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Applications of Cumulants to Array Processing—Part
VI: Polarization and Direction of Arrival

Estimation with Minimally Constrained Arrays

Egemen G̈onen and Jerry M. Mendel

Abstract—A fourth-order statistics-based method is presented for joint
estimation of polarization and direction of arrival parameters of as many
asMMM �1 narrowband signals with anMMM -element array havingMMM �3

elements that are ofarbitrary and unknown response and geometry and a
subarray consisting ofthreeshort dipole antennas configured in a certain
fashion. The method is computationally efficient and offers considerable
savings in hardware over a recently published second-order statistics-
based method.

Index Terms—Antenna arrays, cumulants, direction of arrival estima-
tion, higher order statistics, polarization, short dipole.

I. INTRODUCTION

The problems of estimating direction-of-arrival and polarization
parameters of diversely polarized multiple cochannel signals have
been considered in various works [2], [6]–[8], [10]. In all of these
methods, it was assumed that the antenna array manifold is either
knownor obtained through array calibration. In [7], Li and Compton
used ESPRIT [11] to estimate direction-of-arrival and polarization
parameters of multiple signals. ESPRIT does not require a known
array manifold or calibration; however, it is applicable only to antenna
arrays having a special structure calleddisplacement invariance. As a
consequence, in Li and Compton’s method, to estimate parameters of
at mostM � 1 signals, it is required that the array be a 2M element
ULA consisting ofM -pairs of crossed dipoles.

In this correspondence, we show that using fourth-order statistics,
both directions-of-arrival and polarization parameters of at most
M � 1 multiple cochannel signals can be estimated using anM -
element array havingM � 3 elements that are ofarbitrary and
unknownresponse and geometry and a subarray consisting ofthree
short dipole antennas displaced in space and configured in a certain
fashion. Our approach is different from existing ones in a way that it
is applicable to minimally constrained arrays. There is no comparable
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Fig. 1. Typical polarization ellipse.

method in the literature. For a totally linear array, our method requires
50% less hardware than Li and Compton’s.

In Section II, the problem is formulated. We propose a solution
in Section III. Section IV provides a simulation experiment. Conclu-
sions are presented in Section V.

II. FORMULATION OF THE PROBLEM

Suppose there areP elliptically polarized wavefronts
fs1(t); � � � ; sP (t)g from statistically independent non-Gaussian
sources impinging on a planar array ofM antennae from
directions f�1; � � � ; �P g in the same plane as the array. Let
rrr(t) be the M -vector representing the signal received by the
antenna array. Then,rrr(t) is expressed by the measurement
equationrrr(t) = AAAsss(t) + nnn(t) = P

p=1
aaapsp(t) + nnn(t), where

AAA = [aaa1; � � � ; aaaP ] is an M � P steering matrix whose columns
represent the (unknown) responses of the subarray to the incoming
wavefronts, andsss(t) is the P vector of the sources signals
fsi(t)g

P
i=1. Our assumptions are as follows.

1) fsi(t)g
P
i=1 are non-Gaussian, statistically independent, and

have nonzero fourth-order cumulants.
2) nnn(t) is a Gaussian noise process that may have arbitrary and

unknown cross-statistics and is statistically independent ofsss(t).
3) The columns ofAAA are linearly independent for the given direc-

tion of arrival and polarization parameters; this nonambiguity
assumption is common in array processing.

Polarization of a transverse electromagnetic (TEM) wave is char-
acterized by the ellipse traced by the extremity of its electric field
vector as time progresses. Polarization is classified as linear, circular,
or elliptical. If the electric field vector as a function of time is always
directed along a line, the field is said to be linearly polarized. Linear
and circular polarizations are special cases of elliptical polarization. A
typical polarization ellipse is shown in Fig. 1. The polarization ellipse
is defined by two constants, namely, the ellipticity angle� and the
orientation angle�. For a given polarization, specified by� and�,
the electric field vector can be written [1] aseee = E� eee� + E� eee�,
where its componentsE� andE�, are given byE� = E cos  and
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(a)

(b)

Fig. 2. (a) Poincare sphere. Any polarization(�; �) is represented by a
point on the Poincare sphere with coordinates(�; �). The relationship
between(; �) and (�; �) is easily seen on the sphere. The points L, H,
V, and E correspond to linear, horizontal, vertical, and elliptical polarizations,
respectively. (b) Polarization error on the Poincare sphere. E represents the
actual value of polarization. F represents the estimate of E.

E� = E sin ej� in whichE is the electric field amplitude, and the
parameters� and� can be expressed in terms of and� astan2� =
tan2 cos � andsin 2� = sin 2 sin �. The ranges of�; �;  and
� are defined as��=4 � � � �=4; 0 � � < �; 0 �  � �=2 and
�� � � < �. The polarization parameters are conveniently displayed
on the Poincare sphere [1] as in Fig. 2(a).

The electric field vector of the wave arriving at the array from di-
rection� (measured with respect to a suitable reference direction) can
be expressed in rectangular coordinates aseee = �E cos  sin �eeex+
E cos  cos �eeey � E sin ej�eeez . Consequently, a plane wave im-
pinging on the array is characterized uniquely by the four parameters
{�; E; �; �}.

The problem of interest is to estimate the parameters
f�p; �p; �pg

P
p=1 of the source signals givenN snapshots received

by the array. The parametersfEpg
P
p=1 are not needed because they

are not useful for discriminating the sources.

III. N EW SOLUTION

Consider anM -element array consisting of three short dipole
antennas and anM � 3 element arbitrary subarray. Assume that
two of the dipoles are crossed and that the third dipole is placed in
parallel to either of the other two at a known distance, as shown in
Fig. 3. The otherM � 3 elements may havearbitrary andunknown
responses and locations.

Since the dipoles are assumed to be short, the measurement
from each dipole is proportional to the electric field component
along the dipole [7]; therefore, the measurement from the first
and third dipoles will be proportional to thez component of the
electric field, whereas the measurement from the second dipole
will be proportional to thex component of the electric field. By

Fig. 3. Array structure.

considering the separation between the first and third sensors,
the received signals at the first three sensors are givenr1(t) =
� P

p=1 sin pe
j� sp(t); r2(t) = � P

p=1 cos p sin �psp(t),

and r3(t) = � P
p=1 sin pe

j� e�j(2�d=�) cos � sp(t), where
sp(t) = Epap(t)e

j(w t+� ), in whichap(t) is the modulating signal,
and�p is the carrier phase. The modulating signalap(t) is assumed
to be non-Gaussian, which is a valid assumption for communication
signals.

The geometry of the assumed three-element subarray leads to
three fourth-order statistics-based invariance properties that may be
exploited by the ESPRIT algorithm to jointly estimate the arrival
angles and polarizations. We use fourth-order cumulants as they are
typically the least-order nonzero cumulants of communication signals.
Odd-order cumulants of communication signals are generally zero
because these types of signals are symmetrically distributed.

Before presenting our approach, we adopt the following no-
tation for fourth-order cumulant matrices. Given two scalar pro-
cessesx1(t) and x2(t) and anM -vector processyyy(t), we define
cum(x1(t); x2(t); yyy(t); yyyH(t)) as theM �M matrix whoseijth
entry is cum(x1(t); x2(t); yi(t); y�j (t)), whereyi(t) and yj(t) are
the ith andjth components ofyyy(t), respectively.

Consider first anM � M fourth-order cumulant matrix of the
signalsr1(t) and rrr(t) formed as follows:

CCC0
�
= cum(r1(t); r

�

1(t); rrr(t); rrr
H(t))

=

P

i=1

P

j=1

P

k=1

P

l=1

cum(sin ie
j� si(t)

sin je
�j� s�j (t); aaaksk(t); aaa

H
l s

�

l (t))

=

P

i=1

cum(sin ie
j� si(t); sin ie

�j� s�i (t); aaaisi(t); aaa
H
i s

�

i (t))

=

P

i=1

sin2 iaaaiaaa
H
i �4;i

= AAA�AAAH (1)

where f�4; ig
P
i=1 are the fourth-order cumulants of the

source signals that are assumed to be nonzero, and
�

�
= diagf�4; 1 sin2 1; � � � ; �4; P sin2 P g, which is nonsingular,

provided i 6= 01 i = 1; � � � ; P . In deriving (1), we used the

1Note that the requirement ofi 6= 0 is merely a result of the geometry
displayed in Fig. 3, which was chosen for demonstration purposes. In fact, if
the third sensor is placed in parallel with the second sensor, the case ofi = 0

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 6, 2009 at 02:02 from IEEE Xplore.  Restrictions apply.



IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 47, NO. 9, SEPTEMBER 1999 2591

cumulant properties [CP1], [CP3], [CP5] and [CP6] in [9],
the facts that cumulants of Gaussian processes are zero, and that
cumulants of independent processes are delta functions.

Consider next the M � M cumulant matrices
CCC1

�
= cum(r1(t); r

�

2(t); rrr(t); rrr
H(t)) = AAA�1�AAA

H and

CCC2
�
= cum(r1(t); r

�

3(t); rrr(t); rrr
H(t)) = AAA�2�AAA

H , where

�1
�
= diagf(sin �1= tan 1)e

j� ; � � � ; (sin �P = tan P )e
j� g,

and �2
�
= diagfej(2�d=�) cos � ; � � � ; ej(2�d=�) cos � g. These

equations were derived in a similar way to the derivation ofCCC0.
The cumulant matricesCCC0; CCC1; andCCC2 possess two invariance

structures characterized by�1 and�2, which allow us to jointly
estimate the polarization parameters and arrival angles of the incident
waves. The diagonal matrix�2 contains the arrival angles, whereas
�1 contains both the arrival angles and polarization parameters;
hence, these parameters can be extracted from estimates of�1 and
�2. The problem is to estimate�1 and �2 using the cumulant
matricesCCC0; CCC1; andCCC2. The solution to this problem is based on the
idea of rotational invariance of the underlying signal subspace, which
is the basis of the ESPRIT algorithm [11]. In ESPRIT, the rotational
invariance of the signal subspace is induced by the translational
invariance of the array, i.e., an identical copy of the array that is
displaced in the space is needed. On the other hand, in our cumulant-
based algorithm, the same invariance is obtained with no need for
an identical copy. In ESPRIT, the signal subspace is extracted from
the eigendecomposition of the covariance matrix of the concatenated
measurements from the main array and its copy. Here, the signal
subspace is obtained from the singular value decomposition of the
3M � M concatenated matrix

CCC
�
=

CCC0

CCC1

CCC2

=
AAA

AAA�1

AAA�2

�AAAH (2)

and the matrices�1 and�2 are extracted from the signal subspace.
Algorithms for solving problems exploiting models similar to (2)
have been developed [13].

The polarization parameters can be determined using�1 and
�2; however, to do so, we must first find the correct pairing of
the diagonal elements of�1 and �2 so that theith diagonal
elements of�1 and �2 contain parameters that belong only to
the ith source (i = 1; � � � ; P ). The pairing can be done as in
[7]. Reordering the elements of�1 and�2 so that they are paired
correctly, we obtain two diagonal matrices�1 and�2. The arrival
angles�i; i = 1; � � � ; P can be determined from�2 as �i =
arccos (�=2�d)angle(�2(i; i)) , where�2(i; i) is theith diagonal
element of�2.

The polarization parameters�i and ii = 1; � � � ; P
can then be determined as�i = angle(�1(i; i)) and
i = arctan(sin �i=j�1(i; i)j). Finally, the polarization parameters
�i and �i are obtained from�i and i using the relationship
tan 2� = tan 2 cos � and sin 2� = sin 2 sin �.

IV. SIMULATION EXPERIMENT

This experiment demonstrates our joint DOA and polarization
estimation method and evaluates its error performance. We assume
four statistically independent sources having diverse polarizations.
The array has five elements with the configuration in Fig. 4. The
first three elements are short dipole antennas; the other two are
assumed omnidirectional sensors. The arrival angles and polarization
parameters of the first and second sources are arbitrarily chosen as in
Table I. The measurements are contaminated by circularly symmetric

can be resolved; however, in this case, there would be a new requirement that
i 6= 90.

Fig. 4. Array used in the simulation.

TABLE I
ARRIVAL ANGLES AND POLARIZATION

PARAMETERS (IN DEGREES) OF THE SOURCES

Source No. DOA � �

1 �60 40 70
2 �20 10 50
3 50 �10 30
4 70 �30 10

TABLE II
SAMPLE MEANS AND STANDARD DEVIATIONS OF THE BEARING

AND POLARIZATION PARAMETER ESTIMATES. SNR=10 db

DOA � �

Source No. mean std mean std mean std
1 �59.9 0.66 40.1 0.98 70.4 3.26
2 �19.9 0.66 9.7 1.17 49.65 4.25
3 49.7 1.74 �10.12 1.10 29.16 1.83
4 69.60 3.20 �29.75 1.0 9.89 2.34

white Gaussian noise that is independent of the signals with SNR=

10 dB. Our method was used to estimate the direction of arrival
(�) and polarization parameters (�, �) of the signals. The number
of snapshots was 2000, and we performed a 100-run Monte Carlo
experiment.

The means and standard deviations of the DOA and polarization
estimates obtained by averaging 100 Monte Carlo runs are shown in
Table II. Observe that means of the estimated parameters are very
close to their actual values, and the standard deviations are low.

V. CONCLUSIONS

We have presented a new method to estimate both arrival angles
and polarization parameters of narrowband cochannel signals that is
applicable to any arbitrary array of unknown geometry and response,
provided there exists a subarray consisting of three dipoles arranged
in a fashion described in the correspondence and depicted in Fig. 3.
With our method, parameters ofM�1 signals can be estimated using
anM -element array. This represents a 50% savings in hardware over
the recently published method in [7]. Our solution requires estimation
of three cumulant matrices followed by steps that are much like those
of the ESPRIT algorithm.
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On the Virtual Array Concept for the
Fourth-Order Direction Finding Problem

Pascal Chevalier and Anne Férŕeol

Abstract—For more than a decade, fourth-order (FO) direction finding
(DF) methods have been developed for non-Gaussian signals. Recently, it
has been shown, through the introduction of thevirtual cross-correlation
(VCC) concept, that the use of FO cumulants for the DF problem
increases the effective aperture of an arbitrary antenna array, which
eventually introduces the virtual array concept. The purpose of this
correspondence is first to present this virtual array (VA) concept through
an alternative way that is easier and more direct to handle than the VCC
tool and, second, to present further results associated with this concept,
not only for arrays with space diversity but also for arrays with angular
and/or polarization diversity.

Index Terms—Angular and polarization diversity, fourth-order direc-
tion finding, virtual array, virtual cross-correlation.

I. INTRODUCTION

Up to the middle of the 1980’s, the DF methods exploited only
the information contained in the second-order (SO) statistics of
the observations. However, for more than a decade, DF methods
exploiting the information contained in the FO statistics of the
data have been developed for non-Gaussian signals. Most of these
techniques, such as the fourth MUSIC [1], [8] or the fourth ESPRIT
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methods [5], are FO extensions of SO techniques, although a new
concept of higher order (HO) DF has been presented recently in [3].

However, although promising for some applications, relatively few
papers have been devoted to the performance analysis of these FO
DF methods. Among these scarce papers, we find, in particular, [1],
[2], and [8], which present either analytic or simulation results about
the performance of the fourth MUSIC method.

Recently, a new light on these methods and on their potential
performance has been given in [7] where it has been shown, for
arrays with space diversity and through the introduction of thevirtual
cross-correlation(VCC) concept, that the use of FO cumulants for the
DF problem increases the effective aperture of an arbitrary antenna
array; this eventually introduces thevirtual array (VA) concept. This
new concept allows physical interpretations of rather abstract HO
algebraic results and makes it possible to predict performances of
the FO DF methods. Nevertheless, although it is very interesting and
really pertinent, the VCC concept may seem to be relatively difficult
to handle by nonspecialists.

In this context, the purpose of this correspondence is first to
present the VA concept by an alternative way that is easier and
more direct to handle than that using the VCC tool and, second,
to present further results associated with this concept, concerning
not only arrays with space diversity but also arrays with polarization
and/or angular diversity. Note that some of the results presented in
this correspondence have been presented for the first time in [4],
whereas the existence of [7] was not known by the authors.

II. HYPOTHESES AND NOTATIONS

In this correspondence, we consider an array ofN narrowband
(NB) sensors, and we callxxx(t) the vector of the complex amplitudes
of the signals at the output of these sensors. Each sensor is assumed to
receive the contribution ofP stationary and statistically independent
NB sources corrupted by a noise. Under these assumptions, the
observation vector can be written as

xxx(t) =

P

i=1

mi(t)aaa(�i; 'i) + b(t)
�
= Ammm(t) + bbb(t) (1)

where

bbb(t) noise vector;
mmm(t) vector whose componentsmi(t) are the complex ampli-

tudes of the sources;
�i azimuth of the sourcei (Fig. 1);
'i elevation angle of the sourcei (Fig. 1);
A (N � P ) matrix of the source steering vectorsaaa(�i; 'i),

which contains in particular the information about the
direction of arrival of the sources.

In particular, the componentn of vectoraaa(�i; 'i), which is noted
as an(�i; 'i), can be written, in the general case of an array with
space, angular, and polarization diversity, as [6]

an(�i; 'i) = fn(�i; 'i; pi) expfj2�[xn cos(�i) cos('i)

+ yn sin(�i) cos('i) + zn sin('i)]=�g (2)

where � is the wavelength, (xn; yn; zn) are the coordinates of
sensorn of the array, andfn(�i; 'i; pi) is a complex number
corresponding to the response of sensorn to a unit electric field
coming from the direction (�i; 'i) and having the state of polarization
pi (characterized by two angles in the wave plane as shown in
Section IV-C) [6]. Let us recall that an array of sensors has space

1053–587X/99$10.00 1999 IEEE

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 6, 2009 at 02:02 from IEEE Xplore.  Restrictions apply.


