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The typical inverse ECG problem is to noninvasively reconstruct the transmembrane potentials (TMPs) from body surface
potentials (BSPs). In the study, the inverse ECG problem can be treated as a regression problem with multi-inputs (body surface
potentials) and multi-outputs (transmembrane potentials), which can be solved by the support vector regression (SVR) method.
In order to obtain an effective SVR model with optimal regression accuracy and generalization performance, the hyperparameters
of SVR must be set carefully. Three different optimization methods, that is, genetic algorithm (GA), differential evolution (DE)
algorithm, and particle swarm optimization (PSO), are proposed to determine optimal hyperparameters of the SVR model. In this
paper, we attempt to investigate which one is the most effective way in reconstructing the cardiac TMPs from BSPs, and a full
comparison of their performances is also provided. The experimental results show that these three optimization methods are well
performed in finding the proper parameters of SVR and can yield good generalization performance in solving the inverse ECG
problem. Moreover, compared with DE and GA, PSO algorithm is more efficient in parameters optimization and performs better
in solving the inverse ECG problem, leading to a more accurate reconstruction of the TMPs.

1. Introduction

The inverse ECG problem is to obtain myocardial trans-
membrane potential (TMPs) distribution from body surface
potentials (BSPs), thus noninvasively imaging the electro-
physiological information on the cardiac surface [1, 2].
Generally, approaches to solving this inverse ECG problem
can be relied on potential-based model, including epicardial,
endocardial, or transmembrane potentials, which is used to
evaluate the potential values on the cardiac surface [3] at
certain time instants.Moreover, the cardiac electrophysiolog-
ical information is closely associatedwith the transmembrane
potentials (TMPs) of the myocardial cells. Compared to body
surface potentials (BSPs) recordings, TMPs can providemore
detailed and complicated electrophysiological information.
In this study, we focus on implementing the reconstruction
of TMPs from BSPs.

To study inverse ECGproblems, various numericalmeth-
ods have been proposed. In the last decades, regularization
methods have been engaged for dealing with the inherent
ill-posed property. The regularization techniques include
truncated total least squares (TTLS) [4], GMRes [5], and
the LSQR [6], which require an appropriate selection of
regularization parameters so as to relax the ill-posedness
of the inverse ECG problem and to produce a well-posed
problem. However, the robustness and the quality of the
inverse solution are not always guaranteed; despite that they
can more or less deal with the geometry and measurement
noises for the inverse ECG problems. In addition, during
the solution procedure, the inverse ECG problem can be
treated as a regression problem with multi-inputs (BSPs)
andmulti-outputs (TMPs).Therefore, an alternative method,
support vector regression (SVR)method [7], was proposed to
solve the inverse ECGproblem. Comparedwith conventional
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regularization methods, SVR method can produce more
accurate results in terms of reconstruction of the trans-
membrane potential distributions on epi- and endocardial
surfaces [1, 8]. SVR is an extension version of support vector
machine (SVM) to solve nonlinear regression estimation
problems, which aims at minimizing an upper bound of
the generalization error instead of the training error [9] by
adhering to the principle of structural risk minimization
(SRM).

Although SVR is a powerful technique to solve the
nonlinear regression problem, it has received less attention in
relation to the inverse ECGproblems, due to the fact that SVR
algorithm is sensitive to users’ defined free parameters. The
involved hyperparameters of SVR model consist of penalty
parameter 𝐶, insensitive loss function parameter 𝜀, and the
parameter 𝜎 for kernel function. Inappropriate parameters in
SVR can lead to overfitting or underfitting problems. How to
properly set the hyperparameters is a major task, which has a
significant impact on the optimal generalization performance
and the SVR regression accuracy [10], especially when it
comes to predicting the diagnosis of cardiac diseases, because
even a slight improvement of prediction accuracy could have
a significance impact on the patient’s diagnosis [11, 12].

In early development stage of the algorithm, a grid search
optimizing method [13] and cross-validation method [8] are
employed to optimize the hyperparameters. However, these
methods are computationally expensive and data intensive.
Recently, a number of new algorithms have been proposed
for the optimization of the SVR parameters [14, 15]. For
example,Wang et al. [16] has proposed a hybrid load forecast-
ing model combining differential evolution (DE) algorithm
and support vector regression to deal with the problem
of annual load forecasting. In the analysis of predicting
tourism demand, the study [17] applies genetic algorithm
(GA) to seek the SVR’s optimal parameters and then adopts
the optimal parameters to construct the SVR models. The
experimental results demonstrate that SVR outperforms the
other two neural network techniques. Another study [18]
tries a new technology, particle swarmoptimization (PSO), to
automatically determine the parameters of SVR, then applies
the hybridmodel (PSO-SVR) to grid resource prediction, and
the experimental results indicate high predictive accuracy.

In this paper, the above mentioned optimization algo-
rithms (GA, DE, and PSO) are all adopted to dynamically
optimize the hyperparameters of SVR model in solving the
inverse ECG problem. For convenience, the SVR model with
GA parameter selection is referred to as GA-SVR method,
and the other two are termed DE-SVR and PSO-SVR,
respectively. In this paper, we attempt to investigate which
one is the most effective in reconstructing the cardiac TMPs
from BSPs, and a full comparison of the performance for
solving the inverse ECG problem will be evaluated.

2. Theory and Methodology

2.1. Brief Overview of the SVR. In this section, the basic
SVR concepts are concisely described; for detailed descrip-
tion, please see [19, 20]. Suppose a given training data of
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SVR algorithm builds the linear regression function as the
following form:

𝑓 (𝑥, 𝜔) = (𝜔 ⋅ 𝜑 (𝑥) + 𝑏) ,

𝜑 : 𝑅
𝑛
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where 𝜔 and 𝑏 are the slope and offset coefficients; 𝜑(𝑥)

denotes the high-dimensional feature space, which is non-
linearly mapped from the input space 𝑥. And the previous
regression problem is equivalent to minimizing the following
convex optimization problem [see (2)]:
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In this equation, an implicit assumption is that a function
𝑓 essentially approximates all pairs (𝑥
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, 𝑦
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) with 𝜀 precision,

but sometimes this may not be the case. Therefore, by intro-
ducing two additional positive slack variables 𝜉
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, the

minimization is reformulated as the following constrained
optimization problem [shown in (3)]:

min 𝑅 (𝜔, 𝜉, 𝜉
∗
) =

1

2
‖𝜔‖
2
+ 𝐶

𝑁

∑

𝑖=1

(𝜉
𝑖
+ 𝜉
𝑖

∗
)

s.t. 𝑦
𝑖
− (𝜔, 𝜑 (𝑥)) − 𝑏 ≤ 𝜀 + 𝜉

∗

𝑖

(𝜔, 𝜑 (𝑥)) + 𝑏 − 𝑦
𝑖
≤ 𝜀 + 𝜉

𝑖

𝜉
𝑖
, 𝜉
𝑖

∗
≥ 0, 𝑖 = 1, 2, . . . , 𝑁, 𝜀 ≥ 0,

(3)

where the parameter 𝐶 is the regulator which is determined
by the user, and it influences a tradeoff between an approxi-
mation error and the weights vector norm ||𝜔||; 𝜉

𝑖
and 𝜉
∗

𝑖
are

slack variables that represent the distance from actual values
to the corresponding boundary values of 𝜀-tube.

According to the strategy outlined by Schölkopf and
Smola [10], by applying Lagrangian theory and the KKT
condition, the constrained optimization problem can be
further restated as the following equation:
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Here 𝛼
𝑖
and 𝛼

∗

𝑖
are the Lagrange multipliers. The term

𝐾(𝑥
𝑖
, 𝑥) is defined as the kernel function. The nonlinear

separable cases could be easily transformed to linear cases
by mapping the original variable into a new feature space
of high dimension using 𝐾(𝑥

𝑖
, 𝑥). The radial basis function
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(RBF) was applied in the study, which has the ability to
universally approximate any distribution in the feature space.
With an appropriate parameter, RBF usually provides a better
prediction performance, so it is adopted in this study as
shown in (5):

𝐾(𝑥
𝑖
, 𝑥
𝑗
) = exp(−


𝑥
𝑖
− 𝑥
𝑗



2

2𝜎2
) , (5)

where 𝑥
𝑖
and 𝑥

𝑖
are input vector spaces and 𝜎

2 is the band-
width of the kernel function.

In the above equations, there exist three hyper-param-
eters to be determined in advance, that is, the penalty
parameter 𝐶, insensitive parameter 𝜀, and the related kernel
function parameters 𝜎

2. They heavily affect the regression
accuracy and computation complexity of SVR. The penalty
parameter 𝐶 controls the degree of punishing the samples
whose errors go beyond the given value. The insensitive
parameter 𝜀 controls the width of the 𝜀-insensitive zone
used to fit the training data. The value of 𝜀 can enhance
the generalization capability; with the increase of 𝜀, the
number of support vectors will decrease, and the algorithmic
computation complexity will also reduce.The bandwidth 𝜎 of
the kernel function has a great influence on the performance
of learning machine.

In this study, three optimization methods, that is, GA,
DE, and PSO, are presented to determine the optimal hyper-
parameters of the SVR model. According to [15], the general
range of𝐶, 𝜎2, and 𝜀 has been given. In the trial operation, we
narrowed it to avoid blindness in the optimization process. In
this paper, the set of hyperparameter (𝐶, 𝜎

2
, 𝜀) is initialized

in the given range 𝐶 ∈ [0, 10000], 𝜎2 ∈ [0, 2], and 𝜀 ∈

[0, 0.0001], where optimization methods (GA, DE, and PSO)
are to seek the global optimal solutions.

In order to calculate the error uniformly, we adopt the
same fitness function which plays a critical role in measuring
these algorithms performance. The fitness function is deter-
mined as follows:

min𝑓 =
∑
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 /𝑎𝑖)
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where 𝑛
𝑡
is the number of training data samples, 𝑎

𝑖
is the

actual TMPs of train data, and 𝑝
𝑖
is the predicted TMPs. The

solution with a smaller fitness 𝑓 of the training dataset has a
better chance of surviving in the successive generations. The
main tool, LIBSVM, was used for training and validating the
SVR model [21].

2.2. Genetic Algorithm (GA) Optimization Method. The GA
[22] is a biologically motivated optimization technique
guided by the concepts of biological evolution and Darwin’s
principle of survival of the fittest. It is a computer model of
an evolution of a population of artificial individuals. In this
study, for the specific optimizing problemof hyperparameters
(𝐶, 𝜎
2
, 𝜀), the process is defined as follows.

Step 1 (initialize population). The population size NP is
equal to 20; the dimension of parameter vectors 𝐷 is 3.

The termination criterion is set as follows: the number of
iterations is set as 30, and the fitness tolerance value is set
as 0.001. The probabilities of selection (Stochastic universal
sampling), crossover (multipoint crossover) and mutation
(mutation operator of the Breeder Genetic Algorithm) that
were used herein are 0.9, 0.8, and 0.05, respectively.

Step 2 (encode chromosomes). According to the possible
range of parameters 𝐶, 𝜎

2, and 𝜀 given before, the GA utilizes
binary encoding method, and each parameter is encoded
by 20 bits of binary number. Therefore, the search space is
defined as the solution space in which each potential solution
is encoded as a distinct chromosome.

Step 3. The parameters 𝐶, 𝜎
2, and 𝜀 of each individual

are used to build the SVR model. With the BSPs of the
training data, the cardiac TMPs are reconstructed. Then the
performances of individuals in the generation are evaluated
by the specific objective fitness function according to (6).The
individual with the minimum fitness value will be selected,
and then the chromosome of selected individual is preserved
as the best result.

Step 4. Thebasic genetic search operators comprise selection,
mutation, and crossover, which are applied orderly to obtain
a new generation where the new individual (𝐶, 𝜎

2
, 𝜀) with

the best performance is retained.

Step 5. The new best fitness value will be compared to that of
the best result, and then select the better one to update the
best result.

Step 6. This process will not come to an end until the
termination criterion is met, and the best chromosome is
presented as the final solution; otherwise, go back to Step 4.

2.3. Differential Evolution (DE) Optimization Method. Dif-
ferential evolution [23] is a population-based and parallel
direct searchmethod which is used to approximate the global
optimal solution. As is mentioned above, the optimization of
hyperparameter (𝐶, 𝜎

2
, 𝜀) can be transformed into solving

the minimization of the fitness function Min: 𝑓(𝑥), 𝑥 =

𝑥
𝑖𝐺
, 𝑖
𝐺

= 1, 2, . . ., andNP is three-dimensional parameter
vectors including (𝐶, 𝜎

2, and 𝜀). Subsequently, each gen-
eration evolves by employing the evolutionary operators
involving mutation, crossover, and selection operations to
produce a trail vector for each individual vector [24], and the
detailed evolutionary strategies can be described as follows.

Step 1 (initialize DE parameters). The population size NP is
set as 20 [25], and the dimension of parameter vectors 𝐷 is
3. The termination criterion is set as follows: the number of
iterations is set as 30, and the fitness tolerance value is set as
0.001. The mutation factor 𝐹 is selected in [0.5, 1], and the
crossover rate CR is selected in [0, 1].

Step 2 (initialize population). Set 𝐺 = 0. Generate an NP∗D
generation which consists of individuals (𝐶, 𝜎

2, and 𝜀) with
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uniform probability distribution random values within the
control variable bounds of parameter space.

Step 3. With the parameters, train the SVR model, and
forecast the training datasets.Then calculate the fitness target
of all the individuals in the generation, and record the
minimumvalues of the fitness function and set (𝐶, 𝜎

2, and 𝜀)

correspondingly as the 𝑥best.

Step 4 (mutation operation). For each target vector 𝑥
𝑖,𝐺
, an

associated mutant vector is generated according to

V
𝑖,𝐺+1

= 𝑥best + 𝐹 [(𝑥
𝑟
1
,𝐺

− 𝑥
𝑟
2
,𝐺
) + (𝑥

𝑟
3
,𝐺

− 𝑥
𝑟
4
,𝐺
)] . (7)

The random indexes 𝑟
1
, 𝑟
2
, 𝑟
3
, and 𝑟

4
have to be distin-

guished from each other and from the current trial index 𝑖.

Step 5 (crossover operation). In order to increase the diver-
sity of the perturbed parameter vectors, crossover is intro-
duced by the following formula:

𝑢
𝑗𝑖,𝐺+1

= {
V
𝑗𝑖,𝐺+1

if (randb (𝑗) ≤ CR) or 𝑗 = rnbr (𝑖)
𝑥
𝑗𝑖,𝐺+1

if (randb (𝑗) > CR) and 𝑗 ̸= rnbr (𝑖) ,

(8)

where 𝑢
𝑖,𝐺+1

= (𝑢
1𝑖,𝐺+1

, 𝑢
2𝑖,𝐺+1

, 𝑢
3𝑖,𝐺+1

), randb(𝑗) ∈ [0, 1] is
the 𝑗th evaluation of a uniform random number generator,
and rnbr(𝑖) is a randomly chosen integer in the range in [1, 3]
to ensure that 𝑢

𝑖,𝐺+1
gets at least one element from V

𝑖,𝐺+1
.

Step 6 (selection operation). After the fitness values of the
new generation being calculated, then selecting the new best
individual as 𝑢best,𝐺+1, the selection operation is performed.
To decide whether or not it could replace the 𝑥best, the fitness
value of 𝑓(𝑢best,𝐺+1) is compared to that of 𝑓(𝑥best). The
operation is given as follows:

𝑥best = {
𝑢best,𝐺+1 𝑓 (𝑢best,𝐺+1) ≤ 𝑓 (𝑥best)

𝑥best 𝑓 (𝑢best,𝐺+1) > 𝑓 (𝑥best) .
(9)

Step 7. Termination condition checking: if max iterations𝐺 is
met or the fitness value of𝑓(𝑥best) is reachedwithin the fitness
tolerance value, return the recorded global optimal parameter
(𝐶, 𝜎
2, and 𝜀); otherwise, go to Step 4.

2.4. Particle Swarm Optimization (PSO) Optimization Meth-
od. The Particle swarm optimization (PSO) is a bioinspired
stochastic optimization technique which was basically devel-
oped through simulating social behaviour of birds and insects
that keep living by maintaining swarm actions. A particle
is considered as a bird in a swarm consisting of a number
of birds, and all particles fly through the searching space
by following the current optimum particle to find the final
optimum solution of the optimization problem [26].

The detailed experimental procedure for selecting the
best hyperparameters (𝐶, 𝜎

2
, and 𝜀) is listed as follows.

Step 1. Particle initialization andPSOparameters setting [27]:
set the PSO parameters including the scope of 𝐶, 𝜎

2, and

𝜀; the number of particles is 20; particle dimension is 3.
The termination criterion is set as follows: the number of
iterations is set as 30 and the fitness tolerance value as 0.001.

Step 2. Randomly generate primal population of random
particles (𝐶, 𝜎

2
, and 𝜀) and velocities inside the searching

space.

Step 3. Construct SVR model with the parameters in each
particle, and perform the prediction with the training data.
Then evaluate the regression accuracy based on the defined
fitness function.Then maintain the record of the best perfor-
mance with the minimum error as the global best solution.

Step 4. Particle manipulations: suppose that 𝑋
𝑖
(𝑘) and 𝑉

𝑖
(𝑘)

are the particle and velocity at step 𝑘, and they are updated
into their new values 𝑋

𝑖
(𝑘 + 1) and 𝑉

𝑖
(𝑘 + 1) at step 𝑘 + 1 by

applying the two equations below:

𝑉
𝑖 (𝑘 + 1) = 𝜔𝑉

𝑖 (𝑘) + 𝑐
1
𝑟
1
(𝑝
𝑖 (𝑘) − 𝑋

𝑖 (𝑘))

+ 𝑐
2
𝑟
2
(𝑝
𝑔 (𝑘) − 𝑋

𝑖 (𝑘)) ,

𝑋
𝑖 (𝑘 + 1) = 𝑋

𝑖 (𝑘) + 𝑉
𝑖 (𝑘 + 1) Δ𝑡,

(10)

where 𝑉
𝑖

∈ [𝑉
𝑖min, 𝑉𝑖max], Δ𝑡 is the unit time step value,

and 𝜔 is the inertia weight. 𝑝
𝑖
(𝑘) and 𝑝

𝑔
(𝑘) are the best

coordinates of particle number 𝑖 and the whole swarm until
step 𝑘, respectively. Positive constants 𝑐

1
and 𝑐
2
are learning

rates while 𝑟
1
and 𝑟
2
are random numbers between 0 and 1.

Step 5. Train the SVRmodel using the particles (𝐶, 𝜎
2, and 𝜀)

in the new generation and forecast the training datasets. After
evaluating the fitness function, pick the new best particle as
the local best.

Step 6. Compare the local best and global best, and choose
the better one to update the global best.

Step 7. Stop condition checking: if a termination criterion
(the number of iterations) is met or the fitness value of the
global best is reached within the extent predefined, return
the recorded global best as the best parameter (𝐶, 𝜎

2
, and

𝜀); otherwise, go to Step 4.

2.5. Simulation Protocol and Data Set. The SVR model is
tested with our previously developed realistic heart-torso
model [11, 12]. In this simulation protocol, a normal ven-
tricular excitation is illustrated as an example to calculate
the data set for the SVR model. The considered ventricular
excitation period from the first breakthrough to the end is
357ms, and the time step is 1ms, and thus 358 BSPs 𝜑

𝐵
and

TMPs 𝜑
𝑚
temporal data sets are calculated. Sixty data sets

(𝜑
𝐵
and 𝜑

𝑚
) are chosen at times of 3ms, 9ms, 15ms, . . .,

357ms after the first ventricular breakthrough which will be
used as testing samples to assess the SVR models prediction
capability and robustness. The rest 298 in 358 data sets
are employed as the training samples for the training and
optimal parameter selection procedures. Moreover, during
each ventricular excitation period, 412 potentials on the BSPs
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and 478 potentials on the TMPs are captured. That is to say,
the matrix of BSPs is divided into the training data (298 ×

412) and testing data (60 × 412), and the matrix of TMPs is
also divided into the training data (298 × 478) and testing
data (60 × 478). Each SVR regression model is built by
using the mapping relations between BSPs training data (298
× 412) and one TMPs training point (298 × 1). Based on
all the training data, 478 different regression models were
built by usingGA-SVR,DE-SVR, and PSO-SVR, respectively.
Using the corresponding SVR model, we can reconstruct the
corresponding TMPs (60 × 1) from the BSPs testing data (60
× 412). For all testing samples, we can reconstruct the TMPs
from the all 478 regression SVR models.

3. The Proposed System Framework

3.1. Overview of the SVRParametersOptimization Framework.
As shown in Figure 1, in the first stage, the original input
data is preprocessed by scaling the training data and feature
extraction. In the second stage, the hyperparameters (𝐶, 𝜎2,
and 𝜀) of SVR method are set carefully by using the GA,
DE and PSO optimization methods. Moreover, GA-SVR,
DE-SVR, and PSO-SVR are applied to construct the hybrid
SVR model, respectively. Finally, according to the effective
hybrid SVR models, we can reconstruct the transmembrane
potentials (TMPs) from body surface potentials (BSPs) by
using these testing samples.

3.2. Preprocessing the Data Set

3.2.1. Scaling the Training Set. During preprocessing stage,
each input variable is scaled in order to avoid the potential
value from spanning a great numerical range and to prevent
numeric difficulties. Generally, all input values including 358
BSPs and TMPs temporal data sets are linearly scaled to the
range (0,1) by the following formula [see (11)]:

𝜑


𝑡
=

𝜑
𝑡
− 𝜑
𝑡min

𝜑
𝑡max − 𝜑

𝑡min
, (11)

where 𝜑
𝑡
is the original potential value of each time 𝑡, 𝜑

𝑡
is the

scaled potential value, 𝜑
𝑡max is the maximum potential value

of each time 𝑡, and 𝜑
𝑡min is the minimum potential value of

each time 𝑡.

3.3. Feature Extraction by Using KPCA. The kernel principal
component analysis (KPCA) is a nonlinear feature extraction
method which is one type of a nonlinear PCA developed
by generalizing the kernel method into PCA. Specifically,
the KPCA initially maps the original inputs into a high-
dimensional feature space 𝐹 using the kernel method and
then calculates the PCA in the high-dimensional feature
space 𝐹.The detailed theory of KPCA can be consulted in the
paper [28].

Feature extraction is a significant task for preprocessing
the original input data in developing an effective SVRmodel.
As is investigated in our previous study [12], the SVR with
feature extraction by using KPCA has superior performances

BSPs

Scaling data set

KPCA for feature extraction
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Parameters 
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Figure 1: The framework of proposed parameters optimization
method for SVR method in solving the inverse ECG problem.
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Figure 2: The temporal course of the TMPs for one representative
source point on epicardium (50th) over the 60 testing times.
The reconstruction TMPs with GA-SVR, DE-SVR, and PSO-SVR
methods are all compared with original TMPs.

to that of using PCAor the single SVRmethod in reconstruct-
ing the TMPs. In this paper, the kernel principal component
analysis (KPCA) was proposed to implement the feature
extraction. And the dimension of BSPs dataset is reduced
from 412 to 200 properly, which can reduce the dimensions
of the inputs and improve the generalization performances of
the SVR method.

4. Results and Discussion

4.1. The Result of Parameters Selection. In this study, the
GA, DE, and PSO algorithms were proposed to seek the
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Figure 3: The TMP distribution on the ventricular surface at
two sequential testing time points. (a) shows the comparison of
reconstructed TMP distributions when the time point is 27ms and
(b) shows the comparison of reconstructed TMP distributions when
the time point is 51ms. Moreover, the upper row shows the TMPs
from an anterior view and the lower from a posterior view. In each
row, the first figure is the original TMPs, and the rest three are the
reconstructed TMPs by using the GA-SVR, DE-SVR, and PSO-SVR
methods.

corresponding optimal hyperparameter (𝐶, 𝜎
2
, and 𝜀) of the

478 SVR models. Table 1 displays the average value and the
standard deviations of three parameters in 478 SVR models
by using GA, DE, and PSO optimization algorithms. From it,
we can find that the gaps among these optimal parameters are
obvious by using three different optimization methods. The
standard deviations of 𝜀 are neglected because they are very
small.

4.2. Comparison of Reconstruction Accuracy. This study com-
pares the reconstruction performance based on the proposed
three intelligent optimization algorithms for selecting the
hyperparameters of SVR. By using GA-SVR, DE-SVR, and
PSO-SVR hybrid models, two types of experiments for
reconstructing the TMPs have been conducted. The first
experiment reconstructs the TMPs for one representative
source point (the 50th point) on the epicardium over 60
testing times, as is depicted in Figure 2. Since the gaps among

Table 1: The average and the standard deviations of optimal hyper-
parameters (𝐶, 𝜎

2
, and 𝜀) by using GA, DE, and PSO optimization

algorithms.

Parameter Method
GA DE PSO

𝐶 1447.61 ± 594.32 7624.14 ± 913.67 5.31 ± 3.02

𝜎
2

0.64 ± 0.55 1.59 ± 1.38 1.22 ± 1.02

𝜀 1.48𝑒 − 005 1.80𝑒 − 005 1.98𝑒 − 005

Table 2: The mean values and standard deviations of these 60
testing errors between the simulated TMPs and the reconstructed
TMPs by using GA-SVR, DE-SVR, and PSO-SVR methods at one
representative source point (the 50th point on the epicardium).

Indexes Method
GA-SVR DE-SVR PSO-SVR

Mean value 2.96 2.69 1.55
Standard deviation 1.92 1.67 1.03

these three methods are so slight that we have to add a
statistical analysis to validate the results. The mean values
and standard deviations of these 60 testing errors between
the simulated TMPs and the reconstructed TMPs by using
GA-SVR, DE-SVR, and PSO-SVR methods are investigated,
as shown in the Table 2. From Figure 2 and Table 2, the
PSO-SVR outperforms the GA-SVR and DE-SVR methods
in reconstructing the TMPs for one representative source
point over all the testing times. Furthermore, the DE-SVR is
superior to the GA-SVRmethod in reconstructing the TMPs.

The second experiment reconstructs the TMPs on all the
heart surface points at one time instant. These inverse ECG
solutions are shown in Figure 3, in which two sequential
testing time points (27 and 51ms after the first ventricular
breakthrough) are presented to illustrate the performances of
theGA-SVR,DE-SVR, and PSO-SVRmethods. It can be seen
that, among the three parameters optimization methods, the
hybrid PSO-SVR performs better thanGA-SVR andDE-SVR
methods because its reconstructed solutions are much closer
to the simulated TMPs distributions.

Based on the simulation information of TMPs, we can
evaluate the accuracy of the reconstructed TMPs of these
three different intelligent optimization algorithms at the
testing time by mean square error (MSE), the relative error
(RE), and the correlation coefficient (CC):

MSE =
1

𝑛

𝑛

∑

𝑖=1

(𝜑
𝑐
− 𝜑
𝑒
)
2
,

RE =

𝜑𝑐 − 𝜑
𝑒



𝜑
𝑒

,

CC =
∑
𝑛

𝑖=1
[(𝜑
𝑐
)
𝑖
− 𝜑
𝑐
] [(𝜑
𝑒
)
𝑖
− 𝜑
𝑒
]

𝜑𝑐 − 𝜑
𝑒


𝜑𝑒 − 𝜑

𝑒



.

(12)

Here, 𝜑
𝑒
is the simulated TMP distribution at time 𝑡, and 𝜑

𝑐

is the reconstructed TMPs. The quantities 𝜑
𝑒
and 𝜑

𝑐
are the
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Figure 4: The performances of the reconstructed TMPs over 60 sampling times by using GA-SVR, DE-SVR, and PSO-SVR, respectively.
(a) The mean square error (MSE) of the reconstructed TMPs; (b) The relative errors (RE) of the reconstructed TMPs; (c) The correlation
coefficient (CC) of the reconstructed TMPs.

mean value of 𝜑
𝑒
and 𝜑

𝑐
over the whole ventricular surface

nodes at time 𝑡. 𝑛 is the number of nodes on the ventricular
surface.

The MSE, RE, and CC of the three sets of reconstructed
TMPs over the 60 testing samples can be found in Figure 4.
In contrast to GA-SVR and DE-SVR, the PSO-SVR method
can yield rather better results with lower RE, MSE, and a
higher CC. To validate the robustness of the three methods
in reconstructing the TMPs, the quantities m-MSE, m-RE
and m-CC, that is, the mean value of MSE, RE, and CC at
different testing time instants, are presented. Moreover, std-
MSE, std-RE and std-CC, that is, the standard deviation of
MSE, RE, and CC over the whole testing samples, are also
investigated. As shown in Figure 5, the mean value of the
MSE, RE, and CC over the 60 testing samples obtained by
GA-SVR, DESVR, and PSO-SVRmethods are presented, and
the standard deviations of those 60 MSEs, REs and CCs are
also provided.

4.3. Comparison of Reconstruction Efficiency. In solving the
inverse ECG problem, seeking the optimal parameters in
the settled range is time consuming. Therefore, how to suc-
cessfully excogitate a relatively timesaving optimal method
matters significantly in the practical application, particularly
in the diagnosis of cardiac disease. Here, we figure out the
mean time of the three optimizationmethods in selecting the
optimal hyperparameters of SVR. In order to forecast the 478
TMPs over 60 testing samples on an epi- and endocardial
surface, 478 sets of parameters (𝐶, 𝜎

2, and 𝜀) have to be
selected in each optimization method and with the testing
data, 478models are built accordingly. In this study, themean
time for selecting the optimal parameters by adopting GA,
DE, and PSO is 208.27 s, 342.53 s, and 130.16 s, respectively. It
can be seen that PSO can lead to a convergence more quickly
and lessen more time than GA and DE. Therefore, according
to the comparison of their efficiencies, PSO-SVR method
significantly outperforms the GA-SVR and DE-SVR in the
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Figure 5:The m-MSE, m-RE, m-CC, std-MSE, std-RE, and std-CC of 60 testing sampling times by using GA-SVR, DE-SVR, and PSO-SVR,
respectively, in terms of mean ± standard deviation. (a) m-MSE and std-MSE, (b) m-RE and std-RE, and (c) m-CC and std-CC.

reconstruction of the TMP, which is the most efficient one
among these three optimization methods.

5. Conclusion

In the study of the inverse ECG problem, SVR method
is a powerful technique to solve the nonlinear regression
problem and can serve as a promising tool for performing
the inverse reconstruction of the TMPs.This study introduces
three optimization methods (GA, DE, and PSO) to deter-
mine the hyperparameters of the SVR model and utilizes
these models to reconstruct the TMPs from the remote
BSPs. Feature extraction using the KPCA is also adopted to
preprocess the original input data. The experimental results
demonstrate that PSO-SVR is a relatively effective method
in terms of accuracy and efficiency. By comparison, PSO-
SVR method is superior to GA-SVR and DE-SVR methods,
whose reconstructed TMPs are close to the simulated TMPs.
Besides, PSO-SVR is much more efficient in determining the
optimal parameters and in building the predicting model.
According to these results, the PSO-SVR method can serve
as a promising tool to solve the nonlinear regression problem
of the inverse ECG problem.
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