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Estimation of1/f Noise

Brett Ninness,Member, IEEE

Abstract—Several models have emerged for describing/f” In these areas, for the purposes of prediction, control, or
noise processes. Based on these, various techniques for estimatingliagnosis, it is of great interest to be able to estimate the spec-
the properties of such processes have been developed. This papef | exponenty from an observed sample path. Many methods

provides theoretical analysis of a new wavelet-based approacht hi this h b d Th f least
which has the advantages of having low computational complexity 0 achieve this have been proposed. €y range from leas

and being able to handle the case where the/f* noise might be Squares estimation of the slope of log-axes plots of sample
embedded in a further white-noise process. However, the analysis periodograms [18], [26] through to approximate and exact

conducted here shows that these advantages are balanced by themaximum-likelihood (ML) estimation [8], [17], [26], [28] and
fact that the wavelet-based scheme is only consistent for spectral direct measuring of fractal dimension of observed sample paths

exponents~ in the range ~ € (0, 1). This is in contradiction to .
the results suggested in previous empirical studies. When € [13], [15], [18]. Aside from the ML-based schemes, these

(0, 1) this paper also establishes that wavelet-based maximum- Methods assume that the sample path observtipi is not
likelihood methods are asymptotically Gaussian and efficient. corrupted by any other noise sources. Various convergence

Finally, the asymptotic rate of mean-square convergence of the results (which will be briefly surveyed) are then available.
parameter estimates is established and is shown to slow as Unfortunately, the ML methods, although able to cope with

approaches one. Combined with a survey of non-wavelet-based measurement noise, are computationally intensive to imple
methods, these new results give a perspective on the various ' P y P

tradeoffs to be considered when modeling and estimating/f> Ment. An exception is the work of Wornell and Oppenheim
noise processes. [45], [46] where the “whitening filter” property [12], [40], [44]
Index Terms—Flicker noise, fractional Brownian motion, Hurst of the Wavelet transfo.rm onh/f'p.rocesses ha}s be_en exploited
exponent, maximum-likelihood estimation, 1/f noise, wavelet to derive a computationally efficient ML estimation schetne.
analysis. Wornell and Oppenheim study the properties of their method
empirically via a computer simulation study and conclude that
it appears to be consistent and asymptotically efficient for a
wide range of spectral exponents> 0.
ECENTLY, there has been significant interest in “long |n contrast, this paper provides a theoretical analysis of
memory” [19] and “multiscale” stochastic processes [3lhe wavelet-based estimation scheme of [45] and [46], and
[4], [27] and their overlap with work on fractals and wavelefinds that in the presence of measurement noise it is only
analysis [14], particularly through the study of fractionagonsistent for a restricted range af Namely,y € (0, 1). For
Brownian motion (fBm) and fractional Gaussian noise (fGn} > 1 this paper shows that in fact the estimator converges
(6], [12], [15], [16], [32], [37], and [40]. with probability one to an incorrect estimate; this conclusion
A large part of the impetus for such work has been thg jllustrated by a simulation study. The paper also provides
problem of dealing with so-called/f stochastic processesa theoretical analysis for the distributional properties of the
which have become of growing importance to physicists ar@timate, and finds that again the asymptotic efficiency and
the signal processing community [2], [24], [28], [36], and [41]Gaussianity results suggested empirically in [45] and [46] hold
and more recently, to the control theory community [27].  only for v € (0, 1). Finally, when~v e (0, 1) then the strong
To be more specific,I'/ f” noise is the colloquial term given consistency and distributional results can be combined to also
to a stochastic procesr; } whose sample spectral densityestablish mean-square consistency in such a way as to show
or periodogrant, |2y (w)[? is of the form E{|Zx(w)]*} &~ how the convergence rate dependsoiit slows to zero asy
o7|w|™7 for some finite nonzer@, andy and whereE{-} increases towards one. This effect of slower convergence for
denotes expectation. Such processes (which are sometimes@lgfer 4 is in accordance with various simulation studies in
called “flicker noise”) have been empirically observed in ghe literature [18], [28], [45].
wide variety of physical processes such as [24], [30] currentssince the wavelet transform is a linear function of the data,
in semiconductors, oscillation of quartz crystals, geophysiGglforms a sufficient statistic, so that these results give some
records, rate of insulin uptake, economic data, traffic-flowdication of the intrinsic difficulty of using a wavelet-based
rates, image texture [28], and heart-rate variability [20].  model to estimate; from noise corrupted observations by any
means, ML or not. Combined with the comments of Masry
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choice of model for analysis df/ f processes. Tradeoffs existdifficult). This can be rectified, as was shown by Mandelbrot
between computational complexity, theoretical justifiabilitand Van Ness [31], by modifying (1) slightly to become
[32], [46] and, as this paper shows, estimation accuracy.

2 t
Bt = g L | [ - 47 B
0
Il. MODELING OF 1/f PROCESSES +/ (|t — g2 - |§|H_1/2)d3(5)}- )

There are a number of technical difficulties in the modelin_(lq ) ) ) . ) .
of random processes with/ f7-type spectra, the main diffi- his Ia_tter equation Wltm € (0, 1) is known as fractional
culty being that fory > 1 (so that the process is a so-called@rownian motion” and is by now the pre-eminent model for
“long-memory” process [19], although other authors resenR0CeSses with/ /" spectra. The parametéf is known as the
this for the casey > 2) the spectrum is nonintegrable so that Urst exponent,”in recognition of early work in the area [21].
no stationary process can be associated with the spectrum’hen H = 1/2, ordinary Brownian motion results. When

The first attempts at solving this conundrum [1] involved? = 0 or 1, then By;(#) degenerates into a process that is
using the idea of fractional integrals [33] to extend the usufESPectively) either zero, or a straight line through the origin.

definition of the Wiener process in terms of a stochastic The stationary increment8y (t 4 7) — By (t) of fBm are
integral of uncorrelated Gaussian increments. termed fractional Gaussian noise (fGn) and are zero-mean

To be more specific, for the case of= 0 the attendant with variance proportional te? =2 so that using the Fourier
difficulties of defining a process associated with a constdfgnsform pair

spectrum are traditionally handled by defining the classical |77t 1
n_ons_tatio_na_ry Brownian mo_tion procest) and_ then con- 9T (7) cos (77/2) - —|w|“/
sidering its increments @ which lead to the required spectra. ] ] ]
That is then indeed fGn serves as a model for Gaussian processes with
1/f7 spectra withy € (0, 1).
t . . . .
B(t) = o2 / dB(o) There are many other interesting properties of fractional
B 0 Brownian motions. For example, their sample paths are self-

. . . similar in the sense that [16
where the increments are a stationary process with a white [16]

spectrum. Therefore, the (formal) derivative Bft) can be Br()t) DyH By (1)
considered to have a spectral representation >
oo where = denotes equality in distribution. This makes them
d_B - / &t du(w) a particular example of the multiscale stochastic processes
dt —o0 studied recently in [3], [4], and [27]. In fact, fBm’s are the only
Gaussian process to display this self-similar property [31], and
as might be expected from this property, their sample paths
E{|du(w)]*} = ocpdw?, 0% <0 are fractal (with Hausdorff-Besicovitch and box dimension
. D = 2 — H) although they are also mean-square-continuous
in which caseB(t), since it is the integral of3(¢), should and continuous on compact sets with probability one.
have a spectrum likew 2. Following this heuristic line of  As well, fractional Brownian motion is a nonstationary

where the measureudsatisfies

reasoning, integrating again process with covariance function
t g I'(2—-2H) cos mH
=2 R(t1, t2) = t P 4|t | = |t =t |PH
Bat) =t | [ o)t () = =5 oy P+ a6

gives a procesd3,(t), that being the double integral a, SO that for > 1/2 then
should have a spectrum likekw ™, and so on, so that using E{By(®)[Bu(t+7)— Bg(#)]} >0
Liouville’s formula [22] _ S
. . andvice versafor H < 1/2. The implication is that sample
Ba(t) =03 / Y / ’ dB(s)dts - - - ot paths tend to be increasing or decreasing dependirfg fi8].
0 0 0
o} [

t

This nonstationarity of fractional Brownian motion means that

N even though its derivation was predicated on trying to find a
= I'(n) /0 (t—£)"dB(¢) (1) useful definition of a random process withf” type spectrum
for v > 1, this interpretation is still difficult.
should have a spectrum |i|@]23w_2("+1). Various suggestions have been put forward to circumvent

The contribution in [1] was to note that if the interest is irthis difficulty. Some involve the use of time-localized trans-
a process with nonintegral spectral expongnthen this can formations such as the Wigner—Ville [15] and wavelet [15],
be modeled by using a so-called “fractional integral” éf(d) [32] transforms, others make formal the heuristic motivation
in which the exponent in (1) is nonintegral. for fractional integrals outlined above [31]. All approaches

Unfortunately, this does not lead to a process with statioarrive at the relationship between the spectral exponeand
ary increments (so that the spectral density interpretationtie Hurst parametdf asy = 2H +1. A particularly appealing
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fBm with H= 0.40 => gamma =1.8,D = 1.6
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Fig. 1. lllustration of the use of linear regression of a periodogram plot to estimate the spectral exponent. Here the measured sample patfcisrngitedise
the truey = 1.8 and the estimate is found & = 1.76.

interpretation is that of Solo [39], where it is proved that in Ill. ESTIMATION OF 1/f PROCESSES
fact fBm does reconcile the theoretical difficulty with empirical g mentioned in the Introduction. there is great interest in

observations of / f7 processes in that the sample periodogra%timaﬂng the spectral exponentrom a lengthiV observed
of an fBm process converges tol 2+ shape. sample path realizatiof; } of a1/ f" process. For example,
For non-Gaussian/ f-type processes, there are other mogy (28] sych an estimate provides a measure of image texture,
_els”avallable, such as the discrete-time “fractional differenggie in [20] it serves as a cardiac health diagnostic instrument.
ing” model [10], [19], [22], [23] The purpose of this section is to provide a brief overview
i of previous work on estimation df/f processes so that the
(1—q7") %k = ex (3)  results to be presented in Section V can be seen in context.
The simplest approach to estimatingis to assume that
whered € (-1/2,1/2) and {e;} is uncorrelated and hasthere are no external noise corruptions on the available mea-
varianceE{ej } = o®. For d in this range{x; } is stationary syrements and to then calculate the sample periodogixdm)

with covarianceR(7) and spectral density(w) given by defined as
. 2
_T(1-ad0(r+ad) A LIS e
B = St +1=4) Inw) = 5 kz_o ke
) =
Plw) = e The estimaté of ~ is then taken as the least squares estimated

. 2 d
27 (4 sin” (w/2)) slope ofIx(w) when plotted on log-log axes; see Fig. 1 for an

so that, as would be expected since (3) is the discrete-timgStratlon of this method where the fBm process is simulated

equivalent to a fractional integral, the fGn and fractional> 9 the *random midpoint displacement method" [13]. The

) . . ! Imost fundamental result on the performance of this technique
differencing models are equivalent in the sense that [19] wi L . : .
IS that [39] it is a mean-square-consistent estimate iflthg

d=H-1/2 process can be modeled as an fBm or fGn. More refined
1 information is provided by Leu and Papamorcou [26] who
WT_I = ¢(w)p(w) show that the mean-square rate of convergence with increasing
observation lengthV is®

where ¢(w) is a positive continuous function. Anothey f . 10g2 N

process model which is particularly important to this paper is Var{¥} =0 N ) asiN — oo.

that proposed by Wornell [43], [44], [46] in which the wavelet _ _ )
series expansion of a stationary in time but uncorrelated ierefe and in the sequel the notatigiN') = o(f(N)) asN — oo
. . . . . will. mean limy_... g(N)/f(N) = 0 and the notationg(N) =
time and scale process is used. More detailed discussion;g n))asy — oo will mean limy—.. g(N)/f(N) = C where

this model will be deferred to a later section. 0<C<oo.
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fBm with H=0.40 => gamma=1.8D=1.6
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Fig. 2. lllustration of the use of linear regression of a periodogram plot to estimate the spectral exponent. Here the same measured samplergathuas the p
figure is used, but now it is corrupted by white Gaussian noise of variafiéd. The true value is stily = 1.8 but now the estimate is found §s= 1.29.

When a fractional differencing model (3) is used to modélor v € (0, 1), Fox and Taqqu [17] have shown the approx-
the 1/ f process, then the resulting estimate is also known itmate ML estimator to be strongly consistent, asymptotically
be (weakly) consistent [19], [23] and asymptotically Gaussiaaussian, and efficient. Leu and Papamorcou [26] have ex-
Note that this periodogram/linear-regression-based method tanded these results (by employing stronger assumptions on
be seriously affected by the effect of noise corruption of th&w, #) that disallow estimation with white-noise-corrupted
sample path observations as is illustrated in Fig. 2, whemeasurements) to also hold ferc (1, 2) and have estimated
white noise of variancer? = 0.001 has been added to thethe mean-square rate of convergence of the approximate ML
measurements. method as

It is also possible to estimate the shape of quite general 1
spectral densitiesp(w, ¢) that are defined by a vector of Var {¥} :0<N>, asN — co.
parameter® by using the methods of maximum likelihood; a

special case of this then becomes the method of interest tOR&% 4 € (0, 1), Dalhaus [8] has shown the same distributional
whered = [0, v, o7] and p(w, 0) = 02|w|.—v + 0'52/- _results, but only weak consistency for the exact ML scheme.

Two approaches have been analyzed in the literature. Fifshese results would appear to also be of relevance to various
the methods of Whittle [42] can be used to approximate thg estimation methods [10], [11] that have been developed
log-likelihood function by using the periodogram so that ag,gund the fractional differencing model (3).

approximate ML estimaté is given by In Section V, the purpose of this paper will be to analyze
. . G In(w) a particular ML scheme that is approximate for a fBm or
0 = arg min {/ log ¢(w, 0) + 5w, 0) d } fGn model of1/f processes (but exact for the wavelet model

of Wornell [44]). This analysis will establish the scheme to
Secondly, at (significantly) more computational expense, the strongly consistent, asymptotically Normal, and efficient,
exact log likelihood can be computed to find the exact Mbut if and only if v € (0, 1). The results in Section V will

estimate as also establish precise mean-square convergence rates that are
1 stronger than those presented above (those above bound the
9 = arg min — { log det [Tn(6)] convergence rate, but do not establish what it is) and show
o N an explicit dependence on The results in Section V are not
N-1 N—1 implied by (nor do they imply) the just-surveyed ML results
+ Z Z [T (0)]r s a:razs} since the latter are predicated on a stationary model for the
r=0 s=0 1/f process whereas the wavelet-based model [44] studied in

Section V is a nonstationary one.
” Note that other estimation methods based on ideas of “Allan
[Tn(0)] = 1 Plw, 0)e7T=) du, Variance” and measuring fractal dimension are also available
—7 [18], [26], but will not be commented on here.

where
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IV. WAVELET TRANSFORMS AND 1/f PROCESSES {gx} and with subsampled outputs

Given the multiscale nature of the fBm model of f g
processes, and the multiscale motivation of much of wavelet CZ_I = Z Gu—2rdy;
theory [9], [30], it arises that wavelets are a powerful analysis y=—00
tool for studyingl/f processes [6], [12], [16], [29], and [32]. 1 i "

To begin with, given a signak(¢) and wavelet)(¢), the di = Z ho—and.
wavelet transform ofX'(¢) at time ¢ and scalex is defined rETe
as [9] This method is commonly initialized with} = X (kA) for

some sampling period\, and is also most commonly used
)da. (4) With ¢(¢) chosen such that the impulse respongks} and
{gx} are finite (FIR) in which case the above method is very
computationally efficient and is known as the “Fast Wavelet
Transform” [9].
As well, wheni(t) is chosen so that the wavelet transform
need only be calculated at dyadic points the inverse wavelet
transform becomes a series expansion

o—t

W= [ X(aw(

A key feature of this transform [16], [32] is that K (¢) =
By (t), then even thoughX(¢) is nonstationary, its wavelet
transform(WX)(a, t) is stationary int for fixed ¢ and has
spectral densitys(w) given byt

1 oo o0

#w) = al (@)l X= Y 272 Y a@@tt-n). @)

which provides yet another interpretation of the spectrum 9\f/ornell [43], [44], [46] has shown how this can be used to

: Y o
an me being al/f7 process withy = 2H + 1. As well, no rovide a new representation fay f¥ processes over very
Gaussian process other than fBm shares these second—ozgr%re ranges of.. Specifically, if the wavelet coefficients™}
properties of its wavelet transform [37]. ' "

) o ) are uncorrelated across time and scale, are zero-mean, and
Aside from this, it also provides another method of e

e : : jave variance
timating v from observed data [30] since the variance (??

(WBpy)(a, t) obeys E{(¢™)?} = o (8)

ym
= i (aw)?

m=—0o< n=—oo

dw (5) then with{+(¢)} an orthonormal wavelet basié(¢) possesses

72 2 B{[0VBu)(a, ) xa |

—oo |w|?HA a “time-averaged” spectrum
so that fora’ # a o s w2
: i Hey=ot D T
s g [T @R N e
Oar X @ /_Oo jw[2H+1 tho oc | — % ) thatis nearly ofl/f" type
2 2
Therefore, sinc(WBg)(a, t)} is stationary, an estimate\( IL < (w) < &, 0% > o3,
is a sampling interval) jw]? |w]?
N1 This applies fory larger than valid for the fBm or fGn models
N 1 of 1/f processes+( = 5, for example), but requires greater
2 —_ 2 1 il
%aT N kz_:o [OVBu)(a, t+EkA)] regularity of wavelets for highey. By this it is meant that the

wavelets possess a greater number of vanishing moments

of o2 can be taken for a range of = {a1, as, -+ -, apr} oo
distributed such that for som8, ax4+1 = Bax and hence by / ty(t)dt =0, pel0, P-1].
the relationship (6) an intuitive estimate ofis the slope of a
graph ofé,, versusa with respect tdog—log, axes. Note that it is known how to design wavelets with an arbitrarily
Due to computational considerations, the wavelet transfolrge numberP of vanishing moments [9].
is not commonly used in the form (4). Rather, a particular Of most interest to this paper is that results in the reverse
class of wavelets(t) admitting a “multiscale” representationdirection also hold, namely, that given i f process, the
[9] are employed so that needs only be varied on a so-wavelet transform acts as a “whitening” filter on the process
called “dyadic” scalex = 1/2". This leads to a more compactas would be suggested by the above synthesis result. This has
notation been rigorously analyzed for the specific case of fBm, where
R with a = 2™, v = 2H 4 1, (5) gives (8) for the variance
e = WBg)(27", 277k) of the wavelet coefficients and the work in [40] shows that
both along and across scales the coefficients are approximately
where the wavelet coefficientg}} } may be efficiently calcu- uncorrelated in that for somé < oo
lated using a bank of filters with impulse respon$ggs} and C192(mAn) (P—H)

E{cic”

— o0

p<
4For ¢(t) a given function(w) denotes its Fourier transform. (an - 2nl£)2(P_H)
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provided that|27"k — 27™4| > max (277¢, 27™¢). Similar can be used where

results are reported in [12] so that fét > 1 the correlation No2m—1
decay along _scales is rapid as th_e figures in [40] iIIustrate_. Zy 2 {z1, -+, 2} 22 = Z (rm)2,
These latter figures also show rapid decay across scales, with

the rapidity again proportional to the numhbErof vanishing _ _ N
moments, which as previously mentioned can be made arbitrQW, define the ML estimaté,; as
ily large by the appropriate choice of a wavelet. For' example, O = argmin {Qn (Zy|6)} (10)
with the Daubechies scheme of wavelet construction, as the 60

FIR filters in the fast wavelet transform become arbitrarilyyhere

large P becomes arbitrarily large for the underlying wavelet. A1
Qu(Zy|0) = 2WK(ZMG). (11)

V. WAVELET-BASED ESTIMATORS FOR1/f PROCESSES Wornell and Oppenheim [45] do not use the normalizing factor

In [45], Wornell and Oppenheim proposed that this “whiter@f 1/2* in (11) and claim in [45] that It is well known
ing” filter property of the wavelet transform be exploited tdhat ML estimators are generally asymptotically efficient and
derive an approximate ML estimator fdy/f processes that consistent. This, specifically, turns out to be the case here.
is much more computationally efficient than the ML methodRresumably this comment is based on empirical evidence since
surveyed in Section IIl. Note, that as previously mentione#! [45] Wornell and Oppenheim offer Monte Carlo simulations,
this wavelet-based ML approach is not equivalent to othBHt no theoretical analysis. The purpose of this section is to
ML approaches since it employs a nonstationary rather tha$eW that if this theoretical analysis is performed, then it can
stationary model for the underlying/f process. be concluded that whesZ > 0 the method is only consistent

In [45], the ML estimator is derived on the assumption thand asymptotically efficient for € (0, 1).
the observations of the/f process sample pati{(¢) may  ASapreliminary comment, note that it is not true that all ML
possibly be corrupted by white noise so that the fast waveRgtimators enjoy pleasant properties, it being relatively easy to

transform of the observations can be written as devise examples wherein the estimates are not consistent or,
in fact, even well-defined [5], [38].
=+, As a consequence of this, the convergence of any ML esti-

mate needs to be rigorously examined on an individual basis.
where {14} is white, zero-mean, Gaussian, and has varianBerforming this for the case at hand allows the conclusion
E{v?}} = o2 and {c'} are the wavelet coefficients of thethat the ML estimator defined by (10) and (11) is always
sample pathX(t) of the 1/f process. With the assumptionconvergent at least to a bounded set.
that X (¢) is Gaussian Theorem 1: Suppose tha® is compact and thab ¢ ©.
Then fory > 0

it~ N0, aX™ +07) = N(0, 07,(6)) A A o
lim fy €S2 {e:Q6) <QP) VB e O}

where 6T £ [a, A, 02], A £ 1/27, and« is a parameter to

scale the magnitude, but not the distribution of energy Wit\ﬁ,here

frequency of thel/f process. Q) 2 lim E{Qrn(Z]9)}.
If the fast wavelet transform is used to calcul&té} then . Moo . .
it is necessary to assume a data record of ledgts Ny2M Proof: The idea of the proof is to first show that

for some integralV, and M in which case with the notation @m(6) — E{Qn(6)} with probability one asM — oo

Ry 2 {r™} the negative log-likelihood functiof( Ry, |) for and that this convergence is_ uniform éhover compacte,
the data given the parameter vectois (modulo an additive and to then show that this uniform convergence on a compact
space implies convergence of the minima. The following

constant) ice /
definitions are required:
U Rp|6) LM
M No2™~t . i ) Qm(Z)6) = 77 Z flm, 0, zp)
= —log H H P ¢ Vo) [ VLA (O)) =
m=1 n=l1 V 27r0—72n(9) A 1 5 ZrQn
f(m, 8, zm) 2 N2 log 02,(0) + 2~
1 M No2™ 1 o\ 2 o5.(0)
_ .2 n y
=32, 2 lson®)+ <0m(9)> ' T 2 f(m, 6, ) — E{f(m, 8, 2m)}
T _ 27271 - E{ZrQn}
Equivalently, the formulation suggested by Wornell and Op-  02,(0)
penheim of N M
M 2 SJW = z_:l Tm

Al z
U Znl0) = = No2™ ! log 02,(6) + —2~  (9) /
(Z310) 2 ,;z:l ’ N o (6) En(e) 2 {we QS| >2Me; >0}
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where in the above all random variables are defined &ut
an underlying probability spacé<, F, P}. Therefore, by

2 27 _ 2 2 2om-4-£—2
Chebychev’s inequality E{z, }E{z} = 07, (60)o7 (60) N2

52 so thatE{r,7,} = 0 and hence
(En(@)) < Solt).
5 M M o2, (60) 2
Now ety = Y ety = Y 2 (Y
N M M m=1 m=1 m
E{S}} =Y E{r2}+2> > E{rum} By assumptiorf = 0 ¢ © so 3x < oo such that
m=1 m=1 {>m
g 02,(60)/0%,(6) <
and also
P on ©, and soE{S%,} < x'2™ for somex’ < oo. Therefore,
2 _ Z (,m)QZRTR oo oo
z T
m n 1
n=1 sup {Z P{SM(E)}} <) ERIYR) E{S%/}
where 7e® Ln=t Mlzloo
K 1
RE2 [ o R, R N(O, 0%(00)1). S22 pm <
M=1
Therefore, so that by the Borel-Cantelli Lemma [7]
1
RYR ~ x% g (12) 1 <
02,(60) Moz i Z &2 0asM — o
so by Lemma A.5 in the Appendix m=1
24 me1_2 uniformly in 8 € ©. By the definition ofr,, this means that
Bz} = No2" "oy, (0h)- 13) v, > 0 IM; such that
Also, using Lemma A.5 in the Appendix 101(Z16) — E{Qu(Z|0)}] < /2
E{(22)*} =E{(RTR)*} asvVM>M,V0e0O. (16)
1,2 2 4
=[o:,(bo) Trace {I}]* + 207,,(6p) Trace {I} Therefore, forM > M,
=0t (60)No2™ [ N2t 4-2] (14)
E{Qm(Z|0)} > Qu(Z|0) — g/2 a.s.vo € 0.
so that .
afn(G)E{Tﬁl} _ E{(zgn)Q} _ (E{Zgn})Q However, by the definition of,,,
=02 (o) No2™ L [Np2™ 1 + 2] Qm(Z|0) > Qu(Z|0m) Vo€ 0o.
~ N§2*" 207, (6o) Therefore,
:N02mafn(90)
to give E{Qu(Z0)} > Qu(Z8y) —e/2  as¥beo. (17)
2 2
Efr2} = Nozm ( Zzlf0)) . ; ;
o2,(0) Now, © is compact, s@ a subsequencfdy, } of {#x} and
AlSo af* € O such thatd,;, — 6* asM,, — oco. Also, Q@ (Z|9)
is continuous ind so there exists a neighborhodd of 6*
T ()07 (O)E{TmTe} =E{2, 27} — E{25 JE{2]} such that
and
E{z227} =E{RTRWTW} |Qa(Z|00,) — Qui(Z|60%)| <e/4 VO eD.
where

As well, since@;(Z|9) converges uniformly t&{Qx(Z]6)}

RY =", -+, vzl R~ N, 0,,(00)]) then 3 M5 such thatv M,, > Ms

wt = [T{v Tty 7)5\’025—1] M ~ N(Ov 0?(90)1)

so that sincé/ and R are uncorrelated it may be concluded |Qar, (Z]6%) — E{Qrr. (Z]60%)}] < /4.
that ’ ’

E{7,27} = Trace {0}, (60)I} Trace {o7(60)]} Combining the previous two bounds with (17) and defining
=02,(00)0}(Bo)NZ2m T2, (15) M, such thatM,, > My = 6, € D means thav M,, >
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max (M, My, Ms) of information matrixZy;(6y) defined by

/ d?
E{Qur, (Z10)} > E{Qu, (216"} — <. Tar(6o) = E{—de T “ZMW}

d2
P ] Znl6o)}.
Sincee is arbitrary this means that doder {Qu(Znlb0)}

Unfortunately, as (18) shows, the entries pertainingrtand
. A s A = — Ain the Hessian oE{Q;(Z|6)} tend to zero a3/ increases
i O, =07 €5 = {0€6:Q0)<QAVAEO) o 10 thatE{Q;(Z|6)} “flattens out” andS, instead
of being the singletorf,, is a set of values of of equal
cost. In other words, since = |log, A|, Q(#) possesses a
unigue minimum and hencg is a singleton ab, if and only
lim E{Qu(Z]6)}. ity € (01 .
M—oo Corollary 1: Define 6, to be a vector containing the

. . . trug values of[a, A, 2]. Under the conditions thaf, €
Observing that this applies for any convergent subsequencqrﬂgrior{@} 0¢ O, andy € (0, 1) then
D L] 1 b)

6 then completes the proof.

Note that for any finiteM, then (modulo numerical diffi-
culties arising from trying to find the minima of a function
possessing very large magnitude) the addition of 12" it ~ - 1 then é,, still converges almost surely, but to the
normalizing factor in (11) makes no difference to the estimafgyunded sets and not necessarily téo.
obtained. However, by its definition, consistency is an asymp-|t js common in studies of ML estimation methods to use
totic property, not a finite-data property, and for it to exist it ighe information matrixZ,;(6,) via the Cranér—Rao bound
important that the normalizing factdy2* is included in (11) a5 an indication of the quality of the estimates [45]. This
since with it perusal of the proof of Theorem 1 shows that zrises since even though the bound applies only to unbiased

estimates, many ML schemes have the property that their

E ZI0) = No ad 9™ ) log o2 (0 02,(6o) (possibly biased) estimates converge weakly to a Gaussian

@210} = 53 2 { 08 o (0) + 02,(6) } distribution with covariance equal to the CramRao bound
(in which case the estimators are termed “efficient”). However,
which if 0 ¢ © is obviously convergent to a well-definedto be rigorous it is necessary to prove that this convergence
function Q(8) on ©® when M — oc. Without the normalizing does in fact hold. In the case studied here, it does, but again
factor1/2M thenE{Q;(Z|6)} (and hence by (16),,(Z|6) only for appropriatet /2 normalization of the log-likelihood
as well) diverges uniformly irf with increasing/. function and only for a narrower range of spectral exponents

In any event, for consistency of the ML estimator, it wilthan originally suggested in [45].
be necessary that the s8tdefined in Theorem 1 consists of Theorem 2:Under the conditions of Theorem 1 and pro-
only one pointd, defined to be the vector containing the trugided © is convex, then if and only ify € (0, 1)
parameter values. In order to study the naturéafote that

where

A

Q(0)

é}w —a—s> 0y asM — oo. (19)

m=1

a property shared by all ML estimators [25] is that V2M P20y — 60) 2> N'(0, ) asM — 00 (20)
E{Qm(Z|0)} > E{Qm(Z|60)} VO€© where
Qi (2|6
so that at leasf, € S may be concluded. However, fé§ to Py = E{%}. (21)

be the only element in the interior & it will be necessary
that in the limit asM — oo the Hessian oE{Qx(Z]6)} Proof: By Theorem 1, for large enought, 4, lies with

be positive definite afy. For finite M/, the Hessian is easily probability one within any given open neighborhood éf
calculated as (see [45, eq. (43)]) which is assumed to be in the interior®f Therefore, for large
enoughM, Qu(Z|6) is minimized at afy, € Interior{©}

2
dedw E{Qn(Z1160)} so 8y, satisfies the necessary condition for minimization of a
M differentiable function on an open domain
_ NO 2771
- 2]\4-1—2 z:l (a)\nl + 0-3)2 dQJ\l(Z|9) —0a.s
m= d9 . — D
)\an (a/)\)m)\an Pl 6=0n
(a/N)mA*™ (a/A)*m2X2™ (a/N)mA™ |. (18) Therefore, using the mean value theorem, for large enddgh
A™ (a/X)ymA™ 1 Jp € [0, 1] such that
Note that due to its importance in estimation theory this ALD) — Rui(B)(6o — 011) as.

Hessian evaluated &} is commonly studied under the name de
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where and put2y, = Q3, N N3,. In this case, since perusal of (18)
) shows thaB K < oo such thatE{||Ry;(6o)||} < K ¥V M then
Ru(8) & dQum(Z]6) I .
M dgder |,_, E{[IZ"(60) (¥ — bo)II"}
A g dQas (Z60) ||*
B2 by + (1= mbo. s4M||E{RM<90>}||2E{||R;;<ﬁ>||4 2 (Z00) }
Therefore, using Lemma A.2 in the Appendix 24 M+2 4
< K 44 / dQMd(9Z|90) dp
~ £
V2M P (60) Ras(B) (80 — Bar) == N(0, T) as M — oc. S
(22) + 4M /5 ||9M - 90||4dP.
But, by Lemma A.1 in the Appendix Therefore, sinc® is compact, for some&' < o
1/2 5 dQwr(Z160) ||*
Rur(3) 2% Py(d) Uniformly in e ©  (23)  EUIZ2 (B0)(Bar — 80)]*} < C4ME{ HT
and by Theorem 1 + C4MP{Qp ). (25)
. as Now
Oy — 8 asM — o (24)

1B (O 2 [[E{Ba(O)}]] = [[Bar(8) — E{Ens(6)}]

so thats a—'>s‘90. Combining (22)—(24) then gives and
V2 PY2(G0)(Bar — b0) 25 N0, I) asM — o0, O IELR (O)H] 2 & V116 = boll <&
so that
As already mentioned, with this distributional result in hand
it is natural to us€l,;(6o) to infer the second-order properties Q3, C {w: sup || Rum(0) — E{Rym (D)} > 5/2}
of the ML estimate. However, without further examination, 6—foll<6
since neither almost-sure nor weak convergence imply megfig so by Lemma A.3 and Chebychev's inequalitit < oo
square convergence, there is no guarantee that these secgigh that
order properties even exist, much less than they are related to o K
the asymptotic distributional variances. Fortunately, when this P{3,} < EYITE
further examination is undertaken, the hoped for second-order €
properties of the ML estimate do in fact exist, but as usugimilarly, sincefy is the unique minimizer oE{Q/(Z|6)}
only for restricted-. then for somep > 0

Corollary 2: If v € (0, 1) then E{Qu(Z|E)}<E{Qu(Z|0)} — p,

, N « V|6 — 6ol > 6, [|€— 60|l < /2.
lim Zy(00)E{(Bar — 60) (s — 60)7 Y23/ (60) = I. 16 = 6oll > &, [I€ — boll < &/
~ Therefore,

al, c {w: sup |Qnr(0) — EQur(9))] > p/2}
6e©

Proof: From the proof of Theorem 2, favl large enough

dQr(Z)6o)

6o — b = Ry (B) T so that again by using Lemma A.3 and Chebychev’s inequality
- p{ﬁl 1< L
wheres = pbys+(1— )6 for somep € [0, 1]. It has already M = oayn

been established that fare (0, 1) thenE{R;(6)} > 0 so . _ .

that the continuity ofE{R;(6)} in # implies that3s > o and since by de Morgan's Theoreft, = 2}, U 3,
such that — K
P{Q} < iR

[E{Rm ()} 2 e VO such that]6 — fo]| < é. Substituting this into (25) together with the use of Lemma

. , i A.3 gives that
Now, assuming that all random variables are defined on an K K

underlying probability spacés?, F, P}, define the following E{HI}W/Q(QO)(QAJW —fo)|I*t < C4M — + C4M - < o0
subsets of the event spa€e 4 4
so that combining Theorem 2 with [7, Theorem 4.5.2] gives
QL 2 {we Q|| — 6o < 6, the result. O
5 A This allows an estimate of the mean-square rate of conver-
Oy = {w: [[Ru(A)|l = e/2V 5 such that|f — o]l <6} gence of the ML estimates to be found as follows.
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Corollary 3: If v € (0, 1) then This suggests that estimates @fand v should be more
accurate for smallery which is in agreement with the many
1 simulation results available in the literature [18], [28], [44],
Var {a} :O{Nl—'y} asiV — oo (26) [45], and is also in accordance with intuition.
. 1 To expand on this last point of intuitive interpretation, for
Var{A\} =0 {1_72} asN — oo (27) small neao the spectrum of the process is nearly flat so its size
N1 log™ N and slope at high frequencies is highly indicative of its overall
Var {62} =0 {i} asN — co. (28) behavior. Fory large nearl, the spectrum of the process is
N much more hyperbolic and hence there is a need to observe
it at low frequencies in order to characterize it; observing
Proof. Define the spectrum at low frequencies requires observing more
data than does observing the spectrum at high frequencies,
5 T hence the slower rate of convergence for largéndicated
B 2 \/W[)\M&, MM <—>, 63] ) (29) in (26) and (27). Continuing this spectral argument to also
o address lack of convergence, note thatyaacreases and the
hyperbolicity of thel/ f noise spectrum increases, the amount

Then since by Theorem 2 of energy of thel/f process above the white-noise floor
decreases, thereby making estimation of I}i¢ process more
IMQ(%)(@AM — 6o) —D—>N(0, I)yasM — oo difficult_—eve_ntually, a thresh_old is reached A= 1 when
the white-noise energy dominates and consistency becomes
N N impossible.
and by the definition (299, = a0 where An illustration of this phenomenon of nonconvergence can
be provided by reviewing a simulation study in which the
AM 0 0 ML scheme using Daubechies order ten wavelets was tested
A Ml A for 1/f processes with exponents of= 0.6, 1.3, and 1.8
Ta = V20 MA <_> 0 and Cvith « = 1000. In the numerical studies of [45] and
0 0 1 [46], in order to investigate robustness, théf process was
not generated via the wavelet model (7), (8). However, as
use of Slutsky’s Theorem then gives mentioned in [45], this does “not allow us to distinguish

between errors inherent in the modeling and errors inherent
in the estimation process.” Since the latter are precisely what
are under investigation here, the opposite choice is made, and
(7) as well as (8) are used to generafd process realizations.
where Realizations of lengthV = 2* with M € [8, 16] were
. used for estimation after being corrupted by white zero-mean
L(Bo) = \Jim  Th(fo) Gaussian noise of variane@ = 0.01. To avoid border effects,
with larger realizations than required were generated, and segments
of appropriate length were extracted after transients due to
Zui(Po) = Ty Tna(60) T nonzero initial conditions had evaporated.

which using (18) may be evaluated as shown at the bottom 0fTh_e estimates were found using 500_iterations of the EM
this page. Therefore, since by assumptipre (0, 1) and algorithm suggested in [45] from starting values @f =

hence2\? > 1 then 0 < Z(fy) < oo and hence using 900, A = 1.0, 52 = 0.0001. For each data length, 100
Corollary 2 different noise realizations were obtained with estimation

results being averaged over these 100 trials to obtain sample
means and variances for the estimates. The result§ fme
shown in Fig. 3. Note that fory = 0.6, as predicted by the
theoretical analysis of this paper, the estimate is convergent
Concentrating attention now ofiy; and using the facts thatwith increasing data length. Note also that fpr= 1.3 and

the use of the fast wavelet transform to obtain the data= 1.8 that (again consistent with the theoretical analysis)
{rm} implies thatM = log, (N/Ny) and remembering that the estimates are not convergent to their true values—the
v = |log, A| implies AM = (Ny/N)” then completes the variability of the estimates does not continually decrease, and
proof. O the means drift away from the true values.

(Bar = Bo) == N(0, T7X(50)) asM — o

m E{(Bar — Bo)(Bar — Bo)} =T (o).

N M om )\2(771—]\4) m/M)\Q(rn—J\l) )\(rn—]\l)
Tu(Bo) = 0 - m/M)\Q(m—J\l) mQ/MQ)\Q(m—J\l) m/M)\(m—J\l)
2M+2 ng:l (Oé)\ + 0'3)2 )\(m—]\l) m/M)\(m—J\l) 1
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Mean of estimate of spectral exponent gamma
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llustration of dependence of convergence of the wavelet-based ML methgdeofi0, 1). Solid line is mean and log of variance for= 0.6;

estimator is convergent to correct value. Dash—dot and dashed lines are cases o8 and~ = 1.8, respectively; estimators are nonconvergent and are
wandering around incorrect estimates. Results were obtained via 100 Monte Carlo simulations at each dat&/|dogth/ between8 and 16.

At the data length ofN = 216, the sensitivity of the range ofy in the range(0, 1). For+ > 1, a more pessimistic
estimate to the level of white-noise corruption was examine@nclusion (that is counter to previous suggestions in the
by the same process of evaluating the expected value of {figrature) is that the methods do not converge to the correct

wavelet-based ML estimate of via a sample average oVerggiimate if the measurements are noise corrupted.
100 different realizations. The results for a range of white-

noise variances frona2 = 102 (which is the case shown

in Fig. 3) down too2 = 10~% are shown in Fig. 4. Clearly,
for v > 1 the estimate becomes progressively more biased for
increasing white-noise corruption, while is almost invariant Lemma A.1:

for v < 1. Balanced against this, Fig. 4 also illustrates that for ~ &°Qu(Z[6) ass.

—_—

APPENDIX
LEMMAS REQUIRED FOR CONVERGENCE PROOFS

very small noise corruptions, the wavelet-based ML method dé; do
can give good estimates for all values -f d?E{Qn(Z|0)} . .
Note that similar results to those shown in Figs. 3 and 4  — g go— asM — oo Uniformly in 6 € ©.
were also obtained when the f processes where generated p !
. . Y roof:
not via the wavelet model (7), (8), but by using the ran-ol 7
dom midpoint displacement method” of simulating fractionalM

Brownian motion [13]. In the interests of brevity, these results dbr

are not reproduced here. d 1 U _ 22
=@ \ o Z No2™ ! log 02,(0) + -2

2
m=1 Tm

—~
)
~—

VI. CONCLUSION

. . M
The use of wavelets in the analysis of fractals and the study 1 Z 1 dop(6) Noom—1 i
. . . = i WY 0 - .
of various noise processes has been a topic of recent research 2 = ok (0)  dbr a2,(8)
interest. More particularly, it has been suggested that wavele&s
: A i Qu(Z|6)
be employed in the estimation of fractal dimension and alsew
in the estimation of variou$/ /¥ processes. The contribution 7 5Vk
of this paper has been, via a theoretical analysis, to investigate 1 X 1
= oM >
m=1

2

N, 2771—1 _ Zm
< ’ o2,(6)

N02rn—l -2 ZrQn .
o (8)

d*on(6)
o2,(6) d6; dby

1 dop(6) doy.(6)

db;

the utility of this approach. The main conclusion arising from

this analysis is that even in the presence of external noise
corruptions on the observations, the wavelet-based scheme is
convergent and statistically efficient, but only for a restricted [o2.()]*  db;
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Mean of estimate of spectral exponent gamma
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Fig. 4. Effect of estimation accuracy for decreasing signal-to-noise ratio. Solid line is mean of estimate=fod.6, dash—dot and dashed lines are

cases ofy = 1.3 and~ = 1.8, respectively. Results were obtained via
logarithmically spaced betweem? = 10~% and o2 = 1072,

Therefore, defining
a (No2m ok (6o) — 22)

0= T e
Fon(6) 2 doj(8) dop(6)
do; do,  o2,(6) do  db,
gives on use of (13)
PQu(Z6)  FPE{Qu(Z0)} 1 —
Now put
Pm, j, k()
a1 (dPo2(B) 2 doZ(h) do(6)
C [o2 (02 \ db;db  02,(6) dby dé;

Su(0)
M
=2 Z em, 5, (O)(No2" 202, (60) - 22,)
8]\4(9 6) = {w e |SJ\4( )| > 21\45}.
Then by Chebychev’s inequality
E{Sy
Pien(®)} s EUOD.
But
M M M
E{S}(0)} = >_ E{r2@}+2 > > E{m()m(9)}.
m=1 m=1 {>m

100 Monte Carlo simulations for a data Hgthnd white-noise variances

Furthermore, using (13) and (15)

E{7 (0)7e(0)} =9, 1. 1:(0) e (O)E{(No2™ "7 (60) -
(No2 ™ (60)~

(3

2)}=0

and by (13) and (14)

E{rm(0)} =95, j x (OE{(No2" 07, (60) — 27,)%}
= 907271, 7 k(e)N02nlo—;Ln(90)
so that
P{SJW 221\452 Z nlgarQn NN ;Ln(e)

m=1
Now, sinces?,(6) is twice continuously differentiable with
respect t&#, and by assumptio® is compact such that ¢ ©,
then 35 < oo such that|e?, ; 4(0)on(8)] < x V6 € ©.
Therefore,

&%) oo M
Noli 1 ™
sup ¢ > PLEM(O)} < T3 D oo D 2" <0
0€0 | p=1 & M= m=1

so that by the Borel-Cantelli Lemma [7]

1 M
oM Y Tml8)

m=1

23 0asM — Uniformly in 8 € O.

Using (A.1) then gives the result. O

Lemma A.2:

\/Wp—l/Q( 8o) dQn (Z]0)

de

2, N(0, I) asM — oo

=06
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where Therefore, sinces?,(6) is C* on compact®
/ dQ]w(Z|90) E{lX 3
Pa(60) 2 E{— . {1, 1%} < o0
de deT M
Proof: Define pJim > E{ X u*} =0
1 9 m=1
A m—1 Zm T
Tm = m <N02 2 0 )> so that by the definition ofX,, »;, use of [7, Theorem
0 mAr0 7.1.2] leads to (note that by Craig’s Theorem, thg} are
Z independent)
dek
k= M 3
dQm(Z28) D
N T M Z Xrn,]\l = (p]w Z dek e N(O, 1)
X, = , oM = Z {72} m=1 k=1 9=6,
VPM el asM — oc.

where{oy, as, ag} are arbitrary real numbers. Then by (13)AI f /by (13) and (15
and (14) so, for m # £ by (13) and (15)

E{an, M} =0 E{Tm’fé} =0
M M
1 so that
E{X2 m}=— E{ri} =1
> B = 0 D B w2
. . . PM =E Z Tm
Also, since by assumption all thig,} are not point masses, ooy
then gy, > 0 to give thatdx < oo such that 5 9
dQ s (Z]6o)
E{|Xom, 21"} < KE{|rml} < 1V E{rEIVETTAY. =E{ <Z T gg,
k=1
But by (13), (14), and the definition af,,(6) — 2 MT Py (fo)a
2
" 2 /
E{r2} = % oy dor,,(6o) where use has been made of the notatidn= [, a2, ag)
2 [O—rn(e())] k=1 dek so that
Also, oM dQ (2
7 9Qn(Z16) D
4 4 OéTP]w (90)0& @ do 0:00—_> N(()’ 1)

3
Zak da

(-1 ‘E{

Z() asM — oo.

} But « is arbitrary, so that use of the CrémWold device
(A.2)

4
E{Tm} 24]\4 ]4

completes the proof. O
Lemma A.3:If v € (0, 1) then for somekK < oo

But by (12), [07,(60)]*27, ~ X%, 4m-1 Which has moment-

generating functions(s) given by [35] sup E{||Ra(6) — E{RM(O)}|*} < 4M
#s) = (1 - 29705 up E{|Qa(6) - E{QMw)}r*} <
S

so that dQM Z90 K

o sup E < YR

E{(z0)} = [on(00)]" 57 #(5) feo
5=0 Proof: From the proof of Lemma A.1
Using this in (A.2) then gives
. [Rar(8) — E{Ru (0 )}]j,
3
49 _ 3N02nl(N02Tn + 8) dO—rQn(eo) m—1 2
SUSES 24M 52 (f)]* kz=:1 R dé,, (A-3) 2M Z 02 (bo) — m]<Pm,j,k(9).
so that Lengthy but straightforward arithmetic shows that with the
No2™/No2™ + 8 definition [Ap]; x 2 ©m. ;. x(6)

Bl Xm 21} <6V Zoswin R

a0
D g dd,

k=1

|A]|? < Trace {A,,} < Cm2\*™

whereC' < oc. Therefore, using the Cauchy-Schwarz inequal-
ity, the fact thaty € (0,1) = A < 1 and the fact that
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uncorrelated Gaussian random variables are also independ’
gives

45

™ are symmetric where = dim Z, m = dim W. Then

E{(ZT AZ)(WT BW)} = (Trace { AP})(Trace { BQ})

E{IIRx(6) — E{Rum(0)}"}
516% D) E{[No2 ol (B0) — 27

m=1 (=1
- [No2"to7 (B0) — 2E17}
M 2
C (1]
=7 E{[No2" Yo7, (60) — 20}
16M rgz:l 2]

S 3]
m 4
6M Z No2™ay,,(6) | < 4M

m=1

[4]
Similarly, from the proof of Theorem 1 and using (A.3)

E{|QM(9> - E{QMw)}l‘*} [6]
B 2rn 1 2 (90) 4

- o Z (=) )

aN2 M N " (60) K [8]

=g 2 w2 +8)<am<9>> SPT

Finally, using the same methods as for the previous two Caﬁﬁﬁ

H dQr(Z60) |7

dé (1]
_lsey L dihdne) g,
o m=1 (=1 0—7271(90)0—[2(90) deT dé

2 2
A N 2m—1 _ Z— N 2[ 1 2 [13]
< ’ 0%(%))( 0 o2(6o) [14]
so that .
| \ Z - Y g
- M 4
de 16 m=1 d9 [17]
22 4
. m—1 _ _ “m
- <N02 0%(%)) (18]
1 do2,(8) ||
m [19]
16]\4 rg:l 4 de
- Np2™(No2™ + 8) < 4%_ o o
[21]
Lemma A.4:If X ~ N,(p, X) where X is nonsingular -
andm = dim {X}, then 22]
Ty—1 2 [23]
XTETX ~x5(6) o

. . N ., [29]
where x2,(8) is a noncentral chi-squared distribution withi26]
noncentrality parameter

§= Tty [27]
[28]
Proof. See [34].
Lemma A.5:
[29]

Distribution of Quadratic Forms:SupposeZ ~ N(0, P),
W ~ N(0, Q) with E{ZW*} = R, and A € R**"B ¢

5] L

+ 2 Trace {RBRA}. (A.4)

Proof: See [34]. |
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