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In recent years, voltage instability has become a major threat for the operation of many power systems.
This paper presents an artificial neural network (ANN)-based approach for on-line voltage security
assessment. The proposed approach uses radial basis function (RBF) networks to estimate the voltage sta-
bility level of the system under contingency state. Maximum L-index of the load buses in the system is
taken as the indicator of voltage stability. Pre-contingency state power flows are taken as the input to the
neural network. The key feature of the proposed method is the use of dimensionality reduction tech-
niques to improve the performance of the developed network. Mutual information based technique for
feature selection is proposed to enhance overall design of neural network. The effectiveness of the pro-
posed approach is demonstrated through voltage security assessment in IEEE 30-bus system and Indian
practical 76 bus system under various operating conditions considering single and double line contingen-
cies and is found to predict voltage stability index more accurate than feedforward neural networks
trained by back propagation algorithm and AC load flow. Experimental results show that the proposed
method reduces the training time and improves the generalization capability of the network than the
multilayer perceptron networks.

� 2011 Elsevier Ltd. All rights reserved.
1. Introduction

The intensive loading of existing generation and transmission
facilities and drawing transmission lines from remotely-located
generation station has resulted in voltage related problems in
many power systems. Several incidents of voltage instability have
been initiated by tripping of a critical line in the system. In order to
save the system from voltage collapse under contingencies, it is
necessary to estimate the effect of contingencies on the voltage
stability, so that corrective measures can be taken to avoid system
black-out.

Several approaches have been proposed for analyzing the volt-
age stability problem. They can be broadly classified into static and
dynamic approaches. The static approach [1–6] is based on the
steady-state load flow model. In the dynamic approach [7,8] the
power system is represented by a dynamic model and time domain
simulations are carried out using a comprehensive set of initial and
transient conditions to compute the voltage stability level. These
methods require comparatively large computation time and are
not suitable for on-line applications.
ll rights reserved.
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In recent years, research endeavors in the area of security
assessment have been directed towards artificial neural network
[9–13]. Two separate models are proposed to estimate the voltage
security of the system, a unified network to provide the voltage
stability level under all the selected contingency state and a set
of trained networks one each for every selected contingencies.
Most of the authors have used feedforward neural networks with
sigmoidal nonlinearities for model development. Also, the net-
works were developed based on the complete input variables,
which significantly reduce their performance. With feedforward
neural networks any continuous function can be approximated to
within an arbitrary accuracy by carefully choosing the parameters
in the network provided the network structure is sufficiently large.
But the shortcoming of this network is that it takes long time for
training. Also, feedforward network with sigmoidal activation
function in the hidden nodes has no inherent ability to detect the
outliers. Even though training is done in off-line, short training
time is preferred as one may have to retrain the networks on a reg-
ular basis as the topology or the system condition changes. Outliers
can occur in practice, because it is difficult to produce a complete
training set representing all possible operating conditions of a
power system.

In [14], a radial basis function neural network with a fast hybrid
learning method is proposed in which a function approximation
problem is used. An adaptive RBF network is proposed in [15] for
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multicontingency voltage stability monitoring in which sequential
learning strategy is used along with regularization technique to de-
sign RBFNN and weights in output layer are determined using lin-
ear optimization. A network pruning strategy is used to limit the
growth of network size due to adaptive training. Jayashankar et
al. [16] proposed feedforward back propagation network to esti-
mate voltage stability index for various load conditions and the
optimal location for placement of TCSC is identified for improving
the voltage stability in power system. Thukaram et al. [17] pro-
posed a feedforward neural network under various training func-
tions for on-line voltage stability assessment and monitoring.

In this paper, we use Radial Basis Function (RBF) networks [18]
for fast voltage security assessment. Radial basis function networks
take less time for training and the distance-based activation func-
tion used in the hidden nodes gives the ability to detect the outliers
during estimation [19]. The L-index proposed in [3] is adopted as
the voltage stability index. The value of this index ranges from 0
(no load of system) to 1 (voltage collapse). The bus with the highest
L-index value will be the most vulnerable bus in the system and
hence this method helps in identifying the weak areas in the sys-
tem which need critical reactive power support.

While training the neural network, by selecting only the relevant
attributes of the data as input features and excluding redundant
ones, higher performance is expected with smaller computational
effort. Principal Component Analysis (PCA) is presumably the most
commonly used feature extraction method [20]. The total system
variability can be presented by a smaller number of principal com-
ponents, because there is almost as much information in the first p
principal components as there is in the original variables. Principal
Component Analysis yields a k-dimensional linear subspace of fea-
ture space that best represents the full data according to a mini-
mum square error criterion. Although PCA reduces the dimension
of the data in a larger manner still it has some serious limitations.
If the data represent complicated interactions of features, then
the linear subspace representation by PCA will be a poor represen-
tation. Secondly, if the noise is high compared to the difference
between categories, then the component analysis will find the
directions of the noise rather than the signal. Hence if we pool all
the samples, the directions that are discarded by PCA might be ex-
actly the directions that are needed for distinguishing between
classes. Hence the alternate approach is to select the most signifi-
cant features that best describe the studied phenomena and to dis-
card the redundant variables. This work uses mutual information
based feature selection [11] to reduce the dimension of the input
features. The effectiveness of the proposed method is demonstrated
through voltage stability assessment in IEEE 30-bus system and In-
dian Practical 76 bus system.

The remainder of this paper is organized as follows: In Section
2, the use of L-index for voltage stability analysis is reviewed. In
Section 3, the details of RBF networks are explained and the meth-
odology followed to configure the network from the input–output
training data is explained. Various issues involved in developing
the ANN-based model for contingency selection are given in Sec-
tion 4. Section 5 presents the details of the application of the pro-
posed model for contingency selection in IEEE 30-bus system and
Indian Practical 76 bus system.

2. Voltage stability index

The static voltage stability analysis involves determination of an
index known as voltage stability index. This index is an approxi-
mate measure of closeness of the system operating point to voltage
collapse. There are various methods of determining the voltage sta-
bility index. One such method is the maximum L-index of the load
buses in the system proposed in [3]. The value of L-index ranges
from 0 (no load of system) to 1 (voltage collapse). The bus with
the highest L index value will be the most vulnerable bus in the
system. The L-index calculation for a power system is briefly pre-
sented below.

Consider a N-bus system in which there are Ng generators. The
relationship between voltage and current can be expressed by the
following expression:

IG

IL

� �
¼

YGG YGL

YLG YLL

� �
VG

VL

� �
ð1Þ

where IG, IL and VG, VL represent currents and voltages at the gener-
ator buses and load buses. Rearranging the above equation we get,
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where

FLG ¼ �½YLL��1½YLG� ð3Þ

is the sub matrix of the above hybrid matrix H.
The L-index of the jth node is given by,

Lj ¼ 1�
XNg

i¼1

Fji
V i

Vj
\ðhji þ di � djÞ

�����
����� ð4Þ

where Vi is the voltage magnitude of ith generator bus, hji the phase
angle of the term Fji, di is voltage phase angle of ith generator bus
and Ng is the number of generating units.

It was demonstrated that when a load bus approaches the volt-
age collapse point, the L-index approaches the numerical value of
1. Hence, for a system-wide voltage stability, the index evaluated
at any of the buses must be less than unity, and the maximum va-
lue of the L-index gives an indication of how far the system is from
voltage collapse.

3. Proposed methodology for voltage security assessment

The proposed method for voltage security assessment is based
on RBF neural networks. The objective is to estimate the voltage
stability level for each contingency and rank them according to
their severity level. The study presented in this paper focuses on
single line outages and the voltage stability level is expressed by
the maximum L-index value.

3.1. Training data generation

The generation of the appropriate training data is an important
step in the development of ANN models. For the ANN to accurately
predict the output the training data should represent the complete
range of operating conditions of the system under consideration.
For model development, a large number of training data is gener-
ated through off-line power system simulation. Pre-contingency
state power flows are the input to the neural network and the max-
imum value of L-index following a contingency is the output of the
network. The training data for the development of ANN is gener-
ated through the following procedure:

� First, a range of situations is generated by randomly perturbing
the load at all buses from the base case value and by adjusting
the generator output in proportion to the output in the base
case condition.
� For each load-generation pattern, pre-contingency line flows

are obtained by solving the load flow equations using Newton
Raphson algorithm.
� Next, for each load-generation pattern, the single line-outages

specified in the contingency list are simulated sequentially
and the L-index values are evaluated by conducting AC load
flow.



Fig. 1. Schematic diagram of RBF neural network.
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3.2. Dimensionality reduction

Real power systems have thousands of variables at the system
level. If all the measured variables are used as inputs to neural net-
work, it results in large size of the network and hence larger train-
ing time. To make the neural network approach applicable for large
scale power system problems, some dimensionality reduction is
mandatory. As most of the contingencies are localized in nature,
all the variables in the input vector may not exert equal influence
on the post-contingency L-values. Irrelevant and redundant attri-
butes in the input not only complicate the network structure, but
also degrade the performance of the networks. By selecting only
the relevant variables as input features and excluding irrelevant
ones, higher performance is expected with smaller computational
efforts. Also, networks involving too many input variables suffer
from curse of dimensionality. This work uses mutual information
based feature selection to reduce the dimension of the input
features.

3.3. Data normalization

The first stage of RBF network learning is the identification of
the cluster centers through K-means clustering algorithm which
uses Euclidean distance as a measure of dissimilarity. Distance
norms are sensitive to variations in the numerical ranges of the dif-
ferent features. For example, the Euclidean distance assigns more
weighting to features with wide ranges than to those with narrow
ranges. To overcome this problem, input data is normalized before
presenting it to the clustering algorithm. The input data is normal-
ized between 0 and 1 using the expression,

xn ¼
ðx� xminÞ � range
ðxmax � xminÞ

þ starting value ð5Þ

where xn is the normalized value and xmin and xmax are the mini-
mum and maximum values of the variable x.

3.4. Network development

The selected features after normalization are presented to the
RBF networks for training. After training, the networks are evalu-
ated through a different set of input–output data. Once the net-
works are trained and tested, they are ready for estimating the L-
index values at different operating conditions.

4. Review of radial basis function network

Radial basis function network [19] is a class of single hidden
layer feedforward neural network. Fig. 1 shows the schematic dia-
gram of a RBF neural network. The input nodes pass the input di-
rectly and the first layer connections are not weighted. The
transfer functions in the hidden nodes are similar to the multivar-
iate Gaussian density function,

/jðxÞ ¼ exp �
kx� ljk

2

2r2
j

 !
ð6Þ

where x is the input vector, lj and rj are the center and the spread
of the corresponding Gaussian function. Each RBF unit has a signif-
icant activation over a specific region determined by /j and rj, thus
each RBF represents a unique local neighborhood in the input space.
The connections in the second layer are weighted and the output
nodes are linear summation units.

The value of the kth output node yk is given by,

ykðxÞ ¼
Xh

j¼1

wkj/jðxÞ þwk0 ð7Þ
where wkj is the connection weight between the kth output node
and jth hidden node and wk0 is the bias term.

The training in RBF networks is done in three sequential stages
as against the single optimization procedure followed in back
propagation network training. The first stage of the learning con-
sists of determining the unit centers /j by the K-means clustering
algorithm [19].

Next, we determine the unit widths rj using a heuristic ap-
proach that ensures the smoothness and continuity of the fitted
function. The width of any hidden node is taken as the maximum
Euclidean distance between the identified centers. Finally, the
weights of the second layer connections are determined by linear
regression using a least-squares objective function.

RBF networks can be viewed as an alternative tool for learning
in neural networks. While RBF networks exhibit the same proper-
ties as back propagation networks such as generalization ability
and robustness, they also have the additional advantage of fast
learning and ability to detect outliers during estimation. The
attractive feature of RBFNN lies in the linear dependence in the
parameters which greatly simplifies the design and analysis of
such networks. It also has an advantage of easy and effective learn-
ing algorithm compared to other MLPNN.

5. Mutual information based feature selection

The application of ‘‘mutual information’’ between the input
variables and the output provides the basis for feature selection.
If the information regarding a certain system variable results in
significant reduction in the system entropy, then this variable must
have significant impact on the security index which is to be esti-
mated. Therefore, this variable will be selected as a feature for
security index estimation. On the other hand, the system variables
which result in minor reduction in the system entropy will be re-
garded as having minor effects on the security index and will not
be selected as feature.

Once the mutual information value of input variables is evalu-
ated, the variables are ranked, with the variable having the high
mutual information value at the top and so on. The optimum num-
ber of features can be selected by consequent training of the neural
networks using a progressively increasing number of features until
the minimum required accuracy is obtained.

5.1. Definition of mutual information

Consider a stochastic system with input X and output Y. Let the
discrete variable X has Nx possible values and Y has Ny possible val-
ues. Now the initial uncertainty about Y is given by the entropy
H(Y) which is defined as,



Fig. 2. Mutual information for variables in models 1–2 in IEEE 30 bus system.

Table 1
Training and testing performance of RBF network.

S.
no

Line
outage

Selected features No. of
basis
functions

Training
time (s)

Testing error
(ms)

1 1–2 Sl:1, 4, 2, 7, 5 25 0.6100 1.1020 � 10�6

2 1–3 Sl:2, 4, 1 15 0.3430 2.5387 � 10�6

3 4–12 Sl:15, 12, 14, 11, 18,
28

35 0.7190 6.5960 � 10�4

4 6–7 Sl:9, 5, 8, 1 25 0.5940 8.8545 � 10�5

5 9–10 Sl:14, 12, 27, 15, 28,
11, 18, 13

25 0.7350 3.8046 � 10�4

6 10–20 Sl:25, 24, 18, 22, 15,
12, 14

25 0.6090 3.1721 � 10�4

7 28–27 Sl:36, 37, 38, 12, 14,
39, 11, 28, 15, 18

25 0.6870 8.4978 � 10�4
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HðYÞ ¼ �
XNy

j¼1

PðyjÞ � logðPðyiÞÞ ð8Þ

where P(yj) are the probabilities for the different values of Y. The
amount of uncertainty remaining about the system output Y after
knowing the input X is given by the conditional entropy H(Y/X)
which is defined as,

HðY=XÞ ¼ �
XNx

i¼1

PðxiÞ �
XNy

j¼1

PðyjjxiÞ � logðPðyjjxiÞÞ
 !

ð9Þ

where P(yj,xi) is the conditional probability for output yj given the in-
put vector xi. Now the difference H(Y) � HY/X represents the uncer-
tainty about the system output that is resolved by knowing the
input. This quantity is called the mutual information between the
random variables X and Y. Denoting it by I(Y;X), we may thus write,

IðY; XÞ ¼ HðYÞ � HðY jXÞ ð10Þ

The mutual information is therefore the amount by which the
knowledge provided by X decreases the average uncertainty about
the random experiment represented by the variable Y. Mutual
information is a symmetrical measure. That is, the amount of infor-
mation gained about Y after observing X is equal to the amount of
information gained about X after observing Y. For the contingency
selection problem under consideration, X corresponds to the pre-
contingency line flows and Y corresponds to the post-contingency
security index.

5.2. Mutual information for feature selection

For feature selection first the mutual information between each
variable and the model output is calculated using (8)–(10). If a var-
iable has high value of mutual information with respect to the out-
put, then this variable must have significant effect on the output
value which is to be estimated. Therefore, this variable is selected
as a feature for the neural network. On the other hand, those vari-
ables which have low values of mutual information will be re-
garded as having minor effects on the output and are not
selected for network training. Next, the mutual information among
the selected input variables is calculated. If any two input variables
have high value of mutual information between them, then they
will have similar effect on the output and hence one is considered
for network training discarding the other one.

6. Simulation results

This section presents the details of the simulation study carried
out on IEEE 30-bus system and 76-bus practical Indian system. For
these two test systems, based on contingency analysis conducted
at different loading conditions, seven single line outages were
identified and the ANN models were developed to estimate the
voltage security level corresponding to these contingencies. The
details of the ANN models developed are presented here.

6.1. Voltage security assessment in IEEE 30 bus system

IEEE 30-bus system consists of six generators, 24 load buses and
41 transmission lines of which lines (6–9), (6–10), (4–12) and (28–
27) are with tap changing transformer. The transmission line
parameters and generator cost coefficients are given in [21]. The
L-index proposed in [3] and presented in Section 2 is used as the
voltage stability index. Seven single line outages (1–2), (1–3),
(10–20), (28–27), (4–12) (6–7) and (9–10) were identified as se-
vere cases based on contingency analysis. For generating training
data for the RBFNN, active and reactive powers at the load buses
and generator real power outputs are varied randomly between
70% and 140% of operating conditions. Based on the algorithm gi-
ven in Section 3.1, a total of 1000 input–output pairs were gener-
ated, with 750 for training and 250 for testing. Separate networks
dedicated for each contingency are developed using the data set.
To select the input features, the input variable is divided into five
levels and output is divided into three groups. Mutual information
of each variable with respect to the output is evaluated using (8)
and (10). For illustration, the mutual information between the in-
put variables and the output for contingency (1–2) is shown in
Fig. 2. From this figure, it is evident that only a few variables are
having significant information and the remaining variables have
very less amount of information. The first few variables which have
high mutual information value are selected as features to train the
ANN, and the remaining variables are discarded from further con-
sideration. The selected features for the seven models are given in
Table 1. The selected variables after normalization are presented to
the network. Twenty iterations of the clustering algorithm fol-
lowed by linear regression are performed to estimate the parame-
ters of the network. As the value of basis functions is not known in
advance, a trial-and-error procedure is followed to select the opti-
mum number. After training, the networks are tested with the test
data set to assess the generalization capability of the developed
network.

The performance of the network during training and testing
phase for all the seven models are presented in Table 1. The results
clearly show that the training of the RBF networks has been suc-
cessful and the correct estimation of L-index has been achieved
by the RBF network even for previously unseen data.
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Table 2 presents the L-index values estimated using the devel-
oped RBF model for one particular loading condition along with
the ranking of the contingencies. For comparison, the actual values
of L-index calculated from AC load flow study are also presented.
The result shows the agreement between the actual ranking and
the ranking based on the output of the neural networks.

To compare the performance of the proposed RBF network-
based approach with the commonly used neural network architec-
ture, multilayer perceptron (MLP) networks are developed to esti-
mate the L-index values. The networks are trained with the
conjugate gradient algorithm to reach the same error level
achieved by the RBF networks during the training. After training,
the networks are tested with the test data.

The time taken for training is presented in Table 3. From this
table, it is observed that RBF networks take less time for training,
but they require more number of hidden nodes as compared to
multilayer perceptron networks. Apart from that the RBF network
exhibits better generalization performance than the MLP network
in most of the cases.

For comparison, a unified neural network model with pre-con-
tingency power flow as the input and the Lmax values of all seven
contingencies as output was developed. The network was trained
and tested with the data set used in the previous case and the per-
Table 2
Comparison of RBF output and load flow result.

Line outage RBF output Load flow result

Lmax Rank Lmax Rank

1–2 0.2958 I 0.3220 I
1–3 0.1754 V 0.1867 V
4–12 0.2058 III 0.2154 III
6–7 0.2106 II 0.2209 II
9–10 0.1902 IV 0.2059 IV
10–20 0.1752 VI 0.1857 VI
28–27 0.1645 VII 0.1823 VII

Table 3
Comparison of RBF NN with MLP net for model (1–2).

Type of
network

No. of hidden
neurons

Training time
(s)

Testing error
(ms)

RBF 25 0.6100 1.1020 � 10�6

MLP 8 2.9060 4.0813 � 10�4

Table 4
Results of unified neural network.

Model No. of input
features

No. of hidden
nodes

Training
time (s)

Testing error
(ms)

Unified
network

41 80 0.9350 3.1154 � 10�4

Table 5
Performance of RBF NN for (n � 1) contingencies in 76 bus Indian system.

Line outage RBF output

Selected features

18–57 Sl(10) = 78, 80, 37, 79, 110, 113, 101, 4, 62, 41
23–70 Sl(7) = 78, 4110, 92, 80, 112, 79
74–19 Sl(9) = 25, 113, 11041, 4112, 80, 62, 40
57–17 Sl(20) = 39, 41, 112, 4113, 61, 110, 60, 103, 40, 58, 107, 109, 10
67–21 Sl(18) = 39, 41, 112, 4113, 61, 110, 60, 103, 40, 58, 107, 109, 10
35–73 Sl(18) = 4, 78, 80, 79, 110, 62, 60112, 59, 88, 41, 107, 18, 113, 2
31–65 Sl(20) = 78, 80, 4, 79, 59, 110, 1862, 88, 87, 60, 112, 17, 11, 3, 4
formance of the network is given in Table 4. On comparing Tables 1
and 4, it is found that the individual networks take less time for
training than the unified network and the generalization capability
of the individual networks is also better than the unified network.
6.2. Voltage security assessment in Indian practical 76 bus system

Next, the proposed approach was applied for voltage security
assessment in a practical Indian power system. The considered sys-
tem consists of 76 buses, 13 generators, 63 load buses and 115
transmission lines. The transmission level parameters and genera-
tor cost coefficients are given in [22]. The training and test data re-
quired to develop the RBF network are generated by adopting the
procedure given in Section 3.1. RBFNN models were developed
for seven severe single line outages (18–57), (23–70), (74–19),
(57–17), (67–21), (35–73) and (31–65). Input features of the net-
work are selected using the mutual information based method ex-
plained in Section 4. The number of basis functions is selected by
trial and error method.

Table 5 shows the performance of RBF NN during the training
and testing period. The results presented in the tables show the
Training time (s) Testing error (ms)

0.2184 3.0514 � 10�4

0.1560 2.200 � 10�3

0.2028 7.9870 � 10�4

6, 5, 79, 30, 105, 62, 59 0.2496 7.3180 � 10�4

6, 5, 79, 30, 105 0.2028 8.4685 � 10�4

5106, 87, 61 0.2652 6.400 � 10�3

1, 25, 61, 107, 64, 106 8.300 � 10�3

Table 6
Comparison of RBF, MLPNN and conventional method in estimating Lmax value.

Line outage RBF output MLPNN Load flow result

Ranking Lmax Ranking Lmax Ranking Lmax

18–57 2 0.4741 2 0.4753 2 0.4246
23–70 6 0.3515 6 0.3594 6 0.3335
74–19 1 0.5228 1 0.5205 1 0.5320
57–17 4 0.4345 4 0.4367 4 0.4060
67–21 3 0.4355 3 0.4380 3 0.4065
35–73 7 0.3473 7 0.3535 7 0.3276
31–65 5 0.3593 5 0.3636 5 0.3389

Table 7
Performance of RBF network for multiple contingencies.

S.
no

Line
contingencies

Selected
features

No of
basis
functions

Training
time (s)

Testing error
(ms)

1 18–57 and
23–70

Sl(20) = 78, 80,
37, 79, 110,
113, 101, 4, 62,
112, 41, 106,
107, 105, 111,
108, 25, 104, 3,
8

50 0.2028 3.4177 � 10�4

2 18–57 and
74–19

Sl(20) = 25, 41,
110, 113, 4112,
107, 62, 106,
40, 108, 105,
3111, 109, 79,
58, 103, 29, 80

50 0.2340 1.700 � 10�3
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ability of the proposed model to estimate the voltage security level
even for a larger test system. Table 6 shows the comparison be-
tween the RBFNN and MLPNN output and result of conventional
AC load flow for one particular condition along with ranking of
contingencies. The result shows the agreement between ranking
made by the neural network approaches and actual ranking by
conventional method. This shows that the proposed RBFNN is com-
putationally efficient and hence is suitable for on-line voltage secu-
rity assessment.

Table 7 shows the performance of RBFNN for (n � 2) contingen-
cies with outages of 18–57/23–70 and 18–57/74–19. The test re-
sults indicate the effectiveness of proposed method for on-line
voltage security assessment for multiple contingencies also.
7. Conclusion

This paper has presented a radial basis function network-based
fast voltage security assessment method for on-line applications. A
set of RBF networks has been trained to map the nonlinear rela-
tionship between the pre-contingency operating conditions and
the post-contingency voltage stability index. Feature selection is
addressed through mutual information between the input vari-
ables and the output stability index. Computer simulation was car-
ried out on the IEEE 30-bus system and Indian Practical 76 bus
system for voltage security assessment. Test results show that
the proposed RBF network-based approach provides accurate esti-
mation of post-contingency L-values for various operating condi-
tions for single line and double line contingencies. The proposed
RBF network-based approach significantly reduces the training
time compared to the back propagation algorithm. By reducing
the dimension of the input features using feature selection the effi-
ciency of the ANN model has been significantly increased both in
the learning and estimation stages. Further, the reduction in the
dimension of the input data results in the reduction in the demand
for measurements within the power system.
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