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A Generalized Divergence Measure for
Robust Image Registration
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Abstract—Entropy-based divergence measures have shown Over the last three decades, a wide variety of registration
promising results in many areas of engineering and image pro- techniques have been developed for different applications.
cessing. In this paper, we define a new generalized dlvergence-|-heSe techniques may be classified [11] into correlation

measure, namely, theJensen—Rényidivergence. Some properties . . .
such as convexity and its upper bound are derived. Based on methods, Fourier methods, landmark mapping, and elastic

the Jensen—Rényi divergence, we propose a new approach to thénodel-based matching.

problem of image registration. Some appealing advantages of Given two imagesf;, f>: © C R?> — R (Q is a bounded
registration by Jensen—-Rényi divergence are illustrated, and its set, and it is usually a rectangle), correlation methods [12]
connections to mutual information-based registration techniques calculate the normalized two-dimensional (2-D) cross-corre-
are analyzed.As_the key focus of_this paper, we applyJensen—Rényilation function C(fy, T; f») betweenf, and f», where
divergence for inverse synthetic aperture radar (ISAR) image . ; 1y £(¢,6,7)J2 ! 1 &z,
registration. The goal is to estimate the target motion during the 7 is @ Euclidean transformation with translational parameter
imaging time. Our approach applies Jensen—Rényi divergence ¢ = (., £,), a rotational paramet#r, and a scaling parameter

to measure the statistical dependence between consecutive ISARy, The registration problem may then be succinctly stated as
image frames, which would be maximal if the images are geomet-

rically aligned. Simulation results demonstrate that the proposed x ok _x\
method is efficient and effective. (€7, 0%, 7") = arg }?;}f) C (f1, Tie,0,) f2) - 1)

Index Terms—image registration, information divergence,

inverse SAR imaging, Rényi entropy. The correlation methods are generally limited to registration

problems in which the image is misaligned by only a small
rigid transformation. In addition, the peak of the correlation
. INTRODUCTION may not be clearly discernible in the presence of noise. Fourier
MAGE registration is an important problem in computer vimethods [13] are the frequency domain equivalent of the corre-
sion [1], [2], remote sensing data processing [3], [4], arl@tion methods. Fourier methods make use of the translational
medical image analysis [5], [6]. The key step of image regigroperty of the Fourier trans_form and _search fqr th_e _optimal
tration is to find a spatial transformation such that a similarigPectral match between two images. Since rotation is invariant
metric between two or more images taken at different timéﬁ"’ldera Fourier tranSformatlon, rotating an image merely rotates
from different sensors or from different viewpoints, achieves it§€ Fourier transform of that image [14]. If we dendte F> as
maximum. the 2-D Fourier transforms ¢f, f2, respectively, we obtain the
One such example, which is of primary interest in the sequéhase of the cross-power spectrum rotated bg
is inverse s_ynthe_nc aperture radar (ISAR) imaging. ISAR is a Filwsswy)Ts Fo (s, ,)
microwave imaging system capable of producing high-resolu- Py(wy, wy) = ) )
tion imagery from data collected by a relatively small antenna. [F1(wes wy ) To B (was wy )|

The ISAR imaging is induced by target motion, which unfory, yetermine the rotational parameterne proceeds to max-
tunately also blurs the resulting image. After a standard tranSiize the 2-D inverse Fourier transformation Bf(w., w,)
xrs Yy

Iatipnal focusing process, image_registration can be aPp”ed e is, a cross-correlation that is as peaked or as impulsive
estimate t_he target rotational motlo_n parameter_, on which po possible, and the location of that impulse is exactly the
re-formatting may be used to achieve yet a higher reso'”“%nslational parametef. In light of their equivalence to

?mage. Relatgd work in this grea includefs image. registratio_ntwe correlation methods, Fourier methods are also limited to
interferometric SAR processing by Gabriel [7], Li [8], and I"nregistration problems with a small rigid transformation. If

[9] and Fornaro [10]. there exists spatially local variation, then both the correlation
methods and the Fourier methods would fail. For cases of un-
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accuracy depends on the degree of reliability of the feature Synthetic Aperture Size
points. Instead of finding the mapping between the feature

point sets, elastic model-based matching methods model the

distortion in the image as the deformation of an elastic material.

The resulting registration transformation is the deformation

with a minimal bending and stretching energy. Practical elastic

model-based methods [18] are also based on computationally

expensive iterative algorithms, and the choice of feature points

plays a crucial role in their performance. Target Area
In the work of Woods [19] and Viola [20], mutual infor-
mation, which is a basic concept from information theory, Fig. 1. Spotlight SAR.

is introduced as a measure for evaluating the similarity be-

tween images. When the two images are properly aligned,

corresponding areas overlap, and the resulting joint histogram

exhibits high values for the pixel combinations of the cor-

responding regions. When the images are misregistered, —y <

nonmatched areas also overlap and will contribute to additional %

pixel combinations in the joint histogram. In case of misregis- =

tration, the joint histogram has fewer significant peaks and is

more dispersed than that of the correct alignment of images. Stationary Radar Rotating Target

The registration criterion is hence to find a transformation

such that the mutual information of the corresponding pixel

pair intensity values in the matching images is maximized.

This approach is widely accepted [21] as one of the most

accurate and robust registration techniques. Following the same

argument, Hercet al. [22] extend this approach by applying

Rényi entropy to measure the joint histogram as a similarity

metric between images. On the other hand, Fishat.propose

mutual information based approaches to feature extraction for

ATR [23] as well as to the analysis of functional MRI data [24]. Moving Radar Stationary Target
Inspired by this previous work and looking to address their Fig.3. SAR/ISAR equivalence: SAR geometry.

limitation in often difficult imagery, we introduce in this

paper a novel generalized information theoretic measure;ay constitutes the essence of ISAR. In the terminology of
Jensen-Reénydivergence that we define in terms of Rénylaqar signal processing, the direction of radar line of sight
entropy [25]. Jensen—Rgn_y| divergence is defmed as aS|m|I_a.rd}_)bS) is referred to asange and the direction orthogonal to
measure among any finite number of weighted probabilitynge js referred to asoss-rangeor azimuth Fig. 2 illustrates
distributions. Shannon mutual information is a limiting €asge gata collection of an airborne target rotating through an
of the_ Jensen—_Renyl divergence. This generallzatlon_ pr_ow%b\p. The spotlight SAR equivalent geometry is the moving
us with an ability to control the measurement sensitivity qhqar in Fig. 3, which collects the same data while flying a
spatial dependency and, hence, ultimately results in a bei{gtjar segment around an identical but nonrotating target. The
registration accuracy. . ) e SAR aperture lengtlh in Fig. 3 corresponds to the integration
In the next section, we give a brief description of the problery e in Fig. 2. The resolution of ISAR imagery is defined in
which motivated and yielded this investigation. In Section Ik s of range resolution and cross-range resolution. The range

we introduce the Jensen-Renyi divergence and its propertieso|ytionsr is determined by the bandwidth of the transmitted
Section IV describes the concepts of image registration with 5, pulsed and given by [27]

the Jensen—Rényi divergence. Numerical experiments for ISAR

image registration is demonstrated in Section V. We finally pro- Sr = —
vide concluding remarks in Section VI. 20
wherecis the speed of light. The cross-range resolution of ISAR
imaging system is given by [27]

ISAR imagery represents reflectivity magnitude associated 6. = A (4)
with the illuminated target. The mechanism of ISAR can be 2v
explained in terms of spotlight SAR [26], as illustrated invhere) is the carrier wavelength. See [26] for a more thorough
Fig. 1. Spotlight SAR is the result of a radar antenna constantliscussion of ISAR.
tracking a particular target of interest. The same data wouldBy (4), it is clear that the larger the integration angle, the
be collected if the radar were stationary and the target wdsetter the cross-range resolution. However, ISAR imagery is in-
rotating. This very rotation is used to generate the target imaggced by target motion, and the target motion in turn causes

Fig. 2. SAR/ISAR equivalence: ISAR geometry.

C
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time-varying spectra of the received signals. Motion compen- 'S
sation has to be applied to obtain a high-resolution image. The ey
objective of ISAR image registration is to estimate the target s
motion during the imaging time. Lef, 4 ., be a Euclidean ~— Srammon
transformation with a translational parametex= (¢, 4,), a .. N S
rotatio_nal parameteff, and a scaling parametar Given tW(_) £ e :’_‘_‘;; = \\\\1 .
ISAR image framesf; and fs, the estimates of target motion H - / N
parameterg/*, 9%, ~*) are given by § / \\
N
(Z*v 9*7 7*) = arg (I[}l;i,x) Sd (f17 77(1’,,6,“/)](‘2) (5) » \ \\ 1
s0Y \\ \(
. . . N \
whereS,; is a measure induced by a given mettid his induced \
measure is maximal jf; matche</, ¢4 - f2. Astheradartracks \
atarget, the reflected signal is continuously recorded during the . ‘ ‘ L ‘ . ‘ o ,
imaging time. By registering a sequence of consecutive image © ot o2 03 o4 A

frames{ f;},, the target motion during the imaging time can

be estimated by interpolatifg;, 6;, v;)}_,. Based on the es- Fig. 4. Shannon and Rényi entropy of Bernoulli distributipe= (p, 1 — p)
timated trajectory of the target, translational motion compend4t different values of.

tion (TMC) and rotational motion compensation (RMC) [26]

can be used to generate a focused image of the target.

Il. JENSEN-RENYI DIVERGENCE

Letk € NandX = {z1, zo, ..., 3} be afinite set with a 1o
probability distributionp = (p1, pa, ..., pr), i, Y5  p; = o8]
1 andp; = P(z;) > 0, whereP(-) denotes the probability. A

Rényi entropy is a generalization of Shannon entropy [28] =
and is defined as

I MY

e
)
21/l 4 .

“"’lllllll .
20074
74

Ra(p) = 1—a

log »  pf, a>0anda#1. (6) HaN
Jj=1 0.8

Fora > 1, the Rényi entropy is neither concave nor convex.
Fora € (0, 1), itis easy to see that Rényi entropy is concave,
and tends to Shannon entrofyp) asa — 1 [25]. It can easily
be verified thatR,, is a nonincreasing function ef, and hence Fig. 5. Three-dimensional representation of Jensen—Rényi divergence
JR¢(p, @), p=(p, 1—p)g=(q, 1 —¢),a =05,0=(05,0.5).
Ra(p) 2 H(p),  Vae(0,1). ()
In the sequel, we will restriet € (0, 1), unless otherwise Spec_\]er!sen—R'ényi divergence for two Bernoulli probability distri-
ified, and will use a base 2 logarithm, i.e., the measurement ubjttions, witha = 0.5. o _
is bits. Whena — 1, the Jensen—Rényi divergence is exactly the
As shown in Fig. 4, the measure of uncertainty is at a migeneralized Jensen—Shannon divergence [29].
imum when Shannon entropy is used, and it increasesces Unlike other entropy-based divergence measures such as the

is equal to zero. has the advantage of being symmetric and generalizable to any
Definition 1: Letp,, ps, ..., p, ben probability distribu- finit_e n_umber_of probability d_istr_ibut_ions, with a possibility of
tions onX, and letw = (wi, ws, - .., w,) be a weight vector assigning weights to these distributions. _
suchthab ", w; = 1 andw; > 0. We define the Jensen—Rényi The following result establishes the convexity of the
divergence as Jensen—Renyi divergence of a set of probability distributions.
Proposition 1: Fora € (0, 1), the Jensen—Rényi divergence
~ - JRY is a convex function op,, p, ..., p,,.
JR(Pr: -, P) = R (Z “’ipi) - Z wila(p;) Proof: See the Appendilx. ’ ]
=t =t The following result, in a sense, clarifies and justifies calling
whereR, (p) is the Rényi entropyy > 0, anda # 1. upon the Jensen—Rényi divergence as a measure of disparity
Using the Jensen inequality, it is easy to check that tlaenong probability distributions.
Jensen—Rényi divergence is non-negativedore (0, 1). It Proposition 2: The Jensen—Rényi divergence achieves its
is also symmetric and vanishes if and only if the probabilithaximum value whem,, p,, ..., p,, are degenerate distri-
distributionsp, , p,, ..., p,, are equal, for aln > 0. Fig. 5 butions, that isp; = {¢;;}, whereé;; = 1if i« = j and 0

illustrates the three-dimensional (3-D) representation of tla¢herwise.
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Proof: Denote byp; = {p;;} theith probability distribu- Sincelog(-) is an increasing function, arde (0, 1), it follows
tion, wherel < i < n andl < j < k. Clearly, the domain of that
JRYis |0, 1]"*. This domain is a convex polytope [30] in which
the vertices are degenerate probability distributions. That is, the a<b = Ra(a)> Ra(b).

maximum val f th nsen—Rényi divergen r : . :
aximum value of the Jensen—Reny divergence occurs at Iheerefore,Ra(~) is a Schur-concave function. The following
of the degenerate distributions.

Since the Jensen—Rényi divergence is a convex function\rlge?r;gniséabhsr]es the maximum value of the Jensen—Renyi di-

P1s Pas - - -5 Py, it achieves its maximum value when the Rényi . ] G
entropy function of thes-weighted average of degenerate proh- Proposition 3: Letpy, p,, ..., p, ben probability distribu

ability distributions achieves its maximum value as well. tions with
Assigning weights w; to the degenerate distributions il
Ay, Aoy Ay A= {655}, 7 = 1, 2, ... k, the following i = (pir, Piz; .-, Pi); Zpij:l’ pij 2 0.
upper bound =t
If k=7 (mod n),0 < r < mn,then

JRY < R, (Z w'iAi> (8) JR, <
im1

log(k — ) (11)

l—«

, , o herea € (0, 1).
which easily falls out of the Jensen—Rényi divergence, may Y)ve Proof- It is clear that the vector

used as a starting point. Without loss of generality, consider the

Jensen—Reényi divergence with equal weights= 1/n for all . M . A
i, and denote it simply by R, to write g=(n/k-=7),....n/(k—=7),0,...,0)
n is majorized by the vectat defined in (10). HenceR,, (a) <
JRo < Ra <Z (A’i/")> R.(g). Invoking (9) completes the proof. [
=1 . o According to Proposition 3, and for the special casg ef 0
1 ~ modn), the following inequality holds:
Y (Z (51'1'/71)) (modx) g inequalty
Jj=1 =1 ‘]Ra(pl7p27 7pn) Slog(k)
= Ra(a) + —— log(n) ©)
here IV. IMAGE REGISTRATION WITH JENSEN-RENYI DIVERGENCE
w
n Let f1, f> betwo digitalimages defined on a bounded domain
a=(ay, as, ..., a;) suchthat a; = Z Sij- (10) Q¢C N2, where the goal of image registration in the context of
i—1 the Jensen—Rényi divergence is to determine the spatial trans-
SinceAkl, Ao, ..., A, are degenerate distributions, then wéormation parameterg™, ¢, y*) such that
hav_ezjz_1 aj = n, Yk > n. From (9), it is clear that R, (¢*, 6*, 4*) = arg max Sy (fh 7'(/’9,7)]02)
achieves its maximum value whéty, (a) does as well. (£:8:7)
In order to maximizeR., (a), the concept of majorization [31] = arg max JRY(p,, ..., p,) (12)
will be used. Let(z[y), [y, ..., z;) denote a nonincreasing 60y
ordering of the components of a vector= (z1, z2, ..., zx). wherep; = p,(f1, ¢, 9,+)f2), 1 < i < n, and the measure
Definition 2: Leta andb € R*, wherea is said to be ma- $, defined in (5) is induced from a Jensen—Rényi divergence of
jorized byb, writtena < b, if ordera and weightw.
k k DenoteX’ = {z1, x2, ..., zn} aNdY = {y1, y2, ..., Yn}
Z aj] = Z biji as the sets of pixel intensity values fafand7, 4, ) f2, respec-
=1 =1 tively, and letX, Y be two random variables taking valuesi¥n
0 Y andy.p,,;(fl, 'T(gvg’.y)fg) = (p,,;j)lgjgn is defined as
j=1 j=1

which is the conditional probability off(, 4 -)f2 given f

for the corresponding pixel pairs. Here, the Jensen—Rényi
divergence acts as a similarity measure between images. If
a<b = ¢(a)>¢(b), Va,be. the two images are exactly matched, then=(6;;)1<j<n,

1 = 1,2, ..., n. Sincep,s are degenerate distributions, by
Proposition 2, the Jensen—Rényi divergence is maximized for a
fixed a andw. Fig. 6(1)—(2) shows two brain MRT images in

Definition 3: A real-valued functiorp defined on a se C
R* is said to be Schur-concave 6nif

Define the functiong(a;) = af, a € (0, 1) on an interval
J C R. ltis clear thay is a concave function o#; thus,$(a) =

>j—1 9(a;) is Schur-concave [31] oii*, that is which the misalignment is a Euclidean rotation. The conditional
k k probability distributions{p;} are crisp, as in Fig. 6(3), when
a<b — Z g(aj) > g(bj). the two images are aligned, and dispersed, as in Fig. 6(4), when
j=1 =1 they are not matched.
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(b)

——  Mutual Information
JR Divergence

1.4 -

Fig. 6. Conditional probability distributions.
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Fig. 8. Registration result in the presence of the noise. SNRO2 dB. For
the Jensen—Rényi divergenee= 1 andw; = 1/n is used. (a) Image A. (b)
Image B. (c)d(A, B).

d(A,B)

>

uniform weights for image registration in the context of the
Jensen—Rényi divergence.

% % w % e Proposition 4: Let 8 be a uniform weight defined a% =

* 1/n,i=1, 2, ..., n,and lew be any vector such that > 0,

Fig. 7. Mutual information versus Jensen-Rényi divergence of unifordLi—1 @i = 1. If the misalignment betweey and f, can be
weights. modeled by a spatial transformati@rt, then for alle € [0, 1],

the following inequality holds:

It is worth noting that the maximization of the Jensen—-RényRe (p, (f1, T*f2), ..., p, (f1, T* f2))

divergence holds for any andw such that) < « < 1 and > JRY T T
w; >0, >, w; = 1. Ifwe takea = 1 andw; = P(X = z;), - au(f1, T7f2)s oo palfr, T72))-
then by Proposition 1, the Jensen—Rényi divergence is exactly Proof: p;, = A;, 4 = 1,2, ..., n when f; and f are

the Shannon mutual information. Indeed, the Jensen—Rényialigned by the spatial transformati@rt; then,J RZ(-) becomes

vergence induced similarity measure provides a more general n

framework for the image registration problem. IR (py(f1, T*f2)s .., p,,(f1. T f2))= Ra (Z WiAi)
If the two imagesf; and 7, 4 -)f> are matched, the i1

Jensen—Rényi divergence is maximized for any valid weight. — R (w).

Assigningw; = P(X = ;) is not always a good choice.

Fig. 7 shows the registration results of the two brain imag&nce 8 < w [31] and R,(-) is Schur-concave, we obtain

in Fig. 6 using the mutual information and the Jensen—-Réngi,(8) > R.(w). This completes the proof. [
divergence ofx = 1 and uniform weights. The peak at the After assigning uniform weights to the various distributions
matching point generated by the Jensen—Rényi divergencénishe Jensen—Rényi divergence, a free parametevhich is
clearly much higher than the peak by the mutual informatiodirectly related to the measurement sensitivity, remains to be
w; = P(X = z;) gives the background pixels the largesselected. In the image registration problem, one desires a sharp
weights. In the presence of noise, the matching in backgrouand distinguishable peak at the matching point. The sharpness of
is corrupted. Mutual information may fail to identify thethe Jensen—Rényi divergence can be characterized by the max-
registration point. This phenomenon is demonstrated in Fig.iBal value as well as the width of the peak. The sharpest peak is
The following proposition establishes the optimality of thelearly a Dirac function. The following proposition establishes
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o —— o 2 It is worth pointing out that the Jensen—Rényi divergence is
A o o3| A ] not equivalent to mutual information by settiag = 1. The
=t equivalence is hold only it = 1 andw; = P(X = ;).
el J 6
st st 1 A. Discussion
2. 2. Parameter basically plays a role of scaling factor to adjust

registration peaks, and the location of registration point is in-
. dependent ofv. In real-world applications, there is a tradeoff

coooommn] 2r l between optimality and practicality in choosing If one can

WL ] model the misalignment betwegh and f> completely and ac-

curately, o = 0 would correspond to the best choice since it gen-

»
s e oo e e °
[cooo00®

% s Ky oo % s Y * 2 erates aDirac function at the matching point. Itis, however, also
, o o the least robust selection, as it tends to make alpfb¢he same
Fig. 9. Effect of the orden in image registration. as the uniform distribution. Ip; is not degenerate distribution

] L . andp;; > 0, then the Jensen—Rényi divergence would be zero
that the maximal value of the Jensen—Reényi divergence is inggy the whole transformation parameter space as in case where
pendent ok if the two images are aligned, and= 0 yields e adapted transformation group cannot accurately model the
the sharpest peak, which is a Dirac function. _relationship betweeyi, and f,. On the other handy = 1 is the

Proposition 5: Let 5 be a uniform weight vector. If the mis- 1t robust choice, in spite of also resulting in the least sharp
alignment betweerf; and /> can be modeled by a spatial transpeak. The choice of therefore depends largely on the accuracy
formation7™, then for alla. € [0, 1], we have of the invoked model and on the specific application as well as

JF{ﬁ(pl(fh T f2), ..., 2, (f1, T" f2)) = logn. (13) the available computational resource.
We further showed that; = 1/n is optimal; thus, the

In case ofa = 0 . . ! . o
best choice for nonideal image registration in the context

IR (p1, P2, -+, P,) =0 of the Jensen—Rényi divergence{is = 1,w = 1/n}, in
for any probability distributiorp; such thatp;; > 0,14, j = comparison with mutual information based methods, in which
1.2. ....nand the parameters are set{a = 1, w = P(X = z;)}. Fig. 8
- ® ) demonstrates the registration results by mutual information and
(P Pa. - ) = log(n) by the Jensen—Rényi divergence, in the presence of the noise.
ifandonlyifp, = A;,i=1,2, ..., n. SNR= 1.92 dB. For the Jensen—Rényi divergenaes= 1 and
Proof: See the Appendix. B w, = 1/nis used.

As an example, Fig. 9(a) demonstrates the registration result€omputational ~ complexity ~ for  registration  with
of the two brain images in Fig. 6 with the choice of differenjensen—-Rényi divergence would eventually depends on
a. In this caseq = 0 is the best choice and would generate the computation ofn + 1 Rényi entropy. Rényi entropy
Dirac function with a peak at the matching point, as illustrateg computed using the histogram method, which requires
in Fig. 9(b). preparing a conditional pixel intensity histogram. When

If there exists local variation betwegi and f», or if the reg- using all 256 gray levels of the original images, the resulting
istration of the two images is in the presence of noise, then egnditional histogram represents a 25656 discrete matrix.
exact alignmenf * may not be found. The conditional proba4n this case,n = 256. An average distribution was then
bility distribution p;(f1, 7* f2) is no longer a degenerate disprepared by summing the weighted conditional histogram
tribution in this case. The following proposition establishes thahtries along the axis corresponding to the image intensity
takinga: = 1 would provide a higher peak than any other choiciadex of f,. Jensen—Rényi divergence eventually calculates
of « for the nonideal alignment. the difference between the Rényi entropy of the average

Proposition 6: Letp, = A; + 6p;, i =1, 2, ..., n, where distribution and the sum of. weighted Rényi entropy of
op; = (Opij)1<j<n is areal distortion vector such that; > 0, individual distributions. For the registration of two brain MRT
> -1 6pij = 0,andy>i, 6p;; = 0. Letw be a weight vector, images in which the misalignment is a Euclidean rotation, as
and denote JR-) as the Jensen—Rényi divergence with= 1. shown in Fig. 6(a)—(b), the Matlab simulation takes less than
Then, for alla. € (0, 1), we have 2 min on a Pentium 1l 700 MHz machine with 128 MB of

JR(pys Poy -, D) = JRE(Dy, Doy -, Pp)- (14) mMemory.

Proof. Observe that for any probability distributiop
Ra(p) > H(p),Ya € (0, 1), and then V. NUMERICAL EXPERIMENTS ISAR IMAGE REGISTRATION

n n Generating an ISAR image by using stepped frequency

Z wiH(p;) < Z wiRa(p;), Va € (0,1). (15) waveform [26] can be understood as a process of estimating

i=1 i=1 the target’s 2-D reflectivity density function(z, y) from data
SinceZ;‘:1 épij = 0, >, 6pi; = 0 and the Rényi entropy collected in the frequency space. Suppose a stepped frequency
of @ = 1 is exactly the Shannon entropy, (14) is equivalent tourst consists of\/ pulses in which the transmitted frequency
the inequality (15). This completes the proof. m linearly increases fromyg to wy + (M — 1)Aw, wherewy is
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o,

Fig. 10. ISAR geometry of a moving target.

the base frequency in radians per second, Andis the step Fig. 11. Polar-formatted data in spatial frequency space.

frequency. Let thenth transmitted pulse,,(¢) be a pulse of
duration?), and expressed in complex form as
ot t—mT,
sm(t)=e w <T
wherew,, = wg + mAw, and
1, 0<t<1
W) = { _ (17)
0, otherwise.

Define w(t) = wo + (m — 1)Aw, mI, < t < (m +
1)T,, m=0,1, ..., M — 1. Under uniform illumination, the
reflected signal from the target differential aréa x dy at the
target coordinatéz, y) is Fig. 12. ISAR image of moving target reconstructed by the discrete Fourier

h(z, y, t) = Ap(z, y)ejw(t)(t—2r(t)/p) dz dy (18) transformation.

where0 < ¢t < (M — 1)T,, and A is a constant attenua- gng
tion factor, which we can set to 1 without a loss of generality. 2w(t) .
The distance between the radar antenna and the target reflection wy(t) = sin 0(t) (24)

point located afz, y) is denoted by (). We obtain the expres- gre spatial frequency quantities defined at frequenty)
sion of the received signal for< ¢ < (M —1)T,, by integrating 5 target rotation anglé(t). The phase terma—Ji2w(tR(t)/c

), m=0,...,M—1 (16)

reflections from all the point scatterers in the target is related to the target translational motion only and can be
() = // h(z, y, t) dz dy compensated by traditional translational motion-compensation
. methods.
e

By samplinge/ 2O E®)/<4(t) att,, = (m+ (1/2))T,, m =
_ // o, )i OE=2r0/) 4oy gy 19) 01, ---. M —1,we obtain the data collected in the frequency
2, ’ spaceG(m) as

After quadrature demodulation, we obtain G(m) = // p(, y)e I @wstm)=voy(tm)) o gy (25)
s

o(t) = // oz, )e OO/ dr gy (20)
i, wherem = 0,1, ..., M — 1.

It can be observed from Fig. 10 that for target dimensions that'© form & radar imagey bursts of received signal are sam-
are relatively smaller than the target rangethe distance(-) P'ed and organized burst by burst intol x N 2-D array,

from the radar antenna to target reflection point locatéd ay) which is_shown in F_ig. 11. This sample mat_rix_ is not uniformly
is spaced in the spatial frequency; instead, it is polar-formatted

data. The discrete Fourier transform processing of the polar-for-
r(t) = R(t) + z cosf(t) — ysinB(t). (21) matted data would resultin blurring at the edges of the target re-
. . ) flectivity image. Fig. 12 is a synthetic ISAR image of a MIG-25

Inserting (21) into (20), we deduce the baseband signal dfcraft [32]. The radar is assumed to be operating at 9 GHz
terms of target coordinafer, y) and rotation anglé and transmits a stepped-frequency waveform. Each burst con-
_ o —i2w(t)(R(t)/c) —j(zwa (£)—ywy () 7, sists of 64 narrowband pulses stepped in frequency from pulse

g(t) =e // p(z, y)e dedy pulse by a fixed frequency step of 8 MHz. The pulse rep-

R (22) etition frequency is 15 KHz. Basic motion-compensation pro-
where cessing has been applied to the data. A total of 512 bursts of a
2w(t) received signal are taken to reconstruct the image of this aircraft,
we(t) = cos 6(t) (23)  which corresponds to 2.18 s integration time. As we can see, the
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Fig. 13. Trajectory of a sequence of MIG-25 image frames. 5
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resulting image is defocused due to the target rotation. In fact
the defocused image in Fig. 12 is formed by overlapping a se-
ries of MIG-25s at different viewing angles. By replacing the Fig. 14. Image registration of a MIG-25 trajectory.
Fourier transform with the time-varying spectral analysis tech-
niques [32], [33], we can take a sequence of snapshots of the
target during the 2.18 s of integration time. Fig. 13(1)—(6) shows
the trajectory of the MIG-25 with six image frames taken at
0.1280, 0.4693, 0.8107, 1.1520, 1.4933, and 1.8347 s, respec-
tively.

Image registration can be applied to estimate the target mo-
tion from this sequence of images. For the synthetic ISAR im-
ages shown in Fig. 13, we search for the rotation anflgs" ,
between a sequence of image framigg Y, observed in atime
interval [0, T']. By (12),6; is given by

07 = arg max IR (py (Li-1, To. 1i), - - - Po(Lim1s Do, 1i)).

Fig. 15. Reconstructed MIG-25 by polar reformatting.

Fig. 14 shows the rotation anglé$;} , obtained by regis-
tering the six consecutive MIG-25 image frames. As can already
be seen in the figures, uniform weights produce the sharpestn this paper, we proposed a new information divergence mea-
peak. sure, i.e.Jensen—Rénylivergence, and analyzed its properties.
By interpolating {#;}}¥.,, we obtain a trajectory of the We studied the relationship between mutual information and
MIG-25 rotational motion during the imaging time as shown idensen—Rényi divergence and concluded that mutual informa-
the bottom right-hand plot of Fig. 14. The latter is particularlyion can be enclosed in the framework of the Jensen—Rényi di-
important since it may be subsequently used in polar reformaergence, and this gives us a starting point for image registra-
ting [26] and resampling the received signal into rectangulton problem. We further showed the registration performance
format. This results in a focused image of the MIG-25 basetifference between mutual information (equivalent to JR with
on all the received signals in the time interjal 2.18 5, as « = 1 andw; = P(z;)) and Jensen—Rényi divergence (with
demonstrated in Fig. 15. a = 1 andw; = 1/n) and point out that assigning = P(x;)

VI. CONCLUSIONS
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is not a good choice since it tends to emphasize backgroundia obtain

the process of matching. To demonstrate this phenomenon, a LY "o

breaking point of mutual information registration under noisy}Rg (P1: P2y -+, D) = Ra Z o Pi| Z o Ra(p;) = 0.
situation (SNR< 2 dB) is presented, while at the same time, i=1 i=1
Jensen—Rényi divergence is still able to identify the registrdi-o = 0 andp; = A;, then Proposition 4 leads to

tion point. We also showed the scaling effect of orddn the IR (p,, py. ..., p,) = log(n).

Jensen—Rényi divergence, which would adjust the peak of reg-
istration point. As the key application of this paper, experimenﬁ1
of ISAR data are presented for rotational motion compensa-
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