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Abstract

The celebrated Perron–Frobenius (PF) theorem is
stated for irreducible nonnegative square matrices, and
provides a simple characterization of their eigenvectors
and eigenvalues. The importance of this theorem stems
from the fact that eigenvalue problems on such matrices
arise in many fields of science and engineering, including
dynamical systems theory, economics, statistics and op-
timization. However, many real-life scenarios give rise
to nonsquare matrices. Despite the extensive develop-
ment of spectral theories for nonnegative matrices, the
applicability of such theories to non-convex optimiza-
tion problems is not clear. In particular, a natural ques-
tion is whether the PF Theorem (along with its appli-
cations) can be generalized to a nonsquare setting. Our
paper provides a generalization of the PF Theorem to
nonsquare multiple choice matrices. The extension can
be interpreted as representing systems with additional
degrees of freedom, where each client entity may choose
between multiple servers that can cooperate in serving
it (while potentially interfering with other clients). This
formulation is motivated by applications to power con-
trol in wireless networks, economics and others, all of
which extend known examples for the use of the origi-
nal PF Theorem.

We show that the option of cooperation does not
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improve the situation, in the sense that in the optimum
solution, no cooperation is needed, and only one server
per client entity needs to work. Hence, the additional
power of having several potential servers per client
translates into choosing the “best” single server and not
into sharing the load between the servers in some way,
as one might have expected.

The two main contributions of the paper are (i) a
generalized PF Theorem that characterizes the optimal
solution for a non-convex problem, and (ii) an algorithm
for finding the optimal solution in polynomial time.

In addition, we extend the definitions of irreducibil-
ity and largest eigenvalue of square matrices to non-
square ones in a novel and non-trivial way, which turns
out to be necessary and sufficient for our generalized
theorem to hold.

To characterize the optimal solution, we use tech-
niques from a wide range of areas. In particular, the
analysis exploits combinatorial properties of polytopes,
graph-theoretic techniques and analytic tools such as
spectral properties of nonnegative matrices and root
characterization of integer polynomials.

1 Introduction

Motivation and main results. This paper presents
a generalization of the well known Perron–Frobenius
(PF) Theorem [25, 14], and some of its applications.
To begin, let us consider the following motivating ex-
ample. Power control is one of the most fundamental
problems in wireless networks. We are given n receiver-
transmitter pairs and their physical locations. All trans-
mitters are set to transmit at the same time with the
same frequency, thus causing interference to the other
receivers. Therefore, receiving and decoding a message
at each receiver depends on the transmitting power of
its paired transmitter as well as the power of the rest
of the transmitters. If the signal strength received by a
device divided by the interfering strength of other simul-
taneous transmissions is above some reception threshold



β, then the receiver successfully receives the message,
otherwise it does not [28]. The question of power con-
trol is then to find an optimal power assignment for the
transmitters, so as to make the reception threshold β as
high as possible and ease the decoding process.

As it turns out, this power control problem can
be solved elegantly using the Perron–Frobenius (PF)
Theorem [37]. The theorem holds for square matrices
and can be formulated as dealing with the following
optimization problem (where A ∈ Rn×n):

maximize β subject to:(1.1)

A ·X ≤ 1/β ·X, ||X||1 = 1, X ≥ 0.

Let β∗ denote the optimal solution for Program (1.1).
The Perron–Frobenius (PF) Theorem characterizes the
solution to this optimization problem:
Theorem 1.1. (PF Theorem, short version, [14,
25]) Let A be an irreducible nonnegative matrix. Then
β∗ = 1/r, where r ∈ R>0 is the largest eigenvalue of
A, called the Perron–Frobenius (PF) root of A. There
exists a unique (eigen-)vector P > 0, ||P||1 = 1, such
that A ·P = r ·P, called the Perron vector of A. (The
pair (r ,P) is hereafter referred to as an eigenpair of A.)

Returning to our motivating example, let us consider a
more complicated variant of the power control problem,
where each receiver has several transmitters that can
transmit to it (and only to it) synchronously. Since
these transmitters are located at different places, it may
conceivably be better to divide the power (i.e., work)
among them, to increase the reception threshold at their
common receiver. Again, the question concerns finding
the best power assignment among all transmitters.

In this paper we extend Program (1.1) to nonsquare
matrices and consider the following extended optimiza-
tion problem, which in particular captures the multiple
transmitters scenario. (Here A,B ∈ Rn×m, n ≤ m.)

maximize β subject to:(1.2)

A ·X ≤ 1/β ·B ·X, ||X||1 = 1, X ≥ 0.

We interpret the nonsquare matrices A,B as represent-
ing some additional freedom given to the system de-
signer. In this setting, each entity (receiver, in the
power control example) has several affectors (transmit-
ters, in the example), referred to as its supporters, which
can cooperate in serving it and share the workload. In
such a general setting, we would like to find the best way
to organize the cooperation between the “supporters” of
each entity.

The original problem was defined for a square
matrix, so the rise of eigenvalues seems natural. In
contrast, in the generalized setting the situation seems
more complex. Our main result is an extension of the
PF Theorem to nonsquare matrices and systems.

Theorem 1.2. (Multiple Choice PF Theorem,
short version) Let 〈A,B〉 be an irreducible nonnega-
tive system (to be made formal later). Then β∗ = 1/r,
where r ∈ R>0 is the smallest Perron–Frobenius (PF)
root of all n× n square sub-systems (defined formally
later). There exists a vector P ≥ 0 such that A · P =
r ·B ·P and P has n entries greater than 0 and m− n
zero entries (referred to as a 0∗ solution).

In other words, we show that the option of cooper-
ation does not improve the situation, in the sense that
in the optimum solution, no cooperation is needed and
only one supporter per entity needs to work. Hence,
the additional power of having several potential sup-
porters per entity translates into choosing the “best”
single supporter and not into sharing the load between
the supporters in some way, as one might have expected.
Actually, the lion’s share of our analysis involves such
a characterization of the optimal solution for (the non-
convex) problem of Program (1.2). The challenge was
to show that at the optimum, there exists a solution in
which only one supporter per entity is required to work;
we call such a solution a 0∗ solution. Namely, the struc-
ture that we aim to establish is that the optimal solution
for our multiple choices system is in fact the optimal so-
lution of an embedded PF system. Indeed, to enjoy the
benefits of an equivalent square system, one should show
that there exists a solution in which only one supporter
per entity is required to work. Interestingly, it is rela-
tively easy to show that there exists an optimal “almost
0∗” solution, in which each entity except at most one
has a single active supporter and the remaining entity
has at most two active supporters. Despite the presum-
ably large “improvement” of decreasing the number of
servers from m to n+ 1, this still leaves us in the frus-
trating situation of a nonsquare n × (n + 1) system,
where no spectral characterization for optimal solutions
exists. In order to allow us to characterize the optimal
solution using the eigenpair of the best square matrix
embedded within the nonsquare system, one must over-
come this last hurdle, and reach the critical (or “phase
transition”) point of n servers, in which the system is
square. Our main efforts went into showing that the re-
maining entity, too, can select just one supporter while
maintaining optimality, ending with a square n×n irre-
ducible system where the traditional PF Theorem can
be applied. Proving the existence of an optimal 0∗ so-
lution requires techniques from a wide range of areas
to come into play and provide a rich understanding of
the system on various levels. In particular, the analysis
exploits combinatorial properties of polytopes, graph-
theoretic techniques and analytic tools such as spectral
properties of nonnegative matrices and root characteri-
zation of integer polynomials.



For the example of power control in wireless net-
work with multiple transmitters per receiver, a 0∗ solu-
tion means that the best reception threshold is achieved
when only a single transmitter transmits to each re-
ceiver. This is illustrated by the SIR (Signal to Inter-
ference Ratio) diagram (cf. [2]) in Fig. 3, depicting a
system of three receivers and two transmitters per re-
ceiver using the optimal value β∗ of the system. The
figure illustrates that in the optimal 0∗ solution for the
system, each receiver is covered by one of its transmit-
ters, but other solutions, including the one where all
transmitters act simultaneously, may fail to cover the
receivers.

Other known applications of PF Theorem can also
be extended in a similar manner. Examples for such ap-
plications are the input-output economic model [26]. In
the economy model, each industry produces a commod-
ity and buys commodities from other industries. The
percentage profit margin of an industry is the ratio of
its total income and total expenses (for buying its raw
materials). It is required to find a pricing maximizing
the ratio of the total income and total expenses of all
industries. The extended PF variant concerns the case
where an industry can produce multiple commodities in-
stead of just one. In all of these examples, the same gen-
eral phenomenon holds: only a single supporter needs
to “work” for each entity in the optimum solution, i.e.,
the optimum is a 0∗ solution.

While the original PF root and PF vector can
be computed in polynomial time, this is not clear in
the extended case, since the problem is not convex [5]
(and also not log-convex) and there are exponentially
many choices in the system even if we know that the
optimal solution is 0∗ and each entity (e.g., receiver) has
only two supporters (e.g., transmitters) to choose from.
Our second main contribution is providing a polynomial
time algorithm to find β∗ and P. The algorithm uses
the fact that for a given β we get a relaxed problem
which is convex (actually it becomes linear). This allows
us to employ the well known interior point method
[5], for testing a specific β for feasibility. Hence, the
problem reduces to finding the maximum feasible β,
and the algorithm does so by applying binary search
on β. Clearly, the search results in an approximate
solution (in fact yielding an FPTAS for program (1.2)).
This, however, leaves open the intriguing question of
whether program (1.2) is polynomial. Obtaining an
exact optimal β∗, along with an appropriate vector P, is
thus another challenging aspect of the algorithm, which
is successfully solved via an original approach based on
the extended PF Theorem, which states that there is
an optimal 0∗ solution, and proving that the proposed
algorithm is polynomial.

A central notion in the generalized PF theorem is
the irreducibility of the system. While irreducibility is
well-defined and known for square systems, it is not
clear how to define irreducibility for a nonsquare matrix
or system as in Program (1.2). We provide a suitable
definition based on the property that every maximal
square (legal) subsystem is irreducible, and show that
our definition is necessary and sufficient for the theorem
to hold. But, since there could be exponentially many
such square subsystems, it is not a priori clear if one
can check that a nonsquare system is irreducible in
polynomial time. We address this issue using what we
call the constraint graph of the system, whose vertex set
is the set on n constraints (one per entity) and whose
edges represent direct influence between the constraints.
For a square system, irreducibility is equivalent to
the constraint graph being strongly connected, but
for nonsquare systems the situation is more delicate.
Essentially, although the matrices are not square, the
notion of constraint graph is well defined and provide
in a way a valuable square representation of the non
square system (i.e., the adjacency matrix of the graph).
Interestingly, we find a polynomial time algorithm for
testing irreducibility of the system, which exploits the
properties of the constraint graph.

Related work. The PF Theorem establishes the fol-
lowing two important “PF properties” for a nonnegative
irreducible square matrix A ∈ Rn×n: (1) the Perron–
Frobenius property : A has a maximal nonnegative eigen-
pair. If in addition, the maximal eigenvalue is strictly
positive, dominant and with a strictly positive eigen-
vector, then the matrix A is said to enjoy the strong
Perron–Frobenius property. (2) the Collatz–Wielandt
property (a.k.a. min-max characterization): the max-
imal eigenpair is the optimal solution of Program (1.1).
Matrices with these properties have played an important
role in a wide variety of applications. The wide appli-
cability of the PF Theorem, as well as the fact that it is
still not fully understood what are the necessary and suf-
ficient properties of a matrix A for the PF properties to
hold, have led to the emergence of many generalizations.
We note that whereas all generalizations concern the
Perron–Frobenius property, the Collatz–Wielandt prop-
erty is not always established. The long series of existing
PF extensions includes [22, 13, 29, 18, 31, 19, 27, 21].
Section 2 discusses these extensions in comparison to the
current work. In addition, in Section 8.1 we discuss the
existing literature for the wireless power control prob-
lem with multiple transmitters.



2 Existing Extensions for the PF Theorem

Existing PF extensions can be broadly classified into
four classes. The first concerns matrices that do not
follow the irreducibility and nonnegativity requirement.
For example, [22, 13] establish the Perron-Frobenius
property for almost nonnegative matrices or eventually
nonnegative matrices. A second class of generalizations
concerns square matrices over different domains. For
example, in [29], the PF Theorem was established
for complex matrices A ∈ Cn×n. In the third type
of generalization, the linear transformation obtained
by applying the nonnegative irreducible matrix A is
generalized to a nonlinear mapping [18, 31], a concave
mapping [19] or a matrix polynomial mapping [27].

Last, a much less well studied generalization deals
with nonsquare matrices, i.e., matrices in Rn×m for
m 6= n. Note that when considering a nonsquare
system, the notion of eigenvalues requires definition.
There are several possible definitions for eigenvalues in
nonsquare matrices. One possible setting for this type
of generalizations considers a pair of nonsquare “pencil”
matrices A,B ∈ Rn×m, where the term “pencil” refers
to the expression A − λ · B, for λ ∈ C. Of special
interest here are the values that reduce the pencil rank,
namely, the λ values satisfying (A−λB)·X = 0 for some
nonzero X. This problem is known as the generalized
eigenvalue problem [21, 10, 4, 20] which can be stated
as follows: Given matrices A,B ∈ Rn×m, find a vector
X 6= 0, λ ∈ C, so that A · X = λB · X. The complex
number λ is said to be an eigenvalue of A relative to
B iff AX = λ · B · X for some nonzero X and X is
called the eigenvector of A relative to B. The set of all
eigenvalues of A relative to B is called the spectrum of
A relative to B, denoted by sp(AB).

Using the above definition, [21] considered pairs of
nonsquare matrices A,B and was the first to charac-
terize the relation between A and B required to estab-
lish their PF property, i.e., guarantee that the general-
ized eigenpair is nonnegative. Essentially, this is done
by generalizing the notion of positivity and nonnegativ-
ity in the following manner. A matrix A is said to be
positive (respectively,nonnegative) with respect to B, if
BT · Y ≥ 0 implies that AT · Y > 0 (resp., AT · Y ≥ 0).
Note that for B = I, these definitions reduce to the
classical definitions of a positive (resp., nonnegative)
matrix. Let A,B ∈ Rn×m, for n ≥ m, be such that the
rank of A or the rank of B is n. It is shown in [21] that
if A is positive (resp., nonnegative) with respect to B,
then the generalized eigenvalue problem A·X = λ·B ·X
has a discrete and finite spectrum, the eigenvalue with
the largest absolute value is real and positive (resp.,
nonnegative), and the corresponding eigenvector is pos-
itive (resp., nonnegative). Observe that under the defi-

nition used therein, the cases where m > n (which is the
setting studied here) is uninteresting, as the columns of
A−λ·B are linearly dependent for any real λ, and hence
the spectrum sp(AB) is unbounded.

Despite the significance of [21] and its pioneer-
ing generalization of the PF Theorem to nonsquare
systems, it is not clear what are the applications of
such a generalization, and no specific implications are
known for the traditional applications of the PF the-
orem, such as the power-control problem or the econ-
omy model. Moreover, although [21] established the
PF property for a class of pairs of nonsquare matrices,
the Collatz–Wielandt property, which provides the algo-
rithmic power for the PF Theorem, does not necessarily
hold with the spectral definition of [21].

In addition, in [21], since no notion of irreducibility
was defined, the spectral radius of a nonnegative system
(in the sense of the definition of [21]) might be zero, and
the corresponding eigenvector might be nonnegative in
the strong sense (with some zero coordinates). These
degenerations can be handled only by considering irre-
ducible nonnegative matrices, as was done in [14].

The goal of the current work is to develop the spec-
tral theory for a pair of nonnegative matrices in a way
that is both necessary and sufficient for both the PF
property and the Collatz–Wielandt property to hold
(necessary and sufficient in the sense for the nonsquare
system to be of the “same power” as the square sys-
tems considered by Perron and Frobenius). We con-
sider nonsquare matrices of dimension n×m for n ≤ m,
which can be interpreted as describing a system with
multiple choices (of columns) per entity (row). We de-
fine the spectrum of pairs of matrices A and B in a
novel manner. We note that although according to [21]
the spectrum sp(AB) is not bounded if n < m, with
our definition the spectrum is bounded. Interestingly,
the maximum eigenvalue of the spectrum we define, is
also the maximum of spectrum according to the defini-
tion of [21] and therefore we can show that the Collatz-
Wielandt property is extended as well. It is important
to note that although the generalized eigenvalue prob-
lem has been studied for many years, and multiple ap-
proaches for nonsquare spectral theory in general have
been developed, the algorithmic aspects of such theo-
ries with respect to the the Collatz–Wielandt property
have been neglected when concerning nonsquare matri-
ces (and also in other extensions). This paper is the
first, to the best of our knowledge, to provide spectral
definitions for nonsquare systems that have the same
algorithmic power as those made for square systems (in
the context of PF Theorem). The extended optimiza-
tion problem that corresponds to this nonsquare setting,
is a nonconvex problem (which is also not log-convex),



therefore its polynomial solution and characterization
are of interest.

Another way to extend the notion of eigenvalues and
eigenvectors of a square matrix to a nonsquare matrix is
via singular value decomposition (SVD) [23]. Formally,
the singular value decomposition of an n×m real matrix
M is a factorization of the form M = UΣV ∗, where U
is an m × m real or complex unitary matrix, Σ is an
m × n diagonal matrix with nonnegative reals on the
diagonal, and V ∗ (the conjugate transpose of V ) is an
n × n real or complex unitary matrix. The diagonal
entries Σi,i of Σ are known as the singular values of M .
After performing the product UΣV ∗, it is clear that the
dependence of the singular values of M is linear. In case
all the inputs of M are positive, we can add the absolute
value, and thus the SVD has a flavor of L1 dependence.
In contrast to the SVD definition, here we are interested
in finding the maximum, so our interpretation has the
flavor of L∞.

In a recent paper [34], Vazirani defined the notion
of rational convex programs as problems that have a
rational number as a solution. Our paper can be
considered as an example for algebraic programming,
since we show that a solution to our problem is an
algebraic number.

3 Algebraic Preliminaries

Definitions and Terminology. Let A ∈ Rn×n be a
square matrix. Let EigV al(A) = {λ1, . . . , λk}, k ≤ n,
be the set of (at most n) real eigenvalues of A. The
characteristic polynomial of A, denoted by P(A, t), is a
polynomial whose roots are precisely the eigenvalues of
A, EigV al(A), and it is given by

(3.3) P(A, t) = det(t · I −A)

where I is the n × n identity matrix. Note that
P(A, t) = 0 iff t ∈ EigV al(A). The spectral radius of
A is defined as ρ(A) = max

λ∈EigV al(A)
|λ|. The ith element

of a vector X is given by X(i), and the i, j entry of a
matrix A is A(i, j). Let Ai,0 (respectively, A0,i) denote
the i-th row (resp., column) of A. Vector and matrices
inequalities are interpreted in the component-wise sense.
A is positive (respectively, nonnegative) if all its entries
are positive. A is primitive if there exists a natural
number k such that Ak > 0. A is irreducible if for every
i, j, there exists a natural ki,j such that (Aki,j )i,j > 0.
An irreducible matrix A is periodic with period h if
(At)ii = 0 for t 6= k · h.

PF Theorem for nonnegative irreducible matri-
ces. The PF Theorem states the following.

Theorem 3.1. (PF Theorem) Let A ∈ Rn×n≥0 be a
nonnegative irreducible matrix with spectral ratio ρ(A).

Then maxEigV al(A) > 0. There exists an eigenvalue
λ ∈ EigV al(A) such that λ = ρ(A). λ is called the
Perron–Frobenius (PF) root of A (denoted here by r).
The algebraic multiplicity of r is one. There exists an
eigenvector X > 0 such that A ·X = r ·X. The unique
vector P defined by A · P = r · P and ||P||1 = 1 is
called the Perron–Frobenius (PF) vector. There are no
nonnegative eigenvectors for A with r except for positive
multiples of P. If A is a nonnegative irreducible periodic
matrix with period h, then A has exactly h eigenvalues
equal to λj = ρ(A) · exp2πi·j/h , j = 1, 2, . . . , h, and all
other eigenvalues of A are of strictly smaller magnitude
than ρ(A).

Collatz–Wielandt characterization (the min-max
ratio). Collatz and Wielandt [11, 35] established the
following formula for the PF root, also known as the
min-max ratio characterization.

Lemma 3.1. [11, 35] r = minX∈N f(X) where f(X) =

max
1≤i≤n,X(i) 6=0

{
(A·X)i
X(i)

}
and N = {X ≥ 0, ||X||1 = 1}.

Alternatively, this can be written as the following
optimization problem.

(3.4) max β s.t A ·X ≤ 1/β ·X, ||X||1 = 1, X ≥ 0.

Let β∗ be the optimal solution of Program (3.4) and

let X
∗

be the corresponding optimal vector. Using the
representation of Program (3.4), Lemma 3.1 translates
into the following.

Theorem 3.2. β∗ = 1/r where r ∈ R>0 is the maximal

eigenvalue of A and X
∗

is given by eigenvector P
corresponding for r. Hence at the optimum value β∗,
the set of n constraints given by A ·X∗ ≤ 1/β∗ ·X∗ of
Program (3.4) holds with equality.

This can be interpreted as follows. Consider the ratio
Y (i) = (A ·X)i/X(i), viewed as the ‘repression factor’
for entity i. The task is to find the input vector X that
minimizes the maximum repression factor over all i, thus
achieving balanced growth. In the same manner, one
can characterize the max-min ratio. Again, the optimal
value (resp., point) corresponds to the PF eigenvalue
(resp., eigenvector) of A. In summary, when takingX to
be the PF eigenvector, P, and β∗ = 1/r , all repression
factors are equal, and optimize the max-min and min-
max ratios.

4 A Generalized PF Theorem for Nonsquare
Systems

System definitions. Our framework consists of a set
V = {v1, . . . , vn} of entities whose growth is regulated
by a set of affectors A = {A1,A2, . . . ,Am}, for some
m ≥ n. As part of the solution, we set each affector



to be either passive or active. If an affector Aj is set
to be active, then it affects each entity vi, by either
increasing or decreasing it by a certain amount, denoted
g(i, j) (which is specified as part of the input). If
g(i, j) > 0 (resp., g(i, j) < 0), then Aj is referred
to as a supporter (resp., repressor) of vi. For clarity
we may write g(vi,Aj) for g(i, j). We describe the
affector-entity relation by the supporters gain matrix
M+ ∈ Rn×m

M+(i, j) =

{
g(vi,Aj), if g(vi,Aj) > 0;

0, otherwise.

and the repressors gain matrix M− ∈ Rn×m, given by

M−(i, j) =

{
−g(vi,Aj), if g(vi,Aj) < 0;

0, otherwise.

Again, for clarity we may writeM−(vi,Aj) forM−(i, j)
(and similarly for M+).

We can now formally define a system as L =
〈M+,M−〉, where M+,M− ∈ Rm×n≥0 , n = |V| and
m = |A|. We denote the supporter (resp., repressor)
set of vi by

Si(L) = {Aj | M+(vi,Aj) > 0}
Ri(L) = {Aj | M−(vi,Aj) > 0}.

When L is clear from context, we may omit it and
simply write Ri and Si. Throughout, we restrict
attention to systems in which |Si| ≥ 1 for every vi ∈ V.
We classify the systems into three types:

(a) Ls = {L | m ≤ n, |Si| = 1, for every vi ∈ V} is the
family of Square Systems (SS).

(b) Lw = {L | m = n + 1,∃j s.t |Sj | = 2 and |Si| =
1 for every vi ∈ V \ {vj}} is the family of Weak
Systems (WS), and

(c) LMS = {L | m > n + 1} is the family of Multiple
Systems (MS).

The generalized PF optimization problem. Con-
sider a set of n entities and gain matrices M+,M− ∈
Rn×m, for m ≥ n. The main application of the general-
ized PF Theorem is the following optimization problem,
which is an extension of Program (3.4).

max β(4.5)

s.t.M− ·X ≤ 1/β · M+ ·X(4.6)

X ≥ 0(4.7)

||X||1 = 1 .

We begin with a simple observation. An affector Aj is
redundant if M+(vi,Aj) = 0 for every i.

Observation 4.1. If Aj is redundant, then X(j) = 0
in any optimal solution X.

In view of Obs. 4.1, we may hereafter restrict
attention to the case where there are no redundant
affectors in the system, as any redundant affector Aj
can be removed and simply assigned X(j) = 0.

We now proceed with some definitions. Let X(Aj)
denote the value of Aj in X. Denote the set of affectors
taken to be active in a solution X by NZ(X) = {Aj |
X(Aj) > 0}. Let β∗(L) denote the optimal value of
Program (4.5), i.e., the maximal positive value for which
there exists a nonnegative, nonzero vector X satisfying
the constraints of Program (4.5). When the system L is
clear from the context we may omit it and simply write
β∗. A vector X β̃ is feasible for β̃ ∈ (0, β∗] if it satisfies

all the constraints of Program (4.5) with β = β̃. A

vector X
∗

is optimal for L if it is feasible for β∗(L), i.e.,

X
∗

= Xβ∗ . The system L is feasible for β if β ≤ β∗(L),
i.e., there exists a feasible Xβ solution for Program
(4.5). For vector X, the total repression on vi in L
for a given X is T−(X,L)i = (M− ·X)i. Analogously,
the total support for vi is T+(X,L)i = (M+ · X)i. It
now follows that X is feasible with β iff

(4.8) T−(X,L)i ≤ 1/β · T+(X,L)i for every i.

When L is clear from context, we may omit it and sim-
ply write T−(X)i and T+(X)i. As a direct application
of the generalized PF theorem, there is an exact poly-
nomial time algorithm for solving Program (4.5) for ir-
reducible systems, as defined next.

Irreducibility of square systems. A square system
L ∈ Ls is irreducible iff (a) M+ is nonsingular and (b)
M− is irreducible. Given an irreducible square L, let

Z(L) =
(
M+

)−1 · M− .
Note the following two observations.

Observation 4.2. (a) IfM+ is nonsingular, then Si∩
Sj = ∅. (b) If L is an irreducible system, then Z(L) is
an irreducible matrix as well.

(For lack of space, some proofs are deferred to the
full version.) Throughout, when considering square
systems, it is convenient to assume that the entities
and affectors are ordered in such a way that M+ is a
diagonal matrix, i.e., in M+ (and M−) the ith column
corresponds to Ak ∈ Si, the unique supporter of vi.

Selection matrices and irreducibility of non-
square systems. To define a notion of irreducibility for
a nonsquare system L /∈ Ls, we first present the notion
of a selection matrix. A selection matrix F ∈ {0, 1}m×n
is legal for L iff for every entity vi ∈ V there exists ex-
actly one supporter Aj ∈ Si such that F (j, i) = 1. Such
a matrix F can be thought of as representing a selec-
tion performed on Si by each entity vi, picking exactly
one of its supporters. Since there are no redundant af-
fectors, the number of active affectors becomes equal



to the number of entities, resulting in a square system.
Denote the family of legal selection matrices, capturing
the ensemble of all square systems hidden in L, by

(4.9) F(L) = {F | F is legal for L}.
When L is clear from context, we simply write F . Let
L(F ) be the square system corresponding to the legal
selection matrix F , namely, L(F ) = 〈M+ ·F,M− ·F 〉.

Observation 4.3. (a) L(F ) ∈ Ls for every F ∈
F . (b) β∗(L) ≥ β∗(L(F )) for every selection F ∈ F .

We are now ready to define the notion of irreducibil-
ity for nonsquare systems: A nonsquare system L is irre-
ducible iff L(F ) is irreducible for every selection matrix
F ∈ F . Note that this condition is the “minimal” nec-
essary condition for our theorem to hold, as explained
next. Our theorem states that the optimum solution for
the nonsquare system is the optimum solution for the
best embedded square system. It is easy to see that for
any nonsquare system L = 〈M+,M−〉, one can increase
or decrease any entry g(i, j) in the matrices, while main-
taining the sign of each entry in the matrices, such that a
particular selection matrix F ∗ ∈ F would correspond to
the optimal square system. With an optimal embedded
square system at hand, which is also guaranteed to be
irreducible (by the definition of irreducible nonsquare
systems), our theorem can then apply the traditional
PF Theorem, where a spectral characterization for the
solution of Program (3.4) exists. Note that irreducibil-
ity is a structural property of the system, in the sense
that it does not depend on the exact gain values, but
rather on the sign of the gains, i.e., to determine irre-
ducibility, it is sufficient to observe the binary matrices
M+

B ,M
−
B , treating g(i, j) > 0 (resp. g(i, j) < 0) as 1

(resp., -1). On the other hand, deciding which of the em-
bedded square system has the maximal eigenvalue (and
hence is optimal), depends on the precise values of the
entries of these matrices. It is therefore necessary that
the structural property of irreducibility would hold for
any specification of gain values (while maintaining the
binary representation of M+

B ,M
−
B). Indeed, consider a

reducible nonsquare system, for which there exists an
embedded square system L(F ) that is reducible. It is
not hard to see that there exists a specification of gain
values that would render this square system L(F ) opti-
mal (i.e., with the maximal eigenvalue among all other
embedded square systems). But since L(F ) is reducible,
the PF Theorem cannot be applied, and in particular,
the corresponding eigenvector is no longer guaranteed
to be positive.

Corollary 4.1. In an irreducible system L, Si ∩Sj =
∅ for every vi, vj.

PF Theorem for nonnegative irreducible sys-
tems. Recall that the root of a square system L ∈ Ls

is r(L) = max {EigV al(Z(L))} . P(L) is eigenvector of
Z(L) corresponding to r(L). We now turn to define the
generalized Perron–Frobenius (PF) root of a nonsquare
system L /∈ Ls, which is given by

(4.10) r(L) = min
F∈F
{r(L(F ))} .

Let F ∗ be the selection matrix that achieves the mini-
mum in Eq. (4.10). We now describe the correspond-
ing eigenvector P(L). Note that P(L) ∈ Rm, whereas
P(L(F ∗)) ∈ Rn.

Consider X
′

= P(L(F ∗)) and let P(L) = X, where

(4.11) X(Aj) =

{
X ′(Aj), if

∑n
i=1 F

∗(j, i) > 0;

0, otherwise.

We next state our main result, which is a generalized
variant of the PF Theorem for every nonnegative
irreducible system.

Theorem 4.1. Let L be an irreducible and nonnegative
system. Then

(Q1) r(L) > 0,

(Q2) P(L) ≥ 0,

(Q3) |NZ(P(L))| = n,

(Q4) P(L) is not unique.

(Q5) The generalized Perron root of L
satisfies r = min

X∈N

{
f(X)

}
, where

f(X) = max
1≤i≤n,(M+·X)

i
6=0
{ (M−·X)

i

(M+·X)
i

} and

N = {X ≥ 0, ||X||1 = 1,M+ · X 6= 0}. I.e., the
Perron-Frobenius (PF) eigenvalue is 1/β∗ where
β∗ is the optimal value of Program (4.5), and
the PF eigenvalue is the corresponding optimal
point. Hence, at the optimum value β∗, the set of
n constraints of Eq. (4.6) hold with equality.

5 Proof of the Generalized PF Theorem

We first discuss a natural approach one may consider
for proving Thm. 4.1 in general and solving Program
(4.5) in particular, and explain this approach fails in
this case.

The difficulty. A common approach is to turn a
non-convex program into an equivalent convex one by
performing a standard variable exchange. An example
for a program that’s amenable to this technique is
Program (3.4) which is log-convex (see Lemma 5.1a),



namely, it becomes convex after replacing terms X(i)

with new variables X̂(i). Unfortunately, in contrast
to Program (3.4), its generalization, namely, Program
(4.5), is not log-convex (see Lemma 5.1b) and hence
cannot be transformed into a convex one in this manner.

Our main efforts in the paper went into showing
that at the optimum point, the system loses one degree
of freedom, hence guaranteeing the existence of an
optimal solution.

5.1 Proof overview Our main challenge is to show
that the optimal value of Program (4.5) is related to
an eigenvalue of some hidden square system L∗ in L
(where “hidden” implies that there is a selection on L
that yields L∗). The flow of the analysis is as follows.
We first provide a graph theoretic characterization of
irreducible systems. In particular, we introduce the
notion of constraint graph and discuss its properties.
We then consider a convex relaxation of Program (4.5)
and show that the set of feasible solutions of Program
(4.5), for every β ∈ (0, β∗], corresponds to a bounded
polytope. Moreover, we show that for irreducible
systems, the vertex set of such a polytope corresponds
to a hidden weak system L∗ ∈ Lw. That is, there exists
an hidden weak system in L that achieves β∗. Note that
a solution for such a hidden system can be extended to
a solution X

∗
for L simply by setting the entries of the

non-selected affectors to zero in X
∗
.

Next, we exploit a generalization of Cramer’s rule
for homogeneous linear systems as well as a separation
theorem for nonnegative matrices to show that there is
a hidden optimal square system in L that achieves β∗,
which establishes the lion’s share of the theorem.

A surprising conclusion of our generalized theorem
is that although the given system of matrices is not
square, and eigenvalues cannot be straightforwardly
defined for it, the nonsquare system contains a hidden
optimal square system, optimal in the sense that a
solution for this system can be translated into a solution
to the original system (simply by putting zeros for non-
selected affectors) and to satisfy Program (4.5) with the
optimal value β∗. The power of nonsquare systems is
thus not in the ability to create a solution better than
any hidden square system it possesses, but rather in the
option to select the best possible hidden square system
out of the optionally exponential many ones.

5.2 Tools
The constraint graph. We begin by providing a

graph theoretic characterization of irreducible systems.
We define two versions of a (directed) constraint graph
for system L. Let CGL(V,E) be the constraint graph for
system L, defined as follows: V = V, and the rule for a

directed edge ei,j from vi to vj is

(5.12) ei,j ∈ E iff Si ∩Rj 6= ∅.
Let SCGL(V, Ê) be the strong constraint graph for
system L defined as follows: V = V, and the directed
edge êi,j from vi to vj is defined by

(5.13) êi,j ∈ Ê iff Si ⊆ Rj .
Note that the main difference between SCGL(V,E) and
CGL(V,E) is that SCGL = SCGL(F ) for every selection
F ∈ F . However, for the constraint graph CGL(V,E), it
is possible that CGL * CGL(F ) for some F ∈ F . A graph
CGL(V,E) is robustly strongly connected if CGL(F )(V,E)
is strongly connected for every F ∈ F .

Observation 5.1. Let L be an irreducible system.

(a) If L is square, then SCGL(V,E) = CGL(V,E) and
CGL(V,E) is strongly connected.

(b) If L is nonsquare, then CGL(V,E) is robustly
strongly connected.

Strongly irreducible systems. The strong constraint
graph SCGL(V,E) can be used to define a stronger no-
tion of irreducibility. A system L is strongly irreducible
iff Si ∩ Sj = ∅, for every i, j ∈ [1, n], and SCGL(V,E) is
strongly connected. The following properties are satis-
fied by strongly irreducible system.

Observation 5.2. Let L be strongly irreducible. Then
(a) L is irreducible; (b) The matrix M+ · (M−)T is
irreducible.

It is important to note that the irreducibility of L does
not imply that SCGL(V,E) is strongly connected. We
now describe an example of a system that is irreducible
but not strongly irreducible. Consider a system
L = 〈M+,M−〉 of three entities and four affectors,
where

M− =

0 1 1 0
1 0 0 1
1 0 0 0

 and M+ =

1 0 0 0
0 1 0 0
0 0 1 1

 .

We have S1 = {A1}, S2 = {A2} and S3 = {A3,A4};
and R1 = {A2,A3}, R2 = {A1,A4} and R3 = {A1}.
There are two complete selections, S1 = {A1,A2,A3}
and S2 = {A1,A2,A4}. Both systems, L(S1) and
L(S2), are irreducible (see the constraint graphs in
Figures 1(b) and 1(c), respectively). However, the
system is not strongly irreducible (see the constraint
graph in Figure 1(a)).

Hence, our definition for irreducibility is less strin-
gent than the requirement that the strong constraint
graph is strongly connected. For example, if the ma-
trix M+ + M− is positive and the supporter sets
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Figure 1: (a) The constraint graph CGL, which is not
strongly connected, hence also not strongly irreducible; (b)
the constraint graph of L(S1), which is strongly connected,
hence irreducible. (c) the constraint graph of L(S2), which
is also strongly connected and irreducible.

S1(L), . . . ,Sn(L) are disjoint, then the system is irre-
ducible. But in fact, much less is required to establish
irreducibility.

Finally, we provide a poly-time algorithm for testing
the irreducibility of a given nonnegative system L.
Note that if L is a square system, then irreducibility
can be tested straightforwardly, e.g., by checking that
the directed graph corresponding the matrix Z(L) is
strongly connected. However, recall that a nonsquare
system L is irreducible iff every hidden square system
L(F ), F ∈ F , is irreducible, i.e., the matrix Z(L(F ))
is irreducible for every F ∈ F . Since F might be
exponentially large, a brute-force testing of L(F ) for
every F is too costly.

Lemma 5.1. There exists a polynomial time algorithm
for deciding irreducibility on nonnegative systems.

Partial Selection for Irreducible System. We
consider an irreducible system, where Si ∩ Sj = ∅, for
every vi, vj ∈ V. Let S′ ⊆ A. We say that S′ is a partial
selection, if there exists a subset of entities V ′ ⊆ V such
that
(a) |S′| = |V ′|, and
(b) for every vi ∈ V ′, |Si ∩ V ′| = 1.
That is, every entity in V ′ has a single representative
supporter in S′. In the system L(S′) the supporters
Ak of any vi ∈ V ′ that were not selected by vi, i.e.,
Ak /∈ S′ ∩ Si, are discarded. In other words, system’s
affectors set consists of the selected supporters S′, and
the supporters of entities that have not made up their
selection in S′. Formally, the set of the affectors in
L(S′) is given by A(L(S′)) = S′ ∪

⋃
vi | Si∩S′=∅ Si. The

number of affectors in L(S′) is denoted by m(S′) =
|A(L(S′))|. We now turn to describe L(S′) formally.
Without loss of generality, we consider an ordering on
the affectors A1, . . . ,Am such that the ith column of the
matrices M+,M− corresponds to Ai. Let ind(Ai) =
i − |{Aj /∈ A(L(S′)), j ≤ i − 1}| be the index of the
affector Ai in the new system, L(S′) (i.e, the ind(Ai)th
column inM+,M− corresponds to Ai). Define F (S′) ∈

{0, 1}m×m(S′) such that F (S′)i,ind(Ai) = 1 for every
Ai ∈ A(L(S′)), and F (S′)i,j = 0 otherwise. Finally,
let L(S′) = 〈M+(S′),M−(S′)〉, where M+(S′) =
M+ · F (S′) and M−(S′) = M− · F (S′). Note that
M+(S′),M−(S′) ∈ Rn×m(S′). Observe that if the
selection S′ is a complete legal selection, then |S′| = n
and the system L(S′) is a square system. In sum, we
have two equivalent representations for square systems
in the nonsquare system L;
(a) by specifying a complete selection S, |S| = n, and
(b) by specifying the selection matrix, F ∈ F .
(a) and (b) are equivalent in the sense that the two
square systems L(F (S)) and L(S) are the same. We
now show that if the system L is irreducible, then so
must be any L(S′), for any partial selection S′.

Observation 5.3. For an irreducible system L, L(S′)
is also irreducible, for every partial selection S′.

Agreement of partial selections. Let S1,S2 ⊆ A
be partial selections for V1, V2 ⊆ V respectively. Then
we denote by S1 ∼ S2, the property that the partial
selections agree, meaning that S1 ∩ Si = S2 ∩ Si for
every vj ∈ V1 ∩ V2.

Observation 5.4. Let V1, V2, V3 with selections
S1,S2,S3 such that V1 ⊂ V2 (|V2| > |V1|), S1 ∼ S2 and
S2 ∼ S3. Then S3 ∼ S1.

Proof. S2 is more restrictive than S1 since it defines a
selection for a strictly larger set of entities. Therefore
no partial selection S3 that agrees with S2 agrees also
with S1. �

5.3 The Geometry of the Generalized PF Theo-
rem We now turn to characterize the feasible solutions
of Program (4.5). We begin by classifying the m + n
linear inequality constraints. The program consists of

(1) SR (Support-Repression) Constraints: the n con-
straints of Eq. (4.6).

(2) Nonnegativity Constraints: the m constraints of
Eq. (4.7).

For vector X = (X(1), . . . , X(m)) and α ∈ R, let X
α

=
(X(1)α, . . . , X(m)α). An optimization program Π is log
convex if given two feasible solutions X1, X2 for Π, their

log convex combination Xδ = X
δ

1 · X
(1−δ)
2 (where “·”

represents entry-wise multiplication) is also a solution
for Π, for every δ ∈ [0, 1]. In the following we ignore
the constraint ||X||1 = 1 since we only validate the
feasibility of nonzero nonnegative vectors; the constraint
can be established afterwards by normalization.



Claim 5.1. (a) Program (3.4) is log-convex (without
the ||X||1 = 1 constraint).
(b) Program (4.5) is not log-convex (even without the
||X||1 = 1 constraint).

Note that log-convexity of Program (3.4) implies
that by changing variables it can be solved by convex
optimization techniques (see [32] for more information).
However, Program (4.5) is not log-convex.

We now turn to consider a convex relaxation of
Program (4.5). Essentially, the convex relaxation is no
longer an optimization problem for β, but rather is given
β as input.

min 1(5.14)

s.t.M− ·X ≤ 1/β · M+ ·X(5.15)

X ≥ 0(5.16)

||X||1 = 1 .(5.17)

Note that Program (5.14) has the same set of constraints
as those of Program (4.5). However, due to the fact that
β is no longer a variable, we get the following.

Claim 5.2. Program (5.14) is convex.

It is worth noting at this point, that using the above
convex relaxation, one may apply a binary search for
finding a near-optimal solution for Program (5.14), up
to any predefined accuracy. In contrast, our approach,
which is based on exploiting the special geometric char-
acteristics of the optimal solution, enjoys the theoreti-
cally pleasing (and mathematically interesting) advan-
tage of leading to an efficient algorithm for computing
the optimal solution precisely.

Throughout, we restrict attention to values of β ∈
(0, β∗]. Let P(β) be the polyhedra corresponding to
Program (5.14) and denote by V (P(β)) the set of
vertices of P(β). The following characterization holds
even for reducible systems.

Claim 5.3. (a) P(β) is bounded (or a polytope). (b)
For every X ∈ V (P(β)), |NZ(X)| ≤ n+ 1.

Proof. Part (a) holds by the Equality constraint (5.17)
which enforces ||X||1 = 1. We now prove Part
(b). Every vertex X ∈ Rm is defined by a set of
m linearly independent equalities. Recall that one
equality is imposed by the constraint ||X||1 = 1
(Eq. (5.17)). Therefore it remains to assign m − 1
linearly independent equalities out of the n+m (possibly
dependent) inequalities of Program (5.14). Hence even
if all the (at most n) linearly independent SR constraints
(5.15) become equalities, we are still left with at least
m − 1 − n unassigned equalities, which must be taken

from the remaining m Nonnegativity Constraints (5.16).
Hence, at most n+1 Nonnegativity Inequalities were not
fixed to zero, which establishes the proof. �

Handling the last mile. It remains to handle the last
step in the case where, in addition, L is irreducible. In
this case, a more delicate characterization of V (P(β))
can be deduced, allowing us to make the last remaining
step towards Theorem 4.1.

We begin with some definitions. A solution X
is called a 0f solution if it is a feasible solution X β̃ ,

β̃ ∈ (0, β∗], in which for each vi ∈ V only one affector has
a non-zero assignment, i.e., NZ(X) ∩ Si = 1 for every
i. A solution X is called a w0f solution, or a “weak”
0f solution, if it is a feasible vector X β̃ , β̃ ∈ (0, β∗],
in which for each vi, except at most one, say vj ∈ V,
|NZ(X)∩Si| = 1, vi ∈ V \ {vj} and |NZ(X)∩Sj | = 2.
A solution X is called a 0∗ solution if it is an optimal
0f solution. Let w0∗ be an optimal w0f solution.
The following claim holds for every feasible solution of
Program (5.14).

Claim 5.4. Let L be an irreducible system with a fea-
sible solution Xβ, then for every entity vi there exists
an affector Aki ∈ Si such that Xβ(Aki) > 0, or in other
words, Si ∩NZ(Xβ) 6= ∅.

Proof. For clarity of presentation, we begin by consid-
ering the case where the system L is a strongly irre-
ducible system, and in the full version of the paper ex-
tend the proof to any irreducible system. Note that by
Eq. (5.16) and (5.17), any feasible solution Xβ satis-
fies Xβ ≥ 0, and ||Xβ ||1 = 1. It therefore follows
that there exists at least one affector Akp such that
Xβ(Akp) > 0. If Akp ∈ Si, then we are done. Oth-
erwise, let vp be such that Akp ∈ Sp (since no affector is
redundant, such vp must exist). Let D = SCGL, and let
BFS(D, vp) be the BFS tree of D rooted at vp. Define
L`(D) = LAY ER`(BFS(D, vp)) to be the `th level of
BFS(D, vp). Formally, L`(D) = {vk | d(vp, vk) = `}.
Let d0 be the depth of D. We prove by induction on the
level ` that the claim holds for every vi ∈ L`. For the
base of the induction, consider L0(D) = {vp}. By choice
of Akp and vp, Xβ(Akp) > 0 and Akp ∈ Sp. Next, as-
sume the claim holds for every level Lq(D), for q ≤ `−1,
and consider L`(D), for ` ≤ d0. By the inductive hy-
pothesis, for every vj ∈ L`−1, Sj∩NZ(Xβ) 6= ∅, that is,
there exists an affectorAkj ∈ Si such that Xβ(Akj ) > 0.
By definition of the graph D, for every vi ∈ L`(D) there
exists a predecessor vj ∈ L`−1(D) such that Sj ⊆ Ri. It
therefore follows that Akj ∈ Ri, hence the total repres-

sion on vi satisfies T−(Xβ)i > 0. By Eq. (4.8), as Xβ

is a feasible solution, it also holds that T+(Xβ)i > 0.
Hence there must exist an affector Aki ∈ Si such that



Xβ(Aki) > 0, or, Si ∩ NZ(Xβ) 6= ∅, as required. This
completes the proof of the claim for strongly irreducible
systems. The proof for any irreducible system L is de-
ferred to the full version. �

We end this section by showing that every vertex X ∈
V (P(β)) is a w0f solution.

Claim 5.5. If the system of Program (5.14) is irre-
ducible, then every X ∈ V (P(β)) is a w0f solution.

Proof. By Claim 5.3, for every X ∈ V (P(β)),
|NZ(X)| ≤ n+ 1. By Claim 5.4, for every i, |NZ(X)∩
Si| ≥ 1. Therefore there exists at most one entity vi
such that |NZ(X) ∩ Si| = 2, i.e., the solution is w0f .
�

0∗ solutions. In the previous section we established
the fact that every vertex X ∈ V (P(β)) corresponds
to an w0f solution. In particular, this statement holds
for β = β∗. By the feasibility of the system for β∗,
the corresponding polytope is non-empty and bounded
(and each of its vertices is a w0∗ solution), hence there
exist w0∗ solutions for the problem. The goal of this
subsection is to establish the existence of a 0∗ solution
for the problem. In particular, we show that every
optimal X ∈ V (P(β∗)) solution is in fact a 0∗ solution.

Throughout we consider Program (5.14) for β = β∗,
i.e., the optimal value of Program (4.5). We begin by
showing that for β∗, the set of n SR Inequalities (Eq.

(5.15)) corresponding toM− ·X∗ = 1/β∗ ·M+ ·X∗ hold

with equality for every optimal solution X
∗
, including

an X
∗

that is not a w0∗ solution.

Lemma 5.2. If L = 〈M+,M−〉, then M− · X∗ =

1/β∗(L) · M+ ·X∗, for every optimal solution X
∗
.

Proof. By Claim 5.4, every entity vi has at least one
supporter in NZ(X

∗
). Select, for every i, one such

supporter Aki ∈ Si ∩ NZ(X
∗
). Let S∗ = {Aki | 1 ≤

i ≤ n}. By definition, S∗ ⊆ NZ(X
∗
), and since the

sets Si are disjoint, S∗ is a complete selection (i.e, for
every vi, |Si ∩ S∗| = 1). Therefore L∗ = L(S∗) is
a square irreducible system. Let D∗ = CGL∗ be the
constraint graph of L∗. By definition, D∗ is strongly
connected, and in addition, every edge e(vi, vj) ∈
E(D∗) corresponds to an active affector in X

∗
, i.e.,

Si ∩ Rj ∩ NZ(X
∗
) 6= ∅. To prove this lemma, we

establish the existence of a spanning subgraph of the
constraint graph, that has the following properties: (a)
it is irreducible (strongly connected), (b) every directed
edge in this graph is “explained” by an active supporter
in X

∗
, where by ”explained”, we mean that there

exists an active affector that can be associated with

the directed edge, so the edge remains even if the set
of effectors considered is the set of all affectors with
positive entry in X

∗
. In other words, even considering

only the active affectors in X
∗

(and discarding the
others), the constraint graph D∗ is guaranteed to be
strongly connected (due to Claim 5.4), and moreover,
every directed edge is due to some affector with positive
entry in X

∗
. Therefore, if we consider an edge (u, v) in

D∗ by reducing the power of the active supporter of u
which, by the definition of D∗ , is a repressor of v, v′s
inequality can be turned into a strict inequality. This
reduction makes sense only because we consider active
affectors.

Let Ri(X
∗
) = 1/β∗ · T+(X

∗
)i − T−(X

∗
)i be the

residual amount of the i′th SR constraint of Eq. (4.8)

(hence Ri(X
∗
) > 0 implies strict inequality on the ith

constraint with X
∗
).

Assume, toward contradiction, that there exists at
least one entity vk0 for which the corresponding SR
constraint of Eq. (4.8) holds with strict inequality. In
what follows, we gradually construct a new assignment
X
∗∗

that achieves strict inequality in Eq. (4.8) for all
vi ∈ V. Clearly, if all SR constraints of Eq. (4.8) are
satisfied with strict inequality, then there exists some
β∗∗ > β∗ that satisfies all the constraints and we end
with a contradiction to the optimality of β∗(L).

To construct X
∗∗

, we trace paths of influence in the
strongly connected (and active) constraint graph D∗.
Let BFS(D∗, vk0) be the BFS tree of D∗ rooted at vk0 .
Define

Lj(D
∗) = LAY ERj(BFS(D∗, vk0))

to be the jth level of BFS(D∗, vk0). Formally, Lj(D
∗) =

{vy | d(vy, vk0) = j}. Let Qt =
⋃t
i=0 Li(D

∗). Let
St ⊆ S∗ be the partial selection restricted to entities
in Qt−1. I.e., |St| = |Qt−1| and for every vi ∈ Qt−1,
|St ∩ Si| = 1.

The process of constructing X
∗∗

consists of d steps,
where d is the depth of BFS(D∗, vk0). At step t, we are
given Xt−1 and use it to construct Xt. Essentially, Xt

should satisfy the following properties.

(P1) The set of SR inequalities corresponding to Qt−1
entities hold with strict inequality with Xt. I.e.,
for every vi ∈ Qt−1,

1/β∗(L) · T+(Xt,L)i > T−(Xt,L)i .

(P2) Xt is an optimal solution, i.e., it satisfies Program
(4.5) with β∗(L).

(P3) Xt(Aj) = X∗(Aj) for every Aj /∈ St and
Xt(Aj) < Xt−1(Aj) for every Aj ∈ St.



Let us now describe the construction process in
more detail. Let X0 = X

∗
. Consider step t = 1

and recall that vk0 ’s SR constraint holds with strict
inequality. Let Aj0 be the active supporter of vk0 ,
i.e., Aj0 ∈ Sk0 ∩ S∗. Then it is possible to reduce a

bit the value of its active supporter Aj0 in X
∗

while
still maintaining feasibility. Making this change in
X0 yields X1. Formally, let X1(Aj0) = X∗(Aj0) −
min{X∗(Aj0), Rk0(X

∗
)}/2 and leave the rest of the

entries unchanged, i.e., X1(Ak) = X∗(Ak) for every
other k 6= j0. We now show that properties (P1)-(P3)
are satisfied for t = 0, 1 and then proceed to consider the
construction of Xt, for t > 1. Since L0(D∗) = {vk0},
and Q−1 = ∅, the solution X0 satisfies (P1)-(P3). Next,
consider X1. By the irreducibility of the system (in
particular, see Cor. 4.1), since only Ak0 was reduced

in X1 (compared to X
∗
), only the kth0 constraint could

have been damaged (i.e., become unsatisfied). Yet, it
is easy to verify that the constraint of vk0 still holds
with strict inequality for X1. Properties (P1)-(P3) are
satisfied.

Next, we describe the general construction step.
Assume that we are given Xk for step k ≤ t and that
the properties (P1)-(P3) hold for each k ≤ t. We now
describe the construction of Xt+1 and then show that
it satisfies the desired properties. We begin by showing
that the set of SR inequalities of Lt(D

∗) nodes (Eq.
(4.8)) hold with strict inequality with Xt.

Claim 5.6. T−(Xt)i < 1/β∗ ·T+(Xt)i for every entity
vj ∈ Lt(D∗).

Proof. Consider some vj ∈ Lt(D
∗). By definition of

Lt(D
∗), there exists an entity vi ∈ Lt−1(D∗) such that

e(i, j) ∈ E(D∗). Since vi ∈ Qt−1 and St is a selection
for Qt−1, a supporter Ait ∈ St ∩ Si is guaranteed to
exist. Observe that Ait ∈ Rj (by the definition of D∗,
e(vi, vj) ∈ E(D∗) implies that (Si ∩ St) ∈ Rj). Finally,
note that by property (P3), Xt(Ait) < Xt−1(Ait) and
that Xt(Ak) = X∗(Ak) for every Ak ∈ Sj . I.e.,
(5.18)
T+(Xt)j = T+(Xt−1)j and T−(Xt)j < T−(Xt−1)j .

By the optimality of Xt−1 and Xt (property (P3) for
step t − 1 and t), we have that Rj(Xt−1) > 0 and
Rj(Xt) ≥ 0. By Eq. (5.18), 0 ≤ Rj(Xt−1) < Rj(Xt),
which establishes the claim for vj . The same argument
can be applied for every vj ∈ Lt(D∗), thus the claim is
established. �

Let Y be the restriction of the selection S∗ to
Lt(D

∗) nodes. The solution Xt+1 reduces only the
entries of Y supporters and the rest of the supporters
are as in Xt. Recall that by construction, S∗ ⊆

NZ(X
∗
) and therefore also S∗ ⊆ NZ(Xt). By Claim

5.6, the constraints of Lt(D
∗) nodes hold with strict

inequality, and therefore it is possible to reduce a bit the
value of their positive supporters while still maintaining
the strict inequality (although with a lower residual).
Formally, for every vk ∈ Lt(D

∗), consider its unique
supporter in Y , Ak ∈ Y ∩Sk. By Claim 5.6, Rk(Xt) > 0.
Set Xt+1(Ak) = Xt(Ak) −min(Xt(Ak), Rk(Xt))/2. In
addition, Xt+1(Ak) = Xt(Ak) for every other supporter
Ak /∈ Y .

It remains to show that Xt+1 satisfies the properties
(P1)-(P3). (P1) follows by construction. To see (P2),
note that since Si ∩Sj = ∅ for every vi, vj ∈ V, only the
constraints of Lt(D

∗) nodes might have been violated
by the new solution Xt+1. Formally, T+(Xt+1)i =
T+(Xt)i and T−(Xt+1)i ≤ T−(Xt)i for every vi /∈
Lt(D

∗). Although, for vi ∈ Lt(D
∗), we get that

T+(Xt+1)i < T+(Xt)i (yet T−(Xt+1)i = T−(Xt)i),
this reduction in the total support of Lt(D

∗) nodes
was performed in a controlled manner, guaranteeing
that the corresponding Lt(D

∗) inequalities hold with
strict inequality. Finally, (P3) follows immediately.
After d + 1 steps, by (P1) all inequalities hold with
strict inequality (as Qd = V) with the solution Xd+1.
Thus, it is possible to find some β∗∗ > β∗(L) that
would contradict the optimally of β∗. Formally, let
R∗ = minRi(Xd+1). Since R∗ > 0, we get that Xd+1 is
feasible with β∗∗ = β∗(L) + R∗ > β∗(L), contradicting
the optimally of β∗(L). Lemma 5.2 follows. �

We proceed by considering a vertex of X
∗ ∈

V (P(β∗)). By the previous section, X
∗

corresponds to

w0∗.

Lemma 5.3. (a) X
∗

is a 0∗ solution. (b) There exists
an F ∗ ∈ F such that r(L(F ∗)) = 1/β∗.

We start with (a) and transform L into a weak system
Lw. First, if m = n+1, then the system is already weak.
Otherwise, without loss of generality, let the ith entry
in X

∗
correspond to Ai where Ai = NZ(X

∗
) ∩ Si for

i ∈ {1, . . . , n−1} and the n and n+1 entries correspond
to An and An+1 respectively such that {An,An+1} =

NZ(X
∗
) ∩ Sn. It then follows that X∗(i) 6= 0 for

every i ∈ {1, . . . , n + 1} and X∗(i) = 0 for every

i ∈ {n+ 2, . . . ,m}. Let X
∗∗

= (X∗(1), . . . , X∗(n+ 1)).
Let M+

w ∈ Rn×(n+1) where M+
w(i, j) = M+(i, j) for

every i ∈ {1, . . . , n} every j ∈ {1, . . . , n + 1}, and
M−w is defined analogously. From now on, we restrict
attention to the weak system Lw = 〈M+

w ,M−w〉. This
weak system is an almost square system, expect that
for the last entity |Sn| = 2. Note that the weak system
results from L by discarding the corresponding entries
of A\NZ(X

∗
). Therefore, β∗(L) = β∗(Lw). LetM+

n−1



correspond to the upper left (n−1)× (n−1) submatrix
of M+

w . Let M+
n be obtained from M+

w by removing
the last (n + 1)th column. Finally, M+

n+1 is obtained
from M+

w by removing the nth column. The matrices
M−n−1,M−n ,M

−
n+1 are defined analogously.

To study the weak system Lw, we consider the
following three square systems.

Ln−1 = 〈M+
n−1,M

−
n−1〉 ,

Ln = 〈M+
n ,M−n 〉 ,

Ln+1 = 〈M+
n+1,M

−
n+1〉 .

Note that a feasible solution Xn+i for the system Ln+i,
for i ∈ {0, 1}, corresponds to a feasible solution for Lw
by setting Xw(Aj) = Xn+i(Ai) for every j 6= n+ (1− i)
and Xw(An+(1−i)) = 0. For ease of notation, let
Pn(λ) = P(Z(Ln), λ), Pn+1(λ) = P(Z(Ln+1), λ) and
Pn−1(λ) = P(Z(Ln−1), λ), where P is the characteristic
polynomial defined in Eq. (3.3). Let β∗n−1, β∗n, and
β∗n+1 be the optimal values of Program (4.5) for systems
Ln−1, Ln, and Ln+1, respectively. Let λ∗ = 1/β∗ and
λ∗n+i = 1/β∗n+i, for i ∈ {−1, 0, 1}.

Claim 5.7. max{β∗n, β∗n+1} ≤ β∗ < β∗n−1.

Proof. The left inequality follows as any optimal solu-
tion X

∗
for Ln (respectively, Ln+1) can be achieved

in the weak system Lw by setting X∗(An) = 0 (resp.,
X∗(An+1) = 0). To see that the right inequality is
strict, observe that in any solution X for Lw, the two
supporters An and An+1 of vn satisfy that X(An) +
X(An+1) > 0 by Claim 5.4. Without loss of generality,
assume that X(An) > 0. Then by Obs. 5.1(a) and the
irreducibility of Lw, vn is strongly connected to the rest
of the graph for every selection of one of its two support-
ers. It follows that vn has an outgoing edge en,j ∈ E in
the constraint graph CGL(V,E), i.e., there exists some
entity vj , j ∈ [1, n − 1], such that An ∈ Rj . Since An
does not appear in Ln−1, the total repression on vj in
Lw (i.e., (M−w · X∗)j) is strictly greater than in Ln−1
(i.e., (M−n−1 ·X∗)j). �

Our goal in this section is to show that the optimal
β∗ value for Lw can be achieved by setting either
X∗(An) = 0 or X∗(An+1) = 0, essentially showing that
the optimal w0∗ solution corresponds to a 0∗ solution.
This is formalized in the following theorem.

Theorem 5.1. β∗ = max{β∗n, β∗n+1}.

The following observation holds for every i ∈
{−1, 0, 1} and follows immediately by the definitions of
feasibility and irreducibility and the PF Theorem 3.1.

Observation 5.5. (1) λn+i > 0 is the maximal eigen-
value of Z(Ln+i).

(2) For an irreducible system L, λn+i = 1/βn+i.

(3) If the system is feasible then λn+i > 0.

For a square system L ∈ Ls, let W 1 be a modified form
of the matrix Z, defined as follows.

W 1(L, β) = Z(L)− 1/β · I for β ∈ (0, β∗].

More explicitly,

W 1(L, β)i,j =

{
−1/β, if i = j;

−g(vi,Aj)/g(i, i), otherwise.

Clearly, W 1(L, β) cannot be defined for a nonsquare
system L /∈ Ls. Instead, a generalization W 2 of W 1 for
any (nonsquare) m ≥ n system L is given by

W 2(L, β) = M− − 1/β · M+, for β ∈ (0, β∗],

or explicitly,

W 2(L, β)i,j =

{
−g(i, i)/β, if i = j;

−g(vi,Aj), otherwise.

Note that if Xβ is a feasible solution for L, then
W 2(L, β) · Xβ ≤ 0. If L ∈ Ls, it also holds that
W 1(L, β) ·Xβ ≤ 0.

For L ∈ Ls, where both W 1(L, β) and W 2(L, β) are
well-defined, the following connection becomes useful
in our later argument. Recall that P(Z(L), t) is the
characteristic polynomial of Z(L) (see Eq. (3.3)).

Observation 5.6. For a square system L,

det(W 2(L, β)) = P(Z(L), 1/β) ·
n∏
i=1

g(i, i).

Proof. The observation follows immediately by noting
that W 1(L, β)i,j = W 2(L, β)i,j ·g(i, i) for every i and j,
and by Eq. (3.3). �

The next equality plays a key role in our analysis.

Lemma 5.4.
g(n, n) ·X∗(n) · Pn(λ∗)

Pn−1(λ∗)
+

g(n, n+ 1) ·X∗(n+ 1) · Pn+1(λ∗)

Pn−1(λ∗)
= 0.

Our work plan from this point on is as follows. We
first define a range of ‘candidate’ values for β∗. Es-
sentially, our interest is in real positive β∗. Recall
that Z(Lw), Z(Ln) and Z(Ln+1) are nonnegative irre-
ducible matrices and therefore Theorem 3.1 can be ap-
plied throughout the analysis. Without loss of general-
ity, assume that β∗n ≥ β∗n+1 (and thus λ∗n ≤ λ∗n+1) and
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Figure 2: Real positive roots of Pn+1(λ), Pn(λ), and
Pn−1(λ).

let Rangeβ∗ = (β∗n, β
∗
n−1) ⊆ R>0. Let the correspond-

ing range of λ∗ be

(5.19) Rangeλ∗ = (λ∗n−1, λ
∗
n) = (1/β∗n−1, 1/β

∗
n).

To complete the proof for Thm. 5.1 we assume, towards
contradiction, that β∗ > β∗n. According to Claim
5.7 and the fact that β∗ 6= β∗n, it then follows that
β∗ ∈ Rangeβ∗ . Note that since Rangeβ∗ ⊆ R>0, also
Rangeλ∗ ⊆ R>0. In other words, since we look for an
optimal β∗ ∈ R>0, the corresponding λ that interests us
is real and positive as well. This is important mainly in
the context of nonnegative irreducible matrices Z(L′)
for L′ ∈ Ls. In contrast to nonnegative primitive
matrices (where h = 1) for irreducible matrices, such
as Z(L′), by Thm. 3.1 there are h ≥ 1 eigenvalues,
λi ∈ EigV al(L′), for which |λi| = r(L′). However, note
that only one of these, namely, r(L′), might belong to
Rangeλ∗ ⊆ R>0. (This follows as every other such λi
is either real but negative or with a nonzero complex
component).

Fix j ∈ {−1, 0, 1} and let kn+j be the number
of real and positive eigenvalues of Z(Ln+j). Let 0 <

λ1n+j ≤ λ2n+j . . . ≤ λ
kn+j

n+j be the ordered set of real and
positive eigenvalues for Z(Ln+j), i.e., real positive roots

of Pn+j(λ). Note that λ
n+kj
n+j = λ∗n+j . By Theorem 3.1,

we have that
(a) λ∗n+j ∈ R>0, and
(b) λ∗n+j > |λpn+j |, p ∈ {1, . . . , kn+j − 1}, for every
j ∈ {−1, 0, 1}.

We proceed by showing that the potential range
for λ∗, namely, Rangeλ∗ , can contain no root of Pn(λ)
and Pn+1(λ). Since Rangeλ∗ is real and positive, it
is sufficient to consider only real and positive roots of
Pn(λ) and Pn+1(λ) (or real and positive eigenvalues of
Z(Ln) and Z(Ln+1)).

Claim 5.8. λp1n , λ
p2
n+1 /∈ Rangeλ∗ for every real

λp1n , λ
p2
n+1, for p1 < kn, p2 < kn+1.

Proof. Note that Z(Ln−1) is the principal (n−1) minor
of both Z(Ln) and Z(Ln+1). We now use the separation

theorem for nonnegative matrices, due to Hall and
T. A. Porshing [15], which is an extension to the
Cauchy Interlacing Theorem for symmetric matrices.
In particular, the separation theorem implies in our
context that λp1n , λ

p2
n+1 ≤ λ∗n−1 for every p1 < kn and

p2 < kn+1, concluding by Eq. (5.19) that λpn, λ
p
n+1 /∈

Rangeλ∗ . �

We proceed by showing that Pn(λ) and Pn+1(λ)
have the same sign in Rangeλ∗ . See Fig. 2 for a
schematic description of the system.

Claim 5.9. sign(Pn(λ)) = sign(Pn+1(λ)) for every λ ∈
Rangeλ∗ .

Proof. Fix i ∈ {0, 1}. By Claim 5.8, Pn+i has
no roots in the range Rangeλ∗ , so sign(Pn+i(λ1)) =
sign(Pn+i(λ2)) for every λ1, λ2 ∈ Rangeλ∗ . Also
note that for a fixed i ∈ {0, 1}, sign(Pn+i(λ1)) =
sign(Pn+i(λ2)), for every λ1, λ2 > λ∗n+i. There are
two crucial observations. First, as Pn(λ) and Pn+1(λ)
correspond to a characteristic polynomial of an n × n
matrix, they have the same leading coefficient and
therefore sign(Pn(λ)) = sign(Pn+1(λ)) for λ > λ∗n+1

(recall that we assume that λ∗n+1 ≥ λ∗n). Next,
due to the PF Theorem, the maximal roots of Pn(λ)
and Pn+1(λ) are of multiplicity one and therefore the
polynomial necessarily changes its sign when passing
through its maximal root. Recall that λ∗n (respec-
tively, λ∗n+1) is the maximal real positive root of Pn(λ),
(resp., Pn+1(λ)). Assume, toward contradiction, that
sign(Pn(λ)) 6= sign(Pn+1(λ)) for some λ ∈ Rangeλ∗ .
Then sign(Pn(λ1)) 6= sign(Pn(λ2)) for λ1 > λ∗n and
λ2 ∈ Rangeλ∗ also sign(Pn+1(λ1)) 6= sign(Pn+1(λ2))
for λ1 > λ∗n+1 and λ2 ∈ Rangeλ∗ . (This holds
since when encountering a root of multiplicity one,
the sign necessarily flips). In particular, this im-
plies that sign(Pn(λ)) 6= sign(Pn+1(λ)) for every λ ≥
λ∗n+1, in contradiction to the fact that sign(Pn(λ)) =
sign(Pn+1(λ)) for every λ > λ∗n+1. The claim follows.
�

We now complete the proof of Theorem 5.1.

Proof. Due to Thm. 3.1, we have that λ∗n =
1/β∗n, λ

∗
n+1 = 1/β∗n+1 and λ∗n−1 = 1/β∗n−1. It there-

fore holds that Pn−1(λ) 6= 0 for every λ ∈ Rangeλ∗ .
We can now apply safely Lemma 5.4 and Claim 5.9 and
get that sign(X∗(n)) 6= sign(X∗(n + 1)). Since X∗(n)
and X∗(n + 1) are nonnegative, it follows that either
X∗(n) = 0 or X∗(n + 1) = 0. Assume, to the con-
trary, that β∗ > β∗n. Then β∗ ∈ Rangeβ∗ , and therefore
sign(X∗(n)) 6= sign(X∗(n + 1)). This contradicts the

fact that X
∗

is nonnegative. We conclude that β∗ = β∗n.
�



We complete the geometric characterization of the
generalized PF Theorem by noting that every vertex of
V (P(β∗)) is a 0∗ solution, thus establishing Lemma 5.3.

Lemma 5.5. Every vertex X ∈ V (P(β∗)) is a 0∗

solution.

Proof. [Thm. 4.1] Let F ∗ be the selection such that
r(L) = r(L(F ∗)). Note that by the irreducibility of
L, the square system L(F ∗) is irreducible as well and
therefore the PF Theorem for irreducible matrices can
be applied. In particular, by Thm. 3.1, it follows that
r(L(F ∗)) ∈ R>0 and that P(L(F ∗)) > 0. Therefore, by
Eq. (4.10) and (4.11), Claims (Q1)-(Q3) of Thm. 4.1
follow.

We now turn to claim (Q4) of the theorem. Note
that for a symmetric system, in which g(i, j1) = g(i, j2)
for every Aj1 ,Aj2 ∈ Sk and every k, i ∈ [1, n], the
system is invariant to the selection matrix and therefore
r(L(F1)) = r(L(F2)) for every F1, F2 ∈ F .

Finally, it remains to consider claim (Q5) of the
theorem. Note that the optimization problem specified
by Program (4.5) is an alternative formulation to the
generalized Collatz-Wielandt formula given in (Q5). We
now show that r(L) (respectively, P(L)) is the optimum
value (resp., point) of Program (4.5). By Lemma

5.3, there exists an optimal point X
∗

for Program
(4.5) which is a 0∗ solution. Note that a 0∗ solution
corresponds to a unique hidden square system, given by
L∗ = L(NZ(X

∗
)) (L∗ is square since |NZ(X

∗
)| = n).

Therefore, by Thm. 3.2 and Lemma 5.3(b), we get that

(5.20) r(L∗) = 1/β∗(L∗) = 1/β∗(L).

Next, by Observation 4.3(b), we have that r(L(F )) ≥
r(L). It therefore follows that

(5.21) r(L∗) = min
F∈F

r(L(F )).

Combining Eq. (5.20), (5.21) and (4.10), we get that the
PF eigenvalue of the system L satisfies r(L) = 1/β∗(L)
as required. Finally, note that by Thm. 3.2, P(L∗)
is the optimal point for Program (4.5) with the square
system L∗. By Eq. (4.11), P(L) is an extension of
P(L∗) with zeros (i.e., a 0∗ solution). It can easily
be checked that P(L) is a feasible solution for the
original system L with β = β∗(L∗) = β∗(L), hence it is
optimal. Note that by Lemma 5.2, it indeed follows that
M− · P(L) = 1/β∗(L) · M+ · P(L), for every optimal

solution X
∗
. The theorem follows.

Section 6 provides a characterization of systems in
which a 0∗ solution does not exist.

6 Limitation for the Existence of a 0∗ Solution

In this section we provide a characterization of systems
in which a 0∗ solution does not exist.

Bounded Value Systems. Let Xmax be a fixed
constant. For a nonnegative vector X, let

max(X) = max {X(j)/X(i) | 1 ≤ i, j ≤ n,X(i) > 0} .

A system L is called a bounded power system if
max(X) ≤ Xmax.

Lemma 6.1. There exists a bounded power system L
such that no optimal solution X

∗
for L is a 0∗ solution.

Second eigenvalue maximization. One of the
most common applications of the PF Theorem is the
existence of the stationary distribution for a transition
matrix (representing a random process). The stationary
distribution is the eigenvector of the largest eigenvalue
of the transition matrix. We remark that if the transi-
tion matrix is stochastic, i.e., the sum of each row is 1,
then the largest eigenvalue is equal to 1. So this case
does not give rise to any optimization problem. How-
ever, in many cases we are interested in processes with
fast mixing time. Assuming the process is ergodic, the
mixing time is determined by the difference between the
largest eigenvalue and the second largest eigenvalue. So
we can try to solve the following problem. Imagine that
there is some rumor that we are interested in spreading
over two or more social networks. Each node can be
a member of several social networks. We would like to
merge all the networks into one large social network in
a way that will result in fast mixing time. This prob-
lem looks very similar to the one solved in this paper.
Indeed, one can use similar techniques and get an ap-
proximation. But interestingly, this problem does not
have the 0∗ solution property, as illustrated in the fol-
lowing example.

Assume we are given n nodes. Consider the n!
different social networks that arise by taking, for each
permutation π ∈ S(n), the path Pπ corresponding to
the permutation π. Clearly, the best mixing graph we
can get is the complete graph Kn. We can get this graph
if each node chooses each permutation with probability
1
n! . We remind the reader that the mixing time of the
graph Kn is 1. On the other hand, any 0∗ solution have
a mixing time O(n2). This example shows that in the
second largest eigenvalue, the solution is not always a
0∗ solution.

7 Computing the Generalized PF Vector

In this section we present a polynomial time algorithm
for computing the generalized Perron eigenvector P(L)
of an irreducible system L.



The method. By property (Q5) of Thm. 4.1,
computing P(L) is equivalent to finding a 0∗ solution
for Program (4.5) with β = β∗(L). For ease of analysis,
we assume throughout that the gains are integral, i.e.,
g(i, j) ∈ Z+, for every i ∈ {1, . . . , n} and j ∈ {1, . . . ,m}.
If this does not hold, then the gains can be rounded or
scaled to achieve this. Let

(7.22) Gmax(L) = max
i∈{1,...,n},j∈{1,...,m}

{|g(i, j)|} ,

and define TLP as the running time of an LP solver
such as interior point algorithm [5] for Program (5.14).
Recall that we concern an exact optimal solution for
non-convex optimization problem (see Program (4.5)).
Using the convex relaxation of Program (5.14), a binary
search can be applied for finding an approximate solu-
tion up to a predefined accuracy. The main challenge is
then to find (a) an optimal solution (and not an approxi-
mate solution), and (b) among all the optimal solutions,
to find one that is a 0∗ solution. Let F1, F2 ∈ F be two
selection matrices for L. By Thm. 4.1, there exists a se-
lection matrix F ∗ such that r(L) = r(L(F ∗)) and P(L)
is a 0∗ solution corresponding to P(L(F ∗)) (in addition
β∗ = 1/r(L(F ∗))). Our goal then is to find a selection
matrix F ∗ ∈ F where |F| might be exponentially large.

Theorem 7.1. Let L be irreducible system. Then
P(L) can be computed in time O(n3 · TLP ·
(log (n · Gmax) + n)).

Let

(7.23) ∆β = (nGmax)−4n
3

.

The key observation in this context is the following.

Lemma 7.1. Consider a selection matrix F ∈ F . If
β∗(L)− 1/r(L(F )) ≤ ∆β, then β∗(L) = 1/r(L(F )).

To prove Lemma 7.1, we exploit a lemma of Bugeaud
and Mignotte in [6].

Algorithm description. We now describe the al-
gorithm ComputeP(L) for P(L) computation. Con-
sider some partial selection S′ ⊆ A for V ′ ⊆ V. For
ease of notation, let L(S′) = 〈M−(S′),M+(S′)〉, where
M−(S′) = M− · F (S′) and M+(S′) = M+ · F (S′).
Consider the Program

maxβ

s.t.M−(S′) ·X ≤ 1/β · M+(S′) ·X
X ≥ 0

||X||1 = 1 .

Note that if S′ = ∅, then the above program is
equivalent to Program (4.5), i.e., L(S′) = L. Define

f(β,L(S′)) =


1, if there exists an X such that
||X||1 = 1, X ≥ 0, and
M−(S′) ·X ≤ 1/β · M+(S′) ·X,

0, otherwise.

Note that f(β,L(S′)) = 1 iff L(S′) is feasible for β
and that f can be computed in polynomial time using
the interior point method.

Algorithm ComputeP(L) is composed of two main
phases. In the first phase we find, using binary search,
an estimate β− such that β∗(L) − β− ≤ ∆β . In the
second phase, we find a hidden square system, L(F ∗),
F ∗ ∈ F , corresponding to a complete selection vector
Sn of size n for V. By Lemma 7.1, it follows that
r(L(F ∗)) = 1/β∗(L).

We now describe the construction of Sn in more
detail. The phase consists of n iterations. On iteration
t we obtain a partial selection St for v1, . . . , vt such that
f(β−,L(St)) = 1. On the final step we achieve the
desired Sn, where L(Sn) ∈ Ls and f(β−,L(Sn)) = 1
(therefore also f(β−,L(F (Sn))) = 1). Initially, S0

is empty. On the t’th iteration, St = St−1 ∪ {Aj}
for Aj ∈ St. Essentially, Aj is selected such that
f(β−,L(St−1 ∪ {Aj})) = 1. We later show (in proof
of Thm. 7.1) that such a supporter Aj exists.

Finally, we use P(L(Sn)) to construct the Perron
vector P(L). This vector contains zeros for the m −
n non-selected affectors, and the value of n selected
affectors are as in P(L(Sn)).

To establish Theorem 7.1, we prove the correctness
of Algorithm ComputeP(L) and bound its runtime.
We begin with two auxiliary claims.

Claim 7.1. β∗(L) ≤ Gmax.

Claim 7.2. By the end of phase 1, Alg.
ComputeP(L) finds β− such that β∗(L)− β− ≤ ∆β.

Let Rangeβ∗ = [β−, β+). We are now ready to
complete the proof of Thm. 7.1.

Proof. [Theorem 7.1] We show that Alg.
ComputeP(L) satisfies the requirements of the
theorem. Note that at the beginning of phase 2 of Alg.
ComputeP(L) , the computed value β− is at most ∆β

apart from β∗. We begin by showing the following.

Claim 7.3. By the end of phase 2, the selection Sn is
such that r(L(Sn)) = 1/β∗(L).

Proof. Let St be the partial selection obtained at step
t, Lt = L(St) be the corresponding system for step t



and βt = β∗(Lt) the optimal solution of Program (4.5)
for system Lt. We claim that St satisfies the following
properties for each t ∈ {0, . . . , n}:

(P1) St is a partial selection vector of length t, such
that St ∼ St−1 .

(P2) L(St) is feasible for β−.

The proof is by induction. Beginning with S0 = ∅, it
is easy to see that (P1) and (P2) are satisfied (since
L(S0) = L). Next, assume that (P1) and (P2) hold for
Si for i ≤ t and consider St+1. Let Vt ⊆ V be such
that St is a partial selection for Vt (i.e., |Vt| = |St| and
for every vi ∈ Vt, |Si(L) ∩ St| = 1). Given that St is
a selection for nodes v1, . . . , vt that satisfies (P1) and
(P2), we show that St+1 satisfies (P1) and (P2) as well.

In particular, it is required to show that there exists
at least one supporter of vt+1, namely, Ak ∈ St+1(L),
such that f(β−,L(St∪{Ak})) = 1. This will imply that
step 7(a) always succeeds in expanding St.

By Observation 5.3 and (P2) for step t, the system
L(St) is irreducible with βt ≥ β−. In addition, note
that F(Lt) ⊆ F(L) (as every square system of Lt is
also a square system of L).

By Theorem 4.1, there exists a square system
Lt(F ∗t ), F ∗t ∈ F (Lt), such that r(Lt(F ∗t )) = 1/βt. In
addition, P(Lt(F ∗t )) is a feasible solution for Program
(5.14) with the system Lt(F ∗t ) and β = βt.

By Eq. (4.9), the square system Lt(F ∗t ) corresponds
to a complete selection S∗∗, where |S∗∗| = n and
St ⊆ S∗∗, i.e., Lt(F ∗t ) = L(S∗∗). Observe that by
property (Q5) of Thm. 4.1 for the system Lt, there
exists a 0∗ solution for Program (5.14) that achieves βt.
This 0∗ solution is constructed from the PF eigenvector
of Lt(S∗∗), namely, P(Lt(S∗∗)).

Let Ak ∈ St+1(Lt) ∩ S∗∗. Note that by the choice
of S∗∗, such an affector Ak exists. We now show that
St+1 = St ∪ {Ak} satisfies (P2), thus establishing the
existence of Ak ∈ St+1(Lt) in step 7(a). We show this
by constructing a feasible solution X∗β− ∈ Rm(St+1) for

Lt+1. By the definition of S∗∗, f(β−,L(S∗∗)) = 1 and

therefore there exists a feasible solution X
t+1

β− ∈ Rn
for L(S∗∗). Since St+1 ⊆ S∗∗, it is possible to extend

X
t+1

β− ∈ Rn to a feasible solution X∗β− for system Lt+1,

by setting X∗β−(Aq) = Xt+1
β− (Aq) for every Aq ∈ S∗∗

and X∗β−(Aq) = 0 otherwise. It is easy to verify that

this is indeed a feasible solution for β−, concluding that
f(β−,Lt+1) = 1.

So far, we showed that there exists an affector Ak ∈
St+1(Lt) such that f(β−,Lt+1) = 1. We now show
that for any Ak ∈ St+1(Lt) such that f(β−,Lt+1) = 1,
properties (P1) and (P2) are satisfied. This holds

trivially, relying on the criterion for selecting Ak, since
St+1(Lt) ∩ St = ∅.

After n steps, we get that Sn is a complete selection,
F (Sn) ∈ F(Ln−1), and therefore by property (P1) for
steps t = 1, . . . , n, it also holds that F (Sn) ∈ F(L). In
addition, by (P2), f(β−,Ln) = 1. Since Ln is equivalent
to L(Sn) ∈ Ls (obtained by removing the m−n columns
corresponding to the affectors not selected by Sn), it is
easy to verify that f(β−,L(Sn)) = 1. Next, by Thm.
3.2 we have that 1/r(L(Sn)) ∈ Rangeβ∗ .

It remains to show that 1/r(L(Sn)) = β∗(L).
By Theorem 4.1, there exists a square system L(F ∗),
F ∗ ∈ F (L), such that r(L(F ∗)) = 1/β∗. As-
sume, toward contradiction, that 1/r(L(Sn)) 6= 1/β∗.
Obs. 4.3(b) implies that r(L(F ∗)) < r(L(Sn)).
It therefore follows that L(F ∗) and L(Sn) are two
non-equivalent hidden square systems of L such
that 1/r(L(F ∗)), 1/r(L(Sn)) ∈ Rangeβ∗ , or, that
1/r(L(Sn))−1/r(F ∗) ≤ ∆β , in contradiction to Lemma
7.1. This completes the proof of Claim 7.3. �

By Obs. 4.3(b), minF∈F {r(L(F ))} ≥ 1/β∗(L).
Therefore, since r(L(Sn)) = 1/β∗(L), the square sys-
tem L(Sn) constructed in step 7 of the algorithm in-
deed yields the Perron value (by Eq. (4.10)), hence
the correctness of the algorithm is established. Fi-
nally we analyze the runtime of the algorithm. Note
that there are O(log (β∗(L)/∆β) + n) calls for the in-
terior point method (computing f(β−,Li)), namely,
O(log (β∗(L)/∆β)) calls in the first phase and n calls
in the second phase. By plugging Eq. (7.22) in Claim
7.1, Thm. 7.1 follows. �

8 Applications

We have considered several applications for our general-
ized PF Theorem. All these examples concern general-
izations of well-known applications of the standard PF
Theorem. In this section, we illustrate applications for
power control in wireless networks, and input–output
economic model. (In fact, our initial motivation for
the study of generalized PF Theorem arose while study-
ing algorithmic aspects of wireless networks in the SIR
model [2, 16, 1].)

8.1 Power control in wireless networks. The
rules governing the availability and quality of wireless
connections can be described by physical or fading chan-
nel models (cf. [24, 3, 28]). Among those, a commonly
studied is the signal-to-interference ratio (SIR) model
1. In the SIR model, the energy of a signal fades with
the distance to the power of the path-loss parameter α.

1This is a special case of the signal-to-interference & noise

ratio (SINR) model where the noise is zero.



If the signal strength received by a device divided by the
interfering strength of other simultaneous transmissions
is above some reception threshold β, then the receiver
successfully receives the message, otherwise it does not.
Formally, let d(p, q) be the Euclidean distance between
p and q, and assume that each transmitter ti transmits
with power Xi. At an arbitrary point p, the transmis-
sion of station ti is correctly received if

Xi · d(p, ti)
−α∑

j 6=iXj · d(p, tj)−α
≥ β .(8.24)

In the basic setting, known as the SISO (Single Input,
Single Output) model, we are given a network of n
receivers {ri} and transmitters {ti} embedded in Rd
where each transmitter is assigned to a single receiver.
The main question is then is to find the optimal
(i.e., largest) β∗ and the power assignment X∗ that
achieves it when we consider Eq. (8.24) at each receiver
ri. The larger β, the simpler (and cheaper) is the
hardware implementation required to decode messages
in a wireless device. In a seminal and elegant work,
Zander [37] showed how to compute β∗ and X

∗
, which

are essentially the PF root and PF vector, if we
generate a square matrix A that captures the signal and
interference for each station.

The motivation for the general PF Theorem appears
when we consider Multiple Input Single Output (MISO)
systems. In the MISO setting, a set of multiple
synchronized transmitters, located at different places,
can transmit at the same time to the same receiver.
Formally, for each receiver ri we have a set of ki
transmitters, to a total of m transmitters. Translating
this to the generalized PF Theorem, the n receivers
are the entities and the m transmitters are affectors.
For each receiver, its supporter set consists of its ki
transmitters and its repressor set contains all other
transmitters. The SIR equation at receiver ri is then:∑

`∈Si X` · d(ri, t`)
−α∑

`∈Ri
X` · d(ri, t`)−α

≥ β ,(8.25)

where Si and Ri are the sets of supporters and repres-
sors of ri, respectively. As before, the gain g(i, j) is
proportional to 1/d(ri, tj)

−α (where the sign depends
on whether tj is a supporter or repressor of ri). Using
the generalized PF Theorem we can again find the op-
timal reception threshold β∗ and the power assignment
X
∗

that achieves it.
An interesting observation is that since our optimal

power assignment is a 0∗ solution using several trans-
mitters at once for a receiver is not necessary, and will
not help to improve β∗, i.e., only the “best” transmitter
of each receiver needs to transmit (where “best” is with
respect to the entire set of receivers).

Related Work on MISO Power Control. We next high-
light the differences between our proposed MISO power-
control algorithm and the existing approaches to this
problem. The vast literature on power control in MISO
and MIMO systems considers mostly the joint optimiza-
tion of power control with beamforming (which is rep-
resented by a precoding and shaping matrix). In the
commonly studied downlink scenario, a single transmit-
ter with m antennae sends independent information sig-
nals to n decentralized receivers. With this formulation,
the goal is to find an optimal power vector of length
n and a n × m beamforming matrix. The standard
heuristic applied to this problem is an iterative strategy
that alternatively repeats a beamforming step (i.e., op-
timizing the beamforming matrix while fixing the pow-
ers) and a power control step (i.e., optimizing powers
while fixing the beamforming matrix) till convergence
[7, 8, 9, 30, 33]. In [7], the geometric convergence of such
scheme has been established. In addition, [36] formal-
izes the problem as a conic optimization program that
can be solved numerically. In summary, the current al-
gorithms for MIMO power-control (with beamforming)
are of numeric and iterative flavor, though with good
convergence guarantees. In contrast, the current work
considers the simplest MISO setting (without coding
techniques) and aims at characterizing the mathemati-
cal structure of the optimum solution. In particular, we
establish the fact that the optimal max-min SIR value
is an algebraic number (i.e., the root of a characteris-
tic polynomial) and the optimum power vector is a 0∗

solution. Equipped with this structure, we design an
efficient algorithm which is more accurate than off-the-
shelf numeric optimization packages that were usually
applied in this context. Needless to say, the structural
properties of the optimum solution are of theoretical
interest in addition to their applicability.

We note that our results are (somewhat) in con-
tradiction to the well-established fact that MISO and
MIMO (Multiple Input Multiple Output) systems,
where transmitters transmit in parallel, do improve the
capacity of wireless networks, which corresponds to in-
creasing β∗ [12]. There are several reasons for this ap-
parent dichotomy, but they are all related to the simplic-
ity of our SIR model. For example, if the ratio between
the maximal power to the minimum power is bounded,
then our result does not hold any more (as discussed
in Section 6). In addition, our model does not capture
random noise and small scale fading and scattering [12],
which are essential for the benefits of a MIMO system
to manifest themselves.

8.2 Input–output economic model. Consider a
group of n industries that each produce (output) one
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Figure 3: SIR diagram for a power control example, with β∗ = 3.5. (a) An optimal 0∗ solution (only t11, t21, t31
transmit). All receivers are covered by their corresponding reception zones. (b) A non-optimal 0∗ solution (only
t12, t22, t32 transmit). (c) A non-0∗ solution, where both transmitters collaborate per receiver. Receivers are not
covered by their reception zones.

type of commodity, but requires inputs from other
industries [23, 26]. Let aij represent the number of jth
industry commodity units that need to be purchased by
the ith industry to operate its factory for one time unit
divided by the number of commodity units produced by
the ith industry in one time unit, where aij ≥ 0.

Let Xj represent a unit price of the ith commodity
to be determined by the solution. In the following profit
model (variant of Leontief’s Model [26]), the percentage
profit margin of an industry for a time unit is:

βi = Profit = Total income/Total expenses.

That is, βi = Xi/
(∑n

j=1 aijXj

)
. Maximizing the the

profit of each industry can be solved via Program (3.4),

where β∗ is the minimum profit and X
∗

is the optimal
pricing.

Consider now a similar model where the ith indus-
try can produce ki alternative commodities in a time
unit and requires inputs from other commodities of in-
dustries. The industries are then the entities in the gen-
eralized Perron–Frobenius setting, and for each indus-
try, its own commodities are the supporters and input
commodities are optional repressors.

The repression gain M−(i, j) of industry i and
commodity j (produced by some other industry i′), is
the number of jth commodity units that are required
by the ith industry to produce (i.e., operate) for a one
unit of time. Thus, (M− ·X)i is the total expenses of
industry i in one time unit.

The supporter gain M+(i, j) of industry i to its
commodity j is the number of units it can produce in
one time unit. Thus, (M+ · X)i is the total income
of industry i in one time unit. Now, similar to the

basic case, β∗ is the best minimum percentage profit
for an industry and X

∗
is the optimal pricing for the

commodities. The existence of a 0∗ solution implies that
it is sufficient for each industry to charge a nonzero cost
for only one of its commodities and produce the rest for
free.

Finally, we present several open problems and fu-
ture research directions.

9 Open Problems

Our results concern the generalized eigenpair of a non-
square system of dimension n × m, for m ≥ n. We
provide a definition, a geometric and a graph theoretric
characterization of this eigenpair, as well as a central-
ized algorithm for computing it. A natural question for
future study is whether there exists an iterative method
with a good convergence guarantee for this task, as ex-
ists for (the maximal eigenpair of) a square system. In
addition, another research direction involves studying
the other eigenpairs of a nonsquare irreducible system.
In particular, what might be the meaning of the 2nd
eigenvalue of this spectrum? Yet another interesting
question involves studying the relation of our spectral
definitions with existing spectral theories for nonsquare
matrices. Specifically, it would be of interest to char-
acterize the relation between the generalized eigenpairs
of irreducible systems according to our definition and
the eigenpair provided by the SVD approach. Finally,
we note that a setting in which n < m might also be
of practical use (e.g., for the power control problem in
SIMO systems), and therefore deserves exploration.
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