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Abstract

This paper examines prior choice in probit regression through a predictive

cross-validation criterion. In particular, we focus on situations where the

number of potential covariates is far larger than the number of observations,

such as in gene expression data. Cross-validation avoids the tendency of such

models to fit perfectly. We choose the hyperparameter in the ridge prior, c, as

the minimizer of the log predictive score. This evaluation requires substantial

computational effort, and we investigate computationally cheaper ways of

determining c through importance sampling. Various strategies are explored

and we find that K−fold importance densities perform best, in combination

with either mixing over different values of c or with integrating over c through

an auxiliary distribution.

Keywords: Bayesian variable selection, cross-validation, gene expression data, im-

portance sampling, predictive score, ridge prior.

1 Introduction

We are interested in modelling binary variables y = (y1, . . . yn)
′, which take the

values 0 or 1. For example, we may want to find genes that discriminate be-

tween two disease states using samples taken from patients in the first disease
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state (yi = 1) or the second one (yi = 0). Typically, the number of measured

gene expressions (covariates) will be much larger than the number of samples. The

popular probit model assumes that yi is modelled as yi ∼ Bernoulli(Φ (ηi)), where

η = (η1, η2, . . . , ηn)′ = α1 + Xβ. Here X is an n × p matrix whose (i, j)-th entry is

the measurement of the j-th covariate for the i-th individual, Φ is the cumulative

distribution function of a standard normal random variable, η is a vector of linear

predictors, 1 represents a n × 1-dimensional vector of ones, α is the intercept and

β represents a p × 1-dimensional vector of regression coefficients. We specifically

consider situations where p >> n and assume that the covariates have been centred.

We wish to model the response y in terms of a (small) subset of the p explanatory

variables. Models are identified with the choice of a particular subset of covariates.

The 2p possible subset choices are indexed by the vector γ = (γ1, . . . , γp) where

γj = 0 or 1 according to whether the j-th predictor is included or excluded from the

model. The number of variables included in a model is denoted by pγ =
∑p

j=1 γj.

Exclusion of a variable means that the corresponding element of β is zero. Thus, a

model indexed by γ containing pγ variables is defined by

yi|α, βγ,xγi ∼ Bernoulli(Φ(ηi))

η = α1 + Xγβγ

where Xγ is a n × pγ matrix whose columns are the included variables and βγ is a

pγ×1-dimensional vector of regression coefficients. We denote the model parameters

by θγ = (α, β′
γ)

′ ∈ Θγ. To deal with the uncertainty regarding the inclusion

of covariates, we put a prior on γ and adopt a formal Bayesian framework for

inference, which naturally leads to methods for model selection or for Bayesian

Model Averaging (BMA) (see e.g. Hoeting et al., 1999 and Fernández et al., 2001).

To complete the Bayesian model, we need a prior distribution for the intercept α, the

regression coefficients βγ and the model γ which usually has the following structure

π(α, βγ, γ) = π(βγ|γ)π(α)π(γ). For the intercept α we adopt a N(0, h) prior as in

Sha et al. (2004) and Brown and Vanucci (1998). Since the covariates have been

centred, α represents the overall mean of the linear predictors and is regarded as

a common parameter to all models. Thus, a non-informative improper prior can

also be used for α, as e.g. in Fernández et al. (2001). The prior distribution for the

regression coefficients βγ is the so-called ridge prior

π(βγ|γ) ∼ Npγ
(0, cIpγ

), (1)
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where Nq(µ,Σ) represents a q-dimensional normal distribution with mean µ and

covariance matrix Σ, and Iq is the q × q identity matrix. This commonly used prior

(see Denison et al, 2002) implies prior independence between the coefficients. Alter-

natively, a g-prior where the prior covariance matrix in (1) is given by c(XT
γ Xγ)

−1

could be used, as in Bottolo and Richardson (2007). Finally, we assume that each

regressor is included independently with probability w, which implies that

π(γ) = wpγ(1 − w)p−pγ (2)

and pγ is binomially distributed Bin(p, w).

The choice of the hyperparameters w and c is critical for posterior inference on

model space since w plays the main role in inducing a size penalty and c regularises

the regression coefficients. The value of the hyperparameter c in (1) has an important

effect on BMA in probit regression with p >> n. More specifically, the value of c

influences both the variables that appear in the best models and their posterior

inclusion probabilities. Bottolo and Richardson (2007), Ley and Steel (2009) and

Liang et al. (2008) discuss analogous results for the g-prior in linear regression.

Ley and Steel (2009) also highlight the role of the hyperparameter c as a model size

penalty in that context.

As discussed in Sha et al. (2004), c determines the amount of shrinkage of the

probit regression coefficients when p >> n. Therefore, probit models with large

regression coefficients (in absolute value) are favoured when c is large. In addition,

Bayesian model selection chooses models that perfectly fit the data when there is less

regularisation (large c). However, in practice, a perfect model fit is often associated

with poor out-of-sample prediction.

In this work, we focus on the choice of the hyperparameter c. We use the log

predictive score introduced by Good (1952) as a measure of predictive performance.

Prediction is not necessarily the main goal in itself, but is a good indicator of

successful variable selection. The log predictive score is defined through the cross-

validation density π(yi|y−i, c), where y−i = (y1, . . . , yi−1, yi+1, . . . , yn) is the response

vector without the ith observation. Fully Bayesian analysis would place a prior

distribution on c. Inference for c allows considering multiple values of c which

might lead to improved predictive performance. However, a prior on c is hard to

choose. Furthermore, Cui and George (2008) found that empirical Bayes approaches

that provide an adaptive choice for the g−prior hyperparameter in Bayesian linear

regression outperform fully Bayesian analysis that places a prior on c. Our results
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with these data point in the same direction: using a diffuse proper prior on c we

can end up with considerably worse prediction than using an “optimal” choice of c,

even though the prior chosen has ample mass close to the optimal value. Ongoing

research will report further on this issue. The value of c that minimizes the log

predictive score is the preferred choice for c. Alternative proper score functions for

categorical variables, discussed by Gneiting and Raftery (2007) are also examined,

and lead to quite similar minimizers. Since cross-validation densities are employed

to determine c, we should be able to successfully partition not just the sample,

but also the population into the different groups. This approach can be viewed as

empirical Bayes as the response vector y is used to determine the preferred value of

c.

The main aim of this work is to estimate accurately and efficiently the log

predictive score and thus to identify its minimizer. The cross-validation density

π(yi|y−i, c), the main component of all predictive scores, does not have a closed

analytic expression in our context and therefore we suggest two novel importance

samplers to estimate it. In comparison to the direct Markov chain Monte Carlo

(MCMC) methodology for each observation and value of c, importance sampling

makes repeated use of the same sample, generated from an importance density, to

estimate π(yi|y−i, c) for different i and c, leading to computational gains.

The accuracy and efficiency in estimating the log predictive score of various im-

portance samplers are evaluated and compared using some gene expression datasets

obtained from DNA microarray studies. We propose guidelines for the implemen-

tation of these samplers that optimize the efficiency and make them more or less

automatic procedures. The proposed methods lead to accurate estimates of the op-

timal value for c with a very considerable saving in computational effort. Matlab

code to implement our samplers is freely available at

http://www.warwick.ac.uk/go/msteel/steel_homepage/software/

2 Influence of the hyperparameter c in BMA

It is well known that the amount of regularisation can have an important impact

on many statistical procedures. Here we illustrate that it is a particularly critical

issue in our context, since the value of the hyperparameter c crucially affects BMA in

probit regression with p >> n. In order to show this we first consider a study of links

between gene expression and cases of rheumatoid arthritis or osteoarthritis. This
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study was analysed by Sha et al. (2003) and has n = 31 and p = 755. We identify

the genes that appear in the ten models with the highest posterior probability for

different values of c, ranging from 1 to 100. Throughout the paper, we use the data

augmentation algorithm of Holmes and Held (2006) to sample from π(θγ, γ|y, c)

through MCMC. We generated five independent chains with 2, 000, 000 iterations,

the burn-in period 100, 000 and the thinning of 10 resulted in an MCMC sample

size T of 190, 000. The posterior probability of model γ is computed as the relative

frequency of model γ in the MCMC output.

Table 1 reports the genes of the Arthritis dataset that appeared in the ten best

(i.e. highest posterior probability) models for each c. Genes indexed 170, 258 and

290 appeared for all c and genes 489, 584 and 729 appeared for five out of six values

of c. However, many genes are only identified for specific values of c. This indicates

substantial differences in variable selection for different values of c.

c Genes included in the ten best models

1 20 83 145 170 225 258 290 324 332 395 473 498 665 707 728 740 742

5 43 44 83 145 170 258 290 324 473 489 498 539 584 729 740

10 43 44 83 170 258 290 324 421 461 489 539 584 646 729

30 44 49 170 258 290 324 389 392 395 421 461 489 584 646 665 729

50 43 44 170 208 258 290 389 421 461 489 532 539 584 646 729 754

100 89 170 208 258 290 389 395 421 489 532 584 585 616 671 729 754

Table 1: Genes of the Arthritis dataset included in the ten best models of the union

of the five chains for different values of c. Boxed genes are selected for all c

Figure 1 shows the estimated posterior gene inclusion probabilities and the cor-

responding scatter-plots of the log estimated posterior gene inclusion probabilities

of the Arthritis dataset for c = 1, 100. There are some substantial differences in pos-

terior inclusion probabilities for both datasets. Gene 290 in the Arthritis dataset

has posterior inclusion probability 0.45 when c = 1 and 0.2 for c = 100. On the

other hand, gene 258 has posterior inclusion probability 0.15 when c = 1 and 0.4 for

c = 100. It is obvious from the scatter-plots that many log posterior gene inclusion

probabilities are quite different for the pairs c = 1, 100. Again, these results indicate

differences in variable selection for different values of c.

As well as affecting the posterior inclusion probabilities, the hyperparameter c

regularises the amount of shrinkage of the included regression coefficients and this is
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Arthritis Dataset
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Figure 1: Estimated posterior gene inclusion probabilities and scatter-plot of the log

estimated posterior gene inclusion probabilities of the Arthritis dataset for different values

of c

illustrated in the left panel of Figure 2, which shows the posterior density function

of the ratio of the sum of regression coefficients (in absolute value) to the model size

for different values of c, i.e.

||β||1 =
1

pγ(t)

p
γ(t)
∑

j=1

|βγj
(t)| t = 1, . . . , T,

where βγj
(t) are the components of the regression coefficient vector βγ(t). There is

more probability mass at larger values of ||β||1 when c is large. Therefore, the probit

models with large regression coefficients (in absolute value) are favoured for large c.

The existence of these models is possible in the large p setting because of the large

number of potential models. This results in different best models and consequently

in different variable selection as c varies.

Large absolute values of ||β||1 are often associated with overfitting. To illustrate

this problem it is useful to express the probit model as a latent variable model by

introducing auxiliary variables z1, . . . , zn such that

yi =

{

1 if zi > 0

0 otherwise.

z = α + Xγβγ + ε with ε ∼ Nn(0, In), (3)

where yi is now deterministic conditional on the sign of the stochastic auxiliary

variable zi. The right panel of Figure 2 displays the posterior mean, ẑi, of the

auxiliary variable zi for each individual of the Arthritis dataset. The first seven
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individuals have response yi = 1 and the other twenty-four have yi = 0. Clearly,

the absolute value of ẑi is larger for all i when there is less regularisation (large c).

These fitted values are in the tails of the standard normal distribution for c ≥ 30,

indicating that the fitted probabilities Φ(ẑi) are very close to 1 when yi = 1 and

very close to 0 otherwise. In other words, the visited models discriminate perfectly

the n observations into the disease groups. Therefore, when p >> n, BMA selects

probit models that fit the data perfectly when there is less regularisation (large c)

on the regression coefficients. However, perfect model fit typically leads to high

out-of-sample prediction error. Thus we need to carefully consider the specification

of c, avoiding a perfect fit to the data.
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Figure 2: Arthritis data: The left panel displays the posterior density function of the

ratio of the sum of regression coefficients (in absolute value) to the model size for different

values of the hyperparameter c. The right panel shows the mean of the fitted auxiliary

variable for each individual i for different values of c

A direct consequence of perfect fit is the uncertainty about the intercept α since

we can make moderate changes to α while leaving all ẑi in the tails of the standard

normal distribution, retaining the same fit of the probit model. However, this does

not happen for small values of c, where a small change in α would appreciably affect

the fit. Figure 3 displays the posterior density function of the intercept for different

values of the hyperparameter c. The absolute value of the posterior mode and the

variance of α clearly increases with c.

These feature of the inference are common to many gene expression data sets. For

example, we performed the same inference for the Colon Tumour dataset described

by Alon et al. (1999), which contains n = 62 observations of tumour and normal

colon groups with p = 1224 and found similar results.
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Figure 3: Arthritis data: Posterior density function of the intercept for different values

of the hyperparameter c. The prior distribution on α is N(0, 100)

3 Estimation of c using predictive criteria

The parameter c is part of the Bayesian model and different values of c indicate alter-

native prior beliefs and consequently alternative models. Gelfand and Dey (1994)

and Gelfand et al. (1992) argue that predictive distributions should be used for

model comparison because these are directly comparable and, typically, prediction

is a primary purpose for the chosen model. In the typical areas of application we

consider in this paper, the key concern is often variable selection (e.g. identification

of important determinants of a disease status), but good predictive performance

tends to be linked to successful variable selection. Gelfand et al. (1992) also argue

for a cross-validation viewpoint which, in our case, is implemented through the log

predictive score, defined by

S(c) = −
1

n

n
∑

i=1

ln π(yi|y−i, c)

where π(yi|y−i, c) is the cross-validation density as defined in the Introduction. In a

pairwise model comparison this results in the log pseudo-Bayes factor (Geisser and Eddy,

1979). This leave-one-out cross-validation can be extended to K−fold cross-validation

by partitioning the sample into K subsets and using

S(c) = −
1

n

n
∑

i=1

ln π(yi|y−κ(i), c) (4)

where κ : {1, . . . , n} → {1, . . . , K} is an indexing function that indicates the kth

(k = 1, . . . , K) partition to which observation i is allocated and −κ(i) represents
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the set {1, . . . , n} with the kth element of the partition removed. The random-fold

cross-validation of Gneiting and Raftery (2007) can also be considered. The value

of c that minimizes S(c) will be our preferred choice for c. Since cross-validation

is employed to determine c, the resulting variable selection should be able to suc-

cessfully partition not just the sample but also the population into the appropriate

groups. The underlying idea is that good out-of-sample predictive performance is

indicative of good variable selection.

Fernández et al. (2001) also used a log predictive score similar to (4) to evalu-

ate different choices for the g-prior hyperparameter in Bayesian linear regression.

Bernardo and Smith (1994) also make use of cross-validation densities to approxi-

mate expected utilities in decision problems where a set of alternative models are

to be compared.

Alternative proper score functions for binary variables could replace the loga-

rithmic score function in (4). Gneiting and Raftery (2007) list a number of proper

score functions. These are the quadratic or Brier predictive score, the spherical

predictive score and the continuous ranked probability score which, in the case of a

binary variable, is proportional to the quadratic predictive score.

The cross-validation density π(yi|y−κ(i), c) is the main component of all predictive

scores. This density for the ith individual is given by

π(yi|y−κ(i), c) =
∑

γ

∫

Θγ

π(yi|θγ, γ) π(θγ, γ|y−κ(i), c) dθγ = E[π(yi|θγ, γ)] , (5)

where the expectation is taken with respect to the joint posterior distribution

π(θγ, γ|y−κ(i), c) and does not have a closed analytic expression. However, it can be

estimated by Markov chain Monte Carlo methodology. The MCMC estimate of (5)

is given by

π̂(yi|y−κ(i), c) =
1

T

T
∑

j=1

π(yi|θγ(j) , γ(j))

=
1

T

T
∑

j=1

Φ(x̃γiθγ(j))yi (1 − Φ(x̃γiθγ(j)))(1−yi) (6)

where (θγ(1) , γ(1)), . . . , (θγ(T ) , γ(T )) is an MCMC sample with stationary distribution

π(θγ, γ|y−κ(i), c). The 1× (pγ +1)-dimensional vector x̃γi has 1 as first element and

the others are the covariate measurements of the relevant coefficients for the i-th

individual.
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The K−fold log predictive score is estimated at l = 12 values of c equally spaced

in the logarithmic scale with lower value 0.1 and upper value 1000. This covers

values of c inducing a lot of regularisation as well as values inducing very little and

significantly extends the guideline range of Sha et al. (2004) for these data. The

MCMC estimate of the log predictive score is given by replacing π(yi|y−κ(i), c) in

(4) by π̂(yi|y−κ(i), c).

For each data partition in the sum in (4) and each value of c we generated

500, 000 drawings after a burn-in period of 100, 000 and thinned these to every 5th

draw, leading to an MCMC sample size T of 80, 000. The right-hand panels of

Figure 4 displays both the MCMC estimates and a smooth estimated curve for S(c)

for the Arthritis and Colon Tumour datasets. We used K = n, that is κ(i) = i, for

the Arthritis dataset and K = 9 for the Colon Tumour dataset (using a randomly

chosen partition, with 7 observations in each set but one, which has 6 observations).

Results for K = n are very similar for the latter data, but execution time is then

multiplied by more than n/K (62/9 = 6.89 in our case). Cubic smoothing splines

were applied to the MCMC estimates of S(c), leading to a roughly convex estimated

curve for both datasets, indicating the existence of a value of c that minimizes the

log predictive score. This value of c is around 1 for the Arthritis dataset, and is less

clear-cut for the Colon Tumour dataset since any value of c in the interval (15, 145)

(log(c) in the interval (2.7, 5)) results in quite similar estimates of S(c). In both

cases, Bayesian variable selection for the extremes of c (and thus of regularisation)

is associated with poorer predictive performance.

The other panels of Figure 4 display the MCMC estimates and a smooth esti-

mated curve of the discussed alternative predictive scores. The estimated curves of

all predictive scores are very similar in shape to the ones with the log predictive

score and have the same minimizer. Thus, the optimal c is very robust to the choice

of predictive score, and we will focus on the log predictive score in the sequel.

The direct MCMC methodology needs an MCMC sample with stationary distri-

bution π(θγ , γ|y−κ(i), c) for all data partitions and c to estimate π(yi|y−κ(i), c) using

(6). Therefore, it needs Kl MCMC chains to estimate the log predictive score at l

points. Table 2 reports the CPU time in seconds needed by the MCMC methodology

(using code in Matlab 7.4.0 on a dual core PC with a 2.2GHz CPU and 3.24GB of

RAM) to estimate the log predictive scores of Figure 4. It is obviously a computa-

tionally expensive task to employ the direct MCMC methodology. This motivates us

to employ importance sampling methods to estimate π(yi|y−κ(i), c). The practical

10
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Figure 4: MCMC estimates and smooth estimated curves of different predictive score

functions for the Arthritis and Colon Tumour datasets

advantage of these methods is that the same sample (generated from the impor-

tance density) can be used repeatedly to estimate π(yi|y−κ(i), c) for different i and

c. Ideally, the importance samplers should have similar accuracy in estimating S(c)

but need much less CPU time. The right-hand panels of Figure 4 will be used to

compare and evaluate the accuracy of the different importance sampling methods

introduced in the following section.

Dataset CPU

Arthritis 290,960

Colon Tumour 122,870

Table 2: The CPU time in seconds needed by the MCMC methodology to estimate the

log predictive scores of the Arthritis and Colon Tumour datasets
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4 Computational approach

The predictive densities needed to calculate S(c) will be estimated using importance

sampling. This method approximates the integral

Ef [h(X)] =

∫

x

h(x) f(x) dx (7)

by
T

∑

j=1

w(j)h(xj)

/

T
∑

j=1

w(j), (8)

where a sample x1, . . . , xT is generated from a given distribution g and the impor-

tance weight w(j) ∝ f(xj)/g(xj). The (possibly unnormalized) densities f and g are

called the target and importance density respectively. More details on importance

sampling can be found in e.g. Liu (2001) and Robert and Casella (2004).

The success of the method depends on the accuracy of the approximation which

is controlled by the difference between the importance and target densities and can

be measured by the effective sample size. If T independent samples are generated

from the importance density, then the effective sample size is

ESS =
T

1 + cv2
,

where cv2 denotes the coefficient of variation of the importance weights (Liu, 2001).

This is interpreted in the sense that the weighted samples are worth ESS independent

and identically drawn samples from the target density. In other words, the variance

of the importance weights needs to be small to avoid a few drawings dominating

the estimate in (8). The ESS will be used as a measure of the efficiency of the

importance samplers introduced in the following subsections.

4.1 Importance Samplers Using All Observations

Gelfand et al. (1992) and Gelfand and Dey (1994) suggest using the posterior dis-

tribution of the model parameters given all the data as the importance density to

estimate cross-validation densities. In our context, we can consider the posterior

distribution π(θγ, γ|y, c0) as an importance density to estimate π(yi|y−κ(i), c), given

by (5), for all i and different values of c. A default value of c0 is required such

that the importance density π(θγ, γ|y, c0) results in accurate estimate of S(c) in the

12
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relevant range of c, [0.1, 1000]. As this idea implies large potential computational

gains, it is the one we investigate first.

The ESS of π(θγ , γ|y−κ(i), c) with the importance density π(θγ , γ|y, c0) was cal-

culated for all i and c. The mean ESS at each c is the average over all observations

and shows the efficiency of the sampler in estimating the log predictive score at c.

For both the Arthritis and Colon Tumour datasets, the mean ESS is high when c

is close to c0 and low for the other values of c. This indicates that the importance

density π(θγ, γ|y, c0) is quite different from π(θγ, γ|y−κ(i), c) when c0 is not close

to c, resulting in estimates of S(c) with high variance. Therefore we only use the

importance density π(θγ, γ|y, c0) when π(θγ, γ|y−κ(i), c0) is the target density and

π(yi|y−κ(i), c0) is the quantity to be estimated. However, the mean ESS decreases

with c0, indicating that the difference between π(θγ , γ|y, c0) and π(θγ, γ|y−κ(i), c0)

increases with c0. Therefore, the observations of the kth data part play a more

important role in determining the posterior distribution π(θγ , γ|y, c0) when c0 is

large. This is a consequence of the models perfect fit to the data for large values of

c0 discussed already in Section 3.

Figure 5 displays the resulting importance estimates of the log predictive score

S(c) for the Arthritis and Colon Tumour datasets. In comparison with Figure 4

these log predictive scores are underestimated for large c. The mean of the fitted

auxiliary variables displayed in Figure 2 are on the tails of the standard normal

distribution for these values of c resulting in an overestimation of π(yi|θγ, γ) and

consequently in an overestimation of π(yi|y−i, c). Thus, the perfect fit to the data for

large values of c is causing an underestimation of S(c). This effect is also pronounced

for the Colon Tumour dataset where the kth element of the partition (the prediction

subsample) represents a larger proportion of the data.

4.2 Multiple Importance Samplers

The results of the previous section lead us to concentrate on using the importance

densities π(θγ, γ|y−κ(i), c0) and π(θγ, γ|y−κ(i)) with the target density π(θγ, γ|y−κ(i), c)

for different values of c, where i = 1, . . . , n. We should note that the same impor-

tance densities are used for all observations belonging to the same data partition.

These importance samplers result in more accurate estimates of the log predictive

score. However, they come at greater cost than the methods in the previous subsec-

tions, since K MCMC chains, one for each data partition, are needed to estimate

the log predictive score S(c). This number of chains is still l times smaller than the

13
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Figure 5: Importance estimates of the log predictive score S(c) for the Arthritis and

Colon Tumour datasets

direct MCMC methodology of Section 3, which needs Kl MCMC chains to estimate

S(c) at l points. To get a better idea of the accuracy of the procedures, we will

replicate each sampler five times throughout this section.

4.2.1 Standard Importance Sampler

First, the K−fold standard importance sampler uses the importance density π(θγ, γ|y−κ(i), c0)

to estimate π(yi|y−κ(i), c) for different values of c, where i = 1, . . . , n. We try to find

a default value of c0 that leads to an accurate estimate of S(c) in the relevant range

of c, [0.1, 1000]. The importance weight is given by

w ∝
π(θγ , γ|y−κ(i), c)

π(θγ, γ|y−κ(i), c0)
∝

(c0

c

)pγ/2

exp

{

−
1

2
βγ

′βγ

(

1

c
−

1

c0

)}

. (9)

In the case that c = c0, the importance and MCMC estimates of π(yi|y−κ(i), c) are

the same and they are given by (6). However, it is a difficult task to suggest a

default value of c0 because other choices of c0 can lead to rather different results,

and without the benchmark of the direct MCMC results, we would not know which

value of c0 to choose. Next, we will introduce importance samplers which do not

require choosing a value for c0.

4.2.2 Mixture Importance Sampler

The difficulty of finding an appropriate value for c0 leads us to consider methods

that estimate π(yi|y−κ(i), c) using importance sampling distributions which are not

restricted to a single value c0. A potentially more efficient method for estimating

the score at each value of c uses nonlinear regression methods to combine estimates

14
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at a range of values of c. This generalizes our default MCMC approach by using

π(θγ, γ|y−κ(i), cm) to estimate π(yi|y−κ(i), cl) when m 6= l. We define a positive,

increasing sequences of values c1, c2, . . . , cM and generate an MCMC sample from the

importance density π(θγ , γ|y−κ(i), cm) for each i and cm. Usually, we would choose

c1, . . . , cM to be equally spaced in the logarithmic scale. Since the values of cm are

ordered and increasing, the last value of the MCMC sample from π(θγ, γ|y−κ(i), cm)

could be used as the initial value of the MCMC chain with stationary distribution

π(θγ, γ|y−κ(i), cm+1). Therefore the MCMC samplers do not need a long burn-in

period. The importance estimate π̂cm
(yi|y−κ(i), c) of π(yi|y−κ(i), c) is computed for

each one of the M importance densities π(θγ, γ|y−κ(i), cm) and the M importance

estimates π̂cm
(yi|y−κ(i), c) are weighted according to the distance between c and cm

using a Gaussian kernel Kλ(c, cm) = φ
(

| log(c)−log(cm)|
λ

)

with window size λ = 0.5.

The kernel-weighted estimate of π(yi|y−κ(i), c) is

π̂(yi|y−κ(i), c) =
M

∑

m=1

Kλ(c, cm) π̂cm
(yi|y−κ(i), c)

/

M
∑

m=1

Kλ(c, cm).

In the special case that the predetermined values c1, . . . , cM are the 12 equally

spaced points stated in Section 3, there are two main differences between the mix-

ture importance sampler and the direct MCMC methodology. Firstly, the mixture

importance sampler involves shorter MCMC runs with smaller burn-in. Secondly,

the mixture importance sampler makes use of the information contained in different

MCMC chains. More specifically, the direct MCMC methodology uses the sample

of a single MCMC chain to estimate π(yi|y−κ(i), cm) at the value cm whereas the

mixture importance sampler combines the sample of M different MCMC chains

to estimate π(yi|y−κ(i), cm). In comparison with the K−fold standard importance

sampler, the mixture importance sampler involves shorter MCMC runs with smaller

burn-in and a mixing over c0 values. This mixing over c0 could result in more accu-

rate estimates of S(c) for all c in the studied range and could provide robustness to

the specification of c0.

4.2.3 Auxiliary Importance Sampler

The expression (9) in Section 4.2.1 suggests that the importance density π(θγ, γ|y−κ(i), c0)

can be quite different from π(θγ, γ|y−κ(i), c) when c is not close to c0. Therefore,

we specify an auxiliary distribution on c to produce an importance density that

marginalizes over the parameter c. The auxiliary distribution results in sampling
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from the importance density π(θγ, γ|y−κ(i)) used to estimate π(yi|y−κ(i), c) for dif-

ferent values of c, where i = 1, . . . , n.

The importance weight is given by

w ∝
π(θγ, γ|y−κ(i), c)

π(θγ, γ|y−κ(i))
∝

π(y−κ(i)|θγ, γ) π(βγ|γ, c) π(α) π(γ)

π(y−κ(i)|θγ , γ) π(βγ|γ) π(α) π(γ)
=

π(βγ|γ, c)

π(βγ|γ)
. (10)

We adopt the Inverse Gamma distribution with shape parameter a, scale param-

eter b and density function

π(c) =
ba

Γ(a)
c−(a+1) exp

{

−
b

c

}

, c > 0 and a, b > 0

as the auxiliary distribution on c. The conditional distribution of the regression

coefficients π(βγ|γ) is then given by

π(βγ|γ) =
Γ(pγ

2
+ a) ba

(2π)pγ/2 Γ(a)

(

βγ
′βγ

2
+ b

)−(
pγ

2
+a)

and the full conditional distribution of c is given by

c|βγ, γ, y−κ(i) ∼ IG (pγ/2 + a, βγ
′βγ/2 + b) .

We have experimented with other auxiliary distributions, but we found the In-

verse Gamma specification described above to be our preferred choice. The Trun-

cated Inverse Gamma leads to similar results, but is computationally slightly less

efficient and requires the choice of a truncation point. The Gamma distribution

leads to less accurate results, and the Gamma-Inverse Gamma distribution achieves

similar accuracy but at the cost of substantially higher computational demands.

Finally, if we choose the parameters of the Inverse Gamma in such a way that the

tails are thinner and we try to concentrate the mass on the region of interest for c,

we find less accurate results that are comparable to those obtained with a Gamma

auxiliary distribution.

4.2.4 Comparison

The K−fold log predictive score S(c) is estimated using the standard importance

sampler at the 12 equally spaced points stated in Section 3, for c0 = 1, 10, 50, 100, 150.

We use 500, 000 iterations after a burn-in period of 100, 000 and record every 5th

draw, resulting in an MCMC sample size T of 80, 000. The average estimated ESS
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is high when c is close to c0 and low for the other values of c. This indicates that

the importance density π(θγ, γ|y−κ(i), c0) is quite different from the target density

π(θγ, γ|y−κ(i), c) when c is not close to c0 and this may results in estimates of S(c)

with large variances. However, there are values of c0 which result in quite accurate

estimates of the log predictive score. Figure 6 displays the Arthritis log predictive
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Figure 6: K−fold standard importance estimates of the Arthritis and Colon Tumour log

predictive scores for selected values of c0, averaged over 5 replications

score estimates for c0 = 10, 50, 100 (left-hand panel) and the Colon Tumour log

predictive score estimates for c0 = 1, 50, 100 (right-hand panel), averaged over the

5 runs. These values of c0 were specifically selected so that the plots are quite similar

to Figure 4 and do not underestimate the log predictive scores for large values of c.

Table 3 presents the average (over the 5 replications) CPU time in seconds of

each K−fold standard importance sampler, the average sum of squared differences

between the importance and MCMC estimates of S(c) and the number of times (out

of 5 replications) that the importance minimizer of S(c) is the same (i.e. selecting

the same of the 12 equally spaced points in the log scale in [0.1,1000]) as the MCMC

minimizer. The sum of squared differences (SS) is evaluated at the 12 equally spaced

points used for log(c) and is a measure of the accuracy of the importance samplers.

Thus, some K−fold standard importance samplers estimate the log predictive

score with virtually the same accuracy as the MCMC methodology. Moreover,

the log predictive minimizers of these samplers can be quite close to the MCMC

log predictive minimizers. These results suggest the default values c0 = 50, 100.

Finally, the required CPU time is more than ten time smaller indicating a ten-fold
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Arthritis Colon Tumour

c0 CPU SS SMin

1 25,612 0.03 5

10 25,675 0.03 5

50 25,588 0.01 4

100 25,566 0.02 5

150 26,057 0.03 2

c0 CPU SS SMin

1 11,723 0.006 1

10 11,586 0.014 0

50 11,612 0.007 4

100 11,564 0.013 5

150 11,621 0.011 4

Table 3: The average CPU time in seconds of the standard importance samplers

π(θγ ,γ|y−κ(i), c0) for some c0 values, the average sum of squares between the impor-

tance and MCMC estimates of S(c) and the number of times (out of 5 replications) the

importance minimizer of S(c) is the same as that with MCMC

improvement over the MCMC methodology.

The results are potentially sensitive to the choice of c0 and this leads us to develop

a smoothed estimator through the mixed importance sampler. We use M = 20 with

cm chosen equally spaced in the log scale from 0.1 to 1000 and generate an MCMC

sample from the importance density π(θγ, γ|y−κ(i), cm) for each i and cm. The log

predictive score S(c) is estimated at the 12 equally spaced points stated in Section

3. Three mixture importance samplers have been used with different run lengths,

Arthritis Colon Tumour

Sampler Burn-in Sample CPU SS SMin

1 50,000 30,000 173,880 0.003 5

2 20,000 16,000 86,025 0.006 4

3 20,000 6000 42,739 0.013 5

Sampler CPU SS SMin

1 77,331 0.009 4

2 38,547 0.014 4

3 19,191 0.04 3

Table 4: The specifications of the MCMC samplers involved in each mixture importance

sampler with the average CPU time in seconds of each mixture importance sampler, the

average sum of squares between the importance and MCMC estimates of S(c) and the

number of times the importance minimizer of S(c) equals that with MCMC

described in Table 4. In each case the chain was thinned every fifth value. Figure 7

displays the importance estimates of the Arthritis and Colon Tumour log predictive

18



CRiSM Paper No. 09-25, www.warwick.ac.uk/go/crism

−2 0 2 4 6
0.35

0.4

0.45

0.5

0.55

log(c)

S
(c

)

Arthritis Dataset

 

 

T=30000
T=16000
T=6000

−2 0 2 4 6
0.4

0.45

0.5

0.55

0.6

0.65

log(c)

S
(c

)

Colon Tumour Dataset

 

 

T=30000
T=16000
T=6000

Figure 7: Importance estimates of the Arthritis and Colon Tumour log predictive scores

for each mixture importance sampler, averaged over 5 replications. The sample size of the

MCMC samplers involved in each mixture importance sampler is denoted by T

scores for each mixture importance sampler, averaged over 5 replications. These

log predictive scores are quite similar to the MCMC log predictive score depicted

in Figure 4. Table 4 presents the average CPU time of each mixture importance

sampler, the average sum of squares between the importance and MCMC estimates

of S(c) and the number of coinciding minimizers.

We conclude that the mixture importance samplers estimate the log predictive

score with quite similar accuracy as the direct MCMC methodology and lead to very

similar minimizers. The CPU times of the second and third sampler are a factor

3 and almost 6.5 smaller than for the direct MCMC method. The third mixture

importance sampler estimates the log predictive score with quite similar accuracy

as the K−fold standard importance samplers with an “optimal” value of c0 but

is computationally less efficient. However, it does not require the difficult task of

choosing c0 and is thus a more “automatic” procedure.

The auxiliary importance sampler offers an alternative method to combine dif-

ferent values of c in the importance sampling distribution. An MCMC sample with

stationary distribution π(θγ, γ|y−κ(i)) was generated. The number of iterations was

500, 000, the burn-in period 100, 000 and the thinning of 5 resulted in an MCMC

sample of size T = 80, 000. Different Inverse Gamma auxiliary distributions on c

have been used with shape parameter a = 0.001 and scale parameters b = 1, 0.1, 0.02.

These parameters yield heavy tailed density functions and are not specifically cho-
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sen to concentrate the mass on the range of c over which the log predictive score is

estimated. The Arthritis and Colon Tumour log predictive scores are estimated at

the values of c stated in Section 3, for each Inverse Gamma auxiliary distribution.
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Figure 8: Auxiliary importance estimates of the Arthritis and Colon Tumour log predic-

tive scores for each Inverse Gamma auxiliary distribution on c, averaged over 5 replications

Figure 8 displays the auxiliary importance estimates of the Arthritis and Colon

Tumour log predictive scores for three typical Inverse Gamma auxiliary distributions

on c, averaged over 5 replications. These log predictive scores are quite similar to

the direct MCMC results depicted in Figure 4.

Arthritis Colon Tumour

IG(a = 0.001, b) CPU SS SMin

b = 1 28,494 0.01 5

b = 0.1 28,846 0.008 5

b = 0.02 28,971 0.004 5

IG(a = 0.001, b) CPU SS SMin

b = 1 12,923 0.006 4

b = 0.1 13,012 0.012 4

b = 0.02 12,991 0.007 4

Table 5: The average CPU time in seconds of each Inverse Gamma auxiliary importance

sampler, the average sum of squares between the importance and MCMC estimates of

S(c) and the number of times the importance minimizer of S(c) is the same as that with

MCMC

Table 5 presents the average CPU time for each Inverse Gamma auxiliary im-

portance sampler, the average sum of squares between the importance and MCMC
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estimates of S(c) and the indicator of the same minimizer. The results show that

the Inverse Gamma auxiliary importance samplers estimate the log predictive score

with similar accuracy as the direct MCMC method. Values for the sum of squared

differences (SS) are very small throughout. Moreover, log predictive minimizers are

very similar to those from direct MCMC. The CPU time of these samplers is about

ten times smaller than with the MCMC methodology and considerably less than

with the mixture importance sampler, indicating a substantial computational gain.
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Figure 9: The average log mean ESS of the auxiliary importance samplers at some values

of c for the Arthritis and Colon Tumour data, with Inverse Gamma auxiliary distribution

on c

Figure 9 shows the average (over 5 replications) log mean (over i) ESS of the

Inverse Gamma auxiliary importance samplers at each c for the Arthritis and Colon

Tumour datasets. Clearly, mean ESS is an increasing function of c, quite in contrast

to the standard importance samplers. Also, we can see that the Inverse Gamma

auxiliary distributions with scale parameters b = 0.1 and 0.02 result in reasonable

high mean ESS over the entire range of c.

5 Conclusions

The “ridge” hyperparameter c crucially affects Bayesian variable selection in pro-

bit regression with p >> n. In particular, it controls the amount of shrinkage of

the regression coefficients and when there is less regularisation (large c) the best

models fit the data perfectly. This results in variable selection that discriminates
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perfectly within-sample but may not discriminate between the groups out-of-sample.

Therefore, we propose to use a predictive criterion like the log predictive score to

determine the value of c. In our examples the log predictive score is roughly convex

and the value of c that minimizes the log predictive score is the preferred choice

for c. Alternative proper score functions lead to very similar minimizers. Since

cross-validation densities are employed to determine c the resulting Bayesian vari-

able selection has better out-of-sample predictive properties. The latter is typically

linked to successful variable selection, which is our main concern in the type of

applications considered here.

In this paper we have focused on the accurate and efficient estimation of the log

predictive score and thus the identification of the log predictive score minimizer. The

cross-validation density π(yi|y−κ(i), c) is the main component of all predictive scores,

but it does not have a closed analytical expression. Therefore, we employ importance

sampling methods that use the same sample (generated from the importance density)

repeatedly to estimate π(yi|y−κ(i), c) for different i and c. Importance samplers that

condition on the entire sample result in inaccurate estimates of the log predictive

score. This is mainly a consequence of the perfect fit to the data for large values of

c which results in an overestimation of π(yi|θγ, γ). Thus, we propose to use K−fold

importance samplers with importance densities π(θγ, γ|y−κ(i), c0) and π(θγ, γ|y−κ(i))

to estimate π(yi|y−κ(i), c) for different values of c.

The K−fold standard importance sampler can result in quite accurate estimates

of the Arthritis and Colon Tumour log predictive scores for some values of c0. The

CPU time for this sampler is almost ten time smaller than that required for the direct

MCMC methodology. A potential guideline for choosing an appropriate value of c0

suggests the values c0 = 50, 100, however a mis-specified choice of c0 can lead to

misleading estimates of S(c). Thus, we introduce the K−fold mixture and auxiliary

importance samplers, which avoid choosing a particular value for c0.

The K−fold mixture importance sampler involves shorter run MCMC chains

and mixes over c0 values, resulting in a six-fold improvement in CPU over the direct

MCMC methodology. The K−fold auxiliary importance samplers provide quite

accurate estimates of the Arthritis and Colon Tumour log predictive scores with

a ten-fold computational improvement over the MCMC approach. The preferred

choice for the auxiliary distribution is an Inverted Gamma with small values for

both parameters.

Thus, we suggest employing the K−fold mixture and Inverse Gamma auxiliary
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importance samplers to estimate the log predictive score and find the best value for

c. The parameters of the Inverse Gamma auxiliary distributions on c are chosen

to yield heavy tail density functions and there is no need for further user input.

The mixture importance sampler requires predetermined values c1, . . . , cM and we

recommend choosing them to be equally spaced in the logarithmic scale and to cover

the relevant range of c with M = 20.

The procedures described should also work well in other cross-validation con-

texts, such as random-fold cross-validation (Gneiting and Raftery, 2007). We also

successfully used both procedures on a much larger dataset regarding prostate can-

cer, described in Singh et al. (2002), which has n = 136 observations with p = 10150

potential covariates. Here the CPU demand of the direct MCMC was of the order

of 5.5 days (with K = 12), which was reduced to 0.5 days by using the auxiliary

importance sampler, representing an 11-fold decrease in computational effort. The

improvements in computational efficiency would be even more pronounced if the log

predictive score is estimated at a larger number of points l.

Alternatively, we could address the uncertainty in c by a fully Bayesian specifi-

cation that places a prior on c. In the context of linear splines, the formal Bayesian

approach for the ridge prior is studied by Denison et al. (2002) and for linear re-

gression with a g-prior it is studied by Celeux et al. (2006), Bottolo and Richardson

(2007), Liang et al. (2008) and Cui and George (2008). This approach is believed to

increase robustness to the specification of c. Implementing a fully Bayesian proce-

dure in generalized linear regression with p >> n is the topic of ongoing research.
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