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This paper concerns complex delayed neural networks with discontinuous activations. Based on the framework of differential
inclusion theory, we design two novel controllers by regulating a parameter σ 0 ≤ σ < 1 which covers both discontinuous and
continuous controllers. Then, we investigate a nonautonomous cellular neural network system and autonomous neural network
with linear coupling, respectively. By choosing a time-dependent Lyapunov-Krasovskii functional candidate and suitable
controllers, some criteria are studied to guarantee the exponential synchronization of the complex delayed dynamical network.
Finally, two numerical examples are given to illustrate our theoretical analysis.

1. Introduction

In the past few decades, the dynamical behavior of synchro-
nization phenomena has attracted much attentions because
of its potential practical application in general complex
networks [1], pattern recognition [2], secure communication
[3], combinational optimization [4], biological systems [5],
and so on. Up to now, several types of synchronization of
complex neural networks have been studied such as asymp-
totic synchronization [6], finite-time synchronization [7],
and exponential synchronization [8–10]. The synchroniza-
tion phenomena of a complex dynamical network are said
to be an important issue in our theoretical analysis and
experimental application.

In real world, there are a large number of nodes in
the real-world complex networks. Cao et al. in [11, 12]
studied the global synchronization of coupled delayed
neural networks with constant and hybrid coupling.
The authors in [13] designed a coupling term by D xj
t − τ t − xi t − τ t and realized the exponential syn-
chronization for complex dynamical networks with sampled
data. After that, some literatures are interested in the

synchronization for neural networks with the coupling term
D xj t − τ t − xi t − τ t ; for example, in [14, 15], the
authors investigated the synchronization of coupled net-
works with hybrid coupling, which were composed of con-
stant coupling and a single coupling delay. By this distance,
a new unloading method is obtained in global convergence
for complete regular coupling configuration. Generally, the
coupling structure is designed by a graph which can be
unconnected, directed, and undirected.

As we know, many valid control techniques have been
extensively applied in the engineering field, such as impulsive
control [16], intermittent control [17], feedback control [18],
and adaptive control [19]. In recent years, many researchers
receive the results on synchronization stabilization of
complex chaotic systems and coupled dynamical networks
by pinning a suitable control, and most of the existing
controllers were designed in the form of −k sign e t
e t σ 0 ≤ σ < 1 ; we can see that the controller is continuous
if 0 <σ< 1 and the controller is discontinuous if σ=0,
where e t is the synchronization error with control
strength k. However, few literatures discuss the two types
of switching controllers concurrently, and the two categories
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are discussed separately or only in the field of Lipschitz con-
ditions. Because there still have been a lot of difficulties in
overcoming the exponential synchronization problem when
the activation functions are discontinuous but the control-
lers are not. However, to the best of our knowledge, few
papers focus on the synchronization issue of complex
networks with nonlinear coupling function, and there are
two kinds of controllers such as continuous case and dis-
continuous case when the activation functions are still
discontinuous.

The neural network system of this paper is a general
nonautonomous neural network system with discontinu-
ous activations, and we also consider the corresponding
autonomous system in this paper. The main contributions
are as follows:

(1) In the existing exponential synchronization research,
the neuron activation functions were restricted to be
continuous and bounded, and the assumptions of
the system were complex. So this paper consider a
more general neural network model and simpler con-
ditions for gaining the exponential synchronization
goal

(2) It is the first time that the exponential synchroniza-
tion control of the nonautonomous systems with
discontinuous activation and the autonomous system
with linear coupling function is considered. The
algorithm in this paper is optimized, where sufficient
conditions formulated by the Lyapunov function are
established to gain the exponential synchronization.
The theoretical results can also be used in a wider
scope

(3) Novel analytical techniques are proposed, and strict
mathematical proofs are given for the global expo-
nential synchronization of the discontinuous neural
network with coupled and time delays. We design
novel discontinuous controllers and continuous con-
trollers in this paper. When both neuron functions
and controllers are discontinuous, there is still a lack
of complete theory of synchronization

(4) The technique skill and control algorithm are
different from those in previous papers (e.g., [20]).
We introduce some novel tools such as exponential
synchronization theorem, differential inclusion in
the sense of Filippov, and generalized Lyapunov
approach under a 1-norm framework, and the
methods proposed in this paper can be extended to
investigate the synchronization of neural network
systems

The structure of this paper is outlined as follows. In the
next section, we design the model and introduce some basic
preliminary lemmas and definitions. In Section 3, we design
a continuous controller to realize the exponential synchroni-
zation of the nonautonomous network system with discon-
tinuous activations and describe a nonlinear coupling
function to guarantee the synchronization issue of the time-

delayed discontinuous neural network by considering a dis-
continuous controller. In Section 4, we give two numerical
examples to illustrate our theoretical results. Finally, we con-
clude this paper in Section 5.

Notation 1. Let ℝn denote the n-dimensional Euclidean
space, and let the superscript T denote the transposition.
Let x = x1, x2,… , xn T and y = y1, y2,… , yn

T ; by x > 0
x ≥ 0 , we mean that xi > 0 xi ≥ 0 for all i = 1, 2,… , n. x,
y =∑n

i=1xiyi, ⋅ , ⋅ denotes the inner product. If x ∈ℝ, x
denotes the vector norm of x, while x 1 =∑n

i=1 xi . Given
the real matrix A = aij n×n, λmax A and λmin A represent
the maximal and minimal eigenvalues of A, respectively. Let
diag ⋯ denote the block diagonal matrix, and let sign ⋅
denote the sign function.

Finally, let g t be the continuous function, and we define
that

gmax = sup
t∈ℝ

g t ,

gmin = inf
t∈ℝ

g t
1

2. Preliminaries

In this section, we give some definitions and preliminary
lemmas. The main references are the framework of Filippov,
set valued maps, differential inclusion, and so on [21–26].
Firstly, we consider the discontinuous function f to intro-
duce the solution of the system, and we denote the closure
of the convex hull of X as K X ; we can expand the property
of the Filippov solution to the system.

By the discussions in Section 1, in this paper, we consider
the following general nonautonomous neural network
system with time-varying delays and discontinuous right-
hand sides:

dxi t
dt

= −ai t xi t + 〠
n

j=1
bij t f j xj t

+ 〠
n

j=1
cij t f j xj t − τij t + Ii t , i = 1, 2,… , n,

2

where xi t corresponds to the state vector of the ith unit
at time t, ai t > 0 denotes the self-inhibition with which
the ith neuron will reset its potential to the resting state
in isolations when disconnected from the network and
inputs, bij t and cij t represent the connection strength
and the delayed connection strength of the jth neuron on
the ith neuron, respectively, f j xj t represents the acti-
vation function and the time-delayed activation function
of jth neuron, Ii t is a constant external input vector,
τij t corresponds to the transmission delay of the ith
unit along the axon of the jth unit at time t and is a
continuously differentiable function, and there exist τ =
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max1≤i,j≤n maxt∈ 0,ω τij t ≥ 0 and a negative constant τDij
satisfying

0 ≤ τij t ≤ τ,

τij t ≤ τDij < 1
3

Moreover, we obtain an autonomous system when
coefficients are reduced to constants corresponding to
model (2) as follows:

dxi t
dt

= −aixi t + 〠
n

j=1
bij f j x t

+ 〠
n

j=1
cij f j xj t − τij t + Ii, i = 1, 2,… , n

4

Equivalently, the differential equation system can be
transformed into the following matrix format:

dx t
dt

= −Ax t + Bf x t + Cf x t − τ t + I, 5

where A = diag a1, a2,… , an , B = bij n×n, and C = cij n×n.
To establish our main results, we assume the follow-

ing basic conditions for the neuron activations in model
(2) or (4):

Assumption 1. For every j = 1, 2,… , n, f j is continuous
except for a countable set of isolate jump discontinuous
points ρk, where there exist finite right and left limits, and
in every compact set of R, it has only a finite number of jump
discontinuous points.

Definition 1. A vector function x = x1, x2,… , xn T −τ, T
→ℝn, T ∈ 0, +∞ , is a state solution of the discontinuous
system (2) on −τ, T if

(1) x is continuous on −τ, T and absolutely continuous
on any compact interval of 0, T

(2) there exists a measurable function γj t ∈ K f j x t
for a.e. t ∈ −τ, T and

dxi t
dt

= −ai t xi t + 〠
n

j=1
bij t γj t

+ 〠
n

j=1
cij t γ j t − τij t + Ii t , t ∈ 0, T

6

Any function γ = γ1, γ2,… , γn
T satisfying (6) is called

an output solution associated with the state x =
x1, x2,… , xn T ; then, in the sense of Filippov, we point

out that the state x is a solution of (2) for a.e. t ∈ 0, T
and we obtain the following differential inclusion:

dxi t
dt ∈ −ai t xi t + 〠

n

j=1
bij t K f j xj t

+ 〠
n

j=1
cij t K f j xj t − τij t + Ii t , t ∈ 0, T

7

Definition 2. The network is said to achieve global
exponential synchronization if there exist some constants
λ > 0, T > 0, and M0 > 0 such that for any initial values
ϕi s i = 1, 2,… , n ,

xj t − xi t ≤M0e
−λt 8

hold for all t > T and for any i, j = 1, 2,… , n.

Lemma 1 (see [10]). If V x : ℝn →ℝ is C-regular and x t :
0, +∞ →ℝn is absolutely continuous on any compact sub-
interval of 0, +∞ . Then, x t and V x t : 0, +∞ →ℝ
are differentiable for almost all t ∈ 0, +∞ and

dV x t
dt

= ς t
dx t
dt

, ∀ς t ∈ ∂V x t 9

Lemma 2 (see [11, 12]). Given an undirected graph F with the
adjacency matrix C = cij and Laplacian matrix L, equality

xTLx = 1
2 〠

n

i,j=1
cij xi − xj

2 10

holds for arbitrary x = x1, x2,… , xn ∈ℝn.
Let F x ≜ K f x = K f1 x , Kf2 x ,… , K f n x ,

where K f i x = min f i x
− , f i x+ , max f i x

− , f i x+
. Then, we assume the neuron activation functions in (2)

or (4) to satisfy the following condition:

Assumption 2. For x, y ∈ℝ, there exist nonnegative constants
α and β such that

F f x − f y = sup
ξ∈F f x −f y

ξ ≤ a x − y + β 11

3. Main Results

In this section, the discontinuous controller and continuous
controller are designed; then, we divide this section into
two parts to derive the global exponential synchronization
conditions of discontinuous nonautonomous networks and
autonomous coupled networks, respectively.

3.1. Exponential Synchronization with the Continuous
Controller. Firstly, we consider the nonautonomous neural
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network model (6) as the driver system, and the controlled
response system can be described as follows:

dyi t
dt

= −ai t yi t + 〠
n

j=1
bij t f j yj t

+ 〠
n

j=1
cij t f j yi t − τi j t + Ii t + ui t , i = 1, 2,… , n,

12

where ui t is the controller to be designed for realizing the
synchronization of the driver response system. The other
parameters are the same as those in model (6).

Our first goal is to drive the response network model (12)
to synchronize with the nonautonomous network model (6)
with continuous controllers. To this end, choose the param-
eter 0 <σ< 1, and the continuous controller ui t is given by

ui t = −k1 yi t − xi t − k2 sign yi t − xi t yi t − xi t
σ

13

Then, by subtracting (6) from (12), let ei t = yi t − xi t .
In view of Assumption 1 and Definition 1, by differential
inclusions and set valued maps, we can see that there exists
a measurable function ξj t ∈ K f j yj t for a.e. t ∈ 0, T
and we can obtain the synchronization error system as
follows:

dei t
dt

= −ai t ei t + 〠
n

j=1
bij t Γj t

+ 〠
n

j=1
cij t Γj t − τij t − k1ei t − k2 sign ei t ei t

σ,

14

where Γj t = ξj t − γj t and Γj t − τij t = ξj t − τij t
− γ j t − τij t .

Then, we give the following theorem to derive the
response network system (6) with 0 <σ< 1 synchronizing
with the driver network system (2). Before doing this, we give
a further condition on the discontinuous activation function
f j as follows:

Theorem 1. If Assumptions 1 and 2 hold, the nonautonomous
discontinuous neural networks achieve global exponential
synchronization under the continuous switching controller
(13) with 0 <σ< 1; if there exist positive ζ1, ζ2,… , ζn and a
very small positive constant ε > 0, for i = 1, 2,… , n, the follow-
ing conditions are satisfied:

lim
t→+∞

sup Qi t < 0, 15

where

Qi t = ζibii t + 〠
n

j=1,j≠i
ζj bij t + 〠

n

j=1
ζje

ετ
cij φ−1

ij t

1 − τij φ−1
ij t

16

Proof 1. Consider the following candidate Lyapunov func-
tion:

V t = eεt 〠
n

i=1
ςi ei t + 〠

n

i,j=1
ςi

×
t

t−τi j t

cij φ−1
ij s

1 − τij φ−1
ij s

Γj s eε s+τ ds,
17

where φ−1
ij is the inverse function of φij t = t − τij t .

Note that the function ei t is locally continuous
(Lipschitz) in ei on R; then, we can see that V e t is regular.
According to the definition of Clarke’s generalized gradi-
ent of the absolute value function ei t at ei t , we obtain
that there exist ∂ ei t = K sign ei t = 1 if ei t < 0, ∂
ei t = K sign ei t = −1 if ei t > 0, and ∂ ei t =

K sign ei t = −1, 1 if ei t = 0. For any ϑi t ∈ K sign
ei t , we have ϑi t = sign ei t , if ei t ≠ 0; ϑi t
can arbitrarily be selected in −1, 1 , if ei t = 0.

Then, by Lemma 1 and calculating the time derivative of
V t , we obtain that

dV t
dt

= εeεt 〠
n

i=1
ςi ei t + eεt 〠

n

i=1
ςi sign ei t ⋅

−ai t ei t + 〠
n

j=1
bij t Γj t

+ 〠
n

j=1
cij t Γj t − τij t − k1 ei t

− k2 sign ei t ei t
σ

+ 〠
n

i,j=1
ςi

cij φ−1
ij t

1 − τij φ−1
ij t

Γj t eε t+τ

− 〠
n

i,j=1
ςi cij t Γj t − τij t eε t+τ−τi j t

≤ −〠
n

i=1
ςie

εt k1 + ai t − ε ei t + 〠
n

i=1
ςie

εtbii t Γj t

+ 〠
n

i=1
〠
n

j≠i
ςie

εt bij t Γj t
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+ 〠
n

i,j=1
ςie

ε t+τ
cij φ−1

ij t

1 − τij φ−1
ij t

Γj t − k2 ei t
σ

= −〠
n

i=1
ςie

εt k1 + ai t − ε ei t

+ eεt 〠
n

i=1
ςibii t + 〠

n

j=1,j≠i
ςi bij t

+ 〠
n

j=1
ςje

εt
cij φ−1

ij t

1 − τij φ−1
ij t

Γj t − k2 ei t
σ

≤ −〠
n

i=1
ςie

εt k1 + amin
i − ε ei t + eεt 〠

n

i=1
Qi t Γi t

− k2 ei t
σ

18

By the assumption of the theorem, ε can be a very small
positive constant, and we can see that there exist positive
constants θi and t0 ≥ 0 such that if t ≥ t0,

Qi t ≤ θi ≤ 0 19

Then, let θ0 = min −θ1, −θ2,… , − θn , and we deduce
that

V t ≤ −min
1≤i≤n

ςi ki + amin
i − ε eεt 〠

n

i=1
ei t

− θ0e
εt 〠

n

i=1
Γi t − k2 ei t

σ ≤ 0,
20

which implies that

〠
n

i=1
ei t ≤

V e0, 0
min ζ1, ζ2,… , ζn

e−εt 21

By Definition 2, the synchronization error e t converges
to zero. That is to say, the nonautonomous discontinuous
and delayed neural networks (2) and (4) can achieve the
global exponential synchronization under the continuous
switching controller (13). The proof is completed.

Remark 1. Unlike the previous studies, a great difference in
our model is that we permit the neuron activation to be dis-
continuous and unbounded. One can see that the nonlinear
function f in this paper may not satisfy the Lipschitz condi-
tion any more. There are few results on the synchronization
problem if the activations are discontinuous and the control-
lers are continuous. Our studies extend the previous
researches.

3.2. Exponential Synchronization with the Discontinuous
Controller. In this part, we describe the following

corresponding N-coupled time-delayed neural networks
of (5):

dzi t
dt

= −Azi t + Bf zi t + Cf zi t − τ + I t

+m〠
N

j=1
dijΦφ zj − zi ,

22

where zi t = zi1 t , zi2 t ,… , zin t T ∈ℝn i = 1, 2,… ,N
denotes the state variable of the ith neuron at time t, m is
the coupling strength, Φ = diag ϕ1, ϕ2,… , ϕn with ϕl > 0,
l = 1, 2,… , n, φ s is the coupling function, D = dij denotes
the adjacency matrix of subsystems, where the corresponding
Laplacian matrix is represented as L, and all of them are
applicable to undirected weighted networks.

Moreover, in order to realize exponential synchroniza-
tion, a suitable coupling function is important to improve
the network performance. Our goal is to derive the coupled
time-delayed neural networks with discontinuous controllers
synchronizing with the isolated neural network (5). To this
end, in this paper, we consider the following coupled neural
networks:

dzi t
dt

= −Azi t + Bf zi t + Cf zi t − τ + I t

+m〠
N

j=1
dijΦφ zi − zi + vi t ,

23

where D = dij N×N ∈ℝN×N with dij > 0 i ≠ j and dij = 0 i,
j = 1, 2,… ,N and vi t is the control algorithm vector sim-
ilar to (13) when σ=0 for the strongly connected network
topology which is given as follows:

vi t = −k1 zi t − x t − k2 sign zi t − x t , 24

where k1 and k2 are the gain coefficients to be determined.
We can see that the controller vi t is discontinuous when
σ = 0.

Then, we choose the discontinuous controller with σ = 0,
and we define the linear coupling function φ ℝn →ℝn as

φ s = s 25

Then, the coupled time-delayed complex network can be
described as follows:

dzi t
dt

= −Azi t + Bf zi t + Cf zi t − τ + I t

+m 〠
N

j=1,j≠i
dijΦzj t + vi t ,

26

where Φ = diag ϕ1, ϕ2,… , ϕn with ϕl > 0, l = 1, 2,… , n.
Similarly, letwi t = zi t − x t , and we choose the novel

discontinuous switching controller (24) and the linear func-
tion (25). Also, by differential inclusions and set valued maps,
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when i = 1, 2,… ,N , we can obtain the error dynamical
system as follows:

dwi t
dt

= −Awi t + Bγi t + Cγi t − τ

+m 〠
N

j=1,j≠i
dijΦwj t − kiwi t − k2SIGN wi t ,

27

where SIGN wi t = SIGN wi t , SIGN wi2 t ,… ,SIGN
win t T with SIGN s = −1 if s < 0, SIGN s = −1, 1 if
s = 0, and SIGN s = 1 if s > 0 and γi t = γi1 t , γi2 t ,… ,
γin t T = ξi1 t − γi1 t , ξi2 t − γi2 t ,… , ξin t − γin t T .

Theorem 2. If Assumptions 1 and 2 hold, we give the further
condition:

Assumption 3. min/ 1 ≤ k ≤ n k1 + ak −∑n
l=1a bkl −∑n

l=1a
ckl > 0 and min/ 1 ≤ k ≤ n k2 −∑n

l=1β bkl − ∑n
l=1β ckl >

0.
Then, by choosing the coupling function (12), the coupled
networks (26), and the isolated model (5), the exponential
synchronization under the discontinuous controller (24)
with σ = 0 can be realized.

Proof 2. Define a candidate Lyapunov function as follows:

V t =V w t = eεt 〠
N

i=1
wi t 1

+ 〠
N

i=1
〠
n

k,l=1

t

t−τ
eε s+τ ckl γil s ds,

28

where wi t 1 =∑n
k=1 wik t . Similar to Proof 1, we denote

dV t
dt

=V e t = εeεt 〠
N

i=1
〠
n

k=1
wik t

+ eεt 〠
N

i=1
〠
n

k=1

dwik t
dt

⋅ ϑik t

+ 〠
N

i=1
〠
n

k,l=1
eε t+τ ckl γil t − 〠

N

i=l
〠
n

k,l=1
eεt ckl γil t − τ

= εeεt 〠
N

i=1
〠
n

k=1
wik t + eεt 〠

N

i=1
〠
n

k=1
sign wik t ⋅

−akwik t + 〠
n

l=1
bklγil t + 〠

n

l=1
cklγil t − τ

+m 〠
N

j=1,j≠i
dijϕkwjk t − k1wik t − k2 sign wik t

+ 〠
N

i=1
〠
n

k,l=1
eε t+τ ckl γil t − 〠

N

i=l
〠
n

k,l=1
eεt ckl γil t − τ

≤ εeεt 〠
N

i=l
〠
n

k=1
wik t + eεt 〠

N

i=1
〠
n

k=1
−ak wik t

+ 〠
n

l=1
bkl γil t sign wik t + 〠

n

l=1
eετ ckl γil t

+m 〠
N

j=1,j≠1
dijϕk wjk t − k1 wik t

− k2 sign wik t ≤ −eεt 〠
N

i=l
〠
n

k=1

k1 + ak − ε − 〠
n

l=1
a bkl − 〠

n

l=1
eεta ckl wik t

+m 〠
N

j=1,j≠i
dijϕk wjk t − eεt 〠

N

i=l
〠
n

k=1

k2 − 〠
n

l=1
β bkl − 〠

n

l=1
βeεt ckl sign wik t

29

By Lemma 2 and the property of adjacency matrix D, we
deduce that

m〠
N

i=l
〠
N

j=1
dijΦwj t ≤m〠

n

k=1
ϕk 〠

N

i=1
〠
N

j=1
dij wjk t

= −m〠
n

k=1
ϕk 〠

N

i=l
〠
N

j=1,j≠i
dij w

T
jk −wT

jk ≤ 0

30

Then, from (30), we deduce that

dV t
dt

≤ −eεt 〠
N

i=1
χ1 wik t − eεt 〠

N

i=l
χ2 sign wik t , 31

where χ1 = min1<k<n k1 + ak − ε − ∑n
l=1a bkl −∑n

l=1e
ετa ckl

and χ2 = min1<k<n k2 −∑n
l=1β bkl − ∑n

l=1βe
ετ ckl . By the

assumption of the theorem, there must exist a small enough
positive l = 1 constant ε, such that χ1 > 0 and χ2 > 0, which
implies

dV t
dt

≤ 0, for a e t ≥ 0, 32

which yields V w t ≤V w 0 , meaning that V w t is
bounded; then, we have

〠
N

i=1
wi t 1 ≤V w0, 0 e−εt 33
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ByDefinition 2, the synchronization errorw t converges
to zero. That is to say, the coupled discontinuous and delayed
neural networks (26) can be globally exponentially synchro-
nized with the isolated model (5) under the discontinuous
switching controller (24). The proof is completed.

Remark 2. In Proof 2, we choose the linear coupling function
φ s = s, without the loss of generality, even if the coupling
function becomes more complex such as nonlinear function
or coupling delay function; many synchronization criteria
for delay dependence were derived under these circum-
stances [20, 27, 28]. In the existing literatures, when the
neuron functions were discontinuous, the only thing
discussed is a single case for either σ = 0 or 0 < σ < 1,
respectively. When both neuron functions and controllers
are discontinuous, there is still no complete conclusion
of the issue of synchronization. In this paper, we discuss
the exponential synchronization problem of the time-
delayed neural network with discontinuous activations
under a unified framework of 0 ≤ σ < 1.

4. Examples and Simulation Experiment

In this section, to show the effectiveness of our proposed
method, two numerical examples are introduced to demon-
strate its validity.

Example 1.We consider the following 2-dimensional nonau-
tonomous complex network system:

dx1 t
dt

= −xi t − 3 + cos t f x1 t

+ 1
4 + 1

4 cos t f x2 t

+ 1
3 + 1

6 sin t f x1 t − τ11 t

+ 1
2 + 1

2 sin t f x2 t − τ12 t + 4,

dx2t
dt

= −x2 t + cos t f x1 t − 3 + sin f x2 t

+ 1
2 sin t f x1 t − τ21 t + 3 + cos t

34

Therefore, we can see that aL1 = aL2 = 1, bM11 = bM22 = −2,
cM11 = cM21 = 1/2, bM21 = cM12 = 1, bM12 = 1/2, and cM22 = 0. The
discontinuous activation function can be described as f s
= s + sign s . Let τij t = 1 i, j = 1, 2 . We choose the

switching continuous controller ui t = −ei t − sign ei t
ei t

1/2. Then, Figure 1 shows the time evolution of variables
x1 t and x2 t for the driver neural networks (34); more-
over, we can see that the exponential synchronization
between the driver system (34) and the corresponding
response system can be achieved in Figure 1, which is suitable
for our results.

Example 2. We consider three-dimensional autonomous
coupled complex dynamical networks as follows:

dx1 t
dt

= −x1 t −
1
2 f x1 t + f x2 t −

1
10 f x1 t − 1

+ 1
4 f x3 t − 1 ,

dx2 t
dt

= −x2 t + 1
3 f x2 t −

1
5 f x3 t + 1

4 f x2 t − 1 ,

dx3 t
dt

= −x3 t + 1
5 f x1 t −

1
8 f x2 t + 1

2 f x3 t

+ 1
6 f x2 t − 1 + 1

4 f x3 t − 1

35

The discontinuous activation functions are taken as

f s
0 1s − 0 5, s ≥ 0,
0 1s + 0 5, s < 0

36

Then, let α = 0 1 and β = 0 5, and it is obvious that the
conditions (Assumptions 1 and 2) are satisfied. Let the
coupling strength be m = 1; we choose random switching
rules for the coupled networks, and their topologies are
illustrated as follows:

1 2

3 4

37

where the adjacency matrix D is easily denoted as

D =

0 1 1 0
1 0 0 1
1 0 0 1
0 1 1 0

38

Then, we consider the discontinuous controller vi = −ei t
− 2 sign ei t with 2k1 = k2 = 2; by substituting the above
parameters, we can see that the condition (Assumption 3)
holds. We can see that the exponential synchronization
between the driver system (35) and the corresponding
response system can be depicted in Figure 2, which is suit-
able for our results.

5. Conclusions

In this paper, we investigate the exponential synchronization
of a class of complex dynamical networks based on the
framework of nonsmooth analysis and novel technique
analysis. By adding a continuous switching controller, we
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Figure 1: (a) The three-dimensional trajectory of state variables x1 and x2. (b–c) The time evolution for the driver network system and
corresponding response system (34). (d) The time response of the synchronization error between the driver system (34) and
corresponding response system with the continuous controller.
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Figure 2: (a–c) The time evolution for the driver network system (35) and corresponding response system. (d) The time response of the
synchronization error between the driver system (35) and corresponding response system with the discontinuous controller.
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realize the global exponential synchronization of the nonau-
tonomous discontinuous and delayed neural networks. Then,
we choose a linear coupling function, and the autonomous
complex dynamical network can be globally exponentially
synchronized with the isolated model under the discontinu-
ous switching controller, by constructing a C-regular
Lyapunov-like function which is time-dependent. However,
it is not easy to go beyond the conventional Lyapunov func-
tion for achieving the exponential synchronization goal. This
paper overcomes the limitation of traditional controllers and
proposes some novel discontinuous controllers. Moreover,
the results have been verified by the numerical examples
and computer simulations. In short, our results are provided
with an important application significance in the design of
synchronized complex dynamical networks.
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