
Learning Analytics

Austin Gibbons

December 2011

1 Introduction

Computer Science educators are faced with the trade-
o� between the amount of time available and giving
students individual attention. In many classrooms,
particularly in the K-12 grades, it is not possible for
a single instructor to give as full of feedback to ev-
ery student in an entire classroom as they would if
they were teaching in a one-on-one setting. We hope
to develop tools to automatically detect the evolu-
tion of student programming methodology over an
entire computer science course, and thus o�er a way
to quickly characterize the progression in programing
style of a student that instructors can use to provide
feedback, assistance, and swiftly target the speci�c
needs of their class. We are speci�cally interested
in studying novice level programming courses due to
the abundance of data, the large and general applica-
bility of the study, and to capture more fundamental
�ground truths� of programming education versus the
many in�uencing factors that enter at the higher level
computer science courses.

2 Data

This work extends from work by Piech et al [1]
which analyzed patterns in single java project. Us-
ing the data �les from that work, our goal was
to do a similar analysis over the progression of
the class by analyzing projects the students de-
veloped from week-to-week. We choose to ana-
lyze CheckerboardKarel.java, Pyramid.java, Break-
out.java, Hangman.java, and Yahtzee.java. These are
signi�cant implementation �les from the �rst �ve as-
signments for cs106a, the introductory programming

course at Stanford University. We used a sample of
61 students from the same quarter who submitted all
�ve assignments. When the student develops, every
time they compile their code, a copy of the *.java
�les are sent to an external server. This allows us to
observe the development process of a student as they
build their code.

In order to model the progression of a student
throughout the class, we took the individual features
and chose some aggregating functions to represent
the student's changes across the program. This re-
quired some exploration of di�erent features. We
condunceted a preliminary study over commenting
features, and we observed that just summing the
changes across submissions was insu�cient to sep-
arate the students, and that generally an individual
metric was insu�cient to fully capture the patterns
we would later observe. We found a good represen-
tation of the changes to be the average the feature
was changed (average), the largest di�erence between
any two submissions (range) and the total number of
times a feature changed between submissions (count).
We then created the <average, range, count> tuple
for each feature, thus creating a new feature list for
each student that includes these aggregations for sev-
eral consecutive projects the student built.

3 Feature Selection

Part of the challenge in performing analysis in stu-
dent code is ensuring that our ad hoc assumptions do
not limit the scope of the investigation. As part of
the study, we needed to perform feature selection to
make comparisons across speci�c aspects of students
code. For example, our intuition may tell us that

1



there will be a strong relationship between the num-
ber of if statements and the number of else state-
ments as the latter requires the former, but it may be
that for some assignments, many students choose to
use switch statements instead. To address the ques-
tion of which features are rightly coupled, we attempt
to form classi�cation over a subset of the features and
determine if we can correctly classify an external fea-
ture. The canonical approach would be to compute
the conditional probabilities and �nd strong correla-
tions, but as a machine learning exercise we took a
di�erent approach.
As part of our development, we built a classi�ca-

tion system to address the following question: �Given
student grades as labels and the features we have col-
lected, can we predict students' grades without ever
looking at their code?� Unfortunately, we were not
given permission to access student grades in su�cient
time to execute this study, as we had to appeal to
Stanford's Human Subject Research Institutional Re-
view Board for access to sensitive information. We
shelved this project for next quarter, but instead
asked �can we predict feature characterization from a
subset of the total features?�. To this end, we pigeon-
holed students into being a �frequent� or �infrequent�
and awarded labels 1 and 0 respectively. We then
conducted experiments over di�erent combinations
of features to determine which were good predictors.
We tried several classi�ers. We found the linear rela-
tionship between some features caused non positive
de�nite covariance matrices for quadratic classi�ers,
so we used a linear classi�er to be able to analyze all
of the feature subsets in which we were interested.
While the prediction rates are not high enough to

make claims of strong predictive ability, we can never-
theless get a sense of good feature selection from the
predictive ability of our classi�er. We can observe
that di�erent assignments produce di�erent predic-
tions, and this allows us to better rationalize about
the relationship between individual features (such as
the results in section 4.3). When we observe the
trends in these sections, we can do so knowing the
more global relationship between the features we are
comparing and can account for that bias.
As an example, we compare the predictive abil-

ities of if statements relative to print statements

and //, /∗, ∗, comments versus prediction on if state-
ments, elseif , else, switch, and case statements.

We can make several conclusions - �rst note that
I have chosen the assignments from weeks 3, 4, and
5 of Stanford's introductory java course. The assign-
ments from earlier weeks did not have enough usage
of these feature to warrant comparison. We can see
the general increase in performance of our prediction,
and this is derivative of the increased number of lines
of code in the assignments as the students struggle
with more complex concepts.

We can further deduce that there is a relationship
amongst our randomly chosen features, but it is not
as pronounced as the relationship amongst features
we suspected would be related (the second set of bars
pertaining to branching statements). We can observe
the introduction of switch case statements in lecture
by the jump in predictive ability from the blue bar to
the red bar, going from essentially random to mean-
ingfully high accuracy. In section 4.3 we discuss how
some students abandoned switch statements in favor
of using elseif , but here we can see our ability to
recognize students making with regards to branching
statements increases. We can infer that there is a re-
lationship between understanding di�erent branching
techniques and choosing which branching statements
to use from our ability to predict more accurately in
light of students more evenly distributing themselves
across the programming methodology.

2



4 Programming Methodology

Analysis

We elect Course Assistants from the class as domain
experts to assist in the analysis of the data. Given
our list of features, we perform k-means clustering
on the students, and have the domain experts per-
form manual analysis on the cluster centroids. We
tried di�erent cut-o�s for the k values and discov-
ered as few as four features already created clusters
with only one or two students. This is indicative that
there were only two or three main cluster bodies, so
we conducted analysis at two, three, and four clus-
ters. We made the simplifying assumption that the
feature centroid was representative of the members of
that cluster. This may not be perfectly true (and is
something we are investigating) but an ad hoc anal-
ysis of the features saw this to be generally true. By
observing the size of the clusters and the feature cen-
troids, our domain experts were easily able to real-
ize the underlying patterns of student programming
methodology.
We performed this analysis on the comments the

students added to get an estimate for the documenta-
tion practices, and the java code they wrote to get an
estimator for the amount of code written. We took
our clusters and found the centroid, and stated that
this was the pattern that each student who fell into
this cluster used in their program. We then used the
relative sizes of the clusters as an indicator for the
number of students who programmed this way. We
performed analysis of the centroids without revealing
the number of students in each cluster in order to
avoid pushing the results in a desired direction.

4.1 Comments

We count the number of di�erent comment lines (//,
/∗, ∗, ∗/) and use this as a feature set. These features
give us an indication of the preference for block com-
ments, line comments, and commenting frequency.
Some interesting patterns that arise in the are

1. How the frequency of students who comment all
at once (Batch update) changes

2. Students who use line comments for bookkeeping

We can observe a natural progression in the matu-
rity of the commenting style as more students aban-
don the idea of writing all their code and entering all
the comments at the end. CheckerboardKarel being
the exception as the students had not yet had any
feedback about commenting procedures, so many did
not add to the comments (some were written into
the assignment by the class sta�). We can addi-
tionally see an increasing preference for using inline
comments. These are used especially for bookkeeping
data, and get changed often throughout the program
with few of them making it into the �nal write-up,
and many only persisting as the programmer devel-
ops. Empirically, we can see that students tend to
morph some of their inline comments into block com-
ments, usually as method headers.

4.2 Lines of Code

Mirroring our comment features, we also cluster by
using the <average, range, count> of lines which are
not comments, namely lines which are java code. We
perform a comparison aimed at separating �Tinker-
ers� from �Planners�, the former preferring Trial and
Error, and the latter having a preference to have a
more detailed plan before they begin coding. We
classify the students as performing large �batch� up-
dates, small updates, incremental updates, and up-
dating dynamically. A student can �t into multiple
categories, for example updating in small increments
versus batch increments. We observe several inter-
esting trends in this model:

3



It is important to note that CheckerboardKarel
and Pyramid both have generally much smaller sub-
missions, as they are much shorter assignments.

The increase in total line count di�erence (�Batch�)
noticeably increases with each submission. The pro-
grams themselves are not increasingly large projects
as to require that much more code, but rather this
is indicative of the conceptual challenge the stu-
dents face - as young programmers they often re-
quire unnecessary verbosity relative to what an expe-
rienced programmer requires to solve the same prob-
lem. They are required to handle increasingly com-
plex data structures and increasingly complex algo-
rithms and this is represented by their increase in
verbosity, as many students chose naive and lengthy
solutions over concise solutions. For example, many
students in creating Yahtzee wrote long and ine�-
cient methods to perform �nding three of a kind, four
of a kind, full house, small straight and long straight,
failing to recognize the simpler solutions for �nding
matchNofaKind() and matchStraight().

Additionally, observe that students who code in a
dynamic way (many more commits relative to the
size of the commit) initially jumps at the �rst large
project Breakout, and then decreases as the quarter
progresses. This may be representative of an increase
in programming skills, as the students need to use less
trial and error. Additionally, we observed an increas-
ing trend in the frequency and size of code deletion,
which is indicative of students recognizing good de-
composition and code reuse when they re factored
their code as part of their �style� grade.

4.3 If-Else versus Switch-Case

We can also observe how students respond to new
topics. For example, they were exposed to the idea
of a switch statement in lecture before the Break-
out assignment, and after getting feedback on its use
from the graders, many more adopted it in Hang-
man. We can see that its use dropped o� in Yahtzee,
showing that while many students did prefer it, some
did reject it after their experimentation. By ana-
lyzing the speci�c students in each cluster, we can
survey the students asking why they abandoned us-
ing switch statements in favor of the usually messier
if else chaining. This provides educators with more
speci�c and targeted feedback, and will let them ad-
just their teaching style to accommodate the needs
of speci�c individuals. We can observe this trend by
looking at the ration of students who use if/else ::
switch/case easily:

4.4 While loops versus For loops

As another example we can see the introduction of for
loops in the second assignment, and the quick stabi-
lization as students realize that both while loops and
for loops are valuable. What this graph additionally
shows is how to infer information not just about stu-
dents, but also about your assignments. When stu-
dents demonstrate a mastery over simpler topics, it
is a larger statement on the problem set than the stu-
dents that the �fth assignment involved many more
students using a large amount of for loops, itearting
over the �ve dice and the thirteen scoring categories.
Performing this analysis over the full set of features
allows an instructor to check his expectations of the

4



programming assignment in addition to what the stu-
dents are learning. Note that this graph counts stu-
dents who use a large number of for loops and while
loops as having chosen to use both.

5 Conclusions & Inference

The most important thing to infer from this study
is the simple ability to automate qualitative analysis.
We hope that other researchers may �nd success in
running the same methodology over their own stu-
dents code, even if they observe di�erent trends.

We hope that we can accurately characterize the
relationship between features and o�er insight into
the programming paradigm shift the student body
takes as they learn new programming tools.

We believe these education analysis tools will al-
low educators to target the individual needs of their
students and o�er the ability to assess which stu-
dents are retaining the material. We can provide
educators with speci�c students who chose di�erent
programming methods, and this enables the instruc-
tor to get speci�c, targeted feedback. We addition-
ally hope that the results o�er educators of introduc-
tory programming classes a solid model of the typical
progression a student body takes, so that they have
something other than an ad hoc evaluation of their
own teaching methods.

6 Acknowledgments

This work was done in conjunction with the Learn-
ing Analytics group in the Transformative Learning

Technologies Lab. The author conducted his experi-
ments independently. He would like to thank Profes-
sor Paulo Blikstein, Marcelo Worsley, Mustafa Saf-
dari, and Tarun Vir Singh for their feedback on his
ideas and progress.

References

[1] Chris Piech, Mehran Sahami, Daphne Koller,
Stephen Cooper, and Paulo Blikstein. Modeling
how students learn to program. 2010.

5


