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Estimation of Noise
Brett Ninness,Member, IEEE

Abstract—Several models have emerged for describing1=f

noise processes. Based on these, various techniques for estimating
the properties of such processes have been developed. This paper
provides theoretical analysis of a new wavelet-based approach
which has the advantages of having low computational complexity
and being able to handle the case where the1=f noise might be
embedded in a further white-noise process. However, the analysis
conducted here shows that these advantages are balanced by the
fact that the wavelet-based scheme is only consistent for spectral
exponents in the range  2 (0; 1). This is in contradiction to
the results suggested in previous empirical studies. When 2

(0; 1) this paper also establishes that wavelet-based maximum-
likelihood methods are asymptotically Gaussian and efficient.
Finally, the asymptotic rate of mean-square convergence of the
parameter estimates is established and is shown to slow as
approaches one. Combined with a survey of non-wavelet-based
methods, these new results give a perspective on the various
tradeoffs to be considered when modeling and estimating1=f

noise processes.

Index Terms—Flicker noise, fractional Brownian motion, Hurst
exponent, maximum-likelihood estimation, 1=f noise, wavelet
analysis.

I. INTRODUCTION

RECENTLY, there has been significant interest in “long
memory” [19] and “multiscale” stochastic processes [3],

[4], [27] and their overlap with work on fractals and wavelet
analysis [14], particularly through the study of fractional
Brownian motion (fBm) and fractional Gaussian noise (fGn)
[6], [12], [15], [16], [32], [37], and [40].

A large part of the impetus for such work has been the
problem of dealing with so-called stochastic processes
which have become of growing importance to physicists and
the signal processing community [2], [24], [28], [36], and [41],
and more recently, to the control theory community [27].

To be more specific, “ ” noise is the colloquial term given
to a stochastic process whose sample spectral density,
or periodogram,1 is of the form E

for some finite nonzero and and whereE
denotes expectation. Such processes (which are sometimes also
called “flicker noise”) have been empirically observed in a
wide variety of physical processes such as [24], [30] currents
in semiconductors, oscillation of quartz crystals, geophysical
records, rate of insulin uptake, economic data, traffic-flow
rates, image texture [28], and heart-rate variability [20].
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1The squared absolute value of theN -point DFT x̂N (!) of fxkg.

In these areas, for the purposes of prediction, control, or
diagnosis, it is of great interest to be able to estimate the spec-
tral exponent from an observed sample path. Many methods
to achieve this have been proposed. They range from least
squares estimation of the slope of log-axes plots of sample
periodograms [18], [26] through to approximate and exact
maximum-likelihood (ML) estimation [8], [17], [26], [28] and
direct measuring of fractal dimension of observed sample paths
[13], [15], [18]. Aside from the ML-based schemes, these
methods assume that the sample path observation is not
corrupted by any other noise sources. Various convergence
results (which will be briefly surveyed) are then available.

Unfortunately, the ML methods, although able to cope with
measurement noise, are computationally intensive to imple-
ment. An exception is the work of Wornell and Oppenheim
[45], [46] where the “whitening filter” property [12], [40], [44]
of the wavelet transform on a processes has been exploited
to derive a computationally efficient ML estimation scheme.2

Wornell and Oppenheim study the properties of their method
empirically via a computer simulation study and conclude that
it appears to be consistent and asymptotically efficient for a
wide range of spectral exponents .

In contrast, this paper provides a theoretical analysis of
the wavelet-based estimation scheme of [45] and [46], and
finds that in the presence of measurement noise it is only
consistent for a restricted range of. Namely, . For

this paper shows that in fact the estimator converges
with probability one to an incorrect estimate; this conclusion
is illustrated by a simulation study. The paper also provides
a theoretical analysis for the distributional properties of the
estimate, and finds that again the asymptotic efficiency and
Gaussianity results suggested empirically in [45] and [46] hold
only for . Finally, when then the strong
consistency and distributional results can be combined to also
establish mean-square consistency in such a way as to show
how the convergence rate depends on; it slows to zero as
increases towards one. This effect of slower convergence for
larger is in accordance with various simulation studies in
the literature [18], [28], [45].

Since the wavelet transform is a linear function of the data,
it forms a sufficient statistic, so that these results give some
indication of the intrinsic difficulty of using a wavelet-based
model to estimate from noise corrupted observations by any
means, ML or not. Combined with the comments of Masry
[32], this indicates that some circumspection is required in the

2Throughout this paper the term “1=f process” will be used in its generic
sense to mean a process with spectrum like1=f with any not necessarily
equal to one. When specific ranges of are to be discussed, the term “1=f

process” will be used.
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choice of model for analysis of processes. Tradeoffs exist
between computational complexity, theoretical justifiability
[32], [46] and, as this paper shows, estimation accuracy.

II. M ODELING OF PROCESSES

There are a number of technical difficulties in the modeling
of random processes with -type spectra, the main diffi-
culty being that for (so that the process is a so-called
“long-memory” process [19], although other authors reserve
this for the case ) the spectrum is nonintegrable so that
no stationary process can be associated with the spectrum.

The first attempts at solving this conundrum [1] involved
using the idea of fractional integrals [33] to extend the usual
definition of the Wiener process in terms of a stochastic
integral of uncorrelated Gaussian increments.

To be more specific, for the case of the attendant
difficulties of defining a process associated with a constant
spectrum are traditionally handled by defining the classical
nonstationary Brownian motion process and then con-
sidering its increments d which lead to the required spectra.
That is,

d

where the increments are a stationary process with a white
spectrum. Therefore, the (formal) derivative of can be
considered to have a spectral representation

d
d

d

where the measure dsatisfies

E d d

in which case , since it is the integral of , should
have a spectrum like . Following this heuristic line of
reasoning, integrating again

d d

gives a process , that being the double integral of ,
should have a spectrum like , and so on, so that using
Liouville’s formula [22]

d d d

d (1)

should have a spectrum like .
The contribution in [1] was to note that if the interest is in

a process with nonintegral spectral exponent, then this can
be modeled by using a so-called “fractional integral” of d
in which the exponent in (1) is nonintegral.

Unfortunately, this does not lead to a process with station-
ary increments (so that the spectral density interpretation is

difficult). This can be rectified, as was shown by Mandelbrot
and Van Ness [31], by modifying (1) slightly to become

d

d (2)

This latter equation with is known as “fractional
Brownian motion” and is by now the pre-eminent model for
processes with spectra. The parameter is known as the
“Hurst exponent,” in recognition of early work in the area [21].
When , ordinary Brownian motion results. When

or , then degenerates into a process that is
(respectively) either zero, or a straight line through the origin.

The stationary increments of fBm are
termed fractional Gaussian noise (fGn) and are zero-mean
with variance proportional to so that using the Fourier
transform pair

then indeed fGn serves as a model for Gaussian processes with
spectra with .

There are many other interesting properties of fractional
Brownian motions. For example, their sample paths are self-
similar in the sense that [16]

where denotes equality in distribution. This makes them
a particular example of the multiscale stochastic processes
studied recently in [3], [4], and [27]. In fact, fBm’s are the only
Gaussian process to display this self-similar property [31], and
as might be expected from this property, their sample paths
are fractal (with Hausdorff–Besicovitch and box dimension

) although they are also mean-square-continuous
and continuous on compact sets with probability one.

As well, fractional Brownian motion is a nonstationary
process with covariance function

so that for then

E

and vice versafor . The implication is that sample
paths tend to be increasing or decreasing depending on[13].
This nonstationarity of fractional Brownian motion means that
even though its derivation was predicated on trying to find a
useful definition of a random process with type spectrum
for , this interpretation is still difficult.

Various suggestions have been put forward to circumvent
this difficulty. Some involve the use of time-localized trans-
formations such as the Wigner–Ville [15] and wavelet [15],
[32] transforms, others make formal the heuristic motivation
for fractional integrals outlined above [31]. All approaches
arrive at the relationship between the spectral exponentand
the Hurst parameter as . A particularly appealing
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Fig. 1. Illustration of the use of linear regression of a periodogram plot to estimate the spectral exponent. Here the measured sample path is not noise-corrupted,
the true  = 1:8 and the estimate is found aŝ = 1:76.

interpretation is that of Solo [39], where it is proved that in
fact fBm does reconcile the theoretical difficulty with empirical
observations of processes in that the sample periodogram
of an fBm process converges to a shape.

For non-Gaussian -type processes, there are other mod-
els available, such as the discrete-time “fractional differenc-
ing” model [10], [19], [22], [23]

(3)

where and is uncorrelated and has
varianceE . For in this range, is stationary
with covariance and spectral density given by

so that, as would be expected since (3) is the discrete-time
equivalent to a fractional integral, the fGn and fractional
differencing models are equivalent in the sense that [19] with

where is a positive continuous function. Another
process model which is particularly important to this paper is
that proposed by Wornell [43], [44], [46] in which the wavelet
series expansion of a stationary in time but uncorrelated in
time and scale process is used. More detailed discussion of
this model will be deferred to a later section.

III. ESTIMATION OF PROCESSES

As mentioned in the Introduction, there is great interest in
estimating the spectral exponentfrom a length observed
sample path realization of a process. For example,
in [28] such an estimate provides a measure of image texture,
while in [20] it serves as a cardiac health diagnostic instrument.
The purpose of this section is to provide a brief overview
of previous work on estimation of processes so that the
results to be presented in Section V can be seen in context.

The simplest approach to estimatingis to assume that
there are no external noise corruptions on the available mea-
surements and to then calculate the sample periodogram
defined as

The estimate of is then taken as the least squares estimated
slope of when plotted on log–log axes; see Fig. 1 for an
illustration of this method where the fBm process is simulated
using the “random midpoint displacement method” [13]. The
most fundamental result on the performance of this technique
is that [39] it is a mean-square-consistent estimate if the
process can be modeled as an fBm or fGn. More refined
information is provided by Leu and Papamorcou [26] who
show that the mean-square rate of convergence with increasing
observation length is3

o as

3Here and in the sequel the notationg(N) = o(f(N)) asN ! 1

will mean limN!1 g(N)=f(N) = 0 and the notationg(N) =
O(f(N)) asN ! 1 will mean limN!1 g(N)=f(N) = C where
0 < C <1.
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Fig. 2. Illustration of the use of linear regression of a periodogram plot to estimate the spectral exponent. Here the same measured sample path as the previous
figure is used, but now it is corrupted by white Gaussian noise of variance0:001. The true value is still = 1:8 but now the estimate is found aŝ = 1:29.

When a fractional differencing model (3) is used to model
the process, then the resulting estimate is also known to
be (weakly) consistent [19], [23] and asymptotically Gaussian.
Note that this periodogram/linear-regression-based method can
be seriously affected by the effect of noise corruption of the
sample path observations as is illustrated in Fig. 2, where
white noise of variance has been added to the
measurements.

It is also possible to estimate the shape of quite general
spectral densities that are defined by a vector of
parameters by using the methods of maximum likelihood; a
special case of this then becomes the method of interest to us
where and .

Two approaches have been analyzed in the literature. First,
the methods of Whittle [42] can be used to approximate the
log-likelihood function by using the periodogram so that an
approximate ML estimate is given by

d

Secondly, at (significantly) more computational expense, the
exact log likelihood can be computed to find the exact ML
estimate as

where

d

For , Fox and Taqqu [17] have shown the approx-
imate ML estimator to be strongly consistent, asymptotically
Gaussian, and efficient. Leu and Papamorcou [26] have ex-
tended these results (by employing stronger assumptions on

that disallow estimation with white-noise-corrupted
measurements) to also hold for and have estimated
the mean-square rate of convergence of the approximate ML
method as

o as

For , Dalhaus [8] has shown the same distributional
results, but only weak consistency for the exact ML scheme.
These results would appear to also be of relevance to various
ML estimation methods [10], [11] that have been developed
around the fractional differencing model (3).

In Section V, the purpose of this paper will be to analyze
a particular ML scheme that is approximate for a fBm or
fGn model of processes (but exact for the wavelet model
of Wornell [44]). This analysis will establish the scheme to
be strongly consistent, asymptotically Normal, and efficient,
but if and only if . The results in Section V will
also establish precise mean-square convergence rates that are
stronger than those presented above (those above bound the
convergence rate, but do not establish what it is) and show
an explicit dependence on. The results in Section V are not
implied by (nor do they imply) the just-surveyed ML results
since the latter are predicated on a stationary model for the

process whereas the wavelet-based model [44] studied in
Section V is a nonstationary one.

Note that other estimation methods based on ideas of “Allan
Variance” and measuring fractal dimension are also available
[18], [26], but will not be commented on here.
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IV. WAVELET TRANSFORMS AND PROCESSES

Given the multiscale nature of the fBm model of
processes, and the multiscale motivation of much of wavelet
theory [9], [30], it arises that wavelets are a powerful analysis
tool for studying processes [6], [12], [16], [29], and [32].

To begin with, given a signal and wavelet , the
wavelet transform of at time and scale is defined
as [9]

d (4)

A key feature of this transform [16], [32] is that if
, then even though is nonstationary, its wavelet

transform is stationary in for fixed and has
spectral density given by4

which provides yet another interpretation of the spectrum of
an fBm being a process with . As well, no
Gaussian process other than fBm shares these second-order
properties of its wavelet transform [37].

Aside from this, it also provides another method of es-
timating from observed data [30] since the variance of

obeys

E d (5)

so that for

d (6)

Therefore, since is stationary, an estimate (
is a sampling interval)

of can be taken for a range of
distributed such that for some, and hence by
the relationship (6) an intuitive estimate ofis the slope of a
graph of versus with respect to – axes.

Due to computational considerations, the wavelet transform
is not commonly used in the form (4). Rather, a particular
class of wavelets admitting a “multiscale” representation
[9] are employed so that needs only be varied on a so-
called “dyadic” scale . This leads to a more compact
notation

where the wavelet coefficients may be efficiently calcu-
lated using a bank of filters with impulse responses and

4For �(t) a given function,�̂(!) denotes its Fourier transform.

and with subsampled outputs

This method is commonly initialized with for
some sampling period , and is also most commonly used
with chosen such that the impulse responses and

are finite (FIR) in which case the above method is very
computationally efficient and is known as the “Fast Wavelet
Transform” [9].

As well, when is chosen so that the wavelet transform
need only be calculated at dyadic points the inverse wavelet
transform becomes a series expansion

(7)

Wornell [43], [44], [46] has shown how this can be used to
provide a new representation for processes over very
large ranges of . Specifically, if the wavelet coefficients
are uncorrelated across time and scale, are zero-mean, and
have variance

E (8)

then with an orthonormal wavelet basis possesses
a “time-averaged” spectrum

that is nearly of type

This applies for larger than valid for the fBm or fGn models
of processes ( , for example), but requires greater
regularity of wavelets for higher. By this it is meant that the
wavelets possess a greater number of vanishing moments

d

Note that it is known how to design wavelets with an arbitrarily
large number of vanishing moments [9].

Of most interest to this paper is that results in the reverse
direction also hold, namely, that given a process, the
wavelet transform acts as a “whitening” filter on the process
as would be suggested by the above synthesis result. This has
been rigorously analyzed for the specific case of fBm, where
with , , (5) gives (8) for the variance
of the wavelet coefficients and the work in [40] shows that
both along and across scales the coefficients are approximately
uncorrelated in that for some

E
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provided that . Similar
results are reported in [12] so that for the correlation
decay along scales is rapid as the figures in [40] illustrate.
These latter figures also show rapid decay across scales, with
the rapidity again proportional to the numberof vanishing
moments, which as previously mentioned can be made arbitrar-
ily large by the appropriate choice of a wavelet. For example,
with the Daubechies scheme of wavelet construction, as the
FIR filters in the fast wavelet transform become arbitrarily
large becomes arbitrarily large for the underlying wavelet.

V. WAVELET-BASED ESTIMATORS FOR PROCESSES

In [45], Wornell and Oppenheim proposed that this “whiten-
ing” filter property of the wavelet transform be exploited to
derive an approximate ML estimator for processes that
is much more computationally efficient than the ML methods
surveyed in Section III. Note, that as previously mentioned,
this wavelet-based ML approach is not equivalent to other
ML approaches since it employs a nonstationary rather than a
stationary model for the underlying process.

In [45], the ML estimator is derived on the assumption that
the observations of the process sample path may
possibly be corrupted by white noise so that the fast wavelet
transform of the observations can be written as

where is white, zero-mean, Gaussian, and has variance
E and are the wavelet coefficients of the
sample path of the process. With the assumption
that is Gaussian

where , , and is a parameter to
scale the magnitude, but not the distribution of energy with
frequency of the process.

If the fast wavelet transform is used to calculate then
it is necessary to assume a data record of length
for some integral and in which case with the notation

the negative log-likelihood function for
the data given the parameter vectoris (modulo an additive
constant)

Equivalently, the formulation suggested by Wornell and Op-
penheim of

(9)

can be used where

Now, define the ML estimate as

(10)

where

(11)

Wornell and Oppenheim [45] do not use the normalizing factor
of in (11) and claim in [45] that “It is well known
that ML estimators are generally asymptotically efficient and
consistent. This, specifically, turns out to be the case here.”
Presumably this comment is based on empirical evidence since
in [45] Wornell and Oppenheim offer Monte Carlo simulations,
but no theoretical analysis. The purpose of this section is to
show that if this theoretical analysis is performed, then it can
be concluded that when the method is only consistent
and asymptotically efficient for .

As a preliminary comment, note that it is not true that all ML
estimators enjoy pleasant properties, it being relatively easy to
devise examples wherein the estimates are not consistent or,
in fact, even well-defined [5], [38].

As a consequence of this, the convergence of any ML esti-
mate needs to be rigorously examined on an individual basis.
Performing this for the case at hand allows the conclusion
that the ML estimator defined by (10) and (11) is always
convergent at least to a bounded set.

Theorem 1: Suppose that is compact and that .
Then for

where

E

Proof: The idea of the proof is to first show that
E with probability one as

and that this convergence is uniform inover compact ,
and to then show that this uniform convergence on a compact
space implies convergence of the minima. The following
definitions are required:

E

E
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where in the above all random variables are defined on
an underlying probability space P . Therefore, by
Chebychev’s inequality

P
E

Now

E E E

and also

where

Therefore,

(12)

so by Lemma A.5 in the Appendix

E (13)

Also, using Lemma A.5 in the Appendix

E E

(14)

so that

E E E

to give

E

Also

E E E E

and

E E

where

so that since and are uncorrelated it may be concluded
that

E

(15)

But

E E

so thatE and hence

E E

By assumption so such that

on , and soE for some . Therefore,

P E

so that by the Borel–Cantelli Lemma [7]

a.s.
as

uniformly in . By the definition of this means that
such that

E

a.s. (16)

Therefore, for

E a.s.

However, by the definition of ,

Therefore,

E a.s. (17)

Now, is compact, so a subsequence of and
a such that as . Also,
is continuous in so there exists a neighborhood of
such that

As well, since converges uniformly toE
then such that

E

Combining the previous two bounds with (17) and defining
such that means that
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E E

Since is arbitrary this means that

where

E

Observing that this applies for any convergent subsequence of
then completes the proof.

Note that for any finite , then (modulo numerical diffi-
culties arising from trying to find the minima of a function
possessing very large magnitude) the addition of the
normalizing factor in (11) makes no difference to the estimate
obtained. However, by its definition, consistency is an asymp-
totic property, not a finite-data property, and for it to exist it is
important that the normalizing factor is included in (11)
since with it perusal of the proof of Theorem 1 shows that

E

which if is obviously convergent to a well-defined
function on when . Without the normalizing
factor thenE (and hence by (16)
as well) diverges uniformly in with increasing .

In any event, for consistency of the ML estimator, it will
be necessary that the setdefined in Theorem 1 consists of
only one point defined to be the vector containing the true
parameter values. In order to study the nature ofnote that
a property shared by all ML estimators [25] is that

E E

so that at least may be concluded. However, for to
be the only element in the interior of it will be necessary
that in the limit as the Hessian ofE
be positive definite at . For finite , the Hessian is easily
calculated as (see [45, eq. (43)])

d
d d

E

(18)

Note that due to its importance in estimation theory this
Hessian evaluated at is commonly studied under the name

of information matrix defined by

E
d

d d

d
d d

E

Unfortunately, as (18) shows, the entries pertaining toand
in the Hessian ofE tend to zero as increases

if so thatE “flattens out” and , instead
of being the singleton , is a set of values of of equal
cost. In other words, since , possesses a
unique minimum and hence is a singleton at if and only
if .

Corollary 1: Define to be a vector containing the
true values of . Under the conditions that
Interior , , and then

a.s
as (19)

If then still converges almost surely, but to the
bounded set and not necessarily to .

It is common in studies of ML estimation methods to use
the information matrix via the Craḿer–Rao bound
as an indication of the quality of the estimates [45]. This
arises since even though the bound applies only to unbiased
estimates, many ML schemes have the property that their
(possibly biased) estimates converge weakly to a Gaussian
distribution with covariance equal to the Cramér–Rao bound
(in which case the estimators are termed “efficient”). However,
to be rigorous it is necessary to prove that this convergence
does in fact hold. In the case studied here, it does, but again
only for appropriate normalization of the log-likelihood
function and only for a narrower range of spectral exponents
than originally suggested in [45].

Theorem 2: Under the conditions of Theorem 1 and pro-
vided is convex, then if and only if

as (20)

where

E
d

d d
(21)

Proof: By Theorem 1, for large enough , lies with
probability one within any given open neighborhood of
which is assumed to be in the interior of. Therefore, for large
enough , is minimized at a Interior
so satisfies the necessary condition for minimization of a
differentiable function on an open domain

d
d

a.s.

Therefore, using the mean value theorem, for large enough
such that

d
d

a.s.
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where

d
d d

Therefore, using Lemma A.2 in the Appendix

as

(22)

But, by Lemma A.1 in the Appendix

a.s.
Uniformly in (23)

and by Theorem 1

a.s.
as (24)

so that
a.s.

. Combining (22)–(24) then gives

as

As already mentioned, with this distributional result in hand
it is natural to use to infer the second-order properties
of the ML estimate. However, without further examination,
since neither almost-sure nor weak convergence imply mean-
square convergence, there is no guarantee that these second-
order properties even exist, much less than they are related to
the asymptotic distributional variances. Fortunately, when this
further examination is undertaken, the hoped for second-order
properties of the ML estimate do in fact exist, but as usual
only for restricted .

Corollary 2: If then

E

Proof: From the proof of Theorem 2, for large enough

d
d

where for some . It has already
been established that for then E so
that the continuity ofE in implies that
such that

E such that

Now, assuming that all random variables are defined on an
underlying probability space P , define the following
subsets of the event space:

such that

and put . In this case, since perusal of (18)
shows that such thatE then

E

E E
d

d

d
d

dP

dP

Therefore, since is compact, for some

E E
d

d

P (25)

Now

E E

and

E

so that

E

and so by Lemma A.3 and Chebychev’s inequality
such that

P

Similarly, since is the unique minimizer ofE
then for some

E E

Therefore,

E

so that again by using Lemma A.3 and Chebychev’s inequality

P

and since by de Morgan’s Theorem

P

Substituting this into (25) together with the use of Lemma
A.3 gives that

E

so that combining Theorem 2 with [7, Theorem 4.5.2] gives
the result.

This allows an estimate of the mean-square rate of conver-
gence of the ML estimates to be found as follows.
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Corollary 3: If then

as (26)

as (27)

as (28)

Proof: Define

(29)

Then since by Theorem 2

as

and by the definition (29) where

use of Slutsky’s Theorem then gives

as

where

with

which using (18) may be evaluated as shown at the bottom of
this page. Therefore, since by assumption and
hence then and hence using
Corollary 2

E

Concentrating attention now on and using the facts that
the use of the fast wavelet transform to obtain the data

implies that and remembering that
implies then completes the

proof.

This suggests that estimates ofand should be more
accurate for smaller which is in agreement with the many
simulation results available in the literature [18], [28], [44],
[45], and is also in accordance with intuition.

To expand on this last point of intuitive interpretation, for
small near the spectrum of the process is nearly flat so its size
and slope at high frequencies is highly indicative of its overall
behavior. For large near , the spectrum of the process is
much more hyperbolic and hence there is a need to observe
it at low frequencies in order to characterize it; observing
the spectrum at low frequencies requires observing more
data than does observing the spectrum at high frequencies,
hence the slower rate of convergence for largeindicated
in (26) and (27). Continuing this spectral argument to also
address lack of convergence, note that asincreases and the
hyperbolicity of the noise spectrum increases, the amount
of energy of the process above the white-noise floor
decreases, thereby making estimation of the process more
difficult—eventually, a threshold is reached at when
the white-noise energy dominates and consistency becomes
impossible.

An illustration of this phenomenon of nonconvergence can
be provided by reviewing a simulation study in which the
ML scheme using Daubechies order ten wavelets was tested
for processes with exponents of and
and with . In the numerical studies of [45] and
[46], in order to investigate robustness, the process was
not generated via the wavelet model (7), (8). However, as
mentioned in [45], this does “not allow us to distinguish
between errors inherent in the modeling and errors inherent
in the estimation process.” Since the latter are precisely what
are under investigation here, the opposite choice is made, and
(7) as well as (8) are used to generate process realizations.

Realizations of length with were
used for estimation after being corrupted by white zero-mean
Gaussian noise of variance . To avoid border effects,
larger realizations than required were generated, and segments
of appropriate length were extracted after transients due to
nonzero initial conditions had evaporated.

The estimates were found using 500 iterations of the EM
algorithm suggested in [45] from starting values of

. For each data length, 100
different noise realizations were obtained with estimation
results being averaged over these 100 trials to obtain sample
means and variances for the estimates. The results forare
shown in Fig. 3. Note that for , as predicted by the
theoretical analysis of this paper, the estimate is convergent
with increasing data length. Note also that for and

that (again consistent with the theoretical analysis)
the estimates are not convergent to their true values—the
variability of the estimates does not continually decrease, and
the means drift away from the true values.
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Fig. 3. Illustration of dependence of convergence of the wavelet-based ML method on 2 (0; 1). Solid line is mean and log of variance for = 0:6;
estimator is convergent to correct value. Dash–dot and dashed lines are cases of = 1:3 and = 1:8, respectively; estimators are nonconvergent and are
wandering around incorrect estimates. Results were obtained via 100 Monte Carlo simulations at each data length2M for M between8 and16.

At the data length of , the sensitivity of the
estimate to the level of white-noise corruption was examined
by the same process of evaluating the expected value of the
wavelet-based ML estimate of via a sample average over
100 different realizations. The results for a range of white-
noise variances from (which is the case shown
in Fig. 3) down to are shown in Fig. 4. Clearly,
for the estimate becomes progressively more biased for
increasing white-noise corruption, while is almost invariant
for . Balanced against this, Fig. 4 also illustrates that for
very small noise corruptions, the wavelet-based ML method
can give good estimates for all values of.

Note that similar results to those shown in Figs. 3 and 4
were also obtained when the processes where generated
not via the wavelet model (7), (8), but by using the “ran-
dom midpoint displacement method” of simulating fractional
Brownian motion [13]. In the interests of brevity, these results
are not reproduced here.

VI. CONCLUSION

The use of wavelets in the analysis of fractals and the study
of various noise processes has been a topic of recent research
interest. More particularly, it has been suggested that wavelets
be employed in the estimation of fractal dimension and also
in the estimation of various processes. The contribution
of this paper has been, via a theoretical analysis, to investigate
the utility of this approach. The main conclusion arising from
this analysis is that even in the presence of external noise
corruptions on the observations, the wavelet-based scheme is
convergent and statistically efficient, but only for a restricted

range of in the range . For , a more pessimistic
conclusion (that is counter to previous suggestions in the
literature) is that the methods do not converge to the correct
estimate if the measurements are noise corrupted.

APPENDIX

LEMMAS REQUIRED FORCONVERGENCEPROOFS

Lemma A.1:
d

d d
a.s.

d E
d d

as Uniformly in

Proof:

d
d

d
d

d
d

d
d d

d
d d

d
d

d
d
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Fig. 4. Effect of estimation accuracy for decreasing signal-to-noise ratio. Solid line is mean of estimate for = 0:6, dash–dot and dashed lines are
cases of = 1:3 and  = 1:8, respectively. Results were obtained via 100 Monte Carlo simulations for a data length2

16 and white-noise variances
logarithmically spaced between�2

�
= 10

�8 and �
2

�
= 10

�2.

Therefore, defining

d
d d

d
d

d
d

gives on use of (13)

d
d d

d E
d d

(A.1)

Now put

d
d d

d
d

d
d

Then by Chebychev’s inequality

P
E

But

E E E

Furthermore, using (13) and (15)

E E

and by (13) and (14)

E E

so that

P

Now, since is twice continuously differentiable with
respect to , and by assumption is compact such that ,
then such that .
Therefore,

P

so that by the Borel–Cantelli Lemma [7]

a.s.
as Uniformly in

Using (A.1) then gives the result.
Lemma A.2:

d
d

as
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where

E
d

d d

Proof: Define

d
d

E

where are arbitrary real numbers. Then by (13)
and (14)

E

E E

Also, since by assumption all the are not point masses,
then to give that such that

E E E E

But by (13), (14), and the definition of

E
d

d

Also,

E
d

d

E (A.2)

But by (12), which has moment-
generating function given by [35]

so that

E
d
d

Using this in (A.2) then gives

E
d

d
(A.3)

so that

E

d
d

Therefore, since is on compact

E

E

so that by the definition of , use of [7, Theorem
7.1.2] leads to (note that by Craig’s Theorem, the are
independent)

d
d

as

Also, for by (13) and (15)

E

so that

E

E
d

d

where use has been made of the notation
so that

d
d

as

But is arbitrary, so that use of the Cramér–Wold device
completes the proof.

Lemma A.3: If then for some

E E

E E

E

Proof: From the proof of Lemma A.1

E

Lengthy but straightforward arithmetic shows that with the

definition

where . Therefore, using the Cauchy–Schwarz inequal-
ity, the fact that and the fact that
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uncorrelated Gaussian random variables are also independent
gives

E E

E

E

Similarly, from the proof of Theorem 1 and using (A.3)

E E

E

Finally, using the same methods as for the previous two cases

so that

E

E

Lemma A.4: If where is nonsingular
and , then

where is a noncentral chi-squared distribution with
noncentrality parameter

Proof: See [34].
Lemma A.5:
Distribution of Quadratic Forms:Suppose ,

with E , and

are symmetric where , . Then

E

(A.4)

Proof: See [34].
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