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Abstract Nonlinear mixed–effects models are very useful
to analyze repeated measures data and are used in a vari-
ety of applications. Normal distributions for random effects
and residual errors are usually assumed, but such assump-
tions make inferences vulnerable to the presence of outliers.
In this work, we introduce an extension of a normal nonlin-
ear mixed–effects model considering a subclass of elliptical
contoured distributions for both random effects and resid-
ual errors. This elliptical subclass, the scale mixtures of nor-
mal (SMN) distributions, includes heavy–tailed multivari-
ate distributions, such as Student–t, the contaminated nor-
mal and slash, among others, and represents an interesting
alternative to outliers accommodation maintaining the ele-
gance and simplicity of the maximum likelihood theory. We
propose an exact estimation procedure to obtain the maxi-
mum likelihood estimates of the fixed–effects and variance
components, using a stochastic approximation of the EM al-
gorithm. We compare the performance of the normal and the
SMN models with two real data sets.
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1 Introduction

Analysis of longitudinal data is an essential issue in biolog-
ical, agricultural, environmental, and medical applications,
and many methodologies have already been proposed in the
framework of linear and nonlinear mixed–effects models to
analyze such data (see Davidian and Giltinan, 1995; Vonesh
and Chinchilli, 1997; Demidenko, 2004). In this work we fo-
cus on nonlinear mixed–effects models (NLMEMs), which
have recently become very popular. NLMEMs are mixed–
effects models in which the intraindividual model relating
the response variable to time is nonlinear in the parameters.
With the development of novel estimation procedures (Da-
vidian and Giltinan, 2003; Kuhn and Lavielle, 2005), they
are widely used in longitudinal studies. Their main field of
application is in pharmacokinetic research, to analyze within–
subject pharmacokinetic processes of absorption, distribu-
tion and elimination governing drug concentrations. They
have also been widely applied for the modelling of growth
traits in various agricultural and laboratory species, such as
mice, chickens, cattle, pigs and trees.

Several methods for estimating the parameters in NLMEMs
have been proposed (see Vonesh and Chinchilli, 1997; Pin-
heiro and Bates, 2000; Davidian and Giltinan, 2003, for a re-
view). The estimation of NLMEMs raises specific problems,
even if the random effects and the errors are normal, because
the likelihood of the model typically cannot be expressed in
closed form. Several approximations to the log-likelihood
have been proposed. One is the first–order conditional esti-
mation method (Beal and Sheiner, 1992). This method lin-
earizes the nonlinear response function of the model with a
first order Taylor series expansion about current estimates
of the fixed–effects and the zero means of random effects.
The resulting linearized model is then fitted by the ML tech-
nique. Lindstrom and Bates (1990) proposed a more accu-
rate approximation to the nonlinear response function of the
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model by expanding the nonlinear response function of the
model at the current estimates of fixed–effects and random
effects. It has been shown that Lindstrom and Bates’ (1990)
procedure is equivalent to solving a set of estimating equa-
tions where the estimating functions are approximate first
derivatives of a Laplace approximation of the log–likelihood
of the original model (Wolfinger, 1993; Vonesh, 1996; Wolfin-
ger and Lin, 1997).

These likelihood approximations often perform well if
the number of the intraindividual measurements is not small
and the variability of random effects is not large. However,
when some of the individuals have sparse data or the vari-
ability of the random effects is large, there are considerable
errors in approximating the likelihood function via these ap-
proximations (Davidian and Giltinan, 1995; Pinheiro and
Bates, 1995; Lindstrom and Bates, 1990). This has moti-
vated the use of exact maximum likelihood methods, such
as the EM algorithm. In particular, the Monte Carlo EM
(MCEM) algorithm (Wei and Tanner, 1990), in which the
E step is approximated by using simulated samples from the
exact conditional distribution of the random effects given the
observed data, has been used for estimation in mixed–effects
models. An MCEM algorithm for exact maximum likeli-
hood estimation of a class of NLMEMs is given by Walker
(1996). Walker’s (1996) procedure is computationally very
intensive because it uses Monte Carlo simulation to evaluate
the integrals in the E-step. In order to reduce the compu-
tational intensity and complexity of the Walker’s algorithm,
Wang (2007) implemented the MCEM algorithm using sam-
ples obtained via importance sampling from a mixture dis-
tribution chosen for its simplicity of form, facility for sam-
pling and efficiency. A stochastic version of the EM algo-
rithm (SAEM) using stochastic approximations, proposed
by Delyon, et al. (1999), proved to be more computation-
ally efficient than a classical MCEM algorithm thanks to
recycling of simulations from one iteration to the next in
the smoothing phase of the algorithm. Moreover, as pointed
out by Jank (2006) the SAEM algorithm, unlike the MCEM,
converges with a fixed and typically small simulation size.
Recently, Kuhn and Lavielle (2005) showed that the SAEM
algorithm is very efficient for computing the ML estimate in
NLMEMs.

The aim of this paper is to propose an exact estimation
procedure in an extension of normal NLMEMs considering
a subclass of elliptical contoured distributions for both ran-
dom effects and residual errors. The class of scale mixtures
of normal distributions (Andrews and Mallows, 1974) has
received much attention in recent years, particularly because
they include distributions with longer-than-normal tails, such
as the Student-t, the contaminated normal and slash, among
others, and they present good properties that allow for ac-
commodating extreme and outlying observations better than
the models under normality assumption. In the context of

mixed–effects models, several authors have proposed using
heavy-tailed distributions to accommodate outliers. For in-
stance, Welsh and Richardson (1997) make a review of pro-
cedures for robust estimation using multivariate symmetri-
cal distributions. Pinheiro, et al. (2001), Lin and Lee (2006)
and Staudenmayer, et al. (2009) studied robust approaches
to estimation in which both random effects and errors have
multivariate Student-t distributions, while Choy and Smith
(1997), Rosa, et al. (2003) and Rosa, et al. (2004) discussed
Markov chain Monte Carlo (MCMC) implementations con-
sidering a Bayesian formulation. However, few alternatives
have been studied for outlier accommodation in the context
of nonlinear mixed–effects models. To date, Yeap and Da-
vidian (2001) is the only reference. They proposed a two-
stage approach for robust estimation in NLMEMs when out-
liers are present within and between individuals. As in Yeap
and Davidian (2001), our proposal allows for accommoda-
tion and identification of both types of outliers. A feature of
the proposed model is that the computational aspect is sim-
plified by considering a hierarchical version of the model.
This also allows for using a stochastic version of the EM al-
gorithm and the SAEM algorithm, extending previous works
under Gaussian assumptions proposed by Kuhn and Lavielle
(2005) and Lavielle and Meza (2007).

The article is organized as follows. In Section 2, we de-
scribe the family of heavy-tailed distributions and EM and
SAEM algorithms used in this work. Section 3 presents the
nonlinear mixed–effects model with heavy-tailed distribu-
tions. The maximum likelihood estimation procedure using
the SAEM algorithm is described in Section 4. Estimation
of the likelihood and standard errors is discussed in Section
5. In Section 6, the application of the proposed methodol-
ogy is illustrated with real data. Finally, some conclusions
are given and possible future work is discussed in Section 7.

2 Preliminaries

In this Section we review the subclass of elliptical contoured
distributions, more specifically, the scale mixture of multi-
variate normal distributions. As well, we describe two stochas-
tic versions of the EM algorithm for ML estimation. The first
algorithm is the stochastic approximation expectation max-
imization (SAEM) algorithm and the second is a parameter
expansion version of the SAEM algorithm.

2.1 Scale Mixture of Multivariate Normal Distributions

A random vector Y inRm is presumed to have a distribution
that is a scale mixture of multivariate normal distributions
(Andrews and Mallows, 1974) with parameters, µ ∈ Rm,
Λ a (m × m) positive definite symmetric matrix, and H a
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(unidimensional) probability distribution function, such that
H(0) = 0, if its density function is

p(y) =
∫ ∞

0

Nm(y;µ, κ−1Λ) dH(κ)

=|2πΛ|−1/2

∫ ∞

0

κm/2 exp{− 1
2κD2}dH(κ). (1)

where Nm(·; µ,Λ) is the m–dimensional normal density
with parameters µ and Λ, and D2 = (y−µ)T Λ−1(y−µ).
We shall use the notation SMNm(µ, Λ; H) to indicate that
Y has density (1). When the mixture distribution function
H is degenerate, SMNm(µ,Λ;H) is a normal distribution.

The SMN distributions (1) has a convenient stochastic
representation

Y
d= µ + κ−1/2Z, (2)

where Z ∼ Nm(0,Λ) is independent of the mixture vari-
able κ ∼ H(ν), and ν is a scalar or vector valued parameter.
Note that the expression (2) provides a useful tool for ran-
dom number generation and for theoretic purposes. Another
form that represents the distribution (2) is the following two-
stage hierarchical representation

Y |κ ∼ Nm(µ, κ−1Λ),

κ ∼ H(ν). (3)

From (3), using the iterative law of expectation yields

E(Y ) = E(E(Y |κ)) = µ,

cov(Y ) = E(cov(Y |κ)) + cov(E(Y |κ)) = E(κ−1)Λ.

The class of SMN distributions provides a group of thick-
tailed distributions that are often useful for robust inference.
Some of these are: the multivariate Student–t distribution,
multivariate slash distribution, multivariate contaminated nor-
mal distribution and multivariate exponential power distri-
bution. This class of distributions have been applied in the
context of regression models (see for instance Lange and
Sinsheimer, 1993; Liu, 1996) as well as in linear mixed–
effects models (Choy and Smith, 1997; Rosa, et al., 2003,
2004), obtaining robust estimates against outlying observa-
tions.

2.2 The Algorithms

2.2.1 The EM and SAEM Algorithms

The EM (Dempster, et al., 1977) is a popular iterative algo-
rithm for calculating parameter estimates via ML in models
with missing data or in models that can be formulated as
such. In circumstances as those prevailing here, the max-
imization of log-likelihood function based on the observed
data Y obs, denoted by `o(θ;Y obs) = log p(Y obs;θ), is dif-
ficult to perform. The EM algorithm proceeds in two steps:

i) E-Step: replace the observed likelihood by the likelihood
of a complete data set and compute its conditional expecta-
tion

Q(θ|θ̂(k)
) = E{`c(θ; Y com)|Y obs, θ̂

(k)},

where θ̂
(k)

is the estimate of θ at the kth iteration;

ii) M-Step: maximize it with respect to θ obtaining θ̂
(k+1)

.
Each iteration of the EM algorithm increases the like-

lihood function `o(θ; Y obs) and the EM sequence {θ̂(k)}
converges to a stationary point of the observed likelihood
under mild regularity conditions (Wu, 1983; Vaida, 2005).

However, in some applications of the EM algorithm the
E–step cannot be obtained analytically and has to be calcu-
lated using a simulation. Wei and Tanner (1990) proposed
the Monte Carlo EM (MCEM) algorithm, in which the E–
step is replaced by a Monte Carlo approximation based on
a large number of independent simulations of the missing
data. In order to reduce the amount of required simulations
compared to the MCEM algorithm, the SAEM algorithm
proposed by Delyon, et al. (1999) replaces the E–step of EM
by a stochastic approximation procedure, while the M–step
is unchanged. The SAEM algorithm consists at each itera-
tion, in successively simulating the random effects with the
conditional distribution, and updating the unknown parame-
ters of the model. Thus, at iteration k, SAEM is as follows:

E–Step:

– Simulation–step: draw q(k,`), (` = 1, . . . , m) from the

conditional distribution p(·|Y obs, θ̂
(k−1)

).

– Stochastic approximation: update Q(θ|θ̂(k)
) according to

Q(θ|θ̂(k)
) = Q(θ|θ̂(k−1)

) + δk

[ 1

m

m∑

`=1

log p(Y obs, q
(k,`); θ)

−Q(θ|θ̂(k−1)
)
]
,

where δk is a smoothing parameter, i.e. a decreasing se-
quence of positive numbers as presented by Kuhn and
Lavielle (2004).

M–Step:

– Maximization–step: update θ̂
(k)

according to

θ̂
(k+1)

= arg max
θ

Q(θ|θ̂(k)
).

In other words, SAEM performes a Monte Carlo E–step,
like MCEM, but with a small and fixed Monte Carlo sample
sizes (m ≤ 10), which then is combined in a “smooth” way
with the previous step of the algorithm (in calculation of the
Q function and/or of the parameter estimates).

When the simulation step cannot be directly performed,
Kuhn and Lavielle (2004) propose combining this algorithm
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with a MCMC procedure: the sequence {q(k)} is a Markov
chain with transition kernels {Π θ̂(k)}. Then, the simulation
step becomes:

– Simulation-step: draw q(k,`), (` = 1, . . . , m), from the
transition probability Π

θ̂(k) (q
(k−1), ·).

As argued by Jank (2006) and recently by Meza, et al.
(2009), an important issue is the analysis of the SAEM algo-
rithm convergence. To run SAEM, the user must fix several
constants as the number of total iterations and the number of
iterations before starting the smoothing step of the SAEM
algorithm. In order to define these constants, we can use a
graphic approach based on the likelihood difference from
one iteration to the next and monitor SAEM by estimating
its progress towards θ̂ by using the property of increasing
likelihood of the EM algorithm (see Meza, et al., 2009, for
more details). Then, the number of iteration can be fixed
and the smoothing step can be defined but it is important to
note that this procedure implies to run the SAEM algorithm
twice.

2.2.2 The PX–EM and PX–SAEM Algorithms

A major drawback of the EM algorithm is its slow conver-
gence in some situations. To circumvent this limitation Liu,
et al. (1998) proposed the so-called parameter-expanded EM
(PX–EM) algorithm. Technically, the PX-EM algorithm ex-
pands the complete data model parameterized by θ, to a
larger model parameterized by Θ with Θ = (θ, α) where
α is a working parameter. To use the PX-EM algorithm
two conditions must be satisfied: i) a many-to-one reduc-
tion function R : Θ � R(Θ) that preserves the original
observed data model, and ii) a value α0 of α that preserves
the original complete data model (see Liu, et al., 1998, for
more details).

Operationally, the PX-EM algorithm, like EM, consists
of two steps. In particular, the PX-E step computes the con-
ditional expectation of the log-likelihood

Q(Θ|Θ̂(k)
) = E{`c(Θ; Y com)|Y obs, Θ̂

(k)}, (4)

where `c(Θ;Y com) = log pX(Y obs, q; Θ), is the expanded

complete data log-likelihood and Θ̂
(k)

= (θ̂
(k)

,α0). The
PX–M step then maximizes (4) with respect to the expanded
parameters

Θ̂
(k+1)

= arg max
Θ

Q(Θ|Θ̂(k)
)

and θ is updated via θ̂
(k+1)

= R(Θ̂
(k+1)

).
In order to improve the convergence of the stochastic

approximation version of EM, Lavielle and Meza (2007)

propose adapting the PX-EM algorithm to the SAEM algo-
rithm. Like the PX-EM, the PX-SAEM algorithm is a pa-
rameter expansion version of SAEM. Each iteration of PX-
SAEM is broken down into three steps: the Simulation step,
the Stochastic Approximation step of SAEM using the ex-
panded model and the PX-M step of PX-EM. Thus, at itera-
tion k, the algorithm can be described as

PX-E Step:

– PX Simulation step: draw q(k,`), (` = 1, . . . , m)

from the conditional distribution pX(·|Y obs, Θ̂
(k−1)

=

(θ̂
(k−1)

, α0)).

– PX Stochastic approximation: update Q(Θ|Θ̂(k)
) accord-

ing to

Q(Θ|Θ̂(k)
) = Q(Θ|Θ̂(k−1)

)

+ δk

[ 1

m

m∑

`=1

log pX(Y obs, q
(k,`); Θ)−Q(Θ|Θ̂(k−1)

)
]
,

where {δk} is a decreasing sequence of positive numbers.

PX-M Step:

– PX Maximization-step: update Θ̂
(k)

according to

Θ̂
(k+1)

= arg max
Θ

Q(Θ|Θ̂(k)
)

and apply the reduction function to obtain θ̂
(k+1)

=

R(Θ̂
(k+1)

) and Θ̂
(k+1)

= (θ̂
(k+1)

, α0).

As with the SAEM algorithm, when the simulation step can-
not be performed directly, the simulation step becomes:

– PX Simulation step: draw q(k,`), (` = 1, . . . , m), from the
transition probability Π

Θ̂(k) (q
(k−1), ·).

Lavielle and Meza (2007) show with numerical exam-
ples that the PX-SAEM algorithm substantially improves
the speed of convergence toward the maximum likelihood
estimate for linear and nonlinear mixed–effects models, in
terms of reducing the number of iterations and the comput-
ing time.

3 Nonlinear mixed–effects models with heavy–tailed
distributions

Let Y i = (Yi1, . . . , Yini)
T denote the response vector for

subject i and f i(zi, φi) = (f(zi1, φi), . . . , f(zini , φi))T a
nonlinear vector–valued differentiable function of a vector–
valued mixed–effects parameter φi and a vector of covari-
ates zi. A nonlinear mixed–effects model can then be ex-
pressed as

Y i = f i(zi, φi) + εi, i = 1, . . . , n, (5)
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with the mixed–effects parameter φi modeled as

φi = Aiβ + Bibi, with bi
ind∼ Nq(0,Γ ),

where Ai and Bi are known design matrices of size r × p

and r × q that possibly depend on the subject and some
covariable values, β is a p–dimensional vector of fixed–
effects, bi is a q–dimensional vector of random effects, Γ =
Γ (γ) is a positive definite matrix, structured by the vector
γ = (γ1, . . . , γK)T , and εi is an ni–dimensional vector of
within–subject errors. The εi are assumed to be independent,
with distribution Nni(0, σ2Ini) independent of the bi. Most
studies using NLMEMs assume normal distribution for ran-
dom effects and within–subject errors, but such assumptions
make the model sensitive to outliers. As discussed in pre-
vious works (see, for example Pinheiro, et al., 2001; Yeap
and Davidian, 2001), an interesting feature of mixed–effects
models is that outliers may occur either at the level of the
within–subject error εi, called ε–outliers, or at the level of
random effects bi, called b–outliers. In the first case, some
unusual within–subject values are observed, whereas in the
second case some unusual subjects are observed.

In this paper, instead of normal assumptions in the non-
linear mixed–effects model (5) we replace the multivariate
normal distributions with the scale mixture of multivariate
normal distributions, which allows for outlier accommoda-
tion. Thus the model is expressed as

Y i|φi
ind∼ SMNni(f i(zi,φi), σ

2Ini ;H1),

φi
ind∼ SMNr(Aiβ,BiΓBT

i ; H2), i = 1, . . . , n.

(6)

With model (6), we are considering a robust estimation frame-
work for β, Γ and σ2. Using the stochastic representation (2)
we can rewrite the model (6) in a hierarchical form

Y i|φi, κi
ind∼Nni(f i(zi, φi), κ

−1
i σ2Ini),

φi|τi
ind∼Nr(Aiβ, τ−1

i BiΓBT
i ),

κi
ind∼H1(ν), τi

ind∼ H2(η), i = 1, . . . , n,

(7)

where ν and η are a scalar or vector valued parameter of
the mixture distribution, and κi and τi are assumed to be
mutually independent.

Pinheiro, et al. (2001) propose a robust hierarchical lin-
ear mixed–effects model in which the random effects and
the within-subject errors have multivariate Student-t distri-
butions. They present several comparable and efficient EM-
type algorithms for computing the ML estimates and illus-
trate the robustness of the model via a real example and
some simulations. Although these distributional assumptions
allow for the accommodation of outliers, in its formulation it
is assumed that the mixture distributions for the two sources

of variability in the model have the same shape and share
the same parameters. Some authors (see, for instance Lin
and Lee, 2007; Jara, et al., 2008) emphasize that this as-
sumption may be very difficult to justify. In this work, we
have adopted the approach suggested by Rosa, et al. (2004)
and Staudenmayer, et al. (2009) (see also Jara, et al., 2008),
where we assume that the mixture variables associated with
errors and random effects are different. This allows a more
direct comparison to the estimation procedure in the two
stages proposed by Yeap and Davidian (2001). Moreover,
the estimation procedure based on the EM algorithm has the
advantage of allowing for the identification of outliers by
examining the conditional distribution of mixture variables
given the observed data. In the next section, we describe the
maximum likelihood procedure in the model (6) via SAEM.

4 ML estimation in NLMEMs using a stochastic version
of the EM algorithm

In this section we consider the maximum likelihood (ML)
estimation of the parameters in the nonlinear mixed–effects
model with heavy-tailed distributions using SAEM and PX-
SAEM algorithms. In particular, we show the implementa-
tion of the algorithms to the case where the error term and
the random effects follow a multivariate Student-t and mul-
tivariate slash distribution, respectively.

4.1 ML estimation using the SAEM Algorithm

In order to implement the SAEM algorithm for maximum
likelihood estimation in the nonlinear mixed–effects model (7),
we consider the vector of complete data as Y com = (Y T , qT )T ,
with Y = (Y T

1 , . . . , Y T
n )T and q = (φT , κT , τT )T where

φ = (φT
1 , . . . , φT

n )T , κ = (κ1, . . . , κn)T and τ = (τ1, . . . , τn)T

represents the incomplete data. The complete data is then
taken to be the vector Y . Then it is easy to derive the com-
plete data log-likelihood for model (7) as

`c(θ; Y com) = −N

2
log σ2 − 1

2σ2

n∑

i=1

κi||Y i − f i(zi, φi)||2

− n

2
log |BiΓ BT

i | −
1

2

n∑

i=1

τi(φi −Aiβ)T (BiΓ BT
i )−1(φi −Aiβ)

+
n∑

i=1

log H1(κi; ν) +
n∑

i=1

log H2(τi; η) + C, (8)

where θ = (βT ,γT , σ2, ν, η)T , N =
∑n

i=1 ni and C is a
constant that is independent of the parameter vector θ. Using
simple algebra, we obtain that the expected complete data
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log-likelihood function is

Q(θ|θ̂(k)
) = E{`c(θ; Y com)|Y , θ̂

(k)}

= −N

2
log σ2 − 1

2σ2

n∑

i=1

E{κi||Y i − f i(zi, φi)||2|Y , θ̂
(k)}

− n

2
log |BiΓ BT

i | −
1

2

n∑

i=1

E{τi(φi −Aiβ)T (BiΓ BT
i )−1

× (φi −Aiβ)|Y , θ̂
(k)}+

n∑

i=1

E{log H1(κi; ν)|Y , θ̂
(k)}

+
n∑

i=1

E{log H2(τi; η)|Y , θ̂
(k)}+ C, (9)

Let U(γ) = ∂Q(θ|θ̂(k)
)/∂γ and H(γ) = −∂2Q(θ|θ̂(k)

)/
∂γ∂γT . Assuming this, it is possible to switch the integra-
tion and differentiation operators, and thus we can update
the parameter estimates as

β̂
(k+1)

=
( n∑

i=1

S
(k)
1,i AT

i (BiΓ̂
(k)

BT
i )−1Ai

)−1

×
n∑

i=1

AT
i (BiΓ̂

(k)
BT

i )−1S
(k)
2,i , (10)

γ̂(k+1) = γ̂(k) + {H(γ̂(k))}−1U(γ̂(k)), (11)

σ̂2(k+1) =
1

N

n∑

i=1

S
(k)
7,i (12)

ν̂(k+1) = arg max
ν

n∑

i=1

E{log H1(κi; ν)|Y , θ̂
(k)} (13)

η̂(k+1) = arg max
η

n∑

i=1

E{log H2(τi; η)|Y , θ̂
(k)}, (14)

where S
(k)
1,i = E{τi|Y i, θ̂

(k)}, S
(k)
2,i = E{τiφi|Y , θ̂

(k)},
the gradient vector, U(γ) and the Hessian matrix, H(γ)
have elements given by

∂Q(θ|θ̂(k)
)

∂γs
= −n

2
tr

{
(BiΓ BT

i )−1Bi
∂Γ

∂γs
BT

i

}
+

1

2

n∑

i=1

S
(k)
3,i

−∂2Q(θ|θ̂(k)
)

∂γs∂γt
=

n

2
tr

{
(BiΓ BT

i )−1Bi
∂2Γ

∂γs∂γt
BT

i

}

−n

2
tr

{
(BiΓ BT

i )−1Bi
∂Γ

∂γs
BT

i (BiΓ BT
i )−1Bi

∂Γ

∂γt
BT

i

}

+
1

2

n∑

i=1

{S(k)
4,i + S

(k)
5,i − S

(k)
6,i },

respectively, for s, t = 1, . . . , K, which must be evaluated
at γ = γ̂(k) with

S
(k)
3,i =E

{
τi(φi −Aiβ̂

(k)
)T (BiΓ BT

i )−1Bi
∂Γ

∂γs
BT

i (BiΓ BT
i )−1

× (φi −Aiβ̂
(k)

)|Y , θ̂
(k)

}

S
(k)
4,i = E

{
τi(φi −Aiβ̂

(k)
)T (BiΓ BT

i )−1Bi
∂Γ

∂γs
BT

i (BiΓ BT
i )−1

×BT
i

∂Γ

∂γt
BT

i (BiΓ BT
i )−1(φi −Aiβ̂

(k)
)|Y , θ̂

(k)
}

S
(k)
5,i = E

{
τi(φi −Aiβ̂

(k)
)T (BiΓ BT

i )−1Bi
∂Γ

∂γt
BT

i (BiΓ BT
i )−1

×BT
i

∂Γ

∂γs
BT

i (BiΓ BT
i )−1(φi −Aiβ̂

(k)
)|Y , θ̂

(k)
}

S
(k)
6,i =E

{
τi(φi −Aiβ̂

(k)
)T (BiΓ BT

i )−1Bi
∂2Γ

∂γs∂γt
BT

i

× (BiΓ BT
i )−1(φi −Aiβ̂

(k)
)|Y , θ̂

(k)
}

S
(k)
7,i =E{κi‖Y i − f i(zi, φi)‖2|Y , θ̂

(k)}.

In the simulation step of the algorithm, at iteration k, we
need to draw q

(k)
i = (φ(k)

i , κ
(k)
i , τ

(k)
i ) from the conditional

distribution p(·|Y i, θ̂
(k−1)

). We propose to use the Gibbs
sampler algorithm to simulate from this conditional distri-
bution. At iteration k, the iteration s of the Gibbs sampler
starts with (φ(k,s)

i , κ
(k,s)
i , τ

(k,s)
i ) and makes the transition to

(φ(k,s+1)
i , κ

(k,s+1)
i , τ

(k,s+1)
i ) via the following scheme (for

i = 1, . . . , n)

– Sample φ
(k,s+1)
i from [φi|Y i, κ

(k,s)
i , τ

(k,s)
i , θ̂

(k)
]

– Sample κ
(k,s+1)
i from [κi|Y i,φ

(k,s+1)
i , τ

(k,s)
i , θ̂

(k)
]

– Sample τ
(k,s+1)
i from [τi|Y i,φ

(k,s+1)
i , κ

(k,s+1)
i , θ̂

(k)
].

In the case of nonlinear mixed–effects model the full
conditional for φi is not available analytically. This suggests
to carry out a Metropolis–Hastings (M–H) algorithm within
each Gibbs step. In practice, at iteration k, to approximate

the distribution of φ|Y i, κ
(k,s)
i , τ

(k,s)
i , θ̂

(k)
, three transition

kernels were successively used: first, the conditional distri-
bution of φi given τi (for i = 1, · · · , n) at iteration k, which

is the Gaussian distribution q
(1)
θ?

i,k
∼ N(Aiβ

(k), τ
(k,s)−1

i Γ̂
(k)

);

second, the multidimensional random walk q
(2)
θ?

i,k
∼ N(φ(k,s+1)

i,p ,

ρ2τ
(k,s)−1

i Γ̂
(k)

), where ρ is a constant and φ
(k+1,s)
i,p repre-

sents the simulation of the random effects at global iteration
k and for the p-th iteration of M-H, with p = 1, · · · ,m2; fi-
nally q

(3)
θ?

i,k
is a succession of d unidimensional Gaussian ran-

dom walks: each component of φ are successively updated.
In summary, the simulation–step at iteration k consists in
running first m1 iterations of the M–H algorithm with pro-
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posal q
(1)
θ?

i,k
, then m2 iterations with proposal q

(2)
θ?

i,k
and finally

m3 iterations with proposal q
(3)
θ?

i,k
.

The use of different kernels permits to increase the con-
vergence and to favour all kind of transition. The values of
parameters ρ, m1, m2 and m3 involved in this simulation
procedure have to be chosen by the user. Few iterations of
the M–H algorithm at each simulation–step are enough to
converge and in practice, m1, m2 and m3 are less than 10.
The choice of ρ is more delicate as they play an important
role in the random walk. The values of ρ are linked to the ac-
ceptance rate of the M–H algorithm, so they must be chosen
to approximate the ‘optimal acceptance rate’. Some theoret-
ical and empirical results (see Roberts, et al., 1997; Roberts
and Rosenthal, 2001) have shown that in high dimensions,
under various regularity conditions, it is optimal to choose
the scale parameter of the random walk such that the asymp-
totic acceptance rate of the M–H algorithm is approximately
0.234.

Once we draw a sequence (φ(k,`)
i , κ

(k,`)
i , τ

(k,`)
i ), ` =

1, . . . , m, at iteration k, the conditional expectations S
(k)
h,i ,

(h = 1, . . . , 7) in (10)-(12) are replaced with the following
stochastic approximations:

S
(k)
1,i = S

(k−1)
1,i + δk

( 1

m

m∑

`=1

τ
(k,`)
i − S

(k−1)
1,i

)
(15)

S
(k)
2,i = S

(k−1)
2,i + δk

( 1

m

m∑

`=1

τ
(k,`)
i φ

(k,`)
i − S

(k−1)
2,i

)
(16)

S
(k)
3,i = S

(k−1)
3,i + δk

( 1

m

m∑

`=1

τ
(k,`)
i b

(k,`)T

i BT
i (BiΓ̂

(k)
BT

i )−1

×Bi
∂Γ

∂γs
BT

i (BiΓ̂
(k)

BT
i )−1Bib

(k,`)
i − S

(k−1)
3,i

)
(17)

S
(k)
4,i = S

(k−1)
4,i + δk

( 1

m

m∑

`=1

τ
(k,`)
i b

(k,`)T

i BT
i (BiΓ̂

(k)
BT

i )−1

×Bi
∂Γ

∂γs
BT

i (BiΓ̂
(k)

BT
i )−1Bi

∂Γ

∂γt
BT

i (BiΓ̂
(k)

BT
i )−1

×Bib
(k,`)
i − S

(k−1)
4,i

)
(18)

S
(k)
5,i = S

(k−1)
5,i + δk

( 1

m

m∑

`=1

τ
(k,`)
i b

(k,`)T

i BT
i (BiΓ̂

(k)
BT

i )−1

×Bi
∂Γ

∂γt
BT

i (BiΓ̂
(k)

BT
i )−1Bi

∂Γ

∂γs
BT

i (BiΓ̂
(k)

BT
i )−1

×Bib
(k,`)
i − S

(k−1)
5,i

)
(19)

S
(k)
6,i = S

(k−1)
6,i + δk

( 1

m

m∑

`=1

τ
(k,`)
i b

(k,`)T

i BT
i (BiΓ̂

(k)
BT

i )−1

×Bi
∂2Γ

∂γs∂γt
BT

i (BiΓ̂
(k)

BT
i )−1Bib

(k,`)
i − S

(k−1)
6,i

)
(20)

S
(k)
7,i = S

(k−1)
7,i + δk

( 1

m

m∑

`=1

κ
(k,`)
i ‖Y i − f i(zi, φ

(k,`)
i )‖2

− S
(k−1)
7,i

)
, (21)

where δk is the smoothing parameter, chosen in order to
ensure the convergence of the algorithm and Bib

(k,`)
i =

φ
(k,`)
i −Aiβ̂

(k)
. Conditional expectations involved in equa-

tions (13) and (14) must be replaced with their respective
stochastic approximations (see Section 4.2 for one partic-
ular case). Kuhn and Lavielle (2005) suggest that a small
value of m (smaller than 10 in practice) is enough to ensure
very satisfactory results.

It is important to note that, although in this kind of model,
the S

(k)
h,i , with h = 1, . . . , 7, are no longer minimal sufficient

statistics unlike in Kuhn and Lavielle (2005) since the com-
plete likelihood does not belong to the exponential family,
they have the same role. Indeed, they resume the relevant
information of the complete likelihood for the maximiza-
tion step and they permit to simplify the stochastic approx-
imation step of SAEM. Furthermore, an important remark
is that when the degrees of freedom ν and η are known,
the complete likelihood `c(θ; Y com) belongs to the expo-
nential family and we recover the MCMC–SAEM algorithm
proposed by Kuhn and Lavielle (2005). On the other hand,
we should note that Gu and Kong (1998) and recently Cai
(2010) extended the Stochastic Approximation type algo-
rithm and showed its convergence properties in more general
context that the exponential family.

An important special case occurs when Γ is symmetric
and positive definite matrix and the subject-specific param-
eters are modeled as φi = Aiβ + bi. Then, we can replace
(11) as follows

Γ̂
(k+1)

=
1
n

n∑

i=1

S
(k)
i ,

S
(k)
i = E{τi(φi −Aiβ̂

(k)
)(φi −Aiβ̂

(k)
)T |Y , θ̂

(k)}

where as before, the conditional expectation S
(k)
i is replaced

by the stochastic approximation

S
(k)
i = S

(k−1)
i + δk

( 1
m

m∑

`=1

τ
(k,`)
i (φ(k,`)

i −Aiβ̂
(k)

)

× (φ(k,`)
i −Aiβ̂

(k)
)T − S

(k−1)
i

)

which is equivalent to the approximations defined in (17)-
(20).

In the next Section we describe the implementation of
SAEM and PX-SAEM algorithms in one particular case,
where the conditional response vector is assumed to follow a
multivariate Student-t distribution and the vector of random
effects follows a multivariate slash distribution.

4.2 The Student-t/Slash Nonlinear Mixed–Effects Model

Two distributions belonging to the SMN class are the slash
(Rogers and Tuckey, 1972) and Student–t (Lange, et al.,
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1989) distributions, which have been suggested as alterna-
tives in robust modeling. The slash and Student–t distribu-
tions are obtained from (3) assuming that: κ ∼ Beta(ν, 1)
and κ ∼ Gamma(ν/2, ν/2), respectively, with densities

p(κ) = νκν−1, 0 < κ < 1, ν > 0, and

p(κ) =
(ν/2)ν/2κν/2−1

Γ (ν/2)
exp(− 1

2νκ), κ, ν > 0.

In each case, the parameter ν > 0 corresponds to the de-
grees of freedom. We can also appreciate that it is possible
to recover the Gaussian model when we consider ν →∞.

The Student–t/slash nonlinear mixed–effects model is
obtained from (7) assuming a Student–t for the conditional
response vector and a slash distribution for the random ef-
fects. Thus it can be expressed as

Y i|φi, κi
ind∼ Nni(f i(zi, φi), κ

−1
i σ2Ini),

φi|τi
ind∼ Nr(Aiβ, τ−1

i Γ ),

κi
ind∼ Gamma

(ν

2
,
ν

2

)
, τi

ind∼ Beta(η, 1), (22)

for i = 1, . . . , n. The log–likelihood function for the model
defined in (22) is given by

`c(θ; Y com) = −N

2
log σ2 − 1

2σ2

n∑

i=1

κi‖Y i − f i(zi, φi)‖2

− n

2
log |Γ | − 1

2
tr Γ−1

n∑

i=1

τi(φi −Aiβ)(φi −Aiβ)T

+ n
{ν

2
log

(ν

2

)
− log Γ

(ν

2

)}
+

ν

2

n∑

i=1

(log κi − κi)−
n∑

i=1

log κi

+ n log η + (η−1)
n∑

i=1

log τi + C. (23)

Dropping out all the terms that are not functions of θ, the rel-
evant part of the expected complete data log-likelihood func-
tion for the Student-t/slash nonlinear mixed–effects model
can be written as

Q(θ|θ̂(k)
) = −N

2
log σ2 − 1

2σ2

n∑

i=1

E{κi‖Y i − f i(zi, φi)‖2|Y , θ̂
(k)}

− n

2
log |Γ | − 1

2
tr Γ−1

n∑

i=1

E{τi(φi −Aiβ)(φi −Aiβ)T |Y , θ̂
(k)}

+ n
{ν

2
log

(ν

2

)
− log Γ

(ν

2

)}

+
ν

2

n∑

i=1

(E{ log κi|Y , θ̂
(k)} − E{κi|Y , θ̂

(k)})

+ n log η+η
n∑

i=1

E{log τi|Y , θ̂
(k)}. (24)

The solutions for β, Γ and σ2 in M step of the algorithm
are given by equations (10)-(12), respectively, as defined in
Section 4.1. The solutions for ν and η defined in equations

(13) and (14) for this particular case, must satisfy:

log
(ν

2

)
− ψ

(ν

2

)
+

1

n

n∑

i=1

(S
(k)
8,i − S

(k)
9,i ) = 0 (25)

η̂(k+1) = −n
/ n∑

i=1

S
(k)
10,i, (26)

where S
(k)
8,i = E{log κi|Y , θ̂

(k)}, S
(k)
9,i = E{κi|Y , θ̂

(k)},

S
(k)
10,i = E{log τi|Y , θ̂

(k)}, and ψ(z) = d log Γ (z)/ d z,
denotes the digamma function. Note that ν̂(k+1) can be ob-
tained by solving (25) using a one-dimensional Newton-Raphson
algorithm.

In the simulation step, the full conditional distributions
to implement the Gibbs sampler algorithm are given by (for
i = 1, . . . , n)

φi|Y i, κi, τi; θ ∝ exp
{
− 1

2
(κiD

2
εi

+ τiD
2
φi

)
}

(27)

κi|Y i, φi, τi; θ ∼ Gamma
(ni + ν

2
,
D2

εi
+ ν

2

)
, (28)

τi|Y i, φi, κi; θ ∼ Truncated Gamma
( r

2
+ η,

D2
φi

2
, t

)
(29)

where

D2
εi

=
1

σ2
||Y i − f i(zi, φi)||2, and

D2
φi

=(φi −Aiβ)T Γ−1(φi −Aiβ). (30)

Here truncated Gamma variables (29) have a right trun-
cation point at t = 1. Simulation of the independent right
truncated gamma variables is performed using the accept-
reject algorithm proposed by Philippe (1997). If the full con-
ditional (27) is not available analytically, we then employ
the Metropolis-Hastings algorithm to draw from it. As de-
scribed in Section 4.1, the conditional expectations defined
in (10)–(12) are replaced with the stochastic approximations
(15)–(21) and additionally the conditional expectations in
(25) and (26) must be replaced with the following stochastic
approximations

S
(k)
8,i = S

(k−1)
8,i + δk

( 1

m

m∑

`=1

log κ
(k,`)
i − S

(k−1)
8,i

)
, (31)

S
(k)
9,i = S

(k−1)
9,i + δk

( 1

m

m∑

`=1

κ
(k,`)
i − S

(k−1)
9,i

)
, (32)

S
(k)
10,i = S

(k−1)
10,i + δk

( 1

m

m∑

`=1

log τ
(k,`)
i − S

(k−1)
10,i

)
. (33)

4.2.1 The PX-SAEM algorithm in the Student–t/Slash
Nonlinear Mixed–Effects Model

EM-type procedures, including the SAEM algorithm, can
present slow convergence in some situations. To deal with
this problem, we decided to apply a parameter expansion
version of SAEM (PX-SAEM) to the model defined in (7).
In this specific model, we focus on the distribution of error
and as discussed by Kent, et al. (1994), Meng and van Dyk
(1997) and Liu, et al. (1998), we can modified the standard
EM procedure for the multivariate Student-t distribution by
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following an augmentation scheme including a working pa-
rameter α, thus obtaining the following model:

Y i|φi, κi
ind∼ Nni (f i(zi, φi), κ

−1
i σ2

?Ini ),

φi|τi
ind∼ Nr(Aiβ?, τ−1

i Γ ?),

κi

α

ind∼ Gamma(ν/2, ν/2), τi
ind∼ Beta(η, 1), (34)

for i = 1, . . . , n. As mentioned before, two conditions must
be satisfied to use the PX-SAEM algorithm: i) a many-to-
one reduction function R that preserves the original observed-
data model and ii) a value α0 of α that preserves the original
complete-data model. In this context, Θ = (β?,Γ ?, σ

2
?, α),

the reduction function is R(Θ) = (β?, Γ ?,
σ2

?

α ) and α0 = 1.
As usual, in this problem the observed-data model does

not depend on working parameter α. Then we can set α at
α0 at the beginning of each simulation step. At iteration k

of the PX–SAEM algorithm, the stochastic approximations
are updated as in (15)–(18) and the unique difference be-
tween the standard SAEM and the PX–SAEM lies in the
maximization step where parameters are updated by calcu-

lating Θ̂
(k+1)

, which maximizes the conditional expecta-

tion of the complete likelihood, Q(Θ|Θ̂(k)
). The reduction

function is then applied to obtain θ̂
(k+1)

= R(Θ̂
(k+1)

) and

Θ̂
(k+1)

= (θ̂
(k+1)

, α0).
For this specific NLMEM, the application of the reduc-

tion function in this PX version of SAEM leads to adjust-
ment in the estimate of the variance error, producing minor
changes in the maximization step of the previous SAEM al-
gorithm. Indeed, we only need to replace the maximization
step of σ2 with:

σ̂2(k+1) =
σ̂

2(k+1)
?

α̂(k+1)
,

where

σ̂
2(k+1)
? =

1
N

n∑

i=1

S
(k)
7,i and α̂(k+1) =

1
n

n∑

i=1

S
(k)
9,i .

Here, N =
∑n

i=1 ni and, S
(k)
7,i and S

(k)
9,i are defined in (21)

and (32), respectively.

Remark 1: Several authors have proposed to address the es-
timation of the shape parameters for the mixture variables
in nonlinear regression models (see, for example Lange and
Sinsheimer, 1993; Jamshidian, 1999). For linear mixed–effects
models under Student-t errors, Welsh and Richardson (1997),
Pinheiro, et al. (2001) and Lin (2008) have described pro-
cedures for the estimation of the degrees of freedom. Such
works has focused on efficient algorithms based on the EM
algorithm and its variants. Although the approach of these
works has been quite successful in practice, in particular, for
the Student–t distribution, Fernández and Steel (1999) have

warned of potential problems that may arise in the estima-
tion of degrees of freedom and they notice that in this case
the function of log-likelihood is unbounded and indeed cor-
responds to a nonregular estimation problem. In addition,
Lucas (1997) note that the parameter estimates are robust
only against extreme observation in the case that the degrees
of freedom are kept fixed. Thus, one alternative is to assume
that the parameters associated with the mixture variables κi

and τi are known.

Remark 2: Another alternative for selecting the parameters
associated with the mixture variables is to follow the strat-
egy proposed by Lange, et al. (1989) (see also, Stauden-
mayer, et al., 2009). In this work we follow the approach
of Lange, et al. (1989) when it is appropriate. In particular,
in the Student-t/Slash nonlinear mixed–effects model to esti-
mate the degrees of freedom ν and η, the procedure is based
on addressing the estimation of ν and η as a model selection
problem. That is, for a grid of acceptable values of ν and
η, we perform the estimation of θ = (βT , vechT Γ , σ2)T

using the SAEM algorithm or PX-SAEM described above.
Next, we estimate the likelihood function of the model for
the observed data as shown in equation (35). Finally, we
choose ν and η such that the likelihood function in (35) is
maximized. Remember that, as discussed previously, when
the degree of freedom are known, the complete likelihood
belongs to the exponential family and our procedure is equiv-
alent to the MCMC–SAEM algorithm proposed by Kuhn
and Lavielle (2005).

5 Estimation of the likelihood and standard errors

5.1 Estimation of the likelihood

Based on model (6), we obtain that the likelihood function
of model for the observed data `o(θ; Y obs) is defined as

`o(θ; Y obs) =
∫

p(y, φ;θ) dφ =
∫

p(y|φ; θ)p(φ;θ) dφ,

(35)

where p(y|φ; θ) and p(φ; θ) are the densities of the NLMEM
given in (6). Following Meza, et al. (2009), we can compute
this integral using an importance sampling scheme for any
continuous distribution p̃. Equation (35) can be represented
as

`o(θ; Y obs) =
∫

p(y|φ;θ)
p(φ; θ)
p̃(φ; θ)

p̃(φ; θ) dφ,

so that `o(θ;Y obs) can be estimated by

̂̀
o(θ; Y obs) =

1
M

M∑
m=1

p(y|φm; θ)
p(φm;θ)
p̃(φm;θ)

(36)
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where φ1, . . . , φM are drawn from p̃(φ; θ). An efficient
choice for p̃(φ; θ) consists of the conditional distribution of
φ given the data Y . In practice, during the last few iterations
of SAEM, i.e. at convergence, we estimate empirically the
conditional mean E(φ|Y ; θ̂) and the conditional variance
Var(φ|Y ; θ̂) from the MCMC procedure. Then, we choose
as sampling distribution p̃ the distribution of random effects
φ defined in (6) with those moments.

5.2 Standard error approximation

Consider Uo(θ) = ∂`o(θ; Y obs)/∂θ, and note that the score
function for the observed data satisfies,

Uo(θ) = Eθ{U c(θ;Y com)|Y obs}, (37)

with U c(θ;Y com) = ∂`c(θ; Y com)/∂θ, the score func-
tion for the complete data. Louis (1982) showed that the ob-
served information matrix Io(θ) = −∂2`o(θ; Y obs)/∂θ∂θT ,
can be calculated from the information supplied by the EM
algorithm, through the formula

Io(θ) = Eθ{Hc(θ; Y com)|Y obs}+ Uo(θ)UT
o (θ)

− Eθ{U c(θ; Y com)UT
c (θ;Y com)|Y obs}, (38)

where Hc(θ; Y com) = −∂2`c(θ; Y com)/∂θ∂θT .
Thus, we can to approximate the expectations in (37)

and (38) using stochastic approximations

gk = gk−1 + δk

( 1
m

m∑

`=1

U c(θ̂
(k)

; q(k,`), Y obs)− gk−1

)
,

Jk = Jk−1 + δk

( 1
m

m∑

`=1

{
Hc(θ̂

(k)
; q(k,`), Y obs)

−U c(θ̂
(k)

; q(k,`), Y obs)UT
c (θ̂

(k)
; q(k,`), Y obs)

}
− Jk−1

)

where q(k,`), (` = 1, . . . ,m) are drawn from the conditional

distribution p(·|Y obs, θ̂
(k−1)

). Finally, the observed infor-
mation matrix can be approximated as

Hk = Jk − gkgT
k ,

at convergence Hk → Io(θ̂), so that H−1
k is an estimate of

the covariance matrix of the parameter estimates (see Zhu
and Lee, 2002; Cai, 2010).

6 Applications

6.1 Example 1: Theophylline kinetic data

Figure 1 shows data of a pharmacokinetic study, analyzed
by Davidian and Giltinan (1995) and Pinheiro and Bates
(1995), among others authors. In this experiment, we are

interested in examining blood concentrations in twelve sub-
jects after an oral dose of the anti-asthmatic agent theophylline
was administered. Each patient received a dose Di of the
drug at time 0 and the jth serum concentration Yij of the
ith patient is measured at times xij , with i = 1, . . . , 12 and
j = 1, . . . , 10. The underlying pharmacokinetic processes
are modeled by the following nonlinear mixed–effects model

Yij =
Dikai

Vi(kai − Cli/Vi))

{
exp

(
−Cli

Vi
xij

)
− exp(−kaixij)

}
+εij ,

(39)

which is a first-order one-compartment model. In (39) kai is
the absorption rate constants of subject i, Vi is the volume
required to account for all drugs in the body of subject i and
Cli is the clearance of subject i representing the volume of
blood from which the drug is eliminated per unit time.

Because each of these parameters in (39) is necessarily
positive to be meaningful, we will assume that the pharma-
cokinetic parameters for each subject φi = (log kai, log Vi, log Cli)T

are given by

kai = exp(β1+bi1), Vi = exp(β2+bi2), Cli = exp(β3+bi3).

First of all, we will consider an ML estimation of pa-
rameters of model (39) assuming that both the error terms
and random effects follow a multivariate normal distribu-
tion, specifying the variance–covariance matrix of the ran-
dom effects as: (i) unstructured Γ , and (ii) Γ = diag(γ1, γ2, γ3).

This data set, widely studied, is implemented in the free
software MONOLIX (Lavielle, 2005) including all the infor-
mation and the parameters required for running SAEM for
the model (39) under Gaussian assumptions. Using MONOLIX
with these preset settings, we fitted model (39) using SAEM
(including the simulated annealing step described in Lavielle,
2005) with m = 10 and with the following smoothing pa-
rameter

δk =

{
1, for 1 ≤ k ≤ 300,

1
k−300 , for 301 ≤ k ≤ 500.

(40)

In order to select the variance–covariance matrix structure
for the random effects which best describes the data, we use
the Bayesian Information Criterion (BIC). The BIC for the
fitted models (i) and (ii) are 362.78 and 346.82, respectively.
Therefore, for this data set the best fit correspond to the di-
agonal variance–covariance matrix for the random effects.
Henceforth all analysis will based considering a diagonal
matrix for the random effects.

Figure 1 shows individual fits that reveal that there are
some poorly fitted individuals. The estimated Mahalanobis
distances D2

εi
and D2

φi
, defined in (30), provide useful diag-

nostic statistics for identifying subjects with outlying obser-
vations (see, for example, Copt and Victoria-Feser, 2006).
Note that under the Gaussian model (5) it is possible to show
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that D2
εi
∼ χ2

ni
and D2

φi
∼ χ2

r . Since E(D2
εi

) = ni and
E(D2

φi
) = r, Pinheiro, et al. (2001) proposed the quan-

tities D̂2
εi

/ni and D̂2
φi

/r to identify outlying observations.
These statistics have expected values equal to one. Figure 2
presents these diagnostic statistics, which suggests that in-
dividuals 5 and 9 are possibly ε–outlier and φ–outlier, re-
spectively. Moreover, the Q–Q plot in Figure 3 confirms our
suspicion of outliers in the random effects.
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Fig. 1 Theophylline concentrations (in mg/L) for 12 patients and in-
dividual fits obtained with the SAEM algorithm under Gaussian as-
sumptions on both random effects and the error term. Circles are ob-
servations. The solid lines are the individual fits using the individual
parameters with the individual covariates and the dotted lines are the
individual fits using the population parameters with the individual co-
variates.
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Fig. 2 Theophylline concentrations: Mahalanobis distances for resid-
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Fig. 3 Theophylline concentrations: Q-Q plots of random effects for
the Gaussian model fitted with the SAEM algorithm.

It is well known that outlying observations may affect
the estimation of the parameters under assumptions of nor-
mality. With the goal of accommodating outlying observa-
tions, we analyze this data set using the nonlinear mixed–
effects model under heavy-tailed distributions. In the imple-
mentation of the SAEM algorithm, we use the same smooth-
ing parameter described in (40) for the Gaussian model, start-
ing the smoothing phase at iteration 300 and stopped the
algorithm at iteration 500 with m = 10. Results of the esti-
mation by the maximum likelihood method obtained using
the SAEM algorithm for θ = (βT , diagT Γ , σ2)T consider-
ing several alternatives to the mixture distributions H1 and
H2 are presented in Table 1 (standard errors in parenthesis).
We focused on all possible combinations considering the
Student–t and slash distributions. The estimation of the pa-
rameters for the mixture distributions H1 and H2 were cho-
sen following the strategy proposed by Lange, et al. (1989).
We note that for all models considered, the procedure se-
lects small values for the parameters associated with mix-
ture variables. These parameters act as tuning constants in
robust estimation methods. In our case, we see that these
choices provide adequate protection against outliers.

Note that the Gaussian model (5) is a particular case of
model (6) where κi = 1, τi = 1 and the mixing distributions
H1 and H2 are degenerate. The likelihood ratio statistics
for the Student–t, slash/Student–t, slash and Student–t/slash
models against the normal model corresponding to LR =
15.58, LR = 13.48, LR = 24.16 and LR = 24.50, re-
spectively. These results show that the NLMEM with heavy-
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Table 1 Parameter estimates for Theophylline data under several fitted
models.

Parameter Gaussian Student–t slash/Student–t
(ν; η) (3;4) (1.5;3)

β1 1.59 (0.32) 1.43 (0.44) 1.42 (0.41)
β2 0.46 (0.02) 0.47 (0.03) 0.47 (0.04)
β3 0.04 (0.00) 0.04 (0.00) 0.04 (0.00)
γ1 0.44 (0.25) 0.36 (0.11) 0.36 (0.16)
γ2 0.02 (0.01) 0.01 (0.02) 0.01 (0.02)
γ3 0.03 (0.03) 0.03 (0.05) 0.03 (0.05)
σ2 0.21 (0.06) 0.32 (0.10) 0.32 (0.10)

̂̀
o(θ̂) -172.33 -164.54 -165.59

Parameter slash Student–t/slash Student–t/slasha

(ν; η) (1.25;1.5) (3.5;1.5) (3.5;1.5)
β1 1.44 (0.23) 1.46 (0.40) 1.48 (0.35)
β2 0.47 (0.02) 0.47 (0.03) 0.47 (0.02)
β3 0.04 (0.00) 0.04 (0.00) 0.04 (0.00)
γ1 0.22 (0.09) 0.25 (0.13) 0.27 (0.18)
γ2 0.01 (0.01) 0.01 (0.01) 0.01 (0.01)
γ3 0.03 (0.03) 0.03 (0.05) 0.04 (0.03)
σ2 0.21 (0.06) 0.32 (0.10) 0.30 (0.09)

̂̀
o(θ̂) -160.25 -160.08

a estimates using MCMC methods in WinBUGS

tailed distributions fits the data better than the normal NLMEM.
Among the NLMEM with heavy-tailed distributions consid-
ered, we chose the Student–t/Sash NLMEM with parameters
ν = 3.5 and η = 1.5 for additionally analysis.

Table 2 Theophylline data: Estimated weights for the Student-t/slash
model.

Subject 1 2 3 4 5 6
Residual errors (κi) 0.69 0.37 1.98 0.52 0.26 0.98
Random effects (τi) 0.29 0.69 0.73 0.70 0.71 0.68
Subject 7 8 9 10 11 12
Residual errors (κi) 1.54 0.75 0.93 1.37 1.87 0.85
Random effects (τi) 0.62 0.71 0.29 0.66 0.42 0.67

In order to detect outliers, the estimates of κi and τi are
shown in Table 2. As we expected, patients 5 and 9 present
small values of κi and τi, respectively, suggesting outlying
observations at within-patient and random effect levels, that
is, patient 5 is a ε–outlier and patient 9 is a φ–outlier. This is
consistent with the diagnostic plot included in Figure 2. As
well, Figure 1 suggests that patient 9 has an unusual growth
pattern, and reveals that this patient has an unusually high
Theophylline concentration serum at the time of the fourth
measurement. As well, Table 2 reveals that patient 2 is a ε–
outlier and patients 1 and 11 are φ–outlier, which cannot be
concluded from Figure 2.

For the Student–t/slash NLMEM, we compared the SAEM
algorithm with the Monte Carlo EM (MCEM) algorithm. To
perform MCEM, following McCulloch (1997), we used a
predeterminated sequence of Monte Carlo sample size M

values: M = 50, 200, 5000 for iterations 1–19, 20–39 and

40 and over. The algorithm was stopped when iterates ap-
peared to fluctuate randomly. Both algorithms were imple-
mented in MATLAB 7 and run on an Intel Core 2 Quad PC
computer at 2.40 Ghz and 8 GB of RAM. The results are
summarized in Table 3, which shows the number of chains,
sample sizes and user time to obtain the Student–t/slash max-
imum likelihood estimates. As expected, MCEM estimates
are in good agreement with the SAEM algorithm, but al-
though there are several strategies to improve the perfor-
mance of the MCEM algorithm (see, for example, Wang,
2007), it is evident from the results that the MCEM algo-
rithm requires considerable computational effort. As expected,
the SAEM algorithm is much more efficient. Also, for com-
parison we fit the Student–t/slash NLMEM using the Bayesian
software package WinBUGS (Spiegelhalter, et al., 1999). The
values given for WinBUGS are means and standard devia-
tions of the marginal posterior distributions obtained using
the following non–informative priors β ∼ N3(0, 106I3),
σ, γ?

1 , γ?
2 , γ?

3 ∼ U(0, 103), where γ?
l =

√
γl, l = 1, 2, 3.

As we can see in Table 1 the estimates of all the parameters
agree with each other with those obtained using the SAEM
algorithm.

Table 3 Number of chains, sample sizes and user time to obtain the
Student–t/slash maximum likelihood estimates for theophylline data.

Algorithm Chains (M ) Total iteration Time (sec.)
MCEM 50, 200, 5000a 300 3588
SAEM 10 500 15

a:For iterations 1–19, 20–39 and 40 and over

In order to increase the convergence speed of standard
SAEM, we also applied the PX–SAEM algorithm to this
data set using this specific SMN nonlinear mixed–effects
model, by performing PX for the first 50 iterations, and stan-
dard SAEM afterwards. Results are presented in Figure (4)
showing that the PX-SAEM algorithm increases the conver-
gence speed of standard SAEM for this problem. Indeed, for
the parameter σ2, the PX-SAEM algorithm reached conver-
gence four times as quickly as the standard algorithm.

6.2 Example 2: Guinea pigs data

The guinea pig data was discussed in Johansen (1984) and
studied using nonlinear mixed effects models by several au-
thors (see for example Lindstrom and Bates, 1990 and Lee
and Xu, 2004). The experiment is as follows: 50 tissue sam-
ple were taken from the intestine of each of eight guinea
pigs. Then for each guinea pigs, five tissue samples were as-
signed randomly to each of then different concentrations of
B–methyl–glucoside. The uptake volume was measured in
micromoles per milligram of fresh tissue per 2 minutes and
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Fig. 4 (a): Sequences {σ2(k)} using SAEM (dotted line) and PX-
SAEM (solid line) for the Student–t/slash model. A logarithmic scale
is used for the number of iterations on the x-axis. (b) The observed log-
likelihood sequences {̂̀o(θ̂

(k)
)} obtained with SAEM (dotted line)

and PX-SAEM (solide line) for the Student–t/slash model. A logarith-
mic scale is used for the number of iterations on the x-axis.

only the means of the five tissue samples at each concentra-
tion for each animal are reported. The data are plotted in Fig-
ure 5. Lindstrom and Bates (1990) proposed to model this
dataset with the following nonlinear mixed–effects model:

log(yij) = log
(

exp(β0 + bi0)xij

exp(β1 + bi1) + xij
+ exp(β2 + bi2)xij

)
+εij

(41)

where yij is the jth uptake volume for individual i, xij is the
jth concentration level for individual i, β = (β0, β1, β2)T is
a vector of fixed propulation effects, εij is the error term and
bi = (bi0, bi1, bi2)T is a vector of individual random effects,
with i = 1 · · · , 8 and j = 1, · · · , 10.
Like the first example, in a first time we will consider an ML
estimation of parameters of model (41) assuming that both
the error terms and random effects follow a multivariate nor-
mal distribution, considering that the variance–covariance

matrix of the random effects is Γ =




γ11 γ12 γ13

γ21 γ22 γ23

γ31 γ32 γ33


.

Using MONOLIX, we fitted model (41) under Gaussian
assumptions, with m = 15 and the following smoothing
parameter

δk =

{
1, for 1 ≤ k ≤ 500,

1
k−500 , for 501 ≤ k ≤ 1000.

(42)

Like the first example, Figure 5 reveals that the first animal
is poorly fitted with this model which is confirmed by the
estimated Mahalanobis distances (Figure 6). These distances
suggest that the individual 1 is a possibly a ε-outlier.

In order to accommodate outlying observations, we an-
alyzed this dataset using the NLMEM under heavy–tailed
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tissue samples from 8 guinea pigs and individual fits obtained with the
SAEM algorithm under Gaussian assumptions on both random effects
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individual fits using the individual parameters and the dotted lines are
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Fig. 6 Guinea pigs data: Mahalanobis distances for residual vector and
random effects for the Gaussian model.

distributions. We applied SAEM with the same smoothing
parameter described in (42) and we considered several com-
binations of Gaussian, Student-t and slash distributions for
random effects and error terms, following the same strat-
egy described in the first example, to apply and to choose
the model that best fits the data. Among the NLMEM with
heavy–tailed distributions considered, we chose the NLMEM
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Table 4 Parameters estimates for Guinea pigs data

Parameters Gaussian Gaussian/Student–t Gaussian/Student–ta

η = 2.1 η = 2.1

β0 -1.60 (0.05) -1.62 (0.03) -1.60 (0.06)
β1 0.88 (0.08) 0.86 (0.08) 0.88 (0.10)
β2 -5.46 (0.13) -5.44 (0.15) -5.45 (0.15)
γ11 0.002 0.002 0.002
γ22 0.007 0.016 0.013
γ33 0.082 0.064 0.066
γ12 0.001 0.002 0.000
γ13 -0.023 -0.025 0.001
γ23 -0.002 -0.001 -0.018
σ2 0.009 0.006 0.009

̂̀
o(θ̂) 71.34 64.93

a estimates using MCMC methods in WinBUGS

where random effects b follow a multivariate normal dis-
tribution and the error terms follow a Student-t distribution
with η = 2.1. Results of the estimation by maximum likeli-
hood method for full Gaussian and Gaussian/Student–t mod-
els, obtained using the SAEM algorithm for θ = (βT , Γ , σ2)T ,
are presented in Table 4. Also, we fit the Gaussian/Student–
t NLMEM using the WinBUGS using the following non–
informative priors β ∼ N3(0, 103I3), σ ∼ U(0, 103), Γ ∼
Wishart(103I3, 4). From Table 4 we can see that the re-
sults using the SAEM algorithm are in agreement with the
estimates obtained using WinBUGS except that of the co-
variances of the random effects and the variance of the error
term.

In order to detect outliers, the estimates of κi and τi are
shown in Table 5. As we expected, animals 1 and 6 present
small values of τi suggesting that animal 1 is a possible
ε–outlier. This result shows the flexibility of the proposed
NLMEM since this kind of model has the ability to adapt to
outlying observations in this example.

Table 5 Guinea pigs data: Estimated weights for the
Gaussian/Student-t model.

Subject 1 2 3 4
Residual errors (κi) 0.31 0.71 1.07 1.62
Random effects (τi) 1 1 1 1
Subject 5 6 7 8
Residual errors (κi) 0.62 0.47 1.82 0.86
Random effects (τi) 1 1 1 1

For this example, we compare SAEM with MCEM for
this specific Gaussian/Student-t model, following the same
strategy and the same predetermined sequence of Monte Carlo
sample size used for the theophylline data. We observed that
MCEM estimates are in good agreement with the SAEM al-
gorithm but with a considerable computational effort since
the SAEM algorithm takes almost 27 seconds for 1000 itera-
tions while MCEM takes 7624 seconds to perform the same
number of iterations.

7 Discussion

This paper considers an extension of NLMEMs where ran-
dom effects and error term follow a large class of parametric
distributions. The class of distributions we consider is scale
mixtures of multivariate normal distributions that are often
useful for robust inference. Therefore, this work represents
a natural generalization of previous works of Pinheiro, et al.
(2001); Lin and Lee (2006) and Lin (2008), for the nonlin-
ear mixed–effects context. Thus, our propose is an alterna-
tive to the works of Yeap and Davidian (2001) and Yeap, et
al. (2003).

We have implemented the stochastic approximation of
the EM algorithm to obtain the maximum likelihood esti-
mates of model parameters. The results obtained with the
theophylline data show that the proposed algorithms are easy
to implement and computationally efficient. A specific pa-
rameter expansion version of the SAEM algorithm was also
proposed and was found to speed up the standard algorithm
when used during the first iterations. The PX–SAEM al-
gorithm was applied to σ2, the variance error, resulting a
very basic and simple modification of the standard SAEM
algorithm. There exist several strategy to apply PX in this
kind of model, for instance introducing working parame-
ter in the random effects as proposed in Lavielle and Meza
(2007) for Gaussian NLMEM, which potentially allow to in-
crease more the speed of convergence. However, more com-
plex strategies, i.e. more complex expanded models, involve
more complexity in the maximization step, which leads to
use maximization procedures. A balance between the gain
in speed of convergence and complexity of the algorithm
must be find to model longitudinal data sets using the kind
of models introduced in this work.

The algorithms proposed can be easily adapted for use
with existing software, such as MONOLIX (Lavielle, 2005).
Extensions of this work to the case of REML estimation
can be easily adapted following the approach developed in
Meza, et al. (2007).

An interesting feature of the proposed formulation is that
the weight κi and τi can accommodate outliers for each of
the sources of variability in the model. In fact, these weights
can be used as tools for identifying outlying observations.
Although the application addressed in our work reveals a
very attractive performance for the identification of potential
outliers, the influence of outliers on the maximum likelihood
estimation still need to be investigated. To carry out this kind
of analysis, it has been proposed to use cases deletion proce-
dures (see, for example, Cook and Weisberg, 1982). A gen-
eral approach for detecting outliers in regression models is
the mean-shift outlier model (Cook and Weisberg, 1982). It
has been shown that this approach is equivalent to the diag-
nostic analysis by elimination of observations in linear and
nonlinear regression models under normal errors (Wei and
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Shih, 1994). However, in our knowledge, few studies have
been developed about the outlier detection using the mean-
shift outlier model for nonnormal data or models with longi-
tudinal structure (see, for example, Wei and Fung, 1999; Shi
and Chen, 2008). To assess the influence of the ith subject
on the estimates of θ, we can consider the mean-shift outlier
model

Y i = Gdψ + f i(zi, φi) + εi,

Y j = f j(zj , φj) + εj , j 6= i, (43)

where d = {j1, . . . , jd} and Gd = (dj1 , . . . , djd
) is a ni×d

matrix with djk
a ni-dimensional vector with 1 at the jkth

position and zero elsewhere. Note that this formulation al-
lows to assess whether the jth observation or groups of ob-
servations on the ith subject have an atypical behaviour by
testing the hypothesis H0 : ψ = 0. In particular, we declare
the ith subject as an ε-outlier considering Gd = Ini . We
can carry out the above hypothesis test by fitting the model
(43) and use the likelihood ratio test to compare models (43)
versus (5). It is interesting to note that, as ψ is linearly in-
corporated in the mean-shift model defined in (43), the es-
timation of parameters requires a small modification of the
procedure described in (10)-(14) and (15)-(18). Analogously
we can make the detection of b-outliers using the mean-shift
outlier model for the subject-specific parameters,

φk = Gkω + Akβ + Bkbk,

φl = Alβ + Blbl, l 6= k, (44)

where the matrix Gk ∈ Rr×s has a definition similar to that
given in (43). In this model, however, the parameter ω is
nonrandom and in order to test the hypothesis H0 : ω = 0
using the likelihood ratio test, we must to consider a modi-
fication of the estimation process that requires to choose the
matrix Bi described in (6) and (7) properly. It is possible to
make an exhaustive search for outliers in a specific data set
considering

H0 : ψ = 0, and/or, ω = 0, for all i, k = 1, . . . , n, (45)

but it is well known that carrying out this strategy to search
for outliers may require a large computational burden. We
recommend to adopt this approach to identify outliers for
those observations that have received small weights by the
estimation procedure or those identified as potential outliers
in the plot of Mahalanobis distances. We expect that if the
models with heavier tails than normal one proposed in (6)
have the capacity to accommodate outliers, leading to the
acceptance of the hypothesis in (45) whereas this situation
may not be true under Gaussian errors.

Although for a specific observation the hypothesis (45)
may be accepted, that is, is not an outlier. It may happen to
have influence on other aspects of the model, in which case

we requires more insightful methodologies to assess the in-
fluence of atypical observations. In particular, for nonlinear
models with mixed–effects Lee and Xu (2004) and Russo,
et al. (2009) conducted influence analyses considering the
local influence method (Cook, 1986). This technique con-
sists into study the effect of introducing small perturbations
in the model (or data) using an appropriate measure of in-
fluence. The methodology has received increasing attention
over the past 20 years mainly due to its flexibility to assess
the model assumptions (see the discussion in Cook, 1997).
Currently the authors work in the development of diagnos-
tic techniques for the model proposed in this paper using
both the local influence procedure and the mean-shift out-
lier model, thus extending the work of Osorio, et al. (2007)
and Russo, et al. (2009).

In this paper we considered NLMEMs in which both
random effects and error terms follow a SMN distribution.
The class of SMN distributions provides a group of thick-
tailed distributions that are often useful for robust inference,
but in many applications the presence of skewness is de-
tected in data sets. Therefore, it is necessary to consider flex-
ible distributions that account for this issue. The scale mix-
tures of skew-normal distributions (Branco and Dey, 2001)
is a class of skew-thick-tailed distributions, which extends
the class of SMN distributions. Thus a generalization of this
work is to consider the NLMEMs using scale mixtures of
skew-normal distributions, thus extending the work of De la
Cruz (2008) and De la Cruz and Branco (2009).

Acknowledgements The first author was partially supported by grants
PBCT PSD-20, DIPUV 5/2007 and FONDECYT 11090024 . The sec-
ond and third authors were partially supported by Fondo Nacional de
Desarrollo Cientı́fico y Tecnológico - FONDECYT grants 11075071
and 11080017, respectively. We would also like to thank the reviewers
for their constructive comments, which helped to substantially improve
this manuscript.

References

Andrews, D.F., and Mallows, C.L.: Scale mixtures of normal
distributions. J. R. Stat. Soc. Ser. B. 36, 99-102 (1974).

Beal, S.L., and Sheiner, L.B.: NONMEN User’s Guide.
Nonlinear Mixed–Effects Models for Repeated Measures
Data. San Francisco: University of California (1992).

Branco, M.D., and Dey, D.K.: A general class of multivari-
ate skew-elliptical distributions. J. Multivar. Anal. 79, 99-
113 (2001).

Cai, L.: High-dimensional exploratory item factor analy-
sis by a Metropolis-Hastings Robbins-Monro algorithm.
Psychometrika. 75, 33-57 (2010).

Choy, S.T.B., and Smith, A.F.M.: Hierarchical models with
scale mixtures of normal distributions. Test 6, 205-221
(1997).



16

Cook, R.D.: Assessment of local influence (with discus-
sion). J. R. Stat. Soc. Ser. B. 48, 133-169 (1986).

Cook, R.D.: Local Influence. In Kotz, S., Read, C.B., and
Banks, D.L. (eds.), Encyclopedia of Statistical Sciences,
Update, vol. 1, pp. 380-385. Wiley (1997).

Cook, R.D., and Weisberg, S.: Residuals and Influence in
Regression. Chapman & Hall, London (1982).

Copt, S., and Victoria-Feser, M.: High breakdown inference
in the mixed linear model. J. Am. Stat. Assoc. 101, 292-
300 (2006).

Davidian, M., and Giltinan, D.M.: Nonlinear Models for Re-
peated Measurements Data. Chapman & Hall, New York
(1995).

Davidian, M., and Giltinan, D.M.: Nonlinear models for re-
peated measurements: An overview and update. J. Agric.
Biol. Environ. Stat. 8, 387-419 (2003).

De la Cruz, R.: Bayesian non-linear regression models with
skew-elliptical errors: Applications to the classification of
longitudinal profiles. Computational Statistics and Data
Analysis 53, 436-229 (2008).

De la Cruz, R., and Branco, M.D.: Bayesian analysis for
nonlinear regression model under skewed errors, with ap-
plication in growth curves. Biometrical Journal 51 (4),
588609 (2009).

Demidenko, E.: Mixed Models: Theory and Applications,
Wiley, New York (2004).

Delyon, B., Lavielle, M., and Moulines, E.: Convergence of
a stochastic approximation version of the EM algorithm.
Ann. Stat. 27, 94-128 (1999).

Dempster, A.P., Laird, N.M. and Rubin, D.B.: Maximum
likelihood from incomplete data via the EM algorithm
(with discussion). J. R. Stat. Soc. Ser. B. 39, 1-38 (1977).

Fang, K.T., Kotz, S., and Ng, K.W.: Symmetric Multivari-
ate and Related Distributions. Chapman & Hall, London
(1990).

Fernández, C., and Steel, M.F.J.: Multivariate Student–t re-
gression models: pitfalls and inference. Biometrika 86,
153-167 (1999).

Gu, M.G., and Kong, F.H.: A stochastic approximation algo-
rithm with Markov chain Monte-Carlo method for incom-
plete data estimation problems. Proceeding of National
Academy Sciences, USA 95, 7270-7274.

Jank, W.: Implementing and diagnosing the stochastic ap-
proximation EM algorithm. J. Comput. Graph. Stat. 15,
803-829 (2006).

Jamshidian, M.: Adaptive robust regression by using a non-
linear regression program. J Stat Softw. http://www.

jstatsoft.org/v04/i06 (1999).
Jara, A., Quintana, F., and San Martin, E.: Linear mixed

models with skew–elliptical distributions: A Bayesian ap-
proach. Comput. Stat. Data Anal. 52, 5033-5045 (2008).

Johansen, S.: Functional Relations, Random Coefficients,
and Nonlinear Regression with Application to Kinectic

Data. Springer–Verlag, New York (1984).
Kent, J.T., Tyler, D.E., and Vardi, Y.: A curious likelihood

identity for the multivariate t distribution. Commun. Stat.
Simulat. C. 23, 441-453 (1994).

Kuhn, E., and Lavielle, M.: Coupling a stochastic approxi-
mation version of EM with a MCMC procedure. ESAIM
P.& S. 8, 115-131 (2004).

Kuhn, E., and Lavielle, M.: Maximum likelihood estimation
in nonlinear mixed effects models. Comput. Stat. Data
Anal. 49, 1020-1038 (2005).

Lange, K.L., Little, R.J.A., and Taylor, J.M.G.: Robust sta-
tistical modeling using the t distribution. J. Am. Stat. As-
soc. 84, 881-896 (1989).

Lange, K., and Sinsheimer, J.: Normal/Independent distribu-
tions and their applications in robust regression. J. Com-
put. Graph. Stat. 2, 175-198 (1993).

Lavielle, M.: Monolix User Guide Manual. http://www.
monolix.org (2005).

Lavielle, M., and Meza, C.: A parameter expansion ver-
sion of the SAEM algorithm. Stat. Comput. 17, 121-130
(2007).

Lee, S., and Xu, L.: Influence analyses of nonlinear mixed-
effects models. Comput. Stat. Data Anal. 45, 321-341
(2004).

Lin, T.I.: Longitudinal data analysis using t linear mixed
models with autoregressive dependence structures. J.
Data Sci. 6, 333-355 (2008).

Lin, T.I., and Lee, J.C.: A robust approach to t linear mixed
models applied to multiple sclerosis data. Stat. Med. 25,
1397-1412 (2006).

Lin, T.I., and Lee, J.C.: Estimation and prediction in linear
mixed models with skew–normal random effects for lon-
gitudinal data. Stat. Med. 27, 1490-1507 (2007).

Lindstrom, M.J., and Bates, D.M.: Nonlinear mixed–effects
models for repeated measures data. Biometrics 46, 673-
787 (1990).

Little, R.J.A., and Rubin, D.B.: Statistical Analysis with
Missing Data. Wiley, New York (2002).

Liu, C.: Bayesian robust multivariate linear regression with
incomplete data. J. Am. Stat. Assoc. 91, 1219-1227
(1996).

Liu, C., Rubin, D. and Wu, Y.: Parameter expansion to ac-
celerate EM: The PX-EM algorithm. Biometrika 85, 755-
770 (1998).

Louis, T.A.: Finding the observed information matrix when
using the EM algorithm. J. R. Stat. Soc. Ser. B. 44, 226-
233 (1982).

Lucas, A.: Robustness of the Student t based -M-estimator.
Commun. Stat. Theor. M. 26, 1165-1182 (1997).

McCulloch, C. E.: Maximum likelihood algorithms for gen-
eralized linear mixed models, J. Am. Stat. Assoc. 92, 162-
170 (1997).



17

Meng, X.L. and van Dyk, D.A.: The EM algorithm - an old
folk song sung to a fast new tune (with discussion). J. R.
Stat. Soc. Ser. B. 59, 511-567 (1997).
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Meza, C., Jaffrézic, F. and Foulley, J.L.: Estimation in
the probit normal model for binary outcomes using the
SAEM algorithm. Comput. Stat. Data Anal. 53, 1350-
1360 (2009).

Osorio, F., Paula, G.A. and Galea, M.: Assessment of lo-
cal influence in elliptical linear models with longitudi-
nal structure. Comput. Stat. Data Anal. 51, 4354-4368
(2007).

Philippe, A.: Simulation of right and left truncated gamma
distributions by mixtures. Stat. Comp. 7, 173-181 (1997).

Pinheiro, J., and Bates, D.M.: Approximations to the log–
likelihood function in the nonlinear mixed–effects model.
J. Comput. Graph. Stat. 4, 12-35 (1995).

Pinheiro, J., and Bates, D.M.: Mixed–Effects Models in S
and S-PLUS. Springer, New York (2000).

Pinheiro, J., Liu, C., and Wu, Y.: Efficient algorithms for
robust estimation in linear mixed–effects models using
the multivariate t distribution. J. Comput. Graph. Stat. 10,
249-276 (2001).

Roberts, G.O., Gelman, A., and Gilks, W.: Weak conver-
gence and optimal scaling of random walk metropolis al-
gorithm. Ann. Applied Prob. 7, 110-120 (1997).

Roberts, G.O., and Rosenthal, J.S.: Optimal scaling of var-
ious metropolis–hastings algorithms. Stat. Science 16,
351-367 (2001).

Rogers, W.H., and Tuckey, J.W.: Understanding some long–
tailed distributions. Stat. Neerl. 26, 211-226 (1972).

Rosa, G.J.M., Padovani, C.R., and Gianola, D.: Robust lin-
ear mixed models with Normal/Independent distributions
and Bayesian MCMC implementation. Biometrical J. 45,
573-590 (2003).

Rosa, G.J.M., Gianola, D., and Padovani, C.R.: Bayesian
longitudinal data analysis with mixed models and thick–
tailed distributions using MCMC. J. Appl. Statist. 31,
855-873 (2004).

Russo, C.M., Paula, G.A., and Aoki, R.: Influence diagnos-
tics in nonlinear mixed-effects elliptical models. Comput.
Stat. Data Anal. 53, 4143-4156 (2009).

Shi, L., and Chen, G.: Detection of outliers in multilevel
models. J. Stat. Plan. Infer. 138, 3189-3199 (2008).

Staudenmayer, J., Lake, E.E., and Wand, M.P.: Robustness
for general design mixed models using the t–distribution.
Stat. Model. 9, 235-255 (2009).

Spiegelhalter, D.J., Thomas, A., and Best, N.G.: Winbugs
version 1.2 user manual. MRC Biostatistics Unit.

Vaida, F.: Parameter convergence for EM and MM algo-
rithms. Stat. Sinica 15, 831-840 (2005).

Vonesh, E.F.: A note on the use of Laplace’s approximation
for nonlinear mixed-effects models. Biometrika 83, 447-
452 (1996).

Vonesh, E.F., and Chinchilli, V.M.: Linear and Nonlinear
Models for the Analysis of Repeated Measurements. Mar-
cel Dekker, New York (1997).

Walker, S.: An EM algorithm for nonlinear random effects
models. Biometrics 52, 934-944 (1996).

Wang, J.: EM algorithms for nonlinear mixed effects mod-
els. Comput. Stat. Data Anal. 51, 3244-3256 (2007).

Wei, W.H., and Fung, W.K.: The mean-shift outlier model in
general weighted regression and its applications. Comput.
Stat. Data Anal. 30, 429-441 (1999).

Wei, B., and Shih, J.: On statistical models for regression
diagnostics. Ann. Inst. Statist. Math. 46, 267-278 (1994).

Wei, G., and Tanner, M.: A Monte Carlo implementation of
the EM algorithm and the poor man’s data augmentation
algorithms. J. Am. Stat. Assoc. 85, 699-704 (1990).

Welsh, A.H., and Richardson, A.M.: Approaches to the ro-
bust estimation of mixed models. In Maddala, G.S. and
Rao, C.R. (eds.), Handbook of Statistics, vol. 15, pp. 343-
384. Elsevier Science (1997).

Wolfinger, R.: Laplace’s approximation for nonlinear mixed
models. Biometrika 80, 791-795 (1993).

Wolfinger, R.D., and Lin, X.: Two Taylor–series approxima-
tion methods for nonlinear mixed models. Comput. Stat.
Data Anal. 25, 465490 (1997).

Wu, C.-F.J.: On the convergence properties of the EM algo-
rithm. Ann. Stat. 11, 95-103 (1983).

Yeap, B.Y., and Davidian, M.: Robust two–stage estimation
in hierarchical nonlinear models. Biometrics 57, 266-272
(2001).

Yeap, B.Y., Catalano, P.J., Ryan, L.M., and Davidian, M.:
Robust two stage approach to repeated measurements
analysis of chronic ozone exposure in rats. J. Agric. Biol.
Environ. Stat. 8, 438-454 (2003).

Zhu, H., and Lee, S.: Analysis of generalized linear mixed
models via a stochastic approximation algorithm with
Markov chain Monte-Carlo method. Stat. Comput. 12,
175-183 (2002).


