various

decision making behaviours, such as tolerance and veto can also be modelled. The Choquet

integral being very flexible, many classical aggregation functions, such as the weighted sum,

the min, the max, or the ordered weighted sum (Grabisch, 1995) are particular cases of this

function.

Figure 1 shows two representations of the Choquet integral on two criteria. The first curve

represents a case where the interaction between the two criteria is positive (they are said

to be complementary). It models a preference relation where a solution has to be good on

both criteria to be considered good. On the contrary, the righthand curve models substitutive
criteria (i.e., negative interaction). In this case, a solution is considered good by the expert

as soon as it is good on one criterion. We can observe that the Choquet integral does not

only model that either balanced or extreme solutions should be preferred. It also models

compensation effects, which are omnipresent in MCDM problems.

0 1

0

1u 2

u 1

C (u , u)=vμ 1 2

0 1

0

1u 2

u 1

C (u , u)=vμ 1 2

Complementary criteria modelled with
the Choquet integral

Substitutive criteria modelled with
the Choquet integral

Fig. 1 Level curves of the Choquet integral for the aggregation of two criteria

Springer

150 Ann Oper Res (2006) 147:143–174

Numerous practical applications and theoretical studies (Grabisch, Murofushi, and

Sugeno, 2000; Marichal, 1998) have shown that fuzzy measures combined with the Choquet

integral are particularly appropriate for aggregating utilities in a multicriteria decision prob-

lem. In addition, efficient tools and methodologies have been created in order to establish a

good multicriteria model. In THALES, we use the MYRIAD c© software to build the multi-

criteria model. MYRIAD allows the developer of the model to build the criteria hierarchy,

call MACBETH to construct the utility functions (Section 2.1), and determine the Choquet

integral coefficients according to the decision maker preferences. As these coefficients are

complex, they cannot be set manually. Therefore, to calculate these values, the expert is asked

to make several pairwise comparisons on various solutions. This constitutes a set of learning

examples, used by MYRIAD to build a linear program and deduce the values of the fuzzy

measure (Grabisch and Roubens, 2000).

2.4. Integration of a multicriteria aggregation function in CP

The integration of the Choquet integral in Constraint Programming has been presented in Le

Huédé et al. (2002). The same principles can be used to integrate any multicriteria aggregation

function (Le Huédé, 2003).

In summary, we consider n utility variables u1, . . . , un ∈ [0, 1] that are connected with the

attributes of the problem by the utility functions (modelled with piecewise linear constraints in

our case). The global evaluation that will be optimised is modelled by the variable y ∈ [0, 1].

We aim to establish and propagate the equality between the y variable and the aggregation

of u1, . . . , un with a function H. Mathematically, we want to enforce:

y = H(u1, . . . , un)

Let us denote Aggregation(H, y, {u1, . . . , un}) a global constraint that aims at enforcing

this relation. The propagation of Aggregation can be achieved by maintaining the arc-B-

consistency on this constraint. Let us denote [x, x] the domain of a variable x .

Definition 3 (Arc-B-consistency (Lhomme, 1993)). Given a constraint c over q variables

x1, . . . , xq , and a domain di = [xi , xi] for each variable xi , c is said to be “arc-B-consistent”

if and only if for any variable xi and each of the bound values vi = xi and vi = xi , there exist

values v1, . . . , vi−1, vi+1, . . . , vq in d1, . . . , di−1, di+1, . . . , dq such that c(v1, . . . , vq) holds.

Arc-B-consistency is weaker than the arc-consistency property. This is verified when, for

each value in the domain of each variable, there is a set of values in the domain of the other

variables that verifies the constraint.

If we suppose the monotonicity and the continuity of the functionH applied on continuous

variables, we can verify that an Aggregation constraint is arc-B-consistent by checking two

conditions per variable:

Proposition 1 (Arc-B-consistency with respect to Aggregation). LetH be a continuous and
monotonous aggregation function and C = Aggregation (H, y, {u1, . . . , un}) be an Aggre-
gation constraint. C is Arc-B-consistent if and only if the following four conditions hold:

(1) y ≥ H(u1, . . . , un)

(2) y ≤ H(u1, . . . , un)

Springer

Ann Oper Res (2006) 147:143–174 151

(3) ∀k ∈ {1, . . . , n} : H(u1, . . . , uk−1, uk, uk+1, . . . , un) ≥ y
(4) ∀k ∈ {1, . . . , n} : H(u1, . . . , uk−1, uk, uk+1, . . . , un) ≤ y

Note that for such a continuous function on numeric variables, checking these four con-

ditions also ensures that the Aggregation constraint is arc-consistent (Lhomme, 1993).

On a small example, maintaining the consistency of the Aggregation constraint gives the

following propagations: Let y, u1, u2, u3 be four variables and let μ = {μ0, μ1, . . . , μ123}
be a fuzzy measure such that: y ∈ [0.4, 1], u1 ∈ [0, 0.2], u2 ∈ [0, 0.8], u3 ∈ [0, 0.2] and

μ0 = 0, μ1 = 0.1, μ2 = 0.4, μ3 = 0.1, μ12 = 0.5, μ13 = 0.2, μ23 = 0.6 and μ123 = 1. If

we set the constraint Aggregation(Cμ, y, {u1, u2, u3}), we obtain the following propagations:

Cμ(0, 0, 0) = 0 and Cμ(0.2, 0.8, 0.2) = 0.44. Hence, conditions (1) and (2) allow us to de-

duce: y ∈ [0.4, 0.44]. Similarly, conditions (3) and (4) allow us to reduce the domains of u1,

u2 and u3: u1 ∈ [0.1, 0.2], u2 ∈ [0.7, 0.8] and u3 ∈ [0.12, 0.2] (see (Le Huédé et al., 2002)

for a more detailed version of this example, and (Le Huédé, 2003) (in French) for the detailed

propagation algorithms).

3. The MCS framework

The introduction of multicriteria aggregation functions in CP solvers generates another prob-

lem that is related to the CP solving process: on which principles should we base the construc-

tion of a Branch & Bound search when the objective function depends on several criteria?

In this section we investigate this issue further and we explain why it is nearly impossible to

rationally parameterise a classical Branch & Bound method in multicriteria optimisation. Due

to this major difficulty, we propose the MCS algorithm, which is based on the combination

of several search strategies in a sequence of successive Branch and Bound searches.

3.1. Guiding the search in multicriteria optimisation with CP

In Constraint Programming, the search for solutions is generally guided by two processes that

define a search tree. At a node of the tree, the first process, called variable choice heuristic,

determines the next variable to be examined. The second process, called the labelling strategy,

determines how the domain of the selected variable is split into several parts, and the order

in which these parts will be considered. Generally speaking, these two processes are used

together to build the search tree. An exploration strategy defines the order in which the nodes

of this search tree are visited. In this paper, we will call search strategy the combination of

a labelling strategy, a variable choice heuristic and an exploration strategy (the Depth-First

Search (DFS) strategy being the default exploration strategy).

In optimisation, the objective of a search strategy is to quickly guide the search towards

good solutions. This allows the algorithm to prune large parts of the search tree thanks to the

propagation of the objective function. Therefore, a search strategy has to be defined according

to the objective function. In CP as for any Branch & Bound method, the definition of a good

search strategy has a great impact on the solving time.

Since MAUT models establish an overall evaluation for each solution, the optimisation

problem we want to solve can be treated like any mono-objective problem. However, in this

particular context, defining a good search strategy becomes much more difficult due to the

multicriteria nature of the problem.

Indeed, the definition of a search strategy often relies on intuitive and logical principles

(i.e. with respect to the properties of the problem). For example, when trying to minimise

Springer

152 Ann Oper Res (2006) 147:143–174

the duration of exams in an examination timetabling problem, a good strategy is to select

the examination to be taken by the largest number of students in the set of exams that are

not yet scheduled, and to place it as early as possible in the timetable. If the objective is

to minimise the number of rooms used, we will place the exams in the largest rooms first.

However, when trying to find a good compromise between these two criteria, planning an

exam in the biggest room can delay the end of the exams (there may be some smaller rooms

available earlier), but it can also reduce the number of rooms used if this bigger room is able

to host other exams that could not be contained simultaneously in a smaller room. Here, the

logical principles contradict each other and the definition of a common logical rule is far from

obvious.

Actually, two characteristics that occur very often in multicriteria problems prevent us

from identifying a heuristic that would be efficient for all criteria simultaneously:

– Due to the constraints of the problem, criteria in the preference model often contradict

each other (i.e., it is hard to improve one criterion without decreasing the satisfaction level

of another).

– The expert is often looking for a good trade-off solution represented by compensation

phenomena between the criteria in the preference relation (the decrease in satisfaction of

one criterion can be accepted by the expert if it allows sufficient improvement on other

criteria).

Hence, a strategy that is good for one criterion is very likely to be inefficient for another, and

since good solutions are compromise solutions, heuristics have little chances of guiding the

search towards them from the start. Consequently, a large part of the tree has to be visited

before good solutions can be found.

Furthermore, many combinatorial optimisation problems are NP-hard, and therefore in-

tractable, due to the size of a complete tree search. On such problems, only a limited amount

of time (time contract) is often given for finding a solution that has to be as good as possible.

Within this time limit, DFS generally performs poorly on large problems and partial search

algorithms have been developed to improve the exploration of the search tree (Beldiceanu et

al., 1997; Harvey and Ginsberg, 1995; Gomes, Selman, and Kautz, 1998). As a result, in the

context of the design of a general algorithm for solving multicriteria optimisation problems

in CP, we want to keep the capability of integrating partial search methods.

3.2. The MCS principles

According to the search problematic in a multicriteria optimisation context, we propose the

MCS (MultiCriteria Search) algorithm that alternates diversified search strategies in order to

allow good solutions to be found more quickly and reduce the average resolution time.

3.2.1. Diversification needs in multicriteria optimisation

A key point in the search for solutions in multicriteria optimisation is the exploration of solu-

tions that are distant in the search space. This idea is related to the concept of diversification
used in multi-objective meta-heuristics for the search of the Pareto-optimal front, and its

advantage in CP has been shown in the related work introduced in Section 1.1.

In the MCS algorithm, we propose intensifying the search for diversified solutions thanks

to the iterative use of several search strategies. This approach relies on the definition of a

good search strategy per criterion, each strategy being used for the search of a solution that

optimises its corresponding criterion. These mono-criterion searches are launched iteratively

Springer

Ann Oper Res (2006) 147:143–174 153

to find some solutions of increasing quality with respect to the overall evaluation function.

The hypothesis of our algorithm is that it is much easier to define a strategy per criterion than

a global strategy and that the diversification brought by the alternation of these strategies

should help to define better searches.

3.2.2. Algorithm overview

Figure 2 gives an overview of the MCS algorithm development.

As previously stated, this process relies on the definition of one search strategy per crite-

rion. The main idea is to alternate different searches on the problem criteria and simultane-

ously to impose an improvement of the overall evaluation every time a solution is found.

The main strength of the MCS algorithm is that it proposes a dynamic selection of the

search strategies, depending on the state of the search (i.e. on the result of the previous

mono-criterion search). This selection is achieved by a function called the criterion choice
heuristic which, before each search, chooses the criterion that will indicate the strategy to be

used (we say that this criterion will “guide” the search). On the first iteration of the algorithm,

a criterion is selected by a function denoted <getFirstCriterion>. Otherwise, this task is

performed between each search by <getNextCriterion>, that will choose the criterion on

which it is most interesting to get an improvement with respect to the last found solution,

denoted s�.

In addition, before a mono-criterion search is launched, it is possible to explicitly post

additional constraints in order to concentrate the search in interesting parts of the search

space. These constraints, called local constraints and set in the <setLocalConstraints>
component, are valid only during the next mono-criterion search (they are removed by the

Fig. 2 MCS flowchart

Springer

154 Ann Oper Res (2006) 147:143–174

removeLocalConstraints() function). For example, they can impose an improvement on the

selected criterion through bounding constraints as in Focacci and Godard (2002) or can be

used to express more complex cuts.

The search is performed by the maximize function which searches for solutions that are

better on both the selected criterion uc and the overall evaluation y. The search strategy used

during this search is given by getStrategy(c).
Finally, the end of the algorithm is triggered by the <checkTermination> component.

This function is called the stopping condition and can use the result of the searches, a time

contract, or any other user-defined information, according to the characteristics that are

desired for the overall algorithm. For example, the stopping condition may stipulate that the

algorithm stops when a mono-criterion search fails to find any solution.

3.2.3. MCS foundations

In a more formal way, the MCS algorithm is characterised by a sequence of dynamically

chosen criteria that direct the mono-criterion searches by means of dedicated search strategies.

At each iteration of the algorithm, the inputs are: a MCDM problem P , a current solution

s� (= nil initially), a current criterion c (= nil initially), a search strategy and a solution s,

returned by the search performed by the CP solver at this iteration. Variables uc and y model

the evaluation of criterion c and the global evaluation respectively.

The search performed during this iteration is based on the following principles:

– The mono-criterion search is performed on a problem P ′. Before the search, P ′ is either

equal to P , or obtained from P by adding a local constraint C that reduces the search space

for this MCS iteration.

– During the mono-criterion search on problem P ′, the criterion c and the overall evaluation

y are optimised simultaneously. In other words, each time a solution s ′ is found, if we

denote v′ and v′′ the respective values of uc and y in s ′, constraints (uc > v′) and (y > v′′)
are added to P ′ and the search resumes as defined by the search strategy.

– If no solution is found during the search, s = nil.
– If s �= nil and v is the value of y in solution s, a new MCDM problem is obtained from P

by adding the constraint (y > v) and s� is set to s.

In this paper we address the problem of finding an optimal solution as well as partial search

with MCS. When optimality is desired, it is necessary to ensure that the solution found by

maximisation of a given criterion on P ′ finally corresponds to an optimal solution of P after

a finite number of MCS iterations.

As a result, some properties are needed to guarantee the correctness of the algorithm. We

distinguish two kinds of properties: Space Reduction Properties, which determine when it is

possible to add cuts in the search space without removing better solutions, and Termination
Properties, which determine when the algorithm terminates.

Space Reduction Properties:

RP1 If s is a maximal solution for criterion c on the MCDM problem P , v is the value of

c in s, and P ′′ is obtained from P by adding the constraint (uc ≤ v), then the optimal

solutions of P and P ′′ coincide.

RP2 If v is the value of uc in s� and P ′ is obtained from P by adding the (local) constraint

(uc > v), if there is no solution to the problem of maximising uc on problem P ′, if P ′′

Springer

Ann Oper Res (2006) 147:143–174 155

is obtained from P by adding the constraint (uc ≤ v), then the optimal solutions of P
and P ′′ coincide.

These properties are based on rather trivial optimisation principles but they can be useful

to help the solver in reducing the search space during the solving process.

Termination Property:

TP1 If P ′ = P and there is no solution to the problem of maximising uc on problem P ′,
then either s� �= nil and s� is optimal for y on the MCDM problem P (the constraint

(y > v), where v is the value of y in s�, has been added at the previous MCS iteration),

or s� = nil and P is infeasible.

Hence, we can say that an optimal solution has been found when after several iterations

of the algorithms, problem P becomes infeasible.

Of course, the characteristics of the final solution are closely connected to the properties

of the functions that parameterise the MCS algorithm. In the following sections, we first

give a more precise definition of the algorithm and of the components that characterise the

search. A more formal characterisation of the solution returned by the MCS algorithm is then

given in Section 6, whereas Section 7 describes a specialisation of the framework dedicated

to partial search.

3.3. The MCS algorithm

From the algorithmic point of view, the MCS principles are expressed in Fig. 3:

Variables
In this algorithm, the criteria of the problem are modelled by the vector of variables u =
(u1, . . . , un). These variables are connected to a variable y by an Aggregation (Section 2.4)

Fig. 3 The MCS algorithm

Springer

156 Ann Oper Res (2006) 147:143–174

constraint to establish the overall evaluation. The variables s and s� are used to store the

solutions that are found by the algorithm and they are equal to nil when they do not contain

any solution. Furthermore, at any time during the search, the best solution is stored in the

variable s�, whereas s is used as an intermediate variable. As in the flowchart, the c variable

models the index of the criterion that has been chosen by the criterion choice heuristic.

Finally, the local boolean variable indicates if a local constraint has been set or not before a

search.

Searches and constraints
The setConstraint function is used to post constraints to the problem. Function maximize
optimises the criterion uc following the strategy given by getStrategy(c). In parallel with

this algorithm, constraint y > y� is set every time a solution of overall satisfaction y� is

found. Thus, this “optimisation constraint” imposes that solutions of increasing quality must

be found over the various searches, whereas the constraints used by maximize to optimise

uc are removed after every search.

Generic functions
In addition to defining strategies, we recall the three functions through which the algorithm

can be customised

– Criterion choice heuristic: defined in the function <getNextCriterion>, it returns the

index of the criterion that will guide the next search.

– Local constraints: depending on the chosen criterion they can be added before each

search in the <setLocalConstraints> function. This function returns a boolean value to

indicate if a local constraint was in fact set or not.

– Stopping condition: defined in the <checkTermination> function, the stopping condi-

tion of the algorithm is launched after each mono-criterion optimisation.

3.4. Definition of a generic search algorithm in the CP context

The problem of defining a search strategy is common to any multicriteria optimisation prob-

lem where criteria are aggregated as in MAUT, and where the solving process is based on the

construction of a search tree. The objective of our research is however to provide a CP solver

with search facilities for multicriteria problems. The main asset of this particular context is

the supply of search definition facilities for classical optimisation, that can be easily reused

for our purpose. However, the requirements are that the constructed algorithm should be easy

to use and to adapt to many kind of problems. Thus, the MCS algorithm has been designed

in a framework. For each component of the algorithm, the framework provides a library of

functions that can be used in many problems or redefined for specific use.

The MCS algorithm has been implemented in the Eclair c© solver PLATON TEAM (2001)

and can be invoked by the following functional call: MCS(y, (u1, . . . , un), (S1, . . ., Sn),

<getNextCriterion>, <setLocalConstraints>, <checkTermination>), where (S1, . . . , Sn)

are search strategies described using the ToOLS c© library (de Givry and Jeannin, 2003).

ToOLS is a framework that offers primitives to easily describe search trees. It allows the

expression of most of the partial search methods, but also some hybrid local/global search

methods such as Large Neighbourhood Search (Shaw, 1998).

In the following sections of this paper we give some definitions for the MCS components

that are general enough to be used in a large number of problems. The combination of these

functions and the general algorithm compose the MCS framework.

Springer

Ann Oper Res (2006) 147:143–174 157

4. Defining a mono-criterion search strategy for the MCS framework

The first essential component of the MCS framework is the set of search strategies that will

guide the mono-criterion optimisations. Naturally, as introduced in Section 3.1, the definition

of a good variable choice heuristic and a good labelling strategy for each mono-criterion

strategy is a critical point when using the MCS algorithm. In addition, many alternative tree

searches have been developed in CP to perform a better exploration of the search space.

This section discusses what should be considered when defining a set of search strategies

for MCS. We first discuss the construction of the search trees and then, consider different

possibilities for their exploration strategies.

4.1. Defining a good set of search strategies

When the criterion choice heuristic detects that it is interesting to get an improvement on a

given criterion, the associated strategy should be able to quickly guide the search towards

solutions of good quality on this criterion. Although this is the main requirement for a

strategy, there can still be several good heuristics for this task. In mono-criterion optimisation,

the choice of one heuristic is generally based on an empirical comparison of the different

strategies. Hence, at first sight, a strategy that performs well in mono-criterion optimisation

is a good candidate for use in MCS. However, it may also be important to compare the

strategies chosen for each criterion and to prefer a set of strategies that offers a more diversified

exploration of the search space.

Remark 1 (Back to diversification matters). The choice between two search strategies for a

criterion in MCS can be made on the basis of mono-criterion optimisation benchmarks.

However, one strategy can also be preferred to another in the MCS context if it is completely

different from the strategy designed for the other criteria. Indeed, using diversified strategies

can be a great advantage when the search gets closer to very good compromise solutions.

In this case, it is often hard for the search to find solutions of increasing overall quality.

Diversified strategies have less chances to get stuck on these difficulties and may be able to

find better solutions more quickly.

4.2. Using incomplete searches

For a search on a criterion c in the MCS framework, it is not really important to prove that

the solution found is optimal on c. Although this may allow the algorithm to decrease the

upper bound of uc (and by propagation, the upper bound of the overall evaluation y), it may

take a long time and not be worthwhile.

For this reason, it is possible to set limits on the mono-criterion strategies in order to

reduce the search time that is left to mono-criterion searches and favour the alternation of

strategies. This idea is close to the equilibrium between intensification and diversification in

multi-objective meta-heuristics.

Hence, at least two kinds of simple limits can be specified:

• Limits on the number of solutions: a mono-criterion search stops when it has found a

given number of solutions.

• Temporal limits: a time contract is given to each mono-criterion search.

Springer

158 Ann Oper Res (2006) 147:143–174

However the definition of limits such as time limits should be done carefully. Indeed, with

such a limit, if a search does not find any solution, it does not mean that there is no solution

to the problem.

More complicated limits can also be set to modify the exploration order of the nodes in

the search tree. This allows us to use alternative exploration strategies and is often employed

for partial search. Among the most popular partial search methods in CP, iterative weakening
methods propose to iteratively solve the same problem with a limit on the development of

the search tree, the limit being relaxed over the various iterations of the algorithm. The main

objective of these methods is to backtrack earlier than the classical depth-first strategy, on the

decision made on the top of the tree. Some example of such methods are LDS (Limited Dis-

crepancy Search) (Harvey and Ginsberg, 1995), Iterative Broadening (Ginsberg and Harvey,

1992) and Depth-bounded Discrepancy Search (Walsh, 1997).

5. Choosing a criterion to guide the search

When a mono-criterion search ends and a solution has been found, the function <getNext-
Criterion> determines the criterion that will guide the next search. A simple criterion choice

heuristic optimises each criterion one after the other in a static given order. It allows MCS to

explore diversified areas of the solutions space. However, this process can be considerably

improved by dynamically choosing the search strategy that is most likely to find a large

improvement of the overall evaluation.

At the end of a search, we can use the following information:

– The last found solution, represented by the u� = (u�
1, . . . , u�

n) vector, which contains its

performances on the problem criteria (this solution is also called “current” solution).

– The bounds of the utility variables, denoted u = (u1, . . . , un) and u = (u1, . . . , un). At

this point of the problem, they represent the largest possible debasement or improvement

on the problem criteria.

We can also exploit the parameters of the aggregation function H.

The dynamic choice of a promising criterion to “guide” the next search can be achieved

using an indicator that depicts the worth to improve on a criterion. This indicator aims to

establish a measure of the algorithm interest in using a strategy during the next search. Thus,

a criterion choice heuristic can be based on such indicators if the heuristic returns the index

of the criterion that has the highest value for a given worth to improve indicator.

In this section, we propose some properties for worth to improve indicators. We then define

two useful indicators: the maximum improvement indicator and the average improvement
indicator, and we apply them to the Choquet integral case.

In the following, given a vector of real values (u�
1, . . . , u�

n) and a real x , we denote

(u�
−i , x) = (u�

1, . . . , u�
i−1, x, u�

i+1, . . . , u�
n).

5.1. Properties of a “worth to improve” indicator

Let us denote wi (H)(u�, u) a function of En × En that takes its value in IR. The variables

of this indicator are vector u� of the last solution performances on the problem criteria,

vector u, that models the score upper bounds, and the aggregation function H that establishes

the overall evaluation. The main desirable properties for this function are the following

(Labreuche, 2004):

Springer

Ann Oper Res (2006) 147:143–174 159

(G) Gain: if it is possible to improve a criterion, the “worth to improve” indicator should

be positive:

if ui > u�
i then wi (H)(u�, u) > 0

(NG) No Gain: if it is not possible to improve a criterion, then the “worth to improve”

indicator for this criterion should be null:

if ui = u�
i then wi (H)(u�, u) = 0

If these properties are verified we can denote that, during the search, either there exists a

criterion that has a positive worth to improve indicator, or the last found solution is optimal

(u� = u).

5.2. The maximum improvement indicator

The maximum improvement indicator relies on the (ideal) hypothesis that if we use the

strategy associated to a criterion i during the following search, we will find a solution that

reaches the highest possible performance ui on criterion i and that is equivalent to the current

solution on the other criteria. This makes the hypothesis of a kind of functional independence

between the criteria, which is not true due to the problem constraints. In consequence, the

information returned by this indicator gives the main trends but is only heuristic.

The maximum improvement indicator for each criterion is denoted χi (H) (u�, u) and is

defined by:

χi (H)(u�, u) = H(u�
−i , ui) − H(u�) (3)

Knowing the upper bound of the utility variable of criterion i and assuming that the other

criteria values will not change, the χi (H)(u�, u) indicator represents the maximum value that

can be reached by the overall evaluation if we try to improve the i th criterion.

In the MCS framework, the criterion choice heuristic that is built on this indicator is called

maxImprovement h.

5.3. The average improvement indicator

The average improvement indicator, denoted ωi (H)(u�, u), is a particular case of the ratio

proposed by Grabisch and Labreuche (2001) and Labreuche (2004). This ratio was initially

used to determine on which criteria an alternative (for example, a trainee), should improve

first to get the highest increase of this overall evaluation.

The average improvement indicator is based on the same idea as the maximum improve-

ment indicator but it takes into account the fact that the maximum utility value may not be

reached on the chosen criterion. Therefore, it may be better to consider an average value of

the improvement of the overall evaluation when the value of a criterion ranges between the

last value found and its maximum value:

ωi (H)(u�, u) =

⎧⎪⎨⎪⎩
0 if u�

i = ui ,

1

ui − u�
i

∫ ui

u�
i

(
H(u�

−i , t) − H(u�)
)

dt otherwise.
(4)

Springer

160 Ann Oper Res (2006) 147:143–174

In a probabilistic sense, under the hypothesis of a uniform law for the increases of ui ,

this ratio can be considered as the expected value of the global improvement generated by a

search on criterion i .
To facilitate implementation of the average improvement indicator applied to the Choquet

integral, we propose adapting the formula of (4) when H is replaced by Cμ (where Cμ

denotes the Choquet integral, as given in Definition 2). To achieve this, we use the Möbius

transform, an alternative representation of the fuzzy measure (Grabisch, 1997), which is often

employed for calculus convenience.

Definition 4 (The Möbius transform). Given a measure μ, the Möbius transform of μ is given

by:

m(A) :=
∑
B⊂A

(−1)|A\B|μ(B), ∀A ⊂ X.

According to this representation, the formula of ωi (Cμ) can be expressed as follows:

Proposition 2. (Formula of the average improvement indicator applied to the Choquet inte-

gral). Let m be the Möbius transform of μ (c.f. Grabisch (1997)). Then:

ωi (Cμ)(u�, u) =
∑
C⊂N

m(C) × ωi (hC)(u�, u) (5)

with hC (u) = ∧
j∈C u j and

ωi (hC)(u�, u) = ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

ui − u�
i

2
, if ui ≤

∧
j∈C−i

u�
j(∧

j∈C−i

u�
j − u�

i

) (
1 −

∧
j∈C−i

u�
j −u�

i

2(ui −u�
i)

)
, if u�

i <
∧

j∈C−i

u�
j < ui

0, otherwise

with C−i = C \ {i}.

Proof: The Choquet integral, when expressed with respect to the Möbius transform, becomes

(Grabisch, 1997):

Cμ(u) =
∑
C⊂N

m(C)hC (u)

Hence, by linearity of ωi w.r.t. H, we can deduce the following formula:

ωi (Cμ)(u�, u) =
∑
C⊂N

m(C) × ωi (hC (u�))(u�, u)

Springer

Ann Oper Res (2006) 147:143–174 161

One clearly has for any C ∈ N :

ωi (hC)(u�, u) = 1

ui − u�
i

∫ ui

u�
i

[(
s ∧

∧
j∈C−i

u�
j

)
−

∧
j∈C

u�
j

]
ds

Depending on the different cases, we obtain:

• If u�
i ≥ ∧

j∈C−i
u�

j :

ωi (hc)(u�, u) = 1

ui − u�
i

∫ ui

u�
i

(∧
j∈C−i

u�
j −

∧
j∈C−i

u�
j

)
ds = 0

• If u�
i <

∧
j∈C−i

u�
j :

If ui ≤ ∧
j∈C−i

u�
j

ωi (hC)(u�, u) = 1

ui − u�
i

∫ ui

u�
i

(s − u�
i)ds

= ui − u�
i

2

If ui >
∧

j∈C−i
u�

j

ωi (hC)(u�, u) = 1

ui − u�
i

[∫ ∧
j∈C−i

u�
j

u�
i

(s − u�
i)ds +

∫ ui

∧
j∈C−i

u�
j

(∧
j∈C−i

u�
j − u�

i

)
ds

]

= 1

ui − u�
i

[
− (u�

i − ∧
j∈C−i

u�
j)

2

2
+

∧
j∈C−i

u�
j (ui − u�

i) − u�
i (ui − u�

i)

]

=
(∧

j∈C−i

u�
j − u�

i

) (
1 −

∧
j∈C−i

u�
j − u�

i

2(ui − u�
i)

)
�

Hence, the calculation of the integral of Eq. (4) gives the two equations of Proposition 2,

that are more suitable for implementation.

The choice of the criterion with the highest value for the average improvement indicator

applied to the Choquet integral is made by the averageImprovement h function in the MCS

framework.

6. Instantiating MCS in the search for an optimal solution

Depending on the definition of its components, the MCS framework can be used to find an

optimal solution or to perform a partial search. In this section, we propose several instances of

the algorithm that can be used to perform a complete search on a multicriteria combinatorial

optimisation problem. We first introduce the property of weak completeness that allows us

to classify the mono-criterion searches. In the following parts, we introduce two instances

of the <setLocalConstraints> function and one stopping condition. Then, according to the

Space Reduction Properties and the Termination Property introduced in Section 3.2.3, we

Springer

162 Ann Oper Res (2006) 147:143–174

show that, when these functions are used together in the MCS framework, at the end of the

algorithm it always returns an optimal solution if it exists.

6.1. Weak completeness of a mono-criterion search

As previously explained, many kinds of search strategies can be used in MCS for mono-

criterion searches. A search on a criterion may produce an optimal solution, stop after the

first solution found, follow a partial search scheme, etc. In optimisation, a search algorithm

is said to be complete if, when it terminates, it has either found an optimal solution or proved

that no solution exists. In practice, the MCS algorithm alternates the construction of several

search trees. From a more general point of view, the completeness of the algorithm depends

directly on the property of the search strategies that compose it.

In our case, we introduce the notion of weak completeness to distinguish clearly between

the properties of the mono-criterion searches and the completeness of the whole algorithm:

Definition 5 (Weak completeness). A search algorithm is said to be weakly complete if it

returns at least one solution if a solution exists.

In MCS, successive mono-criterion searches explore the search space and our aim is to

guarantee the completeness of the overall algorithm. However, mono-criterion searches can

be submitted to limits or local constraints.

In this context, the weak completeness property of mono-criterion search is essential.

Indeed, when a weakly complete search that has not been subject to a local constraint cannot

find any solution, then we can conclude that, either a solution had been found during the

previous search and it is optimal, or there is no solution to the problem. Nevertheless, if a

local constraint has been set before the search, the only possible conclusion is that there is no

solution that simultaneously improves the overall evaluation and respects the local constraint.

A search strategy is said to be weakly complete when it defines a weakly complete search

algorithm.

6.2. Local constraints

A local constraint creates a cut in the search space which remains during only one search.

This kind of cut makes it possible to temporarily concentrate the search in some places where

good solutions are believed to be. This can remove some solutions, but the temporary aspects

of these constraints still make the definition of complete searches possible.

In the MCS framework, the function that does not set any local constraint is denoted

noConstraint h. For complete search, we propose to use only improvement constraints on

the selected criterion.

Let s� be the last solution found and c the criterion selected by the <getNextCriterion>

function. Variable uc models the satisfaction on criterion c that should be maximised during

the next search. Function getValue(s�, c) returns the value of uc in solution s�.

It is important to point out that the selection of a criterion by the criterion search heuristic

indicates a strategy that is efficient in finding good solutions on a criterion. However, it

does not impose the search to improve the selected criterion until it finds a first solution.

Thus, especially when the construction of new solutions becomes harder, it can be useful to

explicitly set the constraint uc > getValue(s�, c) by means of a local constraint. We call this

kind of constraint an improvement constraint on the selected criterion.

Springer

Ann Oper Res (2006) 147:143–174 163

We propose two functions based on this idea. They differ from the frequency at which the

uc > getValue(s�, c) constraint is posted to the model:

– In the systematicImp h function, the constraint is posted before each search.

– In the consecutiveImp h function, the constraint is posted only when the criterion c has

also been selected to guide the previous search. This local constraint can be particularly

convenient when the mono-criterion searches are limited to one solution.

According to the requirements of the framework, these two functions return true when

they set a local constraint and false otherwise.

6.3. A stopping condition for complete search

When MCS is used with weakly complete strategies and improvement constraints on the
selected criterion, the <checkTermination> component can be defined such that MCS always

returns an optimal solution (if a solution exists).

This corresponds to the optimalStoppingCondition function described in Fig. 4.

We recall that the stopping condition returns the true value to interrupt the search. The

local variable indicates if a local constraint was set before the previous search, s� is the best

solution found so far and s is the result of the last search (note that s �= s� only if s = nil).
As before, y models the overall evaluation, vector u contains the utility variables and c is the

index of the criterion that guided the last search.

We introduce the status(s) function, which returns the status of the solution s with respect

to the last search:

• status(s) = false: maximize proved that there was no solution to the problem solved during

the last search.

Fig. 4 MCS stopping condition for complete search

Springer

164 Ann Oper Res (2006) 147:143–174

• status(s) = true: maximize found at least one solution and proved that there is no solution

that is better on both the criterion uc and the overall evaluation y (i.e. if we impose

(y ≥getOverallValue(s)), s is optimal for criterion c).

• status(s) = unknown: either maximize found a solution but did not prove its optimality, or

no solution has been found, (s = nil), but it has not been proved that there was no solution

to the problem (i.e., the search tree has not been completely explored).

First of all, optimalStoppingCondition systematically returns false when c = 0, which

corresponds to the first iteration of the algorithm. It stops the algorithm when the optimality

of the last found solution is verified (getOverallValue(s�) ≥ y). When status(s) equals true,

it is possible to inform the model that there is no solution that is better on both the last selected

criterion c and the overall evaluation (Section 3.2.3: RP1): this allows us to decrease the upper

bound of uc and possibly, to reduce the search space. To achieve this, we use getValue(s, c),

which returns the satisfaction degree of s on criterion c (i.e., the uc value for s), and the

setConstraint function to reduce the upper bound of uc. Otherwise, if no solution has been

found (s = nil), two cases can arise: either a local constraint was set before the previous

search and we can decrease uc (since the constraint was an improvement constraint on c),

or the search was not submitted to any constraint and the algorithm stops. When a search

returns a solution, the algorithm continues.

Proposition 3 (Optimality of the last found solution). Suppose an instance of the MCS al-
gorithm such that: the strategies defined for each criterion are complete search strategies,
the criterion choice heuristic is based on an indicator that satisfies (M) and (NG), the local
constraint function is either systematicImp h, consecutiveImp h or noConstraint h and the
stopping condition is optimalStoppingCondition. Then this algorithm always terminates and
the last solution found is optimal with respect to the multicriteria aggregation function of the
problem.

Proof: In this proof, we first show that, if it exists, MCS necessarily returns an optimal

solution when used with the specified parameters. In the second part, we show that the

algorithm cannot loop on the same unsuccessful search and that it terminates in finite time.

First, by construction:

(i) Condition (getOverallValue(s�) ≥ y) checks if the overall evaluation y� of the last so-

lution found s� corresponds to the maximum possible satisfaction level y. In this case

MCS terminates and returns s�(Section 3.2.3: TP1). Otherwise the algorithm continues

while the searches find some solutions (s �= nil).
(ii) If no solution is found by a mono-criterion search (s = nil), there are two alternatives:

(a) local = true: a local constraint was used. Since the local constraint is an improvement

constraint on the selected criterion c and since the strategies are weakly complete,

the upper bound of uc can be decreased to the last value obtained on this criterion

(uc = u�
c) (Section 3.2.3: RP2), but the search continues.

(b) local = false: the weak completeness of the strategies allows us to say that no

solution satisfies the y > y� constraint and therefore the last solution found is optimal

(Section 3.2.3: TP1).

Second, we show that MCS cannot loop on a criterion that cannot be improved. Indeed,

when optimalStoppingCondition returns false, either the last search found a solution and y�

has been improved, or the last search was subject to a local constraint and did not find any

solution, in which case, uc = u�
c. Therefore, when MCS enters the criterion choice heuristic,

Springer

Ann Oper Res (2006) 147:143–174 165

according to (NG), wc(H)(u�, u) = 0. Let us show that this criterion cannot be selected for

the next search. Let I = {i ∈ N | wi (H)(u�, u) > 0}, the set of criteria that would be selected

in priority with respect to c. By contradiction, we show that I �= ∅. Assume indeed that

I = ∅. Therefore, by (G), ∀i ∈ N , ui = u�
i . Hence y = y�, which makes the algorithm stop

and contradicts the hypothesis that MCS entered the criterion choice heuristic. Hence, I �= ∅
and there exists a criterion j �= c such that u j > u�

j . �

6.4. Experimentation

We experimented the MCS algorithm on small instances of the examination timetabling

problem. Several instances of MCS were tested in order to evaluate the advantages and

drawbacks of the MCS framework components.

6.4.1. The examination timetabling problem

Given a set of examinations, a set of students each enrolled for a given list of examinations,

a set of rooms of fixed capacities and a set of periods, the examination timetabling problem

consists in assigning a period and a room to each examination such that (i) two examinations

that are given to a same student cannot be planned on the same period and (ii) the capacity

of a room cannot be exceeded. We assume that as long as constraints (i) and (ii) hold, several

examinations can take place in the same room at the same time but that the number of students

attending an examination cannot be distributed over several rooms.

A simple multicriteria model has been constructed based on three attributes: the date of

the last examination planned (criterion duration of the examination), the number of rooms

used (criterion rooms employment) and the number of times a student has two consecutive

examinations (criterion spreading of the exams). These criteria are aggregated using the

Choquet integral (the whole multicriteria model is more precisely described in Le Huédé

(2003)).

6.4.2. Instances

Small scenarios have been constructed in order to evaluate the performance of MCS in

complete search. The main characteristics of these scenarios are described in the following

table:

Number of Number of Number of Number of
periods exams rooms students

Sc. 12 9 12 2 49
Sc. 15 9 15 3 56
Sc. 20 11 20 2 104

The algorithms are launched for various fuzzy measures that correspond to typical cases

of aggregation functions. The μmin measure models an intolerant expert (i.e., complemen-

tary criteria), μmax models a tolerant expert and μmean models the case where criteria are

independents. Although μmin, μmax and μmean are respectively close to the min, max and the

mean functions, they do not exactly model them.

The coefficients of a fuzzy measure μ are given in the following order:

μ = {μ(∅), μ({1}), μ({2}), μ({1, 2}), μ({3}), μ({1, 3}), μ({2, 3}), μ({1, 2, 3})}.
• μmin = {0., 0.2, 0.2, 0.21, 0.2, 0.21, 0.21, 1.}

Springer

166 Ann Oper Res (2006) 147:143–174

• μmax = {0., 0.8, 0.8, 0.9, 0.8, 0.9, 0.9, 1.}
• μmean = {0., 0.2, 0.2, 0.8, 0.2, 0.8, 0.8, 1.}

6.4.3. Strategies

To find a solution, the search tree assigns a date and a room number to each examination.

Three strategies, st1, st2, st3 were designed for criteria duration of the examination, room

employment and spreading of the exams respectively;

– Variable choice heuristics: In all strategies the examinations are sorted in decreasing order

with respect to the number of examinations they are in conflict with (two examinations

are said to be in conflict when they cannot be planned at the same time, i.e. when a

student registered for both of them). When two exams are in conflict with a same number

of exams, they are sorted according to the number of students taking each exam (larger

exams are instantiated first). Then, for the duration (st1) and the spreading (st3) criteria,

the date variable is instantiated before the room variable and conversely, for the rooms

employment (st2) criterion, the room is instantiated first.

– Labelling strategies: the date variables are instantiated in increasing order for the duration

(st1) and the rooms employment (st2) criteria. For the spreading of the exams (st3), we use

a look ahead heuristic of depth one that selects the most satisfying date according to this

criterion (i.e.: the current node is completely developed on a depth of one and the most

promising branch w.r.t. the spreading criterion is selected). For the room variables, the

labelling strategy is the same for all the strategies: it chooses the largest room in priority.

6.4.4. Results

We compare eight instances of the MCS algorithm with the performances of st1, st2 and

st3 when used separately to optimise the overall evaluation in one single tree search, as in

classical mono-objective optimisation. We also tested a mono-objective approach that uses

a look-ahead labelling strategy, using the upper bound of the overall evaluation to evaluate

each period in the date variables instantiation (this strategy is denoted LA).

The different MCS instances are presented in Fig. 5. In the opt strategy, each mono-

criterion search finds an optimum for its criterion. nbSolLimit indicates that the searches

stop when they have found a given number of solutions (i.e.: one solution for the duration

and room employment criteria and two solutions for the spreading of the exams). These

algorithms use the optimalStoppingCondition function and return an optimal solution.

The performances of these algorithms were evaluated on four instances of the timetabling

problem (Fig. 6). For each instance we compare the total completion time. The average of

Fig. 5 Instances of the MCS
framework for complete search

Springer

Ann Oper Res (2006) 147:143–174 167

Fig. 6 Time results for complete search with MCS

these performances and the average distance to the best performance are given in the avg and

dist lines of the table respectively.

From these results we can say that, considering only the MCS algorithms, on these problem

instances there are few differences between the ω and the χ indicators, and only a slight dif-

ference between noConstraint h and consecutiveImp h (although consecutiveImp h seems

to be generally a bit better than noConstraint h). Considering the algorithms that use the opt
strategies, searching for a solution that is optimal for the selected criterion at each search

is worthless for every instance. Similarly, setting an improvement local constraint system-

atically before each search causes some large performance breakdowns in the μmax case.

However, it gives good results when the aggregation functions come close to the weighted

sum.

For the classical strategies, st1 is better for μmin and μmean and st3 outperform the others

on μmax.

If we compare all the algorithms we can see that the mcs3 instances give the best results

on average. In addition, these instances of the algorithm seem to be much more robust to

changes in the aggregation function than single strategies. When they do not give the best

solution, they are always quite close to it.

7. Partial search with MCS

When addressing real combinatorial optimisation problems, the search space is often so large

that it is impossible to use complete optimisation algorithms. In this case, it is necessary to use

a partial search algorithm, whose objective is to find the best possible solution within a given

time contract. According to this objective, the classical Branch & Bound approach often

offers poor performances: following the depth-first exploration strategy, the search easily

gets stuck in the bottom of the tree. Due to the size of the problem, if the search strategy

makes a bad choice on the top of the tree, it has little chance to backtrack on this decision

before the end of the time contract.

As a result, several partial exploration strategies have been developed in order to favour

backtracks on early decisions (Ginsberg, 1993; Beldiceanu et al., 1997; Harvey and Ginsberg,

1995; Gomes, Selman, and Kautz, 1998; Shaw, 1998). Among them, iterative weakening
methods use limits on the development of the search tree to build new exploration strategies

(de Givry and Jeannin, 2003). In this section, we show how such limits can be used in the

strategies of the MCS framework.

Springer

168 Ann Oper Res (2006) 147:143–174

7.1. Iterative weakening in MCS

7.1.1. Principles of iterative weakening methods

Iterative weakening methods are used in CP to perform partial searches on the search tree.

They rely on limits that constrain the size of the explored part of a given search tree. The

problem is solved iteratively with a progressively relaxed limit until the complete search tree

has been explored.

The ToOLS library (de Givry and Jeannin, 2003) provides a large set of primitives to

describe search trees and to apply limits on any sub-part of a tree. A limit determines if a

node can be visited or not. It can be written as a condition expression ≤ threshold, where

expression defines a way to evaluate a node (primitive nodelimit), a path (primitive pathlimit)
or a subtree (treelimit and globallimit) during the search. Thus, these primitives allow us to

constrain:

– the rank of a visited node (nodelimit): at a node of the search tree, the child nodes are

sorted by the labelling strategy and assigned a rank. The first choice starts at rank zero.

– the distance from a node to the preferred node (nodelimit).
– the number of leaves, the number of backtracks or the number of nodes in a subtree

(treelimit and globallimit).
– the sum of all node ranks or the sum of all the node distances in a search path (pathlimit).

As detailed in de Givry and Jeannin (2003), a large set of partial search algorithms can be

described by means of limit primitives applied to search strategies.

7.1.2. Application to MCS

As introduced in Section 4.2, a mono-criterion search in MCS can follow any exploration

strategy. However, when using MCS in the context of a partial search, under a time limit,

two aspects have to be taken into account: First of all, in order to keep a good robustness

property, it is necessary to allow each strategy equal opportunities to be used. Second, when

it gets hard to find a solution that improves the overall evaluation, it may be useful to favour

a strategy that still can find some solutions.

To fulfill these requirements, we propose using the following principles for creating a new

instance of MCS.

1. A search strategy on a criterion c is subject to a limit lc, initialised to 0 on the first iteration.

2. When a mono-criterion search on c cannot find any solution, its limit lc is increased for

the next search.

3. Between two iterations of MCS, the criterion choice heuristic gives priority to the criterion

with the smallest value for lc.

Thus, mono-criterion searches are subject to very restrictive limits on the beginning of the

algorithm. If a search on c cannot find any solution, the limit is relaxed, but since the criterion

choice heuristic takes l into account, the other strategies have to be tested before a strategy

for criterion c can be used again. In addition, since the limit is not increased when a search

returns a solution, we favour the use of a strategy that find solutions when the improvement

of the overall evaluation becomes difficult.

Springer

Ann Oper Res (2006) 147:143–174 169

These generic principles can be applied to any partial search strategy that uses a single

limit. They are described in the incLimitStoppingCondition stopping condition and in the

smallestPathimit h heuristic, presented in the following paragraphs.

7.2. Stopping condition

The dynamic modification of search strategies is performed in the stopping condition of the

algorithm. The algorithm of incLimitStoppingCondition is described in Fig. 7. It supposes

that the user supplies strategies without limits.

In this algorithm, the vector l contains the limits associated with each strategy.

On the first iteration of the MCS algorithm (c = 0), the limits are initialised to 0 by the

initLimits function and the initial strategies are saved by saveInitialStrategies. Thus, the

strategy that describes the complete search tree for a criterion i will be available by calling

the getInitialStrategy(i) function. Furthermore, to associate a strategy ST to a criterion

i , we use setStrategy(i, ST) and setLimit(d, ST) to apply a limit equal to d to the ST
strategy.

After each iteration of MCS, the stopping condition is very similar to optimalStop-
pingCondition, except when an incomplete search on criterion c does not return any solution

Fig. 7 A stopping condition for partial search

Springer

170 Ann Oper Res (2006) 147:143–174

Fig. 8 The smallestLimit h criterion choice heuristic

((s = nil) and (status(s) = unknown)). In this case, the limit lc is increased and its corre-

sponding strategy is updated.

7.3. Criterion choice heuristic

The criterion choice heuristic that chooses the criterion with the smallest value for l is called

smallestLimit h (Fig. 8).

A very straightforward improvement of smallestLimit h can be obtained by using a worth

to improve indicator to distinguish between equivalent criteria. Thus, we also propose the

smallestLimitMaxImp h that merge the smallestLimit h algorithm with maxImprove-
ment h. When several criteria have the smallest limit, the heuristic uses the criterion with

the lowest value for the χi indicator (Section 5.2).

Fig. 9 The smallestLimitMaxImp h criterion choice heuristic

Springer

Ann Oper Res (2006) 147:143–174 171

7.4. Experimentation

We experimented the MCS algorithm for partial search on large instances of the timetabling

examination problems. These instances were built from the data proposed by Carter et al. by

adding 3 rooms of limited capacities to the initial problems (first introduced in Lee, Carter,

and Laporte (1996), the problem solved by Carter et al. was a satisfaction problem). We

also relaxed the initial constraint on the timetabling duration and studied the three criteria

optimisation problem introduced in Section 6.4.1.

7.4.1. Instances and strategies

The main characteristics of these instances are given in the following table:

Nb. of Nb. of Nb. of
Scenario University periods exams students

HEC Ec. des Htes Études Commerciales 22 80 2823
STA St. Andrews High school 40 138 549
YOR York Mills Collegiate 30 180 919
UTE Univ. of Toronto, Engineering 30 184 2750
EAR Earl Haig Collegiate 30 189 1108
TRE Trent University 35 261 4360

The MCS algorithm uses the consecutiveImp h, smallestLimitMaxImp h and in-
cLimitStoppingCondition with a pathlimit on the sum of all ranks in a search path. For

each instance and each fuzzy measure introduced for complete search, the algorithm is given

10 minutes to find the best possible solution. For comparison, the same time is given to four

algorithms that use the st1, st2, st3 and LA strategies defined in Section 6.4.3. These search

strategies are combined to an LDS exploration strategy (Harvey and Ginsberg, 1995), which

is one of the most efficient exploration strategies for partial search.

7.4.2. Results

Figure 10 presents the value of the overall evaluation returned by each algorithm.

Considering first the static heuristics in these experiments, we observe that strategy st1,

which had very good results in complete search, performs very badly in its LDS version on

large problems, whereas LDS(st2) finds the best solution on some instances, but is often very

far from the best results on the other instances.

Regarding especially the results at 10 mn, look ahead based heuristics seem to perform

much better: strategy LDS(st3), which uses a look ahead heuristic for the spreading criterion,

obtains very good results, as well as strategy LDS(LA) which is “guided” by the overall

evaluation. These two strategies need however much more time for finding a first solution.

On 2 out of the 5 instances, LDS(st3) systematically fails to find any solution within 1 minute

and LDS(LA) is even worse.

The analysis of MCS results shows that it does not outperform the best of the 4 reference

algorithms on any problem. Nevertheless, it always succeeds in finding a solution before 1

minute and the quality of the solution returned by MCS is often very close to the quality of

the best solution found.

Iterative weakening algorithms such as LDS already offer a degree of diversification that

makes them reach quite different parts of the search space. Nevertheless, on large problems

such as those considered in our experiments, it is still hard for any of the single strategy

Springer

172 Ann Oper Res (2006) 147:143–174

Fig. 10 Overall evaluation of the best solution found after 1 and 10 mn

algorithm to find very distant solutions. This makes the quality of the returned solution deeply

connected to the quality of the search strategy. As previously stated in the introduction of

this paper, when the objective function of the problem is based on several contradictory

criteria, defining a search strategy that is good in all cases becomes nearly impossible. In our

experiments, a further look over the runs of the algorithms shows that strategies LDS(st1) and

LDS(st2) cannot find any solution of good quality for the third criterion, whereas LDS(st3)

always optimises the spreading of the examination and gives bad results on other criteria. Of

course, this comes from the fact that minimising the duration of the examinations and the

number of used rooms is closely contradictory with the minimisation of the number of times

a student has two consecutive examinations. The size of the problem makes finding a good

trade-off a lot harder. Thus, even the more holistic approach followed by LDS(LA) often

fails to give better results after a long time.

Finally, within a limited time MCS manages to take some good properties in each of

its mono-criterion strategies. It performs a more diversified exploration and is less sensi-

tive to contradictory effects between the criteria and to differences between instances or

preference relations. In our experiments, both the speed of static heuristics and the capac-

ities of dynamic heuristics for finding good solutions for complex criteria were exploited

by MCS.

In conclusion, we believe that these first experiments of MCS for local search are promising

and that further work, on local constraints for example, will enable us to make a better

combination of the different strategies and to reach even better solutions.

Springer

Ann Oper Res (2006) 147:143–174 173

8. Conclusion

In this paper we introduced the MCS framework for defining search strategies in the con-

text of a multicriteria optimisation problem. Indeed the definition of a search strategy in a

classical Branch & Bound search is often made difficult in multicriteria optimisation due to

the influence of several conflicting criteria on the overall evaluation. The main idea of this

framework is that it is easier to define a good search strategy per criterion than a good overall

strategy. According to this hypothesis, the MCS framework offers the suitable components

to facilitate the definition of such algorithms for multicriteria optimisation problems. In our

experiments on the examination timetabling problems, we showed that an adequate use of

these strategies allows the user of MCS to build more efficient complete search algorithms.

In the final part, we introduced our latest development on MCS applied to partial search.

We proposed new components that perform a progressive relaxation of limits on the mono-

criterion strategies. We showed that, on real-size instances of the timetabling examination

problem, MCS was more robust than state-of-the-art partial search algorithms. These prelim-

inary results suggest that the MCS framework gives a better control for the selection of the

explored parts of the search space and that more efficient search algorithms can be designed

by specialising this general scheme.

Acknowledgments We would like to thank our anonymous reviewers for their valuable and detailed com-
ments.

References

PLATON Team (2001). “Eclair Reference Manual, Version 6.” Technical Report Platon-01.16, THALES
Research and Technology, Orsay, France.

Bana e Costa, C.A. and J.C. Vansnick. (1994). “A Theoretical Framework for Measuring Attractiveness by a
Categorical Based Evaluation TecHnique (MACBETH).” In Proc. XIth Int. Conf. on MCDM, pp. 15–24.
Coimbra, Portugal.

Barichard, V. and J.-K. Hao. (2003). “A Population and Interval Constraint Propagation Algorithm.” In LNCS
2632, pp. 88–101. Springer.

Beldiceanu, N., E. Bourreau, H. Simonis, and D. Rivreau. (1997). “Partial Search Strategy in CHIP.” In Proc.
2nd Int. Conf. on Meta-Heuristics. Sophia-Antipolis, France.

Chankong, V. and Y.Y. Haimes. (1983). Multiobjective Decision Making: Theory and Methodology. North-
Holland.

Choquet, G. (1953). “Theory of capacities.” Annales de l’Institut Fourier, 5, 131–295.
de Givry, S. and L. Jeannin. (2003). “TOoLS: A Library for Partial and Hybrid Search Methods.” In Proceedings

of CP-AI-OR’03, Montral. Canada.
Ehrgott, M. and X. Gandibleux (Eds.) (2002). Multiple Criteria Optimization: State of the Art Annotated

Bibliographic Surveys. Boston: Kluwer Academic Publishers. ISBN 1-4020-7128-0.
Focacci, F. and D. Godard. (2002) “A Practical Approach to Multi-Criteria Optimization Problems in Constraint

Programming.” In N. Jussien and F. Laburthe (Eds.), In Proceedings of CP-AI-OR’02, pp. 65–75, Le
Croisic, France.

Gavanelli, M. (2002). “An Algorithm for Multi-Criteria Optimization in CSPs.” In Frank van Harmelen, (Ed),
In Proceedings of ECAI-2002. pp. 136–140. Lyon, France, IOS Press.

Ginsberg, M.L. (1993). “Dynamic Backtracking.” Journal of Artificial Intelligence Research, 1, 25–46
Ginsberg, M.L. and W.D. Harvey. (1992). “Iterative Broadening.” Artificial Intelligence, 55, 367–383.
Gomes, C.P., B. Selman, and H. Kautz. (1998) “Boosting Combinatorial Search Through Randomization.” In

Proc. of AAAI-98, Madison, WI.
Grabisch. M. (1995). “Fuzzy Integral in Multicriteria Decision Making.” Fuzzy Sets & Systems, 69, 279–298.
Grabisch, M. (1996). “The Application of Fuzzy Integrals in Multicriteria Decision Making.” European J. of

Operational Research, 89, 445–456.

Springer

174 Ann Oper Res (2006) 147:143–174

Grabisch, M. (1997). “Alternative Representations of Discrete Fuzzy Measures for Decision Making.” Int. J.
of Uncertainty, Fuzziness, and Knowledge Based Systems, 5, 587–607.

Grabisch, M. and C. Labreuche. (2001). “How to Improve Acts: An Alternative Representation of the Im-
portance of Criteria in MCDM.” Int. J. of Uncertainty, Fuzziness, and Knowledge-Based Systems, 9(2),
145–157.

Grabisch, M., T. Murofushi, and M. Sugeno. (2000). Fuzzy Measures and Integrals. Theory and Applications
(edited volume). Studies in Fuzziness. Physica Verlag.

Grabisch, M. and M. Roubens. (2000). “Application of the Choquet Integral in Multicriteria Decision Mak-
ing.” In M. Grabisch, T. Murofushi, and M. Sugeno (Eds.), Fuzzy Measures and Integrals—Theory and
Applications, pp. 348–374. Physica Verlag.

Harvey, W.D. and M.L. Ginsberg. (1995). “Limited Discrepancy Search.” In C.S. Mellish (Ed.), Proc. of
IJCAI-95, pp. 607–613. Montréal Canada, Morgan Kaufmann.

Junker, U. (2002). “Preference-Based Search and Multi-Criteria Optimization.” In Proceedings of AAAI-02,
pp. 34–40. Edmonton, Alberta, Canada.

Keeney, R.L. and H. Raiffa. (1976). Decision with Multiple Objectives. New York: Wiley.
C. Labreuche. (2004). “Determination of the Criteria to be Improved First in Order to Improve as Much as

Possible the Overall Evaluation.” In Proceeding of IPMU 2004, pp. 609–616. Perugia, Italy.
Labreuche, C. and M. Grabisch. (2003). “The Choquet Integral for the Aggregation of Interval Scales in

Multicriteria Decision Making.” Fuzzy Sets and Systems, 137(1), 11–26.
Le Huédé, F. (2003). “Intégration d’un modèle d’Aide à la Décision Multicritère en Programmation Par

Contraintes.” PhD thesis, Universitée Paris 6.
Le Huédé, F., P. Gérard, M. Grabisch, C. Labreuche, and P. Savéant. (2002). “Integration of a Multicriteria

Decision Model in Constraint Programming.” In B. Brabble, J. Koehler, and I. Refanidis, (Eds.), In
Proceedings of the AIPS’02 Workshop on Planning and Scheduling with Multiple Criteria, pp. 15–20.
Toulouse, France.

Lhomme, O. (1993). “Consistency Techniques for Numerical CSPs.” In Proceedings of IJCAI 1993, pp.
232–238. Chambery, France.

Marichal, J.L. (1998). “Aggregation Operators for Multicriteria Decision Aid.” PhD thesis, University of
Liège.

Lee, S.Y., M.W. Carter, and G. Laporte. (1996). “Examination Timetabling: Algorithmic Strategies and Ap-
plications.” Journal of the Operational Research Society, 47, 373–383.

Shaw, P. (1998). “Using Constraint Programming and Local Search Methods to Solve Vehicle Routing Prob-
lems.” In Proc. of CP-98, pp. 417–431, Pisa, Italy.

Sugeno, M. (1974). “Theory of Fuzzy Integrals and its Applications.” PhD thesis, Tokyo Institute of Technology
Walsh, T. (1997). Depth-Bounded Discrepancy Search. In Proc. of IJCAI-97, pp. 1388–1395, Nagoya, Japan.

Springer

