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A Generalized Divergence Measure for
Robust Image Registration
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Abstract—Entropy-based divergence measures have shown
promising results in many areas of engineering and image pro-
cessing. In this paper, we define a new generalized divergence
measure, namely, theJensen–Rényidivergence. Some properties
such as convexity and its upper bound are derived. Based on
the Jensen–Rényi divergence, we propose a new approach to the
problem of image registration. Some appealing advantages of
registration by Jensen–Rényi divergence are illustrated, and its
connections to mutual information-based registration techniques
are analyzed. As the key focus of this paper, we apply Jensen–Rényi
divergence for inverse synthetic aperture radar (ISAR) image
registration. The goal is to estimate the target motion during the
imaging time. Our approach applies Jensen–Rényi divergence
to measure the statistical dependence between consecutive ISAR
image frames, which would be maximal if the images are geomet-
rically aligned. Simulation results demonstrate that the proposed
method is efficient and effective.

Index Terms—Image registration, information divergence,
inverse SAR imaging, Rényi entropy.

I. INTRODUCTION

I MAGE registration is an important problem in computer vi-
sion [1], [2], remote sensing data processing [3], [4], and

medical image analysis [5], [6]. The key step of image regis-
tration is to find a spatial transformation such that a similarity
metric between two or more images taken at different times,
from different sensors or from different viewpoints, achieves its
maximum.

One such example, which is of primary interest in the sequel,
is inverse synthetic aperture radar (ISAR) imaging. ISAR is a
microwave imaging system capable of producing high-resolu-
tion imagery from data collected by a relatively small antenna.
The ISAR imaging is induced by target motion, which unfor-
tunately also blurs the resulting image. After a standard trans-
lational focusing process, image registration can be applied to
estimate the target rotational motion parameter, on which polar
re-formatting may be used to achieve yet a higher resolution
image. Related work in this area includes image registration in
interferometric SAR processing by Gabriel [7], Li [8], and Lin
[9] and Fornaro [10].
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Over the last three decades, a wide variety of registration
techniques have been developed for different applications.
These techniques may be classified [11] into correlation
methods, Fourier methods, landmark mapping, and elastic
model-based matching.

Given two images ( is a bounded
set, and it is usually a rectangle), correlation methods [12]
calculate the normalized two-dimensional (2-D) cross-corre-
lation function between and , where

is a Euclidean transformation with translational parameter
, a rotational parameter, and a scaling parameter

. The registration problem may then be succinctly stated as

(1)

The correlation methods are generally limited to registration
problems in which the image is misaligned by only a small
rigid transformation. In addition, the peak of the correlation
may not be clearly discernible in the presence of noise. Fourier
methods [13] are the frequency domain equivalent of the corre-
lation methods. Fourier methods make use of the translational
property of the Fourier transform and search for the optimal
spectral match between two images. Since rotation is invariant
under a Fourier transformation, rotating an image merely rotates
the Fourier transform of that image [14]. If we denote as
the 2-D Fourier transforms of , respectively, we obtain the
phase of the cross-power spectrum rotated byas

(2)

To determine the rotational parameter, one proceeds to max-
imize the 2-D inverse Fourier transformation of ,
that is, a cross-correlation that is as peaked or as impulsive
as possible, and the location of that impulse is exactly the
translational parameter. In light of their equivalence to
the correlation methods, Fourier methods are also limited to
registration problems with a small rigid transformation. If
there exists spatially local variation, then both the correlation
methods and the Fourier methods would fail. For cases of un-
known misalignment type, landmark mapping techniques [15]
and elastic model-based matching [16], [17] may be used to
tackle the registration problem. Landmark mapping techniques
extract feature points from a reference image and a target
image, respectively, and then apply a piecewise interpolation
to compute a transformation for mapping the feature point sets
from the reference image to the target image. Landmark-based
methods are usually computationally intensive, and their
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accuracy depends on the degree of reliability of the feature
points. Instead of finding the mapping between the feature
point sets, elastic model-based matching methods model the
distortion in the image as the deformation of an elastic material.
The resulting registration transformation is the deformation
with a minimal bending and stretching energy. Practical elastic
model-based methods [18] are also based on computationally
expensive iterative algorithms, and the choice of feature points
plays a crucial role in their performance.

In the work of Woods [19] and Viola [20], mutual infor-
mation, which is a basic concept from information theory,
is introduced as a measure for evaluating the similarity be-
tween images. When the two images are properly aligned,
corresponding areas overlap, and the resulting joint histogram
exhibits high values for the pixel combinations of the cor-
responding regions. When the images are misregistered,
nonmatched areas also overlap and will contribute to additional
pixel combinations in the joint histogram. In case of misregis-
tration, the joint histogram has fewer significant peaks and is
more dispersed than that of the correct alignment of images.
The registration criterion is hence to find a transformation
such that the mutual information of the corresponding pixel
pair intensity values in the matching images is maximized.
This approach is widely accepted [21] as one of the most
accurate and robust registration techniques. Following the same
argument, Heroet al. [22] extend this approach by applying
Rényi entropy to measure the joint histogram as a similarity
metric between images. On the other hand, Fisheret al.propose
mutual information based approaches to feature extraction for
ATR [23] as well as to the analysis of functional MRI data [24].

Inspired by this previous work and looking to address their
limitation in often difficult imagery, we introduce in this
paper a novel generalized information theoretic measure: a
Jensen–Rényidivergence that we define in terms of Rényi
entropy [25]. Jensen–Rényi divergence is defined as a similarity
measure among any finite number of weighted probability
distributions. Shannon mutual information is a limiting case
of the Jensen–Rényi divergence. This generalization provides
us with an ability to control the measurement sensitivity of
spatial dependency and, hence, ultimately results in a better
registration accuracy.

In the next section, we give a brief description of the problem,
which motivated and yielded this investigation. In Section III,
we introduce the Jensen–Rényi divergence and its properties.
Section IV describes the concepts of image registration with
the Jensen–Rényi divergence. Numerical experiments for ISAR
image registration is demonstrated in Section V. We finally pro-
vide concluding remarks in Section VI.

II. PROBLEM STATEMENT

ISAR imagery represents reflectivity magnitude associated
with the illuminated target. The mechanism of ISAR can be
explained in terms of spotlight SAR [26], as illustrated in
Fig. 1. Spotlight SAR is the result of a radar antenna constantly
tracking a particular target of interest. The same data would
be collected if the radar were stationary and the target were
rotating. This very rotation is used to generate the target image

Fig. 1. Spotlight SAR.

Fig. 2. SAR/ISAR equivalence: ISAR geometry.

Fig. 3. SAR/ISAR equivalence: SAR geometry.

and constitutes the essence of ISAR. In the terminology of
radar signal processing, the direction of radar line of sight
(LOS) is referred to asrange, and the direction orthogonal to
range is referred to ascross-rangeor azimuth. Fig. 2 illustrates
the data collection of an airborne target rotating through an
angle . The spotlight SAR equivalent geometry is the moving
radar in Fig. 3, which collects the same data while flying a
circular segment around an identical but nonrotating target. The
SAR aperture length in Fig. 3 corresponds to the integration
angle in Fig. 2. The resolution of ISAR imagery is defined in
terms of range resolution and cross-range resolution. The range
resolution is determined by the bandwidth of the transmitted
radar pulse and given by [27]

(3)

where is the speed of light. The cross-range resolution of ISAR
imaging system is given by [27]

(4)

where is the carrier wavelength. See [26] for a more thorough
discussion of ISAR.

By (4), it is clear that the larger the integration angle, the
better the cross-range resolution. However, ISAR imagery is in-
duced by target motion, and the target motion in turn causes
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time-varying spectra of the received signals. Motion compen-
sation has to be applied to obtain a high-resolution image. The
objective of ISAR image registration is to estimate the target
motion during the imaging time. Let be a Euclidean
transformation with a translational parameter , a
rotational parameter, and a scaling parameter. Given two
ISAR image frames and , the estimates of target motion
parameters are given by

(5)

where is a measure induced by a given metric. This induced
measure is maximal if matches . As the radar tracks
a target, the reflected signal is continuously recorded during the
imaging time. By registering a sequence of consecutive image
frames , the target motion during the imaging time can
be estimated by interpolating . Based on the es-
timated trajectory of the target, translational motion compensa-
tion (TMC) and rotational motion compensation (RMC) [26]
can be used to generate a focused image of the target.

III. JENSEN–RÉNYI DIVERGENCE

Let and be a finite set with a
probability distribution , i.e.,

and , where denotes the probability.
Rényi entropy is a generalization of Shannon entropy [28]

and is defined as

and (6)

For , the Rényi entropy is neither concave nor convex.
For , it is easy to see that Rényi entropy is concave,

and tends to Shannon entropy as [25]. It can easily
be verified that is a nonincreasing function of, and hence

(7)

In the sequel, we will restrict , unless otherwise spec-
ified, and will use a base 2 logarithm, i.e., the measurement unit
is bits.

As shown in Fig. 4, the measure of uncertainty is at a min-
imum when Shannon entropy is used, and it increases asde-
creases. Rényi entropy attains a maximum uncertainty when
is equal to zero.

Definition 1: Let be probability distribu-
tions on , and let be a weight vector
such that and . We define the Jensen–Rényi
divergence as

JR

where is the Rényi entropy, , and .
Using the Jensen inequality, it is easy to check that the

Jensen–Rényi divergence is non-negative for . It
is also symmetric and vanishes if and only if the probability
distributions are equal, for all . Fig. 5
illustrates the three-dimensional (3-D) representation of the

Fig. 4. Shannon and Rényi entropy of Bernoulli distributionppp = (p; 1� p)
for different values of�.

Fig. 5. Three-dimensional representation of Jensen–Rényi divergence
JR (ppp; qqq), ppp = (p; 1� p), qqq = (q; 1� q), � = 0:5,!!! = (0:5; 0:5).

Jensen–Rényi divergence for two Bernoulli probability distri-
butions, with .

When , the Jensen–Rényi divergence is exactly the
generalized Jensen–Shannon divergence [29].

Unlike other entropy-based divergence measures such as the
well-known Kullback divergence, the Jensen–Rényi divergence
has the advantage of being symmetric and generalizable to any
finite number of probability distributions, with a possibility of
assigning weights to these distributions.

The following result establishes the convexity of the
Jensen–Rényi divergence of a set of probability distributions.

Proposition 1: For , the Jensen–Rényi divergence
is a convex function of .

Proof: See the Appendix.
The following result, in a sense, clarifies and justifies calling

upon the Jensen–Rényi divergence as a measure of disparity
among probability distributions.

Proposition 2: The Jensen–Rényi divergence achieves its
maximum value when are degenerate distri-
butions, that is, , where if and 0
otherwise.
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Proof: Denote by the th probability distribu-
tion, where and . Clearly, the domain of

is . This domain is a convex polytope [30] in which
the vertices are degenerate probability distributions. That is, the
maximum value of the Jensen–Rényi divergence occurs at one
of the degenerate distributions.

Since the Jensen–Rényi divergence is a convex function of
, it achieves its maximum value when the Rényi

entropy function of the -weighted average of degenerate prob-
ability distributions achieves its maximum value as well.

Assigning weights to the degenerate distributions
, , the following

upper bound

(8)

which easily falls out of the Jensen–Rényi divergence, may be
used as a starting point. Without loss of generality, consider the
Jensen–Rényi divergence with equal weights for all
, and denote it simply by , to write

(9)

where

such that (10)

Since are degenerate distributions, then we
have , . From (9), it is clear that
achieves its maximum value when does as well.

In order to maximize , the concept of majorization [31]
will be used. Let denote a nonincreasing
ordering of the components of a vector .

Definition 2: Let and , where is said to be ma-
jorized by , written , if

.

Definition 3: A real-valued function defined on a set
is said to be Schur-concave onif

Define the function , on an interval
. It is clear that is a concave function on; thus,

is Schur-concave [31] on , that is

Since is an increasing function, and , it follows
that

Therefore, is a Schur-concave function. The following
result establishes the maximum value of the Jensen–Rényi di-
vergence.

Proposition 3: Let be probability distribu-
tions with

If , , then

JR (11)

where .
Proof: It is clear that the vector

is majorized by the vector defined in (10). Hence,
. Invoking (9) completes the proof.

According to Proposition 3, and for the special case of
(mod ), the following inequality holds:

JR

IV. I MAGE REGISTRATIONWITH JENSEN–RÉNYI DIVERGENCE

Let be two digital images defined on a bounded domain
, where the goal of image registration in the context of

the Jensen–Rényi divergence is to determine the spatial trans-
formation parameters such that

(12)

where , and the measure
defined in (5) is induced from a Jensen–Rényi divergence of

order and weight .
Denote and

as the sets of pixel intensity values ofand , respec-
tively, and let be two random variables taking values in
and . is defined as

which is the conditional probability of given
for the corresponding pixel pairs. Here, the Jensen–Rényi
divergence acts as a similarity measure between images. If
the two images are exactly matched, then ,

. Since s are degenerate distributions, by
Proposition 2, the Jensen–Rényi divergence is maximized for a
fixed and . Fig. 6(1)–(2) shows two brain MRT images in
which the misalignment is a Euclidean rotation. The conditional
probability distributions are crisp, as in Fig. 6(3), when
the two images are aligned, and dispersed, as in Fig. 6(4), when
they are not matched.
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Fig. 6. Conditional probability distributions.

Fig. 7. Mutual information versus Jensen–Rényi divergence of uniform
weights.

It is worth noting that the maximization of the Jensen–Rényi
divergence holds for any and such that and

. If we take and ,
then by Proposition 1, the Jensen–Rényi divergence is exactly
the Shannon mutual information. Indeed, the Jensen–Rényi di-
vergence induced similarity measure provides a more general
framework for the image registration problem.

If the two images and are matched, the
Jensen–Rényi divergence is maximized for any valid weight.
Assigning is not always a good choice.
Fig. 7 shows the registration results of the two brain images
in Fig. 6 using the mutual information and the Jensen–Rényi
divergence of and uniform weights. The peak at the
matching point generated by the Jensen–Rényi divergence is
clearly much higher than the peak by the mutual information.

gives the background pixels the largest
weights. In the presence of noise, the matching in background
is corrupted. Mutual information may fail to identify the
registration point. This phenomenon is demonstrated in Fig. 8.
The following proposition establishes the optimality of the

(a) (b)

(c)

Fig. 8. Registration result in the presence of the noise. SNR= 1:92 dB. For
the Jensen–Rényi divergence,� = 1 and! = 1=n is used. (a) Image A. (b)
Image B. (c)d(A; B).

uniform weights for image registration in the context of the
Jensen–Rényi divergence.

Proposition 4: Let be a uniform weight defined as
, , and let be any vector such that ,

. If the misalignment between and can be
modeled by a spatial transformation , then for all ,
the following inequality holds:

JR

Proof: , when and are
aligned by the spatial transformation ; then, becomes

JR

Since [31] and is Schur-concave, we obtain
. This completes the proof.

After assigning uniform weights to the various distributions
in the Jensen–Rényi divergence, a free parameter, which is
directly related to the measurement sensitivity, remains to be
selected. In the image registration problem, one desires a sharp
and distinguishable peak at the matching point. The sharpness of
the Jensen–Rényi divergence can be characterized by the max-
imal value as well as the width of the peak. The sharpest peak is
clearly a Dirac function. The following proposition establishes
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Fig. 9. Effect of the order� in image registration.

that the maximal value of the Jensen–Rényi divergence is inde-
pendent of if the two images are aligned, and yields
the sharpest peak, which is a Dirac function.

Proposition 5: Let be a uniform weight vector. If the mis-
alignment between and can be modeled by a spatial trans-
formation , then for all , we have

JR (13)

In case of

JR

for any probability distribution such that
and

JR

if and only if .
Proof: See the Appendix.

As an example, Fig. 9(a) demonstrates the registration results
of the two brain images in Fig. 6 with the choice of different

. In this case, is the best choice and would generate a
Dirac function with a peak at the matching point, as illustrated
in Fig. 9(b).

If there exists local variation between and , or if the reg-
istration of the two images is in the presence of noise, then an
exact alignment may not be found. The conditional proba-
bility distribution is no longer a degenerate dis-
tribution in this case. The following proposition establishes that
taking would provide a higher peak than any other choice
of for the nonideal alignment.

Proposition 6: Let , , where
is a real distortion vector such that ,

, and . Let be a weight vector,
and denote JR as the Jensen–Rényi divergence with .
Then, for all , we have

JR (14)

Proof: Observe that for any probability distribution,
, , and then

(15)

Since and the Rényi entropy
of is exactly the Shannon entropy, (14) is equivalent to
the inequality (15). This completes the proof.

It is worth pointing out that the Jensen–Rényi divergence is
not equivalent to mutual information by setting . The
equivalence is hold only if and .

A. Discussion

Parameter basically plays a role of scaling factor to adjust
registration peaks, and the location of registration point is in-
dependent of . In real-world applications, there is a tradeoff
between optimality and practicality in choosing. If one can
model the misalignment between and completely and ac-
curately, would correspond to the best choice since it gen-
erates a Dirac function at the matching point. It is, however, also
the least robust selection, as it tends to make all thes the same
as the uniform distribution. If is not degenerate distribution
and , then the Jensen–Rényi divergence would be zero
for the whole transformation parameter space as in case where
the adapted transformation group cannot accurately model the
relationship between and . On the other hand, is the
most robust choice, in spite of also resulting in the least sharp
peak. The choice of therefore depends largely on the accuracy
of the invoked model and on the specific application as well as
the available computational resource.

We further showed that is optimal; thus, the
best choice for nonideal image registration in the context
of the Jensen–Rényi divergence is , in
comparison with mutual information based methods, in which
the parameters are set to . Fig. 8
demonstrates the registration results by mutual information and
by the Jensen–Rényi divergence, in the presence of the noise.
SNR dB. For the Jensen–Rényi divergence, and

is used.
Computational complexity for registration with

Jensen–Rényi divergence would eventually depends on
the computation of Rényi entropy. Rényi entropy
is computed using the histogram method, which requires
preparing a conditional pixel intensity histogram. When
using all 256 gray levels of the original images, the resulting
conditional histogram represents a 256256 discrete matrix.
In this case, . An average distribution was then
prepared by summing the weighted conditional histogram
entries along the axis corresponding to the image intensity
index of . Jensen–Rényi divergence eventually calculates
the difference between the Rényi entropy of the average
distribution and the sum of weighted Rényi entropy of
individual distributions. For the registration of two brain MRT
images in which the misalignment is a Euclidean rotation, as
shown in Fig. 6(a)–(b), the Matlab simulation takes less than
2 min on a Pentium III 700 MHz machine with 128 MB of
memory.

V. NUMERICAL EXPERIMENTS: ISAR IMAGE REGISTRATION

Generating an ISAR image by using stepped frequency
waveform [26] can be understood as a process of estimating
the target’s 2-D reflectivity density function from data
collected in the frequency space. Suppose a stepped frequency
burst consists of pulses in which the transmitted frequency
linearly increases from to , where is
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Fig. 10. ISAR geometry of a moving target.

the base frequency in radians per second, andis the step
frequency. Let the th transmitted pulse be a pulse of
duration and expressed in complex form as

(16)

where , and

otherwise.
(17)

Define
. Under uniform illumination, the

reflected signal from the target differential area at the
target coordinate is

(18)

where , and is a constant attenua-
tion factor, which we can set to 1 without a loss of generality.
The distance between the radar antenna and the target reflection
point located at is denoted by . We obtain the expres-
sion of the received signal for by integrating
reflections from all the point scatterers in the target

(19)

After quadrature demodulation, we obtain

(20)

It can be observed from Fig. 10 that for target dimensions that
are relatively smaller than the target range, the distance
from the radar antenna to target reflection point located at
is

(21)

Inserting (21) into (20), we deduce the baseband signal in
terms of target coordinate and rotation angle

(22)
where

(23)

Fig. 11. Polar-formatted data in spatial frequency space.

Fig. 12. ISAR image of moving target reconstructed by the discrete Fourier
transformation.

and

(24)

are spatial frequency quantities defined at frequency
and target rotation angle . The phase term
is related to the target translational motion only and can be
compensated by traditional translational motion-compensation
methods.

By sampling at ,
, we obtain the data collected in the frequency

space as

(25)

where .
To form a radar image, bursts of received signal are sam-

pled and organized burst by burst into a 2-D array,
which is shown in Fig. 11. This sample matrix is not uniformly
spaced in the spatial frequency; instead, it is polar-formatted
data. The discrete Fourier transform processing of the polar-for-
matted data would result in blurring at the edges of the target re-
flectivity image. Fig. 12 is a synthetic ISAR image of a MIG-25
aircraft [32]. The radar is assumed to be operating at 9 GHz
and transmits a stepped-frequency waveform. Each burst con-
sists of 64 narrowband pulses stepped in frequency from pulse
to pulse by a fixed frequency step of 8 MHz. The pulse rep-
etition frequency is 15 KHz. Basic motion-compensation pro-
cessing has been applied to the data. A total of 512 bursts of a
received signal are taken to reconstruct the image of this aircraft,
which corresponds to 2.18 s integration time. As we can see, the
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Fig. 13. Trajectory of a sequence of MIG-25 image frames.

resulting image is defocused due to the target rotation. In fact,
the defocused image in Fig. 12 is formed by overlapping a se-
ries of MIG-25s at different viewing angles. By replacing the
Fourier transform with the time-varying spectral analysis tech-
niques [32], [33], we can take a sequence of snapshots of the
target during the 2.18 s of integration time. Fig. 13(1)–(6) shows
the trajectory of the MIG-25 with six image frames taken at
0.1280, 0.4693, 0.8107, 1.1520, 1.4933, and 1.8347 s, respec-
tively.

Image registration can be applied to estimate the target mo-
tion from this sequence of images. For the synthetic ISAR im-
ages shown in Fig. 13, we search for the rotation angles
between a sequence of image frames observed in a time
interval . By (12), is given by

JR

Fig. 14 shows the rotation angles obtained by regis-
tering the six consecutive MIG-25 image frames. As can already
be seen in the figures, uniform weights produce the sharpest
peak.

By interpolating , we obtain a trajectory of the
MIG-25 rotational motion during the imaging time as shown in
the bottom right-hand plot of Fig. 14. The latter is particularly
important since it may be subsequently used in polar reformat-
ting [26] and resampling the received signal into rectangular
format. This results in a focused image of the MIG-25 based
on all the received signals in the time interval s , as
demonstrated in Fig. 15.

Fig. 14. Image registration of a MIG-25 trajectory.

Fig. 15. Reconstructed MIG-25 by polar reformatting.

VI. CONCLUSIONS

In this paper, we proposed a new information divergence mea-
sure, i.e.,Jensen–Rényidivergence, and analyzed its properties.
We studied the relationship between mutual information and
Jensen–Rényi divergence and concluded that mutual informa-
tion can be enclosed in the framework of the Jensen–Rényi di-
vergence, and this gives us a starting point for image registra-
tion problem. We further showed the registration performance
difference between mutual information (equivalent to JR with

and ) and Jensen–Rényi divergence (with
and ) and point out that assigning
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is not a good choice since it tends to emphasize background in
the process of matching. To demonstrate this phenomenon, a
breaking point of mutual information registration under noisy
situation (SNR dB) is presented, while at the same time,
Jensen–Rényi divergence is still able to identify the registra-
tion point. We also showed the scaling effect of orderin the
Jensen–Rényi divergence, which would adjust the peak of reg-
istration point. As the key application of this paper, experiments
of ISAR data are presented for rotational motion compensa-
tion. Our approach applies Jensen–Rényi divergence to mea-
sure the spatial dependence between consecutive ISAR image
frames and estimates the target trajectory during the imaging
time, which enables polar reformatting to resample the received
signal into a rectangular format. Simulation results demonstrate
that the proposed method effectively focuses the target image.

APPENDIX

Proof of Proposition 1

Denote and .
Let be two random variables taking values inand .
Recall that the mutual information betweenand is given
by [34]

(26)

where is the Shannon entropy of, and is the
conditional Shannon entropy of given .

Instead of using Shannon entropy in (26), the mutual infor-
mation can be generalized using Rényi entropy. Therefore, the

-mutual information can be defined as

where is the Rényi entropy of order .
Denote by , , and

; then, it is easy to check that

(27)

where , for all .
For fixed , the mutual information is a convex function of
[34]; then, it can be verified that the-mutual information

is also a convex function of , leading to the Jensen–Rényi
divergence a convex function of .

Proof of Proposition 5

Using Proposition 4, we have

JR

For

we obtain

JR

If and , then Proposition 4 leads to

JR

This concludes the proof for the proposition.

REFERENCES

[1] R. Kasturi and R. C. Jain,Computer Vision: Principles. Los Alamitos,
CA: IEEE Comput. Soc., 1991.

[2] B. K. P. Horn,Robot Vision. Cambridge, MA: MIT Press, 1989.
[3] J. R. Jensen,Introductory Digital Image Processing: A Remote Sensing

Perspective, 2nd ed. Upper Saddle River, NJ: Prentice-Hall, 1996.
[4] I. L. Thomas, V. M. Benning, and N. P. Ching,Classification of Remotely

Sensed Images. Bristol, U.K.: Adam Hilger, 1986.
[5] M. R. Stytz, S. Frieder, and O. Frieder, “Three dimensional medical

imaging: Algorithms and computer systems,”ACM Comput. Surveys,
vol. 23, no. 4, pp. 421–424, 1991.

[6] P. A. Van den Elsen, E.-J. D. Pol, and M. A. Viergever, “Medical image
matching—A review with classification,”IEEE Eng. Med. Biol. Mag.,
vol. 12, pp. 26–39, Jan. 1993.

[7] A. K. Gabriel and R. M. Goldstein, “Crossed orbit interferometry:
Theory and experimental results from SIR-B,”Int. J. Remote Sens., vol.
9, pp. 857–872, 1988.

[8] F. K. Li and R. M. Goldstein, “Studies of multibaseline spaceborne in-
terferometric synthetic aperture radars,”IEEE Trans. Geosci. Remote
Sensing, vol. 28, pp. 88–97, Feb. 1990.

[9] Q. Lin, J. F. Vesecky, and H. A. Zebker, “New approaches in interfero-
metric SAR data processing,”IEEE Trans. Geosci. Remote Sensing, vol.
30, pp. 560–567, June 1992.

[10] G. Fornaro and G. Franceschetti, “Image registration in interferometric
SAR processing,”Proc. Inst. Elect. Eng., Radar, Sonar Navigat., vol.
142, no. 6, pp. 313–320, 1995.

[11] L. Brown, “A survey of image registration techniques,”ACM Computi.
Surveys, vol. 24, no. 4, pp. 325–376, 1992.

[12] A. Rosenfeld and A. C. Kak,Digital Picture Processing. Orlando, FL:
Academic, 1982.

[13] C. D. Kuglin and D. C. Hines, “The phase correlation image alignment
method,” inProc. IEEE Int. Conf. Cybern. Soc., 1975, pp. 163–165.

[14] E. De Castro and C. Morandi, “Registration of translated and rotated
images using finite Fourier transforms,”IEEE Trans. Pattern Anal. Ma-
chine Intell., vol. PAMI-9, pp. 700–703, 1987.

[15] A. Goshtasby, “Image registration by local approximation,”Image Vi-
sion Comput., vol. 6, no. 4, pp. 255–261, 1988.

[16] C. Broit, “Optimal registration of deformed images,” Ph.D. dissertation,
Univ. Penna., Philadelphia, PA, 1981.

[17] R. Bajscy and S. Kovacic, “Multiresolution elastic matching,”Comput.
Vision Graph. Image Process., vol. 46, pp. 1–21, 1989.

[18] D. J. Burr, “A dynamic model for image registration,”Comput. Graphics
Image Process., vol. 15, pp. 102–112, 1981.

[19] R. P. Woods, J. C. Mazziotta, and S. R. Cherry, “MRI-PET registration
with automated algorithm,”J. Comput. Assist. Tomogr., vol. 17, no. 4,
pp. 536–546, 1993.

[20] P. Viola and W. M. Wells, “Alignment by maximization of mutual infor-
mation,” Int. J. Comput. Vis., vol. 24, no. 2, pp. 137–154, 1997.

[21] F. Maes, A. Collignon, D. Vandermeulen, G. Marchal, and P. Suetens,
“Multimodality image registration by maximization of mutual informa-
tion,” IEEE Trans. Med. Imag., vol. 16, pp. 187–198, Mar. 1997.

[22] A. O. Hero, III and O. J. J. Michel, “Asymptotic theory of greedy ap-
proximations to minimalk-point random graphs,”IEEE Trans. Inform.
Theory, vol. 45, pp. 1921–1938, June 1999.

[23] J. W. Fisher, III and A. S. Willsky, “Information theoretic feature ex-
traction for ATR,” inProc. 34th Asilomar Conf. Signals, Syst., Comput.,
Pacific Grove, CA, 1999.

[24] A. Tsai, J. W. Fisher, III, C. Wible, W. W. Wells, III, J. Kim, and A. S.
Willsky, “Analysis of functional MRI data using mutual information,”
in Proc. Second Int. Conf. Med. Image Comput. Comput.-Assisted Inter-
vention, Cambridge, U.K., 1999.

[25] A. Rényi, “On measures of entropy and information,” inSelected Papers
of Alfréd Rényi, 1976, vol. 2, pp. 525–580.

[26] D. R. Wehner,High Resolution Radar, 2nd ed. Norwood, MA: Artech
House, 1995.



1220 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 51, NO. 5, MAY 2003

[27] D. C. Munson and R. L. Visentin, “A signal processing view of strip-
mapping synthetic aperture radar,”IEEE Trans. Acoust., Speech, Signal
Processing, vol. 37, pp. 2131–2147, Dec. 1989.

[28] C. E. Shannon, “A mathematical theory of communication,”Bell Syst.
Tech. J., vol. 27, pp. 379–423, 1948.

[29] J. Lin, “Divergence measures based on the Shannon entropy,”IEEE
Trans. Inform. Theory, vol. 37, pp. 145–151, Jan. 1991.

[30] T. Bisztriczky, P. McMullen, R. Schneider, and A. W. Weiss,Polytopes:
Abstract, Convex, and Computational. Dordrecht, The Netherlands:
Kluwer, 1994.

[31] A. W. Marshall and I. Olkin,Inequalities: Theory of Majorization and
Its Applications. New York: Academic, 1979.

[32] V. C. Chen and S. Qian, “Joint time frequency transform for radar
range-doppler imaging,”IEEE Trans. Aerosp. Electron. Syst., vol. 34,
pp. 486–499, Feb. 1998.

[33] Y. He, A. Ben Hamza, H. Krim, and V. C. Chen, “An information the-
oretic measure for ISAR imagery focusing,” inProc. SPIE, vol. 4116,
2000, pp. 463–471.

[34] G. Gallager, Information Theory and Reliable Communica-
tions. London, U.K.: Wiley, 1968.

Yun He received the B.S. and M.S. degrees from Beijing University of Aeronau-
tics and Astronautics, Beijing, China, in 1995 and 1998, and the Ph.D. degree
from North Carolina State University, Raleigh, in 2001, all in electrical engi-
neering.

From May 1998 to July 2001, he was a Research Assistant with the Center for
Advanced Computing and Communications, North Carolina State University.
He then joined the Mixed Signal IC Design Group at Tality Corporation, Cary,
NC. His research interests are in wavelet theory and applications and real-time
digital signal processing.

A. Ben Hamza received the B.S. and M.S. degrees in applied mathematics.
From March 2000 to February 2001, he was a Research Associate with the De-
partment of Electrical and Computer Engineering at North Carolina State Uni-
versity, Raleigh, where he is currently pursuing the Ph.D. degree.

His research interests include nonlinear probabilistic and variational filtering,
information-theoretic measures, and computer vision.

Hamid Krim (M’80–SM’98) received the B.S., M.S., and Ph.D. degrees in elec-
trical engineering.

As a Member of Technical Staff at AT&T Bell Labs, he has worked in the
areas of telephony and digital communication systems/subsystems. Following
an NSF postdoctoral fellowship at Foreign Centers of Excellence, LSS/Univer-
sity of Orsay, Paris, France, he became a Research Scientist at the Laboratory
for Information and Decision Systems, Massachusetts Institute of Technology,
Cambridge, performing and supervising research. He is presently with the Elec-
trical and Computer Engineering Department, North Carolina State University,
Raleigh. His research interests are in statistical signal and image analysis and
mathematical modeling with a keen emphasis on applied problems.


	Index: 
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index: 
	INDEX: 
	ind: 


