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Bioprocesses are involved in producing different pharmaceutical products. Complicated dynamics, non-
linearity and non-stationarity make controlling them a very delicate task. The main control goal is to
get a pure product with a high concentration, which commonly is achieved by regulating temperature
or pH at certain levels. This paper discusses model predictive control (MPC) based on a detailed unstruc-
tured model for penicillin production in a fed-batch fermentor. The novel approach used here is to use the
inverse of penicillin concentration as a cost function instead of a common quadratic regulating one in an
optimization block. The result of applying the obtained controller has been displayed and compared with
the results of an auto-tuned PID controller used in previous works. Moreover, to avoid high computa-
tional cost, the nonlinear model is substituted with neuro-fuzzy piecewise linear models obtained from
a method called locally linear model tree (LoLiMoT).

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Bioprocesses, which are involved in producing different phar-
maceutical products, may conveniently be classified according to
the mode chosen for the process: either batch, fed-batch or contin-
uous. From the control engineer’s viewpoint, they are fed-batch
processes that present the greatest challenge because the model
of the plant is usually given as a black-box model, i.e. no mathe-
matical model is available. Moreover, both the initial states of
the process and the parameters of the model may vary randomly
from batch to batch [1]. For the same input, the output of each
batch would not be the same. Antibiotics such as penicillin are
made in fed-batches commercially, and there is a great economic
incentive to optimize such processes [2]. Controlling the following
parameters has significant importance dealing with these pro-
cesses: (a) temperature; if it falls down, the proteins’ reactions
slow down and if it rises the proteins will denature. (b) pH; suit-
able pH prepares the environment for proper transfer of feedstuff
and energy/redundant stuff to and from the cell membrane respec-
tively. (c) Dissolved oxygen ðDO2Þ; cells cannot do their vital
actions without oxygen. Control of either temperature, pH or DO2
ll rights reserved.
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is necessary depending on the product type, setup configuration
and environmental conditions [2,3]. A typical fermentor is depicted
in Fig. 1 [4].

Bioprocesses have complicated dynamics, therefore their con-
trol is a challenging and delicate task; they also are inherently con-
cerned with nonlinearity and non-stationarity, which make
modeling and parameter estimation particularly difficult. More-
over, the scarcity of on-line measurements of the component con-
centrations makes this task more sophisticated [5]. Hence,
conventional control methods do not succeed in such task [6–8].

Temperature and pH control of bioreactors have been an inter-
esting problem from both implementation and controller design
points of view [3]. This is particularly true if the complex microbial
interactions cause significant nonlinear behaviour. When this oc-
curs, conventional control strategies may not succeed and more
advanced strategies are needed. Previous studies reported various
types of model-based [9–16] and intelligent [17–26] controller de-
signs, while these control techniques may be successful for open-
loop stable processes or in the vicinity of an unstable operating
point [27], about which a linearization is applied, and they are of-
ten inadequate for highly unstable nonlinear bioreactors. However,
attempts to develop an advanced method for controlling biopro-
cesses variables still continue. This is because pure product, which
is the main goal of control, would be achieved using a fine control,
whose way goes through model-based control methods. Model-
free methods due to lack of detailed information of the system
model can not lead to a high performance controller.
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Table 1
Functional relationship among the process variables.

Model structure

X ¼ f ðX; S; CL;H; TÞ
S ¼ f ðX; S; CL;H; TÞ
CL ¼ f ðX; S; CL;H; TÞ
P ¼ f ðX; S;CL;H; T; PÞ
CO2 ¼ f ðX;H; TÞ
H ¼ f ðX;H; TÞ

X, biomass concentration; S, substrate concentration; CL, dissolved oxygen con-
centration; P, penicillin concentration; CO2, carbon dioxide concentration; H,
hydrogen ion concentration for pH; T, temperature.

Fig. 1. A typical fermentor.
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Predictive control has become a popular topic in the recent
years. Model predictive control (MPC) is used in several industrial
processes nowadays [9]. It has been successful in dealing with de-
layed systems that have constraints on the state or the control sig-
nal. This approach has proven to be feasible for online optimization
and has acceptable performance as well. Its nonlinear [10] and
multiple-model [11] version is also very popular in overcoming
the aforementioned drawbacks.

In this article, MPC is utilized based on a detailed unstructured
model for penicillin production in a fed-batch fermentor. Section 2
discusses about the model, which extends the mechanistic model
of Bajpai and Reuss [28] by adding some input variables as intro-
duced in [29]. To avoid high computational cost, obtaining the
appropriate control signal using linear MPC for a linearized model
of penicillin fermentation is discussed in Section 3. Section 4 dis-
cusses about performing MPC on the nonlinear model. The results
of utilizing this controller to maximize penicillin concentration
have been illustrated and also compared with the results of auto-
tuned PID controller used in [29]. In Section 5, this method has
been modified to have lower computational cost using LoLiMoT
method for identifying locally linear models and exploiting them
instead of the nonlinear model for prediction. Finally, the advanta-
ges and drawbacks of these methods are concluded in Section 6.

2. Model formulation

Extensive research has generated new information on the
mechanisms of cellular reactions and morphological features of
the mycelia and their role in the synthesis of penicillin. Given a
choice of mechanisms, models of different degrees of complexity,
for both cellular differentiation and bioreactor performance, have
been proposed. The more complex models require and provide
more information [30,31], but they are also more difficult to eval-
uate and apply in automatic control systems for production-scale
bioreactors [32,33].

Fed-batch penicillin fermentation process data are generated
using a detailed mathematical model and a simulator [29]. The
model has five input variables, nine process variables, and five
quality variables. Penicillin fermentation has four physiological
phases (lag, exponential cell growth, stationary, and cell death)
and two operational phases. The first two physiological phases
are conducted as batch operation (first operational phase) while
the last two are conducted as fed-batch operation [10]. In the first
operational phase, fermentation is carried out in a batch mode to
promote biomass growth resulting in high cell densities. The sec-
ond operational phase is a fed-batch operation where glucose is
fed until the end of the fed-batch operation. Functional relation-
ships among the process variables are completely introduced in
[29] and summarized in Table 1.

Experimental findings suggest a high degree of dependence of
biomass growth on both the carbon source (glucose) and oxygen
as substrates [28]. The biomass growth is also known to be inhib-
ited by high amounts of biomass itself in penicillin fermentation.
The dependence of specific growth rate on carbon and oxygen sub-
strates was assumed to follow Contois kinetics [28] to consider the
biomass inhibition. The biomass growth has been described as:

dX
dt
¼ lX � X

V
dV
dt

ð1Þ

in which the specific growth rate l as introduced in [29] is:
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in order to take into account the environmental parameters such as
pH and temperature. The variables and parameters used are defined
in Table 2 [29].

Since the pH of the culture medium has a tendency towards
acidity, as the concentration of biomass increases, the amount of
NH4OH added into the culture medium also increases. Based on
this observation, the hydrogen ion concentration ½Hþ� is related
to biomass formation as:
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where B is:

B ¼ j10�14=jHþj � jHþkV � Ca=bðFa þ FbÞDt
V þ ðFa þ FbÞDt

ð4Þ

Fa and Fb represent acid and base flow rates in l/h, respectively,
where, the concentrations in both solutions are typically assumed
equal as Ca=b ¼ 3 Mol=L [29].

Moreover, the influence of temperature on the specific growth
rate of a microorganism shows an increasing tendency with an in-
crease in temperature up to a certain value, which is microorgan-
ism specific and a rapid decrease is observed beyond this value.
This decrease might be treated as a death rate [34]. Here, the effect
of temperature on the specific growth rate has been introduced as
an Arrhenius type of kinetics in Eq. (2).

The production of penicillin is described by non-growth associ-
ated product formation kinetics. The hydrolysis of penicillin is also
included in the rate expression [28]:



Table 2
Initial conditions, kinetic and controller parameters for nominal operation 29.

Time t ðhÞ Value

Initial conditions
Substrate concentration: S (g/l) 15
Dissolved oxygen concentration: CLð¼ C�L at saturation) (g/l) 1.16
Biomass concentration: X (g/l) 0.1
Penicillin concentration: P (g/l) 0
Culture volume: V (l) 100
Carbon dioxide concentration: CO2 (mmol/l) 0.5
Hydrogen ion concentration: ½Hþ� (mol/l) 10�5:1

Temperature: T (k) 297
Heat generation: Qrxn (cal) 0

Kinetic and parameters and variables
Feed substrate concentration: st (g/l) 600
Feed flow rate of substrate: F (l/h)
Feed temperature of substrate: Tf (K) 298
Yield constant: Yx=s (g biomass/g glucose) 0.45
Yield constant: Yx=o (g biomass/g oxygen) 0.04
Yield constant: Yp=s (g penicillin/g glucose) 0.90
Yield constant: Yp=o (g penicillin/g oxygen) 0.20
Constant: K1 (mol/l) 10�10

Constant: K2 (mol/l) 7� 10�5

Maintenance coefficient on substrate: mx (per h) 0.014
Maintenance coefficient on oxygen: mo (per h) 0.467
Constant relating CO2 to growth: a1 (mmol CO2/g biomass h) 0.143
Constant relating CO2 to maintenance energy: a2 (mmol CO2/g biomass h) 4� 10�7

Constant relating CO2 to penicillin production a3 (mmol CO2/l h) 10�4

Maximum specific growth rate: lx (per h) 0.092
Contois saturation constant: Kx (g/l) 0.15
Oxygen limitation constant: Kox ;Kop (no limitation) 0
Oxygen limitation constant: Kox ;Kop (with limitation) 2� 10�2

Specific rate of penicillin production: lp (per h) :5� 10�4

Inhibition constant: Kp (g/l) 0.005
Inhibition constant for product formation: KI (g/l) 0.0002
Constant: p 0.10
Penicillin hydrolysis rate constant: K (per h) 3
Arrhenius constant for growth: kg 0.04
Activation energy for growth: Eg (cal/mol) 7� 103

Arrhenius constant for cell death: kd 5100
Activation energy for cell death: Ed (cal/mol) 1033

Density x heat capacity of medium: qCp (per 1 �C) 50,000
Density heat capacity of cooling liquid: rcCpc (per 1 �C) 1/1500
Yield of heat generation: rq (cal/g biomass) 1/2000
Constant in heat generation: rq2 (cal/g biomass h) 60
Heat transfer coefficient of cooling/heating liquid: a (cal/h �C) 1:6783� 10�4

Cooling water flow rate: Fc (l/h) 1000
Constant: b 0.60
Constants in Kla : a;b 70, 0.4
Constant in Floss : k (per h) 2:5� 10�4

Proportionality constant: c (mol ½Hþ�/g biomass) 10�5

Controller parameters (PID)
pH: (base) Kc ; tI : ðhÞ; td : ðhÞ 8� 10�4, 4.2, 0.2625
pH: (acid) Kc ; tI : ðhÞ; td : ðhÞ 1� 10�4, 8.4, 0.125
Temperature: (cooling) Kc ; tI : ðhÞ; td : ðhÞ 70, 0.5, 1.6
Temperature: (heating) Kc ; tI : ðhÞ; td : ðhÞ 5, 0.8, 0.05
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dP
dt
¼ lppX � KP � P

V
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ð5Þ

in which lpp is the specific penicillin production rate:

lpp ¼ lp
S

ðKp þ Sþ S2=K1Þ
Cp

L

ðKopX þ Cp
LÞ

ð6Þ

The utilization of substrate is assumed to be caused by biomass
growth and product formation with constant yields and mainte-
nance requirements of the microorganism as suggested by Bajpai
and Reuss in [28] and mentioned in [29].

Glucose:
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¼ � l
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Dissolved O2:
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in which Kla is a function of agitation power input Pw and flow rate
of oxygen fg as introduced in [35].

Kla ¼ a
ffiffiffiffi
fg

q Pw

V

� �b

ð9Þ

The values of a;b are assigned so that the dependence of penicillin
concentration on Kla showed a very similar behavior to the predic-
tions of [28].

The fed-batch process operation causes a volume change in the
fermentor too. This is calculated by:
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dV
dt
¼ F þ Fa=b � Floss ð10Þ

in which to consider the effect of acid/base addition on the total vol-
ume change of the culture broth, the second term, Fa=b has been in-
cluded [29]. Moreover, Floss has been taken to be a function of
temperature and culture volume V of the fermentation broth [29]:

Floss ¼ Vk e5ððT�ToÞ=Tv�ToÞ � 1
� �

ð11Þ

where To and Tv are the freezing and boiling temperatures of the
culture medium that were assumed to have the same properties
as water, respectively.

The volumetric heat production rate is given as:

dQrxn

dt
¼ rq1

dX
dt

V þ rq2XV ð12Þ

where rq1 is assumed to be constant and might be treated as a yield
coefficient [36].

During the product synthesis phase, when the rate of biomass
formation becomes very small there is still significant heat gener-
ation from metabolic maintenance activities. Hence, the second
term in Eq. (12) is included to account for the heat production dur-
ing maintenance.

Because the heat generation and CO2 evolution show similar
profiles, their production rate due to growth (dX/dt) and biomass
(X) should have the same ratio as a first approximation. Based on
this observation, rq2 is calculated and tabulated in Table 2 [29].

The energy balance is written based on a coiled type heat ex-
changer which is suitable for a laboratory scale fermentor [37]:

dT
dt
¼ F

sf
ðTf � TÞ þ 1

VqCp
� Qrxn �

aFbþ1
c

Fc þ ðaFb
c=2qccpc

" #
ð13Þ

The variable CO2, from which biomass may be predicted with
high accuracy. CO2 evolution is assumed to be due to growth, pen-
icillin biosynthesis and maintenance requirements [29] as sug-
gested by [38]. The CO2 evolution is:

dCO2

dt
¼ a1

dX
dt
þ a2X þ a3 ð14Þ

Here, the values of a1;a2;a3 are chosen to give CO2 profiles sim-
ilar to the predictions of [38]. CO2 evolution is nearly the same as
oxygen demand for penicillin production using glucose as a sub-
strate and CO2 evolution trend levels off after the fed-batch switch
as expected.

The extended model developed in [29] and mentioned here
briefly consists of some differential equations that are solved
simultaneously.
3. Predictive controller design

Predictive control has been accepted as a useful advanced
industrial control technique in recent years [39]. It took more than
15 years after MPC appeared in industry as an effective means to
cope with constraints on the state or the control signal control
problems, its mathematical background appeared in a steady
framework. The issues of feasibility of the online optimization, sta-
bility and performance are acceptably understood for systems de-
scribed by linear models. Many challenges have been made on
these issues for nonlinear systems too, but there are many ques-
tions remaining about the practical applications.

MPC is mostly formulated in the state space. The nonlinear sys-
tem to be controlled is described by a discrete time model [9].

xðkþ 1Þ ¼ f ðxðkÞ;uðkÞ;dðkÞÞ; xð0Þ ¼ x0 ð15Þ
where xðkÞ;uðkÞ, and dðkÞ denote the state, control, and disturbance
respectively. A receding horizon implementation is typically formu-
lated by introducing the following optimization problem.

min
XNp

i¼1

xTðiÞQxðiÞ þ
XNc

i¼1

uTðiÞRuðiÞ s:t: Exþ Fu 6 W ð16Þ

where Np is the prediction horizon, Nc is the control horizon, and
E; F;W are matrices with appropriate dimensions to x and u, which
describe the constraints. MPC is performed by determining the con-
trol signal using this cost function minimization in each step. But,
only the first element of the calculated sequence is applied to the
plant and this process is to be continued in next steps for shifted
horizons. This optimization problem solves for a sequence of future
input changes designed to minimize the objective over a prediction
horizon of length Np [10]. In this setup, yet no disturbance dðkÞ is
supposed to occur.

The weighting matrices, Q, and R are used to trade off setpoint
tracking and manipulated variable movement, respectively. More-
over, there are physical constraints on acid and base flow rates and
they could not exceed 0.1 ml/h [29] to keep the cells from starving
and to avoid all of them being washed out of the bioreactor, but
any realistic cool water flow rate is available.

To avoid high computational cost dealing with nonlinear opti-
mization, a linearized model of penicillin fermentation process
has been chosen near its working point [40]. In fact, the original
model parameters are varying with respect to time but most of
them have a small variation range during the entire simulation
time. For the variables with wide ranges of variation, such as bio-
mass concentration, the mean of their maximum and minimum va-
lue was taken into account as empirically achieved to lead to better
performance. Actually, this model would not lead to acceptable
performance if process variables vary far from its working point,
since some information of the process original model has not been
considered. This model consists of six transfer functions [40], since
it has three inputs (cool water, acid and base flow rates) and two
outputs (temperature and pH). Here the problem mainly is con-
cerned with the transfer function from cool water flow rate to
temperature:

G23 ¼
BðzÞ
AðzÞ ¼

:9234�4000
:1126e5 zþ :9234

:1126e5

z2 þ :6686e4
:1126e5 z� 1:168

:1126e5

ð17Þ

which is an unstable transfer function. The predictors to predict Np

further control signals are described as in a generalized predictive
controller framework (for linear systems) [41]:

uðtÞ ¼ Ruðt � 1Þ þ SyðtÞ þ KucðtÞ ð18Þ

in which ucðtÞ is the setpoint; 298 K, uðt � 1Þ is the previous control
input, yðtÞ is the current output and R; S are calculated using the
method introduced in [39] and used in [40].

It should be noted that due to the highly nonlinear and open-
loop unstable nature of this bioprocess, the MPC formulation is
not able to deal efficiently with setpoint tracking. This is mainly
due to failures in the ODE solver and hence to reach better perfor-
mance, the regulation of the temperature to 298 K has coarsely
been chosen as a cost function regarding movements of control sig-
nal [40]. This method led to a closed form controller, which is
much easier than empirically tuning an auto-tuned PID. It is
noticeable that the constraints are applied in a suboptimal fashion,
whereby candidate solutions exceeding these bounds are instead
replaced by the bounds themselves.

The algorithm was implemented in MATLAB and the optimiza-
tion was solved on-line, at each time step. The sampling time was
0.05 h, which is acceptable for practical use. Prediction and control
horizon both selected as 24 h and the weighting factors used were
Q = 1, and R ¼ 0:2 ðk ¼ 0:2Þ as mentioned before. Initial conditions
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are chosen the same as the ones in [29]. The temperature and the
control signal, which is cool water flow rate, are shown in Figs. 2
and 3 respectively.
Fig. 6. Acid and b
The pH and penicillin concentration are also provided in Figs. 4
and 5 respectively. In this setup, yet pH is to be controlled through
a PID controller. As can be seen in the figures, the fluctuations of
ase flow rate.
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the control signals are much less than the ones provided in [29].
The penicillin concentration, which is the final goal, is almost
greater than the one mentioned in [29] too, but yet below 1.4 g/l.
These are due to using predictive control. Since conventional con-
trollers just make ad-hoc decisions regarding the current error sig-
nal, but the predictive controller considers future error signals as
well to make a convenient decision. It is noticeable that although
temperature has more fluctuations around 298 K, but pH is almost
set to 5 without directly being controlled by predictive approach,
which is due to their close relationship in the model. The acid,
and base flow rates are provided in Fig. 6, and the substrate feed
rate is also depicted in Fig. 7. The other parameters can be observed
in Fig. 8.

In this part, taking into account the high computational cost of
nonlinear optimization, the predictive approach was proposed to
control the linearized process. This led to a higher product concen-
tration than the one provided in [29] with less fluctuations of the
control signal, which is the cool water flow rate. The merit of this
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method is its low computational cost of solving the optimization
problem, while leading to a closed form controller, that is much
easier than empirically tuning an auto-tuned PID. But, yet better
performance could be performed by nonlinear optimization, which
is to be discussed in the next section.

4. Nonlinear predictive approach

As mentioned before, due to the highly nonlinear and open-loop
unstable nature of this bioprocess, the MPC formulation is not able
to deal efficiently with setpoint tracking. This is mainly due to fail-
ures in the ODE solver and to the severe ill-conditioning of the
optimization problem. To overcome these difficulties and to
achieve better performance, the inverse of penicillin concentration
has been chosen as a cost function regarding movements of manip-
ulated variables in this section. In addition, the weighting coeffi-
cients are chosen such that these two terms have the same order
of the magnitude too. Hence, the optimization problem is trans-
formed into the following form:

min 0:001 �
XNp

i¼1

1=PðiÞ þ 10 �
XNc

i¼1

DuTðiÞDuðiÞ s:t: ua;ub 6 0:1

ð19Þ

where the input vector consists of cool water flow rate, acid and
base flow rate.

It is noticeable that in this part as well as in Section 3 the opti-
mization problem can be solved for manipulating substrate feed
rate as studied in [9,25,42,43] too. However, it is a bit easier to con-
trol bioreactors concerning variables, such as pH and temperature,
for optimizing the microbial growth [3]. Since these are the ideal
variables and often have negligible perturbations. Variables subject
to large fluctuations, such as substrate can be a bit difficult to deal
with. For instance, too much substrate can be toxic while too little
can force an early stationary phase or the onset of endogenous de-
cay (i.e., death by starvation) [9].

As shown in Fig. 9, MPC is performed by determining the con-
trol signal by minimizing this cost function in each step regarding
the nonlinear original model used for prediction [44,10]. The solu-
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Fig. 9. Bioprocess predictive control block diagram.
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tion of this optimization problem is obtained using an SQP-type
method. Note that the parameters included in the optimization
problem have supposed to be in reach, but if not accessible, they
could be estimated by systematic methods using measured data
[45].

It is also noticeable that the constraints are not applied in a
suboptimal fashion, whereby candidate solutions exceeding
these bounds are instead replaced by the bounds themselves
(like Section 3). The constraints are considered in the
optimization problem instead and this leads to an optimal
solution while not moving on the boundary values of
constraints.

The algorithm was implemented in MATLAB and the SQP was
solved online, at each time step, using the function fmincon. The
sampling time was 0.05 h, which is acceptable for practical use.
Prediction horizon and control horizon are 12 and 9 h respectively
and the weighting factors used were Q = 0.001, and R = 10 as men-
tioned before. Result for the penicillin concentration trajectory is
shown in Fig. 10.
Fig. 10. Penicillin concentration with initial substrate and biomass concentrations
of 15 g/l and 0.1 g/l, respectively.
In the controller implementation, input magnitude constraints
of 0.0 < u(k) < 0.1 are imposed for acid and base flow rate. The con-
trol signals are provided in Figs. 11 and 12. The substrate feed rate
is also depicted in Fig. 13.

As can be seen in the figures, the fluctuations of the control sig-
nals are much acceptable than the ones provided in [29], which has
large peaks in some small durations. It is also better than the one
provided in Section 3. Moreover, the penicillin concentration,
which is the final goal, is about 25% greater than the one men-
tioned in [29] and in Section 3, which is below 1.4 g/l. These are
due to using predictive control with that special cost function.
Temperature and pH profile are also provided in Figs. 14 and 15
respectively, from which just the temperature varies near the
empirical value used in [29], but not the pH. Other process vari-
ables are also depicted in Fig. 16. The cost function was also chosen
as regulator one to set temperature at 298 K and pH at 5, but the
results were not satisfying for the final product concentration.

It must be noted that most of the existing nonlinear model pre-
dictive controllers rely on an assumption of the optimization prob-
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Fig. 11. Cool water flow rate.



Fig. 12. Acid and base flow rate.
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lem to achieve stabilization. Some recent results on Lyapunov-
based model predictive control of nonlinear systems, where appro-
priate constraints are included in the optimization problem so that
the optimization problem is guaranteed to be feasible have also
been achieved. They are based on beginning from a characterized
set of conditions, mimicking the stability region obtained by
Lyapunov-based bounded controllers, handling input [46] and
state constraints [47] as well as uncertainty [48] without resorting
to a min–max formulation. The set of mentioned initial conditions
could be enhanced as most recently introduced in [49] as well. This
paper relies on the aforementioned assumption of achieve stabil-
ization beginning from the same initial condition mentioned in
[29]. It can easily be deducted from the figures that the stability
has been reached and hence a Lyapunov function exists for this
nonlinear predictive framework, which analytically is not easy to
find.

5. LoLiMoT based predictive controller

This model defined in Section 2 is definitely nonlinear and
hence the optimization problem for predictive controller, which
was fully discussed in Section 4, will lead to high computational
cost. To overcome this problem, piecewise linear models are uti-
lized to simplify that nonlinear model and finally lessen computa-
tional cost. The models are selected using offline identification
from the associated data. Moreover, the fuzzy weights of these
models are chosen by a neural network, such that the difference
between local models output and the nonlinear model output



Fig. 17. Multiple-model (including locally linear neuro-fuzzy models) structure.
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become as least as possible (Fig. 17). This neural network is trained
and used just to build up locally linear neuro-fuzzy (LLNF) models
for simplifying the original nonlinear model and the control design
remains in predictive framework.

The fundamental approach with the LLNF model is to divide the
input space into small linear subspaces with fuzzy validity func-
tions, which describe the validity of each linear model in its region
as a fuzzy neuron [50]. Thus, the total model is a neuro-fuzzy net-
work with one hidden layer, and a linear neuron in the output
layer, which simply calculates the weighted sum of the outputs
of locally linear models (LLMs). These LLMs have basically the same
interpretation as Takagi–Sugeno models [23] (with some assump-
tion on parameters), but parameter estimation in TS models is a lit-
tle bit difficult and hence, that big model is just broken into several
smaller LLNF models and LoLiMoT estimates the parameters for
these ‘‘small” models, which is easier:
ŷi ¼ xi0 þxilul þxi2u2 þ � � � þxipup ð20Þ

ŷ ¼
XM

i¼1

ŷi/iðuÞ ð21Þ

where u ¼ ½u1u2 � � � up�T is the model input, M is the number of LLM
neurons, and xij denotes the linear estimation parameters of the ith
neuron. The validity functions are chosen as normalized Gaussians:

/iðuÞ ¼
liðuÞPM
j¼1ljðuÞ

ð22Þ

liðuÞ ¼ exp �1
2
ðu1 � cilÞ2

r2
il

þ � � � þ ðup � cipÞ2

r2
ip

 ! !

¼ exp �1
2
ðu1 � cilÞ2

r2
il

 !
� � � � � exp �1

2
ðup � cipÞ2

r2
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 !
ð23Þ



Fig. 18. Topology of locally linear neuro-fuzzy model.

Fig. 19. Five iterations of LoLiMoT algorithm for two-dimensional input space.
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The topology of network is provided in Fig. 18.
The 2M � p parameters of the nonlinear hidden layer are the

parameters of Gaussian validity functions: center ðcijÞ and standard
deviation ðrijÞ. Optimization or learning methods are used to ad-
just the two sets of parameters, the rule consequent parameters
of the locally linear models (xij’s) and the rule premise parameters
of validity functions (cij’s and rij’s). Global optimization of linear
consequent parameters is simply obtained by the Least-Squares
technique [51,52]. The complete parameter vector contains
M � ðpþ 1Þ elements:

x ¼ ½x10 x11 � � � x1p x20 x21 � � � xM0 � � � xMp�
ð24Þ

and the associated regression matrix X for N measured data samples
is:

X ¼ ½X1 X2 � � � XM� ð25Þ

where:

Xi ¼

/iðuð1ÞÞ u1ð1Þ/iðuð1ÞÞ � � � upð1Þ/iðuð1ÞÞ
/iðuð2ÞÞ u1ð2Þ/iðuð2ÞÞ � � � upð2Þ/iðuð2ÞÞ

..

. ..
. ..

.

/iðuðNÞÞ u1ðNÞ/iðuðNÞÞ � � � upðNÞ/iðuðNÞÞ

2
66664

3
77775 ð26Þ

thus:

ŷ ¼ Xx̂ ð27Þ

x̂ ¼ XT X þ aI
� ��1

XT y; a 6 1 ð28Þ

a is the regularization parameter for avoiding any near singularity
of matrix XT X in Eq. (28). The remarkable properties of locally linear
neuro-fuzzy model, its transparency and intuitive construction, lead
to the use of least squares technique [51,52] for rule antecedent
parameters.

An incremental tree-based learning algorithm, e.g. locally linear
model tree (LoLiMoT) [50], is appropriate for tuning the rule pre-
mise parameters, i.e. determining the validation hypercube for
each locally linear model. In each iteration, the worst performing
locally linear neuron is determined to be divided. All the possible
divisions in the p-dimensional input space are checked and the
best is performed. The splitting ratio can be simply adjusted as
0.5; which means that the locally linear neuron is divided into
two equal halves. The fuzzy validity functions for the new struc-
ture are updated; their centers are the centers of the new hyper-
cubes, and the standard deviations are usually set as 0.7. The
algorithm is as follows:

(1) The initial model: Start with a single locally linear neuron,
which is a globally optimal linear least- squares estimation
over the whole input space with /1ðuÞ ¼ 1 and M ¼ 1.

(2) Find the worst neuron: Calculate a local loss function, e.g.
MSE for each of the i ¼ 1; . . . ;M locally linear neurons, and
find the worst performing neuron.

(3) Check all divisions: The worst neuron is considered for fur-
ther refinement. The validation hypercube of this neuron is
divided into two halves with an axis orthogonal split. Divi-
sions in all dimensions are tried, and for each of the p divi-
sions the following steps are carried out:

(a) Construction of the multi-dimensional validity func-

tions for both generated hypercubes.
(b) Local estimation of the rule consequent parameters

for both newly generated neurons.
(c) Calculation of the total loss function or error index for

the current overall model.
4) Validate the best division: The best of the p alternatives in
Step 3 is selected. If it results in reduction of loss functions
or error indices on training and validation data sets, the
related validity functions and neurons are updated, the
number of neurons is incremented M ¼ M þ 1; and the algo-
rithm continues from Step 2, otherwise the learning algo-
rithm is terminated.
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In Fig. 19, the algorithm is represented for two-dimensional in-
put spaces. This automatic learning algorithm provides the best
linear or nonlinear model with maximum generalization, and per-
forms well in prediction applications [53].

As mentioned in the beginning of this section, this algorithm
was applied to the nonlinear model output data for each output
(so nine networks were trained) in order to get a bank of locally
linear models to reduce the optimization computation time for
predicting future outputs using this network instead of the original
model [53]. If for some outputs the test data error did not form a
convex form, in which the minimum is the optimal number of
the neurons [50], then it can be deducted that a linear model using
a simple method such as LS had sufficed for that output (e.g. Fig. 20
for penicillin concentration output). The final product concentra-
tion was as same as the one shown in Fig. 10 and had not changed
effectively, but the computational cost as expected reduced almost
to one fourth.

6. Conclusion

In this article, taking into account the nonlinearity of the
penicillin fermentation process, the predictive approach was
proposed to control that. The linear version was applied ini-
tially, but acceptable performance was not achieved, hence,
the optimization problem was solved to reach the maximum
concentration for final product, which is the penicillin while
neglecting the empirical setpoints for the temperature and pH.
Meanwhile, fluctuations of control signals, which are acid, base
and cool water flow rates were also taken into account in order
to getting prepared for its practical implementation. This led to
a better product than the one provided in [29] with more
acceptable fluctuations of control signals. The merit of this
method is that it directly solves the optimization problem to
obtain maximum possible product concentration, while not
violating physical constraints for acid and base flow rates.
Moreover, utilizing LoLiMoT based model, the computational
cost is also very acceptable for a real time process.
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