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ABSTRACT
Today’s wireless communications and networking practices are tightly coupled with economic con-
siderations, to the extent that it is almost impossible to make a sound technology choice without
understanding the corresponding economic implications.This book aims at providing a foundational
introduction on how microeconomics, and pricing theory in particular, can help us to understand
and build better wireless networks. The book can be used as lecture notes for a course in the field of
network economics, or a reference book for wireless engineers and applied economists to understand
how pricing mechanisms influence the fast growing modern wireless industry.

This book first covers the basics of wireless communication technologies and microeconomics,
before going in-depth about several pricing models and their wireless applications. The pricing
models include social optimal pricing, monopoly pricing, price differentiation, oligopoly pricing,
and network externalities, supported by introductory discussions of convex optimization and game
theory. The wireless applications include wireless video streaming, service provider competitions,
cellular usage-based pricing, network partial price differentiation, wireless spectrum leasing, dis-
tributed power control, and cellular technology upgrade. More information related to the book (in-
cluding references, slides, and videos) can be found at http://ncel.ie.cuhk.edu.hk/content/
wireless-network-pricing.
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tion, distributed algorithms, wireless communications, wireless networks, resource al-
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economics, network upgrade
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Preface
Today’s wireless communications and networking practices are tightly coupled with economic con-
siderations, to the extent that it is almost impossible to make a sound technology choice without
understanding its economic implications. In this book, we will focus on how pricing theory will help
us to understand and build better wireless networks.

We start in Chapter 1 by discussing the motivation for us to write (and for you to read) this
book. In particular, we show that economic mechanisms are becoming indispensable parts of the
wireless network planning and operating, mainly due to the inherent conflict between the limited
wireless resources and the fast growing wireless demands.

Chapters 2 and 3 provide some basic knowledge of the wireless technologies and microeco-
nomics, paving ways for the more exciting and advanced discussions later on.

From Chapter 4 to Chapter 7, we introduce several key aspects of wireless network pricing.
In each chapter, we first introduce the related theoretical background, then give two applications
in wireless communications and networking to illustrate the theory, finally provide several exercises
to test the readers’ understanding of the key concepts. The applications in these chapters are for
illustration purposes only, and the choices are biased based on our own research interests. More
specifically, Chapter 4 focuses on social optimal pricing. Chapter 5 looks at the issue of monopoly,
where a single service provider dominates the market and wants to maximize its profit, either through
uniform pricing or price differentiation. Chapter 6 concerns the price competition among multiple
service providers. Chapter 7 talks about the issue of network externalities. Finally, in Chapter 8, we
come back to the larger topic of wireless network economics, and discuss the connections between
pricing and several other economic mechanisms such as auction, contract, and bargaining.

This book is intended as a reference for graduate students and senior undergraduate students
when taking a course on network economics, for researchers who are interested in the fundamental
issues and solution tools in this area, for wireless engineers who need to understand economic
principles to better design and control networks, and for applied economists who are curious about
how microeconomics is making an impact in the rapid growing wireless industry. Readers can find
references, papers, slides, and videos related to this book at the companion website: http://ncel.
ie.cuhk.edu.hk/content/wireless-network-pricing.

Jianwei Huang and Lin Gao
May 2013

http://ncel.ie.cuhk.edu.hk/content/wireless-network-pricing
http://ncel.ie.cuhk.edu.hk/content/wireless-network-pricing
http://ncel.ie.cuhk.edu.hk/content/wireless-network-pricing
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Introduction

1.1 WHY THIS BOOK?
Today’s wireless communications and networking practices are tightly coupled with economic con-
siderations, to the extent that it is almost impossible to make a sound technology choice without
understanding its economic implications.This simple fact motivates us to take a close and systematic
look at how economics interacts with wireless technologies. In this chapter, we will outline the big
picture of wireless network economics, centered around the following two questions:

• Why should we care about economics in wireless networks?

• What are the unique challenges of wireless network economics?

We want to point out that wireless network economics is a vast topic that is difficult to cover
in fewer than 200 pages, especially if we want to provide concrete examples with some analytical
details. Therefore, in the rest of the book, we choose to focus on one key aspect of wireless network
economic—wireless network pricing—to give readers a partial but hopefully more focused and in-
depth view of the challenging economic issues of the wireless networks.

1.2 THE WIRELESS REALITY
Let us first imagine a “wireless utopia,” where the wireless spectrum is unlimited, the wireless
technologies can provide a communication speed comparable to wireline networks, heterogeneous
wireless technologies co-exist perfectly without mutual interferences, wireless users have reason-
able demands that can always be satisfied without overburdening the network, and wireless service
providers aim to maximize the social welfare instead of their own profits. In this perfect world, every
user can enjoy seamless and high speed wireless connections whenever and wherever they want, and
there is no reason to worry about economic issues.

However, the reality of wireless networks is (almost) exactly the opposite. The wireless spec-
trum is very limited and overly crowded, the communication speed of the latest wireless technologies
is nowhere close to that of wireline networks (except for some very short distance wireless commu-
nications), heterogeneous wireless networks often exist with little or no coordinations, heavy mutual
interferences between networks and devices are the norm rather than the exceptions, the exploding
growth of wireless data traffic is far beyond the growth of wireless capacity, and the wireless service
providers often care more about profits than social welfare. Some of the above issues can be alleviated
by the advance of wireless technologies; many others can only be addressed with a combination of
technology advances, economic innovations, and policy reforms.
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Next we will illustrate several of the above issues in a bit more detail, and outline how economics
can help to improve the overall performance of the wireless networks and satisfaction levels for both
users and service providers.

1.3 TENSION BETWEEN SUPPLY AND DEMAND

One key reason for studying wireless network economics is to resolve the tension between limited
wireless resource supplies and the fast growing wireless demands.

The radio spectrum is limited, and only a fraction of it (mostly the lower frequency part) is
useful for wireless communications over reasonable ranges. Because of the limited availability of
wireless spectrum, it has been a tightly controlled resource worldwide since the early part of the
20th century. The traditional way of regulating the spectrum is the static licensing approach, which
assigns each wireless application a particular piece of spectrum at each particular location. Currently,
almost all spectrum licenses belong to government identities and commercial operators. This can be
clearly shown in the frequency allocation map of any country or region.

However, new wireless technologies and services are emerging rapidly. This means that every
new wireless commercial service, from satellite broadcasting to wireless local-area network, has to
compete for licenses with numerous existing sources, creating a state of spectrum drought [1].

A key challenge for government regulators is how to allocate these ever decreasing and pre-
cious spectrum resources wisely to achieve the maximum benefits for society. Among many possible
solutions, the spectrum auction has been advocated and successfully implemented in many countries.
This will help to allocate the spectrum to service providers who value the resources most, as these
providers are typically the ones who have the best technologies and thus the capability to provide
the maximum benefits to the customers.

A more revolutionary approach is to enable unlicensed wireless users to opportunistically share
the spectrum with licensed users through dynamic spectrum management. This is motivated by the
fact that many licensed spectrum bands are not efficiently utilized [2]. For example, the Federal
Communications Commission (FCC) in the US has recently decided to open up the TV spectrum
for unlicensed use, as long as the licensed users’ communications are protected. Microsoft has already
built a testbed over its Redmond campus to demonstrate the practicality of such sharing [3].

Note that there are two economic issues under this dynamic spectrum management regime.
First, the regulators need to provide enough economic incentives for the license holders to open up
spectrum for sharing, otherwise complicated legal issues might arise. The law suit between FCC
and National Association of Broadcasters in 2009 is a good example [4]. Second, it remains an open
question as to what kind of services and commercial business models can succeed in the newly open
spectrum bands, considering the potentially unregulated interferences among multiple unlicensed
service providers [5].

The other perspective of the limited wireless spectrum is the tension between the low and
often unreliable data rates provided by today’s wireless technologies and the fast growing needs of
wireless users. One may argue that the Wi-Fi technology (e.g., the IEEE 802.11 family) can already
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provide a speed of hundreds of Mbps, which is good enough even for high definition video streaming.
However, the Wi-Fi technology has a very limited coverage (e.g., from 20 to 200 meters for indoor
communications), and thus cannot provide a ubiquitous wireless access experience. The cellular
network still remains as the only wireless technology that has the potential to provide seamless
access and mobility solutions. Today’s 4G cellular networks can provide a theoretical peak download
speed of 100 Mbps, although the actual speed can be less than 10% of the theoretical one.The speed
per user will be even less when many users share resources of a same base station, which is often
the case in practice. On the other hand, thanks to the introduction of sophisticated smartphones
and tablets, users have significantly higher needs to enjoy high quality and highly interactive content
on-the-go. Consider, for example, the very popular video streaming application of Netflix, which has
been available on the iPad platform since 2010. To stream a high quality video, Netflix recommends
a data rate of at least 5Mbps. An always smooth playback requires the data rate to be much higher.
Applications like these make the current cellular network very stressful. It is widely known that
AT&T networks in big US cities such as New York City and San Francisco often have experienced
heavy congestion and low achievable data rates during the past several years, ever since AT&T
introduced iPhone on their networks from 2007. During the Christmas season of 2009, AT&T
even tentatively stopped selling iPhones in New York City, and many suspected that it was due to
AT&T’s fear of not being able to support the fast growing population of new iPhone users.

Due to the limited spectrum and the constraints of today’s wireless cellular technologies, it
is impossible to over-provision the wireless network as we did for fiber-based wireline networks. In
other words, technology advance alone is not enough to resolve the tension between the supply and
demand in the wireless market even in the long run. It is thus very important to use economics to
guide the operation of the market.

1.4 COUPLING BETWEEN ECONOMICS AND WIRELESS
TECHNOLOGIES

The economics of wireless networks can be quite different from economics of other industries, mainly
due to the unique characteristics of the wireless technologies and applications.

From the wireless technology side, there are many choices today in the market, and each has
its unique strength and weaknesses. For example, Wi-Fi technology can provide high data rates
within a short distance, and the cellular technology provides much better coverage with a much
lower data rate. The economic models for these two technologies are thus very different. In practice,
commercial Wi-Fi providers often charge users based on connection time lengths, while cellular
service providers often charge users based on their actual data usage.

In terms of wireless applications, each application (and the user behind the application) has
a unique Quality of Service requirement, resource implication on the networks, and sensitivity to
price. For example, a video streaming application requires a wireless connection that supports a high
data rate and stringent delay requirements. It is possible to charge a high price for such an inelastic
application. However, providing a videos streaming application with a data rate higher than needed
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will not be useful. A file transfer application can adapt to different transmission speeds, but requires
a very low bit error rate to ensure correct decoding. Such elastic application will be very sensitive to
price, and can be arranged to be delivered when the network is not congested and the delivery cost
per bit is low.

The key challenge of wireless network economics is to properly match the wireless technolo-
gies with the wireless applications via the most proper economical mechanisms. We also want to
emphasize that the choices of wireless technologies and applications are not static. Which technol-
ogy and application will dominate the market at what time will also heavily depend on the economic
implications. For example, although the 4G cellular technology has been available to many operators
globally, only a small number of operators have upgraded to 4G networks already. The factors to be
considered include how the upgrade costs evolve over time, how fast the users will accept the 4G
technology, what types of applications will emerge and fully take advantage of the new technology,
how the market competition will affect the pricing strategies, and how the network effect will affect
the value of the new service [7]. Thus, it is critical to understand the impact of economics on the
evolution of wireless network technologies and applications.

1.5 EFFECT OF MARKET DEREGULATION

The deregulation of telecommunication markets in many countries has made the study of wireless
network economics more important than ever. In the past, very often there was only one major
wireless service provider enjoying the monopoly status in a particular local (or national) market.
Examples including AT&T in the US, China Mobile in China, and Telcel in Mexico. However, the
recent telecommunication deregulation leads to several major players in a single market. Examples
include AT&T, Verizon, T-Mobile, and Sprint in the US, as well as China Mobile, China Unicom,
and China Telecom in China. As a wireless service provider is ultimately a profit-maximizing entity,
it needs to optimize the technology choices and pricing mechanisms under the intense market
competition.

Industry deregulation also brings more choices to the wireless consumers. For example, a user
may freely compare and choose services from different service providers based on the service quality
and cost. A user may even use different service providers for different types of services, such as
using both cellular service and Wi-Fi service through the same cell phone. A service provider may
no longer have complete control of its subscribers. All these bring interesting and sometimes new
economic questions that are not present in other industries.

1.6 WE ARE TALKING ABOUT WIRELESS

One may argue that researchers have studied Internet economics for more than a decade, and the
lessons and results learned there can be carried over to the wireless industry. However, wireless
network economics is significantly different from Internet economics in several ways.
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First, the characterization of network resources in wireless networks is more difficult than
in wireline networks. Although wireless spectrum can be measured in hertz, the network resource
corresponding to each hertz of spectrum is not easy to characterize. For example, the wireless data
rate is often highly stochastic over time due to shadowing, fading, and mobility. Furthermore, the
wireless resource is spatially heterogeneous, and the same spectrum may be concurrently used by
multiple users who are physically far apart without affecting each other. Finally, the wireless data
rates are affected by mutual interferences. Although there are many analytical models characterizing
the interference relationships, they can be either clean yet imprecise (e.g., the protocol interference
model) or precise yet complicated (e.g., the signal-to-interference-plus-noise ratio [SINR] model).
There does not yet exist a model that is precise and analytically tractable for all practical wireless
networks.

Second, the characterization of end users can be more complicated in wireless networks.
A wireless user may have many different attributes, such as utility function (determined by the
application type), total energy constraint and energy efficiency (determined by battery technology
and charging levels), and channel conditions (determined by node locations and mobility). Also,
users’ performances are often tightly coupled due to mutual interferences.

Third, the interactions between wireless users heavily depend on the specific choice of wireless
technology. In random medium access protocols such as the slotted Aloha, users are coupled through
their channel access probabilities. In Code Division Multiple Access (CDMA) network, users are
coupled through mutual interferences. When we consider a spectrum overlay in cognitive radio
networks, unlicensed users cannot transmit simultaneously with the licensed users in the same
channel at the same location. In a spectrum underlay cognitive radio network, unlicensed users are
allowed to transmit simultaneously with the licensed users, as long as the total unlicensed interference
generated at a particular licensed receiver is below an interference threshold. Different interactions
and couplings between users lead to different types of markets and economic mechanisms.

Fourth, the coupling between technology, policy, and economics is different in wireless net-
works. We can use cognitive radio as an example to illustrate this point. Cognitive radio technology
enables more flexible radio transmitters and receivers, and makes it feasible for wireless devices to
sense and opportunistically utilize the spectrum holes. However, how and when cognitive radio tech-
nology should be used heavily depends on the type of spectrum band, which determines the types
of licensed users and how they value the pros and cons of the new technology. Regulators in some
countries are also more conservative than others in approving the new technology and changing the
existing licensing practice. In fact, many wireless technologies can only work under the proper policy
framework together with the right economic mechanisms that incentivize all parties involved.

1.7 SUGGESTIONS FOR READING THIS BOOK

This book includes a total of eight chapters. Figure 1.1 illustrates the interdependency relationship
among various chapters.
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Figure 1.1: The interdependency relationship among eight chapters in this book.

After finishing Chapter 1, one can choose to read both or just one of Chapters 2 and 3
depending on his/her technical background. In Chapter 2, we introduce some basic terminologies
of wireless communications and networking. This is mainly intended for readers with almost no
background in wireless communications. In Chapter 3, we introduce the basics of microeconomics.
This will prepare readers with little economics background a good foundation for understanding the
more advanced economic models in later chapters.

From Chapter 4 to Chapter 7, we introduce the key aspects of wireless network pricing one
by one. All chapters follow a similar structure. We first introduce the related theoretical background,
then give two applications in wireless communications and networking to illustrate the theory, and
provide several exercises to test the readers’ understanding of the key concepts.

We recommend everyone to carefully read through Chapter 4, which introduces the theory
of convex optimization, dual-based algorithms, and social optimal pricing, and hence will be useful
in understanding all later chapters. Following Chapter 4, one can continue to read Chapter 5,
which discusses the issue of monopoly pricing, where a single service provider dominates the market
and prices the resources to maximize its profit. One may also skip Chapter 5 and directly read
Chapter 6,which concerns the price competition among multiple service providers.Chapter 7 further
discusses about the issue of network externalities, sometimes with competing service providers.
Finally, in Chapter 8, we come back to the larger topic of wireless network economics, and discuss
the connections between pricing and several other economic mechanisms such as auction, contract,
and bargaining. Most of these mechanisms are related to games theory illustrated in Chapters 6 and
7.

We also invite readers to visit the companion website of the book: http://ncel.ie.cuhk.
edu.hk/content/wireless-network-pricing, where one can find references, papers, slides,
and videos related to this book.

http://ncel.ie.cuhk.edu.hk/content/wireless-network-pricing
http://ncel.ie.cuhk.edu.hk/content/wireless-network-pricing
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C H A P T E R 2

Wireless Communications
Basics

In this chapter, we will provide a brief introduction to wireless communications and networking
technologies, including the radio propagation characteristics and channel models for wireless com-
munications, the wireless access and networking technologies, and the radio resource management
technologies in wireless networks. The intention is to cover the most basic features of wireless
communications and networking, in order to reduce readers’ need to consult other textbooks to
understand the applications in the later chapters of this book. Most discussions in this chapter are
based on the materials in [8, 9, 10, 11, 12, 13, 14, 15].

2.1 WIRELESS COMMUNICATIONS

Wireless communication refers to the information transfer between two or more points that are not
connected by an electrical conductor. The most common wireless communication is done through
transmission of signals through free space by electromagnetic radiation of frequencies in the range of
around 30 kHz to 300 GHz.These radio waves are transmitted and received through antennas, which
convert electric currents into radio waves, and vice versa.Typical examples of wireless communication
systems include mobile cellular networks, wireless LAN (WiFi) systems, broadcast and television
systems, global positioning system (GPS), etc.

2.1.1 RADIO PROPAGATION
Radio propagation refers to the transmission of radio waves from one point to another. As a form
of electromagnetic radiation, radio waves travel through space either straightly and directly (called
line-of-sight propagation), or in a path affected by reflection, refraction, diffraction, absorption,
polarization, and scattering. Here we summarize the most common radio propagation behaviors as
follows:

• Line-of-sight (LOS) propagation usually refers to the direct propagation of radio waves between
two points that are visible to each other.Examples of LOS propagation include the propagation
between a satellite and a ground antenna, and the reception of television signals from a local
TV transmitter. The key feature of LOS propagation is that the power density of a radio wave
is proportional to the inverse of the square of the transmission distance.
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• Reflection arises when a radio wave hits the interface between two dissimilar media, so that
all of or at least part of the wave returns into the medium from which it originated. With the
effect of reflection, a radio wave attenuates by a factor, depending on the frequency, the angle
of incidence, and the nature of the medium (e.g., material properties, thickness, homogeneity,
etc.). Research shows that the reflection effect often dominates the propagation of radio in
indoor scenarios.

• Diffraction usually refers to the propagation of radio waves bending around corners or sharp
edges. Due to the effect of diffraction, for example, we can hear sound from sources that are out
of sight around a corner. Radio waves can bend over hills and around buildings, and therefore
get to the shadowed regions where the LOS path is not available. The diffracted radio wave
is usually much weaker than that experienced via reflection or direct transmission. Thus, the
diffraction propagation is more significant in outdoor scenarios, but is less significant in indoor
scenarios where the diffracted signal is much weaker than the reflected signal.

• Scattering is a physical effect of radio waves when hitting irregular objects (e.g., walls with
rough surfaces). Instead of proceeding in a straight trajectory, the radio wave is redistributed
in all directions due to the reflection or refraction by the microscopic textures in the object.
This angular redistribution is referred to as the scattering effect. Scattering waves in many
directions usually results in reduced power levels, especially far from the scatterer.

These effects, together with many other effects such as refraction, absorption, and polarization,
generally co-exist (but with different significances) in radio propagation. Which one dominates the
propagation process essentially depends on the particular scenario (e.g., indoor or outdoor).However,
it is impossible to perfectly characterize or fully predict the propagation of a radio wave, due to the
rapid fluctuation of radio propagation.

In general, radio propagation can be roughly characterized in the large and small scale. Specif-
ically, the large-scale propagation model mainly characterizes the mean attenuation of radio waves
over large travel distances; while the small-scale propagation model mainly characterizes the fast
fluctuations of radio waves over very short travel distances (e.g., a few wavelengths) or short time
durations (e.g., a few milliseconds). More precisely, we can often characterize radio propagation by
the following three nearly independent factors: (i) distance-based path loss, (ii) slow log-normal
shadowing, and (iii) fast multi-path fading. The first two factors are known as the large-scale prop-
agation, and the last factor is shown as the small-scale propagation. The model of such large- and
small-scale propagations is usually called the channel model. Having an accurate channel model is
extremely important for analyzing and designing a wireless communication system.

2.1.2 CHANNEL MODEL
When radio wave propagates, its power density diminishes gradually. In addition, noise may pollute
the desired signal, generating the so-called interference. The noise or interference may come from
natural sources, as well as artificial sources such as the signals of other transmitters. In general,
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the power profile of the received signal can be obtained by multiplying the power profile of the
transmitted signal with the impulse response of the channel. That is, given the transmitted signal x,
after propagation through a channel h, we have the following received signal y:

y = h · x + ε, (2.1)

where h is the channel impulse response, and ε is the noise. Note that the noise ε is usually modeled
as a random variable following the normal distribution (also called Gaussian distribution). Thus, it
is also referred to as the Gaussian noise. Besides, the noise ε at different time instances is usually
assumed to be identically distributed and statistically independent. In this case, the noise is usually
called the white Gaussian noise.

The purpose of channel modeling is to partially or fully characterize the radio propagation, or
in other words, to accurately predict the channel impulse response. According to the features of radio
propagation, the channel impulse response mainly depends on the following three key components:
path loss, shadowing, and multi-path propagation.

• Path Loss is a fundamental characteristic of radio wave propagation in order to predict the
expected received power. Traditionally, path loss is examined by using the Friis transmission
formula, which provides a means for predicting this received power:

|h| = Pr

Pt

= A · λ2

d2
, (2.2)

where λ is the wavelength, d is the transmission distance, and A is a constant (which is
independent of propagation, but is related to the parameters such as antenna gains, antenna
losses, filter losses, etc.). The path loss is directly obtained from (2.2) by changing the power
unit into dB:

PL(d) = −10 log(|h|) = 20 log(d) − 20 log(λ) − 10 log(A). (2.3)

By (2.2) or (2.3), we can see that radio waves have different propagation losses with different
frequencies.For example, radio waves at the lower frequency band (i.e.,with a larger wavelength
λ) have a lower propagation loss, and thus are more suitable for long range communications;
while radio waves at the higher frequency band (i.e., with a smaller wavelength λ) are more
suitable for short-range but high-speed wireless communications. We can further see that the
power falls off in proportion to the square of the distance d. In practice, however, the power
may fall off more quickly, typically following the 3rd or 4th power of distance d.

• Shadowing is another important characteristic of radio wave propagation that characterizes
the deviation of the received power about the average received power. It usually occurs when a
large obstruction (such as a hill or large building) obscures the main propagation path between
the transmitter and the receiver. In this case, the received power may deviate from the distance-
dependent power given in (2.3), due to the effects of reflection, diffraction, scattering, etc.This
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is usually referred to as the shadowing or shadow fading. In general, such a power deviation due
to the shadowing effect is formulated as a zero-mean normally (Gaussian) distributed random
variable Xσ (in dB) with a standard deviation σ . With the shadowing effect, the net path loss
becomes:

PL(d) = PL(d) + Xσ = 20 log(d) − 20 log(λ) − 10 log(A) + Xσ . (2.4)

By (2.4), the received power with the same distance d may be different, and has a log-normal
distribution. Thus, we also refer to it as the log-normal shadowing.

• Multi-path is the propagation phenomenon that results in radio waves reaching the receiving
antenna by two or more paths. This is mainly caused by reflection and scattering in radio
propagation. Since each of these reflected waves takes a different path, it may have a different
amplitude and phase. Depending on the phases of these reflected waves, these signals may
result in increased or decreased received power at the receiver. Even a very slight change in the
propagation path may result in a significant difference in phases of the signals, and therefore in
the total received power. Thus, the multi-path propagation will lead to the fast fluctuation of
radio wave. Furthermore, multiple versions of radio wave may arrive at the receiving antenna
at different times. In this way, the multi-path propagation will introduce a delay spread into
the radio wave. This may impose server interference on the successive signals, which is usually
called the inter-symbol interference (ISI).

For clarity, we illustrate the above three components of channel response in Figure 2.1. The
gray dot dashed curve represents the distance-dependent path loss (without shadowing). The red
dashed curve represents the path loss with log-normal shadowing, where the log-normal shadowing
makes the total path loss deviates from the distance-dependent one. The blue solid curve represents
the real channel response with the path loss, shadowing, and multi-path propagation. Note that the
variations due to the multi-path propagation change at distances in the scale of wavelength.

2.2 WIRELESS MULTIPLE ACCESS TECHNOLOGIES
Wireless multiple access technology is very important for modern communication systems, as it
allows multiple users to share the limited communication resources. In wireless communication
systems, multiple access technologies are usually based on multiplexing. In this section, we will
discuss several widely used multiple access schemes, including the frequency division multiple access
(FDMA), orthogonal frequency division multiple access (OFDMA), time division multiple access
(TDMA), code division multiple access (CDMA), and random access technologies such as carrier
sense multiple access (CSMA).

2.2.1 FDMA AND OFDMA TECHNOLOGIES
The frequency division multiple access (FDMA) channel access scheme is based on the frequency
division multiplex technology, which provides different frequency bands to different mobile users.
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Figure 2.1: Illustrations of path loss, shadowing, and multi-path propagation.

That is, it allows several users to transmit at the same time by using different frequency bands.Typical
FDMA systems include the second-generation (2G) cellular communication systems such as Global
System for Mobile Communications (GSM), where each phone call is assigned to a specific uplink
channel and a specific downlink channel.

An advanced form of FDMA is the orthogonal frequency division multiple access (OFDMA),
which is used in the fourth-generation (4G) cellular communication systems and wireless local area
networks (WLAN) based on the latest versions of 802.11 standards. The key feature of OFDMA
is that the frequency bands are partially overlapped (but logically orthogonal), and therefore the
spectrum efficiency can be greatly improved comparing with FDMA. In an OFDMA system, each
mobile user is allowed to use one or multiple channels (more often called sub-carriers), making it
flexible to provide different quality of service (QoS) guarantees to different users.

2.2.2 TDMA TECHNOLOGY
The time division multiple access (TDMA) channel access scheme is based on the time division
multiplex technology, which provides different time slots to different mobile users in a cyclically
repetitive frame structure. That is, the whole time period is divided into multiple time slots, each for
a particular mobile user. The users transmit in rapid succession, one after the other, each using its
own time slot.TDMA has been used in the second-generation (2G) cellular communication systems
such as GSM. More precisely, GSM cellular systems are based on the combination of TDMA and
FDMA, where each frequency channel is divided into multiple time slots, each carrying one phone
call or signaling data.
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2.2.3 CDMA TECHNOLOGY
The code division multiple access (CDMA) scheme is based on the spread spectrum technology,which
allows several mobile users to send information simultaneously over a single frequency channel. The
key idea of CDMA is to assign each user a different spreading code, based on which the signals of
multiple users can be separated. The most common form of CDMA is the direct sequence spread
spectrum (DS-CDMA), which has been used in the third-generation (3G) cellular communication
systems. In this case, each information bit (of a mobile user) is spread to a long code sequence of
several pulses, called chips. Such a code sequence is usually referred to as the spreading code. The
separation of the signals of multiple users is made by correlating the received signal with the locally
generated spreading code of the desired user. If the signal matches the desired user’s code, then
the correlation function will be high and the system can extract that signal. If the desired user’s
code has nothing in common with the signal, the correlation should be as close to zero as possible
(thus eliminating the signal). This process is usually referred to as cross correlation. Obviously, the
spreaded signal (chip) has a much higher data rate (bandwidth) than the original data, and thus
CDMA is essentially a form of spread-spectrum technology.

2.2.4 RANDOM ACCESS TECHNOLOGY
In the previous channel access schemes, each mobile user accesses the transmission medium under
the full control of a controller. For example, in CDMA, each user spreads its data by using the spread
code assigned by the controller; in TDMA or FDMA, each user occupies the time slot or frequency
band assigned by the controller.

In the random access scheme, however, each user has the right to access the medium without
being controlled by any other controller. Obviously, if more than one user tries to send data at the
same time, there is an access conflict (called a collision), and the signals will be either destroyed or
polluted. Therefore, it is essential to avoid the access conflict or to resolve it when it happens. The
simplest random access scheme is the so-called ALOHA random access, which allow mobile users
to initiate their transmissions at any time. Whenever a collision occurs, a mobile user will wait for a
random time and then try resending the data. A more advanced random access scheme is the carrier
sense multiple access (CSMA), in which a mobile user checks the existence of other users’ signals
before transmitting on a shared transmission medium. That is, it tries to detect the presence of radio
waves from other users before attempting to transmit its own data. In other words, CSMA is based
on the principle “sense before transmit” or “listen before talk.”

2.3 WIRELESS NETWORKS

Depending on the transmission range or coverage area, wireless communication networks can be
categorized into the following types: wireless personal area network (e.g., IEEE 802.15 Bluetooth),
wireless local area network (e.g., IEEE 802.11 WiFi),wireless metropolitan area network (e.g., IEEE
802.16 WiMAX), wireless wide area network (e.g., IEEE 802.20 MobileFi, and 3GPP Cellular),
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and wireless regional area network (e.g., IEEE 802.22). Wireless communication networks can also
be categorized by the access and networking technologies: wireless cellular network, wireless ad-
hoc network, wireless sensor network, wireless mesh network, and cognitive radio network. In this
section, we will discuss several widely used wireless networks briefly.

2.3.1 WIRELESS CELLULAR NETWORK
In a cellular network, a wide geographic area to be covered by radio services is divided into regular
shaped zones called cells, which can be hexagonal, square, circular or some other regular shapes. Each
cell is associated with a fixed-location transceiver, called the base station, which is usually located in
the center of the cell. Mobile cellular users are connected with each other via the base stations.

Each cell serves those mobile cellular users within its coverage area via the corresponding base
station. Since mobile cellular users can move between cells, thus handoff and mobility management
are very important for a cellular network. Although each cell can only provide radio service in a small
area, when many cells are joined together they can provide radio coverage over a wide geographic
area. A simple illustration of the communication between two mobile users in a cellular network
is as follows: each user transmits/receives radio signal to/from the respective base stations, and two
base stations are connected through a wired network called core network or backbone network.

To avoid the interference from signals from other cells, the adjacent neighboring cells are
usually operated on different frequency bands.On the other hand, to improve the spectrum efficiency,
the same frequency band is usually used by multiple cells as long as these cells are far enough apart
such that the radio signal of one cell does not cause harmful interferences on other cells. This is the
so-called frequency reuse.

Today,wireless cellular networks have been widely used in practice.The most common example
is the mobile phone network. Depending on the different access technologies, there are a number of
different widely used mobile phone systems, including: global system for mobile communications
(GSM), general packet radio service (GPRS), enhanced data rates for GSM evolution (EDGE),
and universal mobile telecommunications system (UMTS). Most of these cellular systems are based
on the 3GPP standards.

2.3.2 WIRELESS LAN NETWORK
A wireless local area network (wireless LAN, or WLAN) is usually used to provide high-speed radio
service in a local small area. The most common architecture of a WLAN system is based on an
infrastructure-based controller called an access point, which is usually connected to a wired network
for receiving incoming and sending outgoing traffic. Mobile users communicate with each other or
connect to the wider Internet via these access points. In this sense, a WLAN is very similar to a
cellular network. Another common architecture of WLAN is the so-called ad-hoc network, where
each mobile user transmits data to another user directly. Due to the limitation of access technologies,
the coverage area of WLANs is usually small (e.g., fewer than 200 meters for each access point).
Thus, the mobility of mobile users in a WLAN is rather limited.
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Despite of the limited mobility, WLAN has become very popular today due to its ability
to provide high-speed communication service. Almost all the smartphones, pads, and laptops are
equipped with the WLAN interface. Most modern WLANs are based on the IEEE 802.11 standard,
marketed under the Wi-Fi brand name.

2.3.3 WIRELESS AD-HOC NETWORK
A wireless ad-hoc network is a type of decentralized wireless network, usually based on the IEEE
802.11 standard. That is, it does not rely on the preexisting infrastructure such as the base station
in a cellular network or the access point in a WLAN. Due to the limited transmission range of
mobile nodes, a source node may need to communicate to a destination node in a multi-hop fashion.
Moreover, each node participates in routing by forwarding data for other nodes, and the decision
of which nodes forward data is made dynamically based on the network status. Since the nodes are
mobile, the network topology may change rapidly and unpredictably over time.Therefore, the nodes
need to self-organize to establish network connectivity to support various mobile applications.

The decentralized nature of ad-hoc network makes it suitable for a variety of applications where
the centralized control cannot be achieved. It can improve the scalability of networks compared to
centralized managed networks such as cellular networks. Moreover, it can be applied to emergency
situations like natural disasters or military conflicts due to the minimal need of configuration and
quick deployment. The presence of dynamic and adaptive routing protocols enables an ad-hoc
network to be formed quickly.

2.3.4 WIRELESS SENSOR NETWORK
A wireless sensor network consists of a set of spatially distributed autonomous sensors.These sensors
are usually designed to monitor physical or environmental conditions (e.g., temperature, sound, and
pressure), and to cooperatively deliver their measured data to a specific location called the sink node,
through ad-hoc communications. The modern sensor networks are usually bi-directional. That is,
they cannot only collect data from sensors passively, but also actively control these sensors. The
development of wireless sensor networks was primarily motivated by military applications such
as battlefield surveillance. Today, wireless sensor networks have been used in many industrial and
consumer applications, such as industrial process monitoring and machine health monitoring.

An important feature of wireless sensor networks is the energy constraint. Specifically, due to
the requirements of small size and low cost, the sensors are usually hardware-constrained, and with
limited capacity of energy storage (e.g., battery). Moreover, due to the spatial distribution of sensor
nodes, it is hard to charge these sensor nodes online and in real-time. For these reasons, the energy
resource, in addition to the radio resource, becomes an very important factor in designing wireless
sensor network protocols.
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2.3.5 WIRELESS MESH NETWORK
A wireless mesh network is a communications network made up of radio nodes organized in a mesh
topology. It often consists of two kinds of different nodes: mesh clients and mesh routers. The mesh
clients are often laptops, cell phones, and other wireless devices, which transmit/receive data to/from
other clients or the wider Internet.The mesh routers are often stationary nodes such as base stations
or access points, which forward a mesh client’s traffic to/from other clients or the gateways which
connect to the Internet. Wireless mesh networks can be built upon various wireless technologies
such as IEEE 802.11, 802.15, 802.16, and cellular technologies. In an IEEE 802.11-based wireless
mesh network, for example, the access points act as mesh routers, and form a mesh backbone for
relaying the traffic of mobile users (i.e., mesh clients).

In general, a wireless mesh network can be seen as a special case of the wireless ad-hoc network.
In this sense, the mesh routers may be mobile nodes themselves in an ad-hoc network, and can be
moved according to specific demands arising in the network. Often the mesh routers are not limited
in terms of resources compared to other nodes in the network, and thus can be exploited to perform
more resource intensive functions.

2.3.6 COGNITIVE RADIO NETWORK
Cognitive radio network is a novel network architecture based on advanced wireless technologies
such as cognitive radio and dynamic spectrum access.

Cognitive radio is an adaptive, intelligent radio technology that can automatically detect
available frequency bands in a certain frequency range (usually licensed to some organizations or
commercial companies); it also enables devices to access the frequency bands distributed in a wide
frequency range. Cognitive radio uses a number of technologies, including the adaptive radio where
the communications system monitors and modifies its own performance, and the software defined
radio (SDR) where traditional hardware components including mixers, modulators, and amplifiers
have been replaced with intelligent software.

Dynamic spectrum access is a new paradigm for utilizing wireless spectrum, and has its
theoretical roots in network information theory,game theory,machine learning,artificial intelligence,
etc. The key idea of dynamic spectrum access is to allow unlicensed devices to access the frequency
bands (licensed to other licensees) in an opportunistic manner,whenever such a secondary access does
not generate harmful interference to the licensees. Therefore, the reliable detection of the presence
of licensed devices is very critical for dynamic spectrum access. Early studies on licensed devices
detection mainly focused on the spectrum sensing techniques. However, recent studies showed that
the pure spectrum sensing is often inadequate or inefficient, due to the high deployment cost and
low detection performance. As a consequence, many regulatory bodies (e.g., FCC in the US and
Ofcom in the UK) and standardization organizations (e.g., IEEE and ECC) have been advocating
an alternative solution, which relies on a centralized third-party database called geo-location database.
Specifically, the geo-location database maintains the up-to-date spectrum usage information of
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licensees, and can identify the available frequency bands at a particular time and place for secondary
access.

2.4 RADIO RESOURCE MANAGEMENT

A fundamental issue of the operation of wireless networks is the radio resource management (RRM),
which provides the system level control of interference, efficiency, and other transmission character-
istics in wireless communication systems. It usually involves strategies and algorithms for controlling
network parameters such as transmit power, channel allocation,data rates,handover criteria,modula-
tion scheme, error coding scheme, etc.The objective of RRM is to utilize the limited radio spectrum
resources and radio network infrastructures as efficiently as possible. In this section, we will discuss
the most common RRM problems in wireless communication systems.

2.4.1 POWER CONTROL
Transmit power control is one of the most important issues in wireless communication systems.
Broadly speaking, power control is the intelligent selection of transmit power so as to achieve a good
system performance (e.g., low mutual interference, high network capacity, and wide geographic
coverage area). Power control has been widely used in many types of wireless networks, including
wireless cellular networks, sensor networks, wireless LANs, etc.

Power control is particularly important for a CDMA system, where multiple mobile users send
information simultaneously over a single frequency channel using different spread codes. Because
of this, the transmission of one user will inevitably cause interference on other users’ transmissions.
Power control in a CDMA system can help to achieve an efficient utilization of the energy resource,
and effectively reduce the mutual interferences between mobile users.

Power control is also important for a cellular network based on the FDMA technology (e.g.,
GSM, GPRS, and EDGE). Although mobile users within the same cell do not interfere with each
other (since they use different frequency bands), they may generate interference to users in other
cells due to frequency reuse. That is, multiple (non-adjacent) cells may use the same set of frequency
bands, and thus the mobile users in these cells may be assigned to the same frequency band. Although
the interference of these mobile users can be largely mitigated by the distance factor, there may still
be certain remaining interference. Therefore, the joint control of users’ (or cells’) transmit powers is
important to further reduce the interference and improve the network performance.

2.4.2 CHANNEL ALLOCATION
In wireless communication systems and especially in a wireless cellular network, channel allocation
schemes are required to allocate frequency bands (or channels) to base stations, access points, and
mobile devices. The objective is to achieve a high spectrum efficiency by means of frequency reuse,
under the constraints of co-channel interference and adjacent channel interference among nearby
cells or networks that share the spectrum band.
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There are usually two types of different channel allocation strategies: fixed channel allocation
(FCA) and dynamic channel allocation (DCA).In the former case,each cell is given a pre-determined
set of channels. That is, the number of channels in every cell remains constant irrespective of the
number of users in that cell. This may result in traffic congestion in some cells, while a waste of
resource in other cells. In the latter case, channels are not allocated to cells permanently; but instead,
cells request channels dynamically based on their real-time traffic load. DCA allows the number
of channels in a cell to vary with the traffic load, and thus it can usually achieve a higher network
capacity.

Another type of important channel allocation problem is the sub-channel allocation problem
in an OFDMA system (e.g., 4G cellular network). In an OFDMA system, each mobile user is
assigned to a sub-carrier or a sub-channel (i.e., a group of sub-carriers) for their transmissions. Due
to the heterogeneity of mobile users, the same sub-channel may have different wireless characteristics
(e.g., channel responses) for different users. Therefore, the assignment of all sub-channels among all
mobile users becomes a challenging problem. Ideally, every sub-channel will be allocated to a mobile
user who has a good channel response on this sub-channel. This is the so-called multiuser diversity.

2.4.3 ADMISSION CONTROL
Admission control is important for wireless communication systems, especially those with limited
resources but many potential users. However, an overly conservative admission control policy may
reject too many users and result in the under-utilization of radio resources.

Admission control can also be used to differentiate mobile users according to their QoS
requirements. For example, voice call traffic usually has a strict QoS requirement (e.g., delay and
bandwidth), while data traffic usually has a more flexible QoS requirement. Thus, voice traffic may
be admitted with a higher priority than data traffic when the network is congested.

2.5 CHAPTER SUMMARY
In this chapter, we introduce the basics of wireless communications and networks, including the radio
propagation and radio channel model, wireless access and networking technologies, and several issues
of radio resource management. This chapter serves as the basis for understanding the technology
aspects of wireless pricing models in later chapters. For more in-depth discussions regarding the
wireless technologies, we refer the readers to [8, 9, 10, 11, 12, 13, 14, 15].
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C H A P T E R 3

Economics Basics
In this chapter, we will follow the convention of economics and use the terms “firm” and “consumer.”
A firm may represent a wireless service provider or a wireless spectrum owner, and a consumer can
represent a wireless user or a lower tier wireless service provider. In later chapters, we will give more
concrete examples of firms and consumers in different wireless networks. The theory introduced in
this chapter closely follows several microeconomics textbooks including [16, 17, 18].

3.1 SUPPLY AND DEMAND
Supply and demand in a market are both functions of market prices. When prices increase, usually
the market supply increases as firms have more incentives to produce, and market demand decreases
as consumers have fewer incentives to purchase. We first study how the demand and supply change
with prices, and then characterize what prices lead to a market equilibrium where supply equals
demand.

3.1.1 MARKET DEMAND FUNCTION
Let us consider a consumer who subscribes to a wireless cellular data plan. We may characterize the
consumer demand as a function of price by the following table:

Table 3.1: Relationship between the monthly wireless data demand and the price per Gigabyte

Price Per Gigabyte Wireless Data Demanded Per Month
$1 50 Gigabytes
$2 22 Gigabytes

$10 4 Gigabytes
$20 1.5 Gigabytes

Other consumers may have different demands for wireless data. If we add up all consumers’
demands together, we will obtain the relationship between the aggregate demand and the price,
which we call the market demand function.

Definition 3.1 The market demand function D(·) characterizes the relationship between the
total demand quantity Qd and the product price P as follows

Qd = D(P ). (3.1)
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Figure 3.1 gives an example of the market demand function. Here we adopt the convention
of placing price at the vertical y-axis and quantity (e.g., demand or supply) at the horizontal x-axis.
When the price decreases from P1 to P2, the demand increases from Q1 to Q2.There are two reasons
for this inverse change of demand. First, the existing consumers who have positive demands at price
P1 will increase their demands when the price drops. Second, some consumers did not purchase at
price P1 may decide to purchase at the lower price P2.

0 Quantity

Price

Q1 Q2

P1

P2

D

D

Movement along demand function

Qd = D(P )

Figure 3.1: The market demand function Qd = D(P ). When the price decreases from P1 to P2, the
demand increases from Q1 to Q2.

Besides shifting along the demand function due to the price change, the demand function
itself might also shift due to several reasons: (i) the change of consumers’ income, (ii) the price
change of other products, and (iii) the change of consumers’ tastes. Figure 3.2 illustrates such an
example. Let us take wireless data service as an example. When consumers’ income increases, the
aggregate cellular data demand will increase (and thus the demand function will shift to the right),
as consumers are more willing to use high price services (such as high-definition video streaming).
When the price of a substitutable product (such as the price of commercial Wi-Fi access points)
decreases, the aggregate cellular data demand decreases, as consumers are more willing to use the
substitutable product. Finally, when consumers’ tastes change due to education, the demand function
may also shift.

3.1.2 MARKET SUPPLY FUNCTION
Much like Definition 3.1, we can define the market supply function as follows.

Definition 3.2 The market supply function S(·) characterizes the relationship between the total
supply quantity Qs and the product price P as follows

Qs = S(P ). (3.2)
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Figure 3.2: The shift of market demand function from Qd = D(P ) to Q′
d = D′(P ). For example, under

the same price P1, the demand changes from Q1 to Q2.

Imagine the case where each firm does not have a capacity limit, and then the total market
supply will increase with the price, as shown in Figure 3.3.
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S

S

Figure 3.3: The market supply function Qs = S(P ) and the shift along the function due to a price
increase. For example, when the price increases from P1 to P2, the supply increases from Q1 to Q2.

Similarly, the market supply function itself may shift when the price of a raw material (used for
production) changes or the production technology changes. For example, consider a wireless service
provider selling wireless services (e.g., data rates) to customers. The supply of wireless resource may
change if the price for wireless spectrum (raw material that provides data rates) changes or the
physical layer technologies change (such as upgrading from the 3G CDMA-based cellular network
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Figure 3.4: The market equilibrium price Pe and quantity (demand and supply) Qe.

to a more efficient 4G OFDMA-based network). We leave it as an exercise for the readers to draw
a figure of shifting market supply function similar to Figure 3.2.

3.1.3 MARKET EQUILIBRIUM
Now let us look at the interactions between supply and demand, which lead to a stable market.

Definition 3.3 At a market equilibrium, the aggregate demand equals the aggregate supply.

Apparently there will be a price associated with a market equilibrium. If the demand and
supply functions are continuous, and monotonic (i.e., strictly decreasing/increasing) with the price,
then there is a unique intersection point which corresponds to the unique market equilibrium. The
corresponding price at this point is denoted by Pe and the (same) aggregate demand and aggregate
supply is denoted as Qe, i.e.,

Qe = D(Pe) = S(Pe). (3.3)

Figure 3.4 illustrates the market equilibrium. We want to emphasize that equilibrium is a
prediction of how the actual market will look, as the market is stable at the equilibrium and is unlikely
to change once it has reached there. When the market price is lower than the equilibrium price Pe,
for example, the aggregate demand is higher than the aggregate supply. In this case, consumers are
willing to pay more to secure the limited supply, and the firms have incentives to produce more to
earn more profits. As a result, the market price increases until the equilibrium is reached. Of course,
the real process of reaching the market equilibrium is more complicated than this, and may involve
some iterative adjustments of the price.

When either market demand function or market supply function shifts due to factors other
than the price, the equilibrium will also change accordingly.
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3.2 CONSUMER BEHAVIOR
Now let us zoom into the behavior of a particular consumer, and understand how the market demand
function Qd = D(P ) is derived.

3.2.1 INDIFFERENCE CURVES
In order to understand a single consumer’s demand, we first need to understand how a consumer
evaluates the benefit of consuming certain products. For example, how would a consumer evaluate
the satisfaction level of watching a 60-minute action movie and playing 30 minutes of video games on
his iPad? To explain this, we first define the concept of market basket (also known as the commodity
bundle).

Definition 3.4 A market basket specifies the quantity of different products.

If we consider “watching movies” and“playing games” as two types of products, then watching a
60-minute movie and playing 30 minutes of a game can be represented by the market basket (60, 30).
We can use a utility function U to characterize the consumer’s satisfaction level of consuming a certain
market basket (x, y), i.e.,

U = U(x, y). (3.4)

In Figure 3.5, we represent the basket (60, 30) as point 1. We also add several baskets, where
basket 2 is (45, 40), basket 3 is (30, 60), basket 4 is (25, 25), and basket 5 is (75, 65). Assuming
that the consumer’s utility is increasing in both x and y, then point 5 leads to the maximum utility
(among five baskets) and point 4 leads to the minimum utility. If we further know that the consumer
is indifferent among baskets 1, 2, and 3 (i.e., the consumer associates these baskets with the same
utility value), then we say that these three baskets are on the same indifference curve.

Definition 3.5 An indifference curve represents a set of market baskets where the consumer’s
utilities are the same.

The indifference curve characterizes how a consumer trades off two different products. We
can further imagine an indifference map, which consists of all indifference curves of a consumer. In
Figure 3.5, basket 5 will be on an indifference curve that has a higher utility than baskets 1, 2, and
3, and basket 4 will be on an indifference curve that has a lower utility than baskets 1, 2, and 3.

3.2.2 BUDGET CONSTRAINTS
If a consumer has enough income, he will definitely prefer to choose basket 5 in Figure 3.5 over the
other four baskets. However, the budget constraint will limit a consumer’s choice.

Definition 3.6 The budget constraint characterizes which market baskets are affordable to the
consumer.



24 3. ECONOMICS BASICS

Minutes of
Playing Games

60

40

30

Minutes of
Watching Movie

604530

3

2

1

4 (25,25)

5 (75,65)

Figure 3.5: Market baskets and indifference curve.

In our example,we can consider the limited energy of the iPad battery as the budget.Assuming
watching one minute of movie will cost 1 unit of energy, and playing one minute of game will cost
2 units of energy. Then the constraint of 100 units of energy leads to the budget constraint shown
in Figure 3.6, which can be mathematically represented as x + 2y = 100, where x and y are the
times for watching movie and for playing game, respectively. The consumer can afford any market
basket on or below the budget constraint. Alternatively, one can think of the price of watching movie
as Px = 1/min and the price of playing game as Py = 2/min. Thus, the budget constraint can be
represented by xPx + yPy = I , where I is the fixed budget.

3.2.3 CONSUMER CONSUMPTION PROBLEM
Once we consider both the consumer’s indifference curve and the budget constraint, we will start
to understand how a consumer decides which market basket to purchase. Essentially, the consumer
wants to maximize its utility subject to the budget constraint. Geometrically, the consumer will find
the highest indifference curve that “touches” the budget constraint.

Let us consider the illustration in Figure 3.7. It is clear that basket a or b does not maximize
the utility, as basket c is on a higher utility indifference curve which “touches” the budget constraint
(and thus is feasible). To be more precise, the derivative of the indifference curve with utility U3

at basket c equals the slope of the budget constraint at basket c, i.e., the budget constraint is the
tangent line to the indifference curve at basket c,

�y

�x

∣∣∣∣
U(x,y)=U3,(x,y)=(xc,yc)

= −Px

Py

. (3.5)



3.2. CONSUMER BEHAVIOR 25

100

50 x + 2y = 100

y
Minutes of
Playing Games

x

Minutes of
Watching Movie

Figure 3.6: Budget constraint of 100 units of battery energy: x + 2y = 100. The consumer can afford
any market basket on or below the budget constraint (i.e., the shaded area).
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Figure 3.7: Consumer’s optimal market basket choice is basket c.

The left-hand side of equation (3.5) is also called marginal rate of substitution (MRS), which
represents how much the consumer is willing to tradeoff one product with the other product. Here
we constrain U(x, y) = U3, which means that the MRS is measured along the indifference curve
with a constant utility U3. Except in very special cases, the MRS along an indifference curve is not
a constant, and that is why we need to specify basket c at (x, y) = (xc, yc).
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3.2.4 CONSUMER DEMAND FUNCTION
Now we are ready to derive a consumer’s demand function, which characterizes how its demand of a
product changes with the price of that product.The market demand function is simply the summation
of all consumers’ demand functions in the same market (also known as aggregate demand).

Assume that there are three games on iPad. The first one is a strategy game (e.g., Chess)
that requires deep thinking and thus infrequent inputs and animations; the second one is a light
game (e.g., Angry Birds) that contains some frequent simple animations; the third one is an action
game (e.g., car racing) that features high-definition action-packed animations. The energy prices of
these three games are 1/min, 2/min, and 4/min, respectively. With a total budget of 100 units of
energy, the budget constraint will rotate around the point of (100, 0) (under the fixed energy price
of 1/min for movie watching), depending on which game is played. The optimal market basket that
maximizes the consumer’s utility will also change accordingly, denoted as baskets A, B, and C as
shown in Figure 3.8.

100

100

50

25

Py = 1/min

Py = 2/min

Py = 4/min

yA

yB

yC

A

B

C

Minutes of
Playing Games

Minutes of
Watching Movie

Figure 3.8: Consumer’s different optimal market basket choices under different energy prices for playing
games.

The three points of A, B, C lead to three points on the consumer’s demand curve (in terms of
the demand of time for playing game). Connecting these points (or alternatively choosing different
energy price for playing games and examining the utility maximizing baskets) will lead to the demand
function as shown in Figure 3.9.

3.2.5 PRICE ELASTICITY
We notice that a consumer’s demand is often downward slopping, i.e., a lower price leads to a
higher demand. However, how fast the demand changes with the price depends on the nature of
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Figure 3.9: Consumer’s demand function for playing iPad games as a function of the energy cost.

the demand. Consider the cellular wireless data usage as an example. A college student might be
very price sensitive, and will dramatically decrease the monthly data usage if the price per Gigabyte
of cellular data increases. However, a business consumer might be much less sensitive and not even
notice the change of price until several months later. Such sensitivity of demand in term of price can
be characterized by the price elasticity.

Definition 3.7 The price elasticity of demand measures the ratio between the percentage change
of demand and the percentage change of price, i.e.,

Ed = % change in demand
% change in price

= �Qd/Qd

�P/P
. (3.6)

An illustrative example is shown in Figure 3.10. Here we use the market demand function
Qd = D(P ) to illustrate the concept of price elasticity, although the same concept can also be applied
to consumer demand function. The value of Ed is often negative due to the downward slopping of
the demand curve.

When the demand function Qd is differentiable, we can compute the “point-price elasticity”
by taking derivative of the demand function at a particular price P :

Ed = P

Qd

∂Qd

∂P
. (3.7)

Depending on the value of Ed , the demand can be classified into three types:

• Elastic demand: the demand changes significantly with the price and Ed < −1.
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Qd = D(P )

�P

�Qd

Price (P )

Quantity (Qd)

Figure 3.10: The change of demand �Qd due to the change of price �P .

• Inelastic demand: the demand is not sensitive to price and −1 < Ed < 0.

• Unitary elastic demand: Ed = −1.

Notice that different parts of the same demand function can have different price elasticities.
If a firm can adjust the price P to maximize its revenue PQd , then it will decrease the price when
the market demand is elastic, increase the price when the market demand is inelastic, and do not
change the price when the market demand is unitary elastic.

3.3 FIRM BEHAVIOR

In this section, we will take a deeper look at the firm, and discuss how the market supply function
Qs = S(P ) is derived from the firm’s cost minimization behavior.

3.3.1 TOTAL AND MARGINAL PRODUCTION COST
In a market, a firm will produce products based on certain technologies and sell the products in the
market. How many they produce depends both on the production costs and the selling price in the
market. We will start by understanding the types and impacts of production costs.

First, we can classify the cost into explicit costs and opportunity costs. Explicit cost of a wireless
service provider may involve the cost of purchasing and installing the network equipments as well
as the salary of the engineers. Opportunity costs represent the income that the firm loses due to
utilizing the resources for a particular purpose. For example, if a spectrum owner (such as AT&T)
decides to offer cellular services over its licensed spectrum, it explicitly forgoes the income that it can
earn by leasing the spectrum to a third party (such as Google). The production cost thus includes
both the explicit and opportunity costs.
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The production cost will be different depending on whether we consider short-term or long-
term. In general, we have fewer production choices in the short run than in the long run. For example,
in the long run a wireless service provider may be able to choose which technology to use (CDMA,
TDMA, or OFDMA) and how much spectrum to obtain (through auction or leasing). In the short
run, however, both the technology and total spectrum (and thus the network capacity) are fixed, and
the service provider can only change the resource allocation among different cells, users, frequency
bands, and time slots. In this section, we will focus the discussions on the short-term production
cost. The discussions can be similarly generalized to the long-term production cost.

The total cost includes two parts: the fixed cost and the variable cost. The fixed cost F is
the amount that a firm needs to pay independent of the quantity produced. The variable cost V (q)

depends on the production quantity q.

Definition 3.8 The total production cost includes both the fixed cost and variable cost, i.e.,

C(q) = F + V (q). (3.8)

We are also interested in how the total cost changes when the firm changes with production
quantity.

Definition 3.9 The marginal cost measures how the total cost changes with the production
quantity, i.e.,

MC(q) = % change in total production cost
% change in production quantity

= �C(q)

�q
= �V (q)

�q
. (3.9)

Notice that the fixed cost F does not affect the computation of marginal cost. When the
variable cost function V (q) is differentiable, we have

MC(q) = ∂C(q)

∂q
= ∂V (q)

∂q
. (3.10)

3.3.2 COMPETITIVE FIRM’S SUPPLY FUNCTION
Next we derive the supply function of a competitive firm.

Definition 3.10 A competitive firm is price-taking and acts as if the market price is independent
of the quantity produced and sold by the firm.

The competitive firm accurately reflects the reality when the firm faces many competitors in
the same market. In this case, each firm’s production decision is unlikely to significantly change the
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total quantity available in the market, and thus will not significantly affect the market price. The
total revenue of a competitive firm will be P · q, where P is the market price and q is the production
quantity. This is assuming that the produced quantity can always be sold at the fixed market price
P . The firm wants to choose the production amount q to maximize its profit.

Definition 3.11 A competitive firm’s profit is the difference between revenue and total cost, i.e.,

π(q) = P · q − V (q) − F. (3.11)

If the firm produces q = 0, then the total profit is −F . Here we assume that the fixed cost F

is also the sunk cost, i.e., a cost that the firm cannot avoid. This means that a firm will only produce
when the revenue is no less than the variable cost, i.e., Pq ≥ V (q). At the optimal choice of q∗ that
maximizes the profit, we have

P = ∂V (q)

∂q
= MC(q), (3.12)

which means that the price equals the marginal cost.
As we change the market price P , the competitive firm’s optimal production quantity q

changes according to (3.12). The firm’s supply function is thus the firm’s marginal cost function as
long as revenue is no smaller than the variable cost.

3.4 CHAPTER SUMMARY
In this chapter, we introduced the basics of microeconoomics, including the relationship of supply
and demand, the consumer behavior model, and the firm behavior model. In particular, we showed
how the market supply and demand are derived based on the behaviors of individual consumers
and competitive firms. This chapter serves as the basis for understanding the economics aspects of
wireless pricing models in later chapters.
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C H A P T E R 4

Social Optimal Pricing
This chapter will focus on the issue of social optimal pricing, where a service provider chooses
prices to maximize the social welfare. This corresponds to the case, for example, where the service
provider’s interests are aligned with the regulator’s interests through proper economic mechanisms.
The basic approach of social optimal pricing is to formulate the problem as an optimization problem,
and design a dual-based distributed algorithm for the distributed resource allocation. Here the dual
variables have the interpretation of “shadow prices” in economics.

We will first introduce the theoretical background of convex optimization and dual-based
algorithms, and then illustrate the theory through two examples: single cell wireless video streaming
and multi-provider resource allocation.

4.1 THEORY: DUAL-BASED OPTIMIZATION
In this section, we will cover the basics of convex optimization and dual-optimization. We closely
follow the discussions in [19, 20], where readers can find more in-depth discussions.

4.1.1 PRELIMS
We use the notation R

n to denote the set of all real n-vectors. Each vector in R
n is called a point

of R
n. When n = 1, we use R to represent the set of real 1-vectors or real numbers. The notation

f : R
n → R

m is used to denote a function on some subset of R
n (specifically, its domain, which we

denote D(f )) into the set R
m. That is, a function f : R

n → R
m maps every real n-vector in its

domain D(f ) into an m-vector.

Convex Sets
Suppose x1 �= x2 are two distinct points in R

n. Any point y on the line passing through x1 and
x2 can be expressed as

y = θx1 + (1 − θ)x2, for some θ ∈ R.

The parameter value θ = 1 corresponds to y = x1, and θ = 0 corresponds to y = x2. Values of θ

between 0 and 1 correspond to the (closed) line segment between x1 and x2.
A point on the line passing through x1 and x2 is referred to as an affine combination of x1

and x2. A point on the line segment between x1 and x2 is referred to as a convex combination of x1

and x2, which can be equivalently expressed as

y = θ1x1 + θ2x2,



32 4. SOCIAL OPTIMAL PRICING

with θ1 + θ2 = 1 and θi ≥ 0, i = 1, 2.
A nonempty set X ⊆ R

n is convex if the line segment between any two points (i.e., convex
combinations of any two points) in X lies entirely in X . Specifically,

Definition 4.1 Convex Set A nonempty set X ⊆ R
n is convex if for any x1,x2 ∈ X and any

θ ∈ R with 0 ≤ θ ≤ 1, we have
θx1 + (1 − θ)x2 ∈ X . (4.1)

Geometrically, a set is convex if every point in the set can be reached by every other point,
along an inner straight path between them, where inner means lying in the set. Obviously, any interval
in R is a convex set. Figure 4.1 illustrates some simple convex and nonconvex sets in R

2.

x1

x2

Figure 4.1: Some simple convex and nonconvex sets. (I) The ellipsoid, which includes its boundary
(shown as solid curves), is convex. (II) The kidney shaped set is not convex, since the line segment
between the points x1 and x2 is not entirely contained in the set. (III) The hexagon which contains some
boundary points but not all (the dotted boundary points are not included), is not convex.

The concept of convex combination can be generalized to more than two points. Specifically,
a convex combination of points x1, ...,xk can be expressed as

y = θ1x1 + ... + θkxk, (4.2)

with θ1 + ... + θk = 1 and θi ≥ 0, i = 1, ..., k. The condition for convex sets can be generalized
accordingly. More specifically,

Lemma 4.2 A nonempty set X is convex, if and only if for any x1, ...,xk ∈ X ,

θ1x1 + ... + θkxk ∈ X , (4.3)

when θ1 + ... + θk = 1 and θi ≥ 0, i = 1, ..., k.
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Figure 4.2: The convex hulls of two simple sets in R
2. (I) The convex hull of a set of discrete points

(shown as dots) is the pentagon (shown shaded). (II) The convex hull of the kidney shaped set in Figure
4.1 is the shaded set.

The convex hull of a set X , denoted H(X ), is the smallest convex set that contains X . That
is, it consists of the convex combinations of all points in X . Specifically,

Definition 4.3 Convex Hull The convex hull of a set X , denoted H(X ), is given by

H(X ) � {θ1x1 + ... + θkxk | θ1 + ... + θk = 1, θi ≥ 0,xi ∈ X , i = 1, ..., k} .

As the name suggests, the convex hull H(X ) is always convex. Moreover, we have (i) X ⊆
H(X ), (ii) X = H(X ) if X is a convex set, and (iii) If Y is any convex set that contains X , then
H(X ) ⊆ Y .The last statement implies that the convex hull of a set X is the smallest convex set that
contains X . Figure 4.2 illustrates the convex hulls of some simple sets in R

2.

Operations Preserving Convexity of Sets
Now we describe some simple operations that preserve the convexity of sets, or allow us to construct
new convex sets.

1. Intersection: If X1, ...,Xk are convex sets, then X � X1 ∩ ... ∩ Xk is convex.

2. Affine mapping: Suppose X is a subset of R
n, A ∈ R

m×n, and b ∈ R
m. Define a new set

Y ⊆ R
m by1

Y � {Ax + b | x ∈ X }.
Then if X is convex, so is Y . The affine mapping operation generalizes a lot of common
operations including scaling, translation, summation, projection, etc.

1Here the notation R
m×n denotes the set of all m × n real matrices, and A is an arbitrary m × n matrix.
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(
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y, f(y)

)chord

0 x y

f(·)

Figure 4.3: An illustration of a convex function f (·) on R. The chord (shown as dots) between points
(x, f (x)) and (y, f (y)) on the graph of f (·) lies above the graph.

Convex Functions
We consider a scalar-valued function f : R

n → R, which maps every real n-vectors in its domain
D(f ) into a real number in R. In order to distinguish a function from a variable, we will use the
notation f (·) to denote a function f whenever there is a need.

In the context of optimization, one of the most important properties of a function f (·) is its
convexity (or concavity). Specifically,

Definition 4.4 Convex Function A function f : R
n → R is convex, if (i) D(f ) is a convex set,

and (ii) for all x,y ∈ D(f ) and θ ∈ R with 0 ≤ θ ≤ 1, we have

f (θx + (1 − θ)y) ≤ θf (x) + (1 − θ)f (y). (4.4)

A function f (·) is strictly convex if the strict inequality holds in (4.4) whenever x �= y and
0 < θ < 1. We say f (·) is (strictly) concave if −f (·) is (strictly) convex. Note that a function can be
neither convex nor concave. As a simple example, consider the function f (x) = x3 on R. We can
easily find thatf (θx + (1 − θ)y) ≥ θf (x) + (1 − θ)f (y)whenx, y ≤ 0, andf (θx + (1 − θ)y) ≤
θf (x) + (1 − θ)f (y) when x, y ≥ 0.

Geometrically, the inequality in (4.4) means that for any x,y ∈ D(f ), the line segment
between points (x, f (x)) and (y, f (y)), which is called the chord from x to y, lies above the graph
of f (·). Figure 4.3 illustrates a simple convex function on R.

As with convex sets, the condition in (4.4) can be generalized to the case of more than two
points: A function f (·) is convex, if and only if D(f ) is convex and

f (θ1x1 + ... + θkxk) ≤ θ1f (x1) + ... + θkf (xk), (4.5)

for any x1, ...,xk ∈ D(f ), when θ1 + ... + θk = 1 and θi ≥ 0, i = 1, ..., k.
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Figure 4.4: The first-order condition for a convex function f (·) on R. The line l(y) = f (x) +
∇f (x)T (y − x) (shown as a dashed line) lies under the graph of f (·).

First-order Conditions for Convex Functions
For a scalar-valued function f : R

n → R, the derivative or gradient of f (·) at a point x ∈ D(f ),
denoted by ∇f (x), is an n-vector with the ith component given by

∇f (x)i = ∂f (x)

∂xi

, i = 1, ..., n, (4.6)

provided the partial derivatives exist. Here xi is the i-th coordinate of the vector x. If the partial
derivatives exist at x for all coordinates xi , we say f (·) is differentiable at x. The function f (·) is
differentiable (everywhere in its domain) if D(f ) is open (i.e., it contains no boundary points), and
it is differentiable at every point in D(f ).

A differentiable function f (·) is convex if and only if D(f ) is convex and

f (y) ≥ f (x) + ∇f (x)T (y − x), ∀x,y ∈ D(f ). (4.7)

This inequality is called the first-order condition for convex functions.
Geometrically, the first-order condition (4.7) means that the line passing through (x, f (x))

along the gradient of f (·) at x, i.e., ∇f (x), lies under the graph of f (·). Figure 4.4 illustrates the
first-order condition for a simple convex function on R.

The first-order condition (4.7) is the most important property of convex functions, and plays
an important role in convex optimization. It implies that from local information about a convex
function (i.e., its value f (x) and gradient ∇f (x) at a point x), we can derive global information
(i.e., a global underestimator of f (·) at any point). As one simple example, the inequality (4.7)
shows that if ∇f (x) = 0 (i.e., ∇f (x)i = 0, i = 1, ..., n), then x is a global minimizer of f (·),
since f (y) ≥ f (x), ∀y ∈ D(f ).
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Second-order Conditions for Convex Functions
The second derivative or Hessian matrix of a scalar-valued function f (·) at a point x ∈ D(f ),
denoted by ∇2f (x), is an n × n matrix, given by

∇2f (x)ij = ∂2f (x)

∂xi∂xj

, i = 1, ..., n, j = 1, ..., n, (4.8)

provided that f (·) is twice differentiable at x. We say f (·) is twice differentiable (everywhere in its
domain) if D(f ) is open, and it is twice differentiable at every point in D(f ).

A twice differentiable f (·) is convex, if and only if D(f ) is convex and

∇2f (x)  0, ∀x ∈ D(f ), (4.9)

that is, if its Hessian matrix is positive semidefinite. This inequality is referred to as the second-order
condition for convex functions.

For a scalar-valued function f (·) on R, the inequality (4.9) reduces to the simple condition
f ′′(x) ≥ 0, which means that the gradient is nondecreasing. Geometrically, the second-order condi-
tion (4.9) can be interpreted as the requirement that the graph of the function have positive (upward)
curvature at x.

Operations Preserving Convexity of Functions
Now we describe some simple operations that preserve convexity (or concavity) of functions, or allow
us to construct new convex and concave functions.

1. Nonnegative weighted sums: Suppose f1(·), ..., fk(·) are convex, and θ1, ..., θk ≥ 0. Define a
new function by

f (x) � θ1f1(x) + ... + θkfk(x) ,

with D(f ) = D(f1) ∩ ... ∩ D(fk). Then f (·) is also convex.

2. Composition with an affine mapping: Suppose f (·) is a function on R
n, A ∈ R

n×m, and b ∈ R
n.

Define a new function by

g(x) � f (Ax + b),

with D(g) = {x ∈ R
m|Ax + b ∈ D(f )}. Then if f (·) is convex, so is g(·).

3. Point-wise maximum: Suppose f1(·), ..., fk(·) are convex. Define a new function by their
pointwise maximum

f (x) � max{f1(x), ..., fk(x)},
with D(f ) = D(f1) ∩ ... ∩ D(fk). Then f (·) is also convex.
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4.1.2 CONVEX OPTIMIZATION
A mathematical optimization problem usually describes the problem of finding a point over a feasible
set that minimizes an objective function. It has the form

minimize f (x)

subject to fi(x) ≤ 0, i = 1, ..., m.
(4.10)

The function f : R
n → R is called the objective function (or cost function), the functions fi : R

n →
R, i = 1, ..., m, are called the (inequality) constraint functions, and the point x ∈ R

n is the optimiza-
tion variable of the problem.2 The domain of an optimization problem (4.10) is the intersection of
the objective function’s domain and all constraint functions’ domains, denoted by D(p) or D simply,
i.e., D � D(f ) ∩ D(f1) ∩ ... ∩ D(fm).

A point x is feasible for an optimization problem (4.10) if it satisfies all constraints fi(x) ≤
0, i = 1, ..., m.The set of all feasible points is called the constraint set or feasible set for the optimiza-
tion problem (4.10), denoted by C(p) or C simply, i.e.,

C � {x | x ∈ D, fi(x) ≤ 0, i = 1, ..., m}. (4.11)

A feasible point x ∈ C is called (globally) optimal (a global minimizer), or a solution of the
problem (4.10), if it has the smallest objective value among all feasible points, i.e.,

f (x) ≤ f (z), ∀z ∈ C. (4.12)

A feasible point x ∈ C is locally optimal (a local minimizer), if it is no worse than its feasible neighbors,
that is, if there is an ε > 0 such that

f (x) ≤ f (z), ∀z ∈ C with ||z − x|| ≤ ε, (4.13)

where ||x|| �
√

xT x is the standard Euclidean norm of a vector x.That is, ||z − x|| is the Euclidean
distance between points z and x.

We are interested in a class of optimization problems called convex optimization problems,where
the objective and constraint functions are convex. This implies the domain D and the constraint set
C are both convex. A fundamental property of convex optimization problem is that: a local minimizer
is also a global minimizer. If in addition the objective function is strictly convex, then the global minimizer
is unique.

Unconstrained Convex Optimization
If there is no constraint (i.e.,m = 0) in the problem (4.10), we say it is an unconstrained optimization.
That is, an unconstrained convex optimization problem is one of the form

minimize f (x) (4.14)

2Note that any equality constraint (e.g., h(x) = 0) can be represented by two inequality constraints equivalently, i.e., h(x) ≥ 0
and −h(x) ≥ 0. Therefore, we consider the inequality constraint only without loss of generality.
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where the objective function f (·) is convex. Obviously, in an unconstrained convex optimization,
the constraint set is the domain of f (·), i.e., C = D(f ).

The following lemma characterizes the optimality conditions for an unconstrained convex
optimization, that is, the necessary and sufficient conditions for a feasible point to be (globally)
optimal.

Lemma 4.5 Suppose the objective function f (·) is convex and differentiable. A feasible point x∗ ∈ C is
a global minimizer of f (·) or a solution of (4.14) if and only if

∇f (x∗) = 0, (4.15)

that is, ∇f (x∗)i = ∂f (x∗)
∂xi

= 0, i = 1, ..., n.

We now discuss the computational methods for solving an unconstrained optimization. By
the optimality condition (4.15), solving the problem (4.14) is the same as finding a solution of
∇f (x) = 0, i.e., a set of n equations ∂f (x)

∂xi
= 0, i = 1, ..., n. In a few special cases, it is possible

to solve these n equations analytically; but more generally the problem must be solved by an iter-
ative algorithm. That is, we want to find an algorithm that computes a sequence of feasible points
x(0),x(1), ... with f (x(k)) → f (x∗) as k → ∞. Such a sequence of points is called a minimizing
sequence for the problem (4.14). An algorithm is said to be iteratively descent, if it successively gener-
ates points x(1),x(2), ..., (from an initial point x(0)) such that f (·) is decreasing at each iteration,
i.e., f (x(k+1)) < f (x(k)), ∀k.

We focus on the most popular gradient-based algorithms, which have the form

x(k+1) = x(k) + γ (k)d(k),

where γ (k) > 0 is a positive scalar called the step size or step length at iteration k, and d(k) is a gradient-
based n-vector called the step or search direction at iteration k. The iterative descent property requires
that ∇f (x(k))T d(k) < 0, otherwise, f (x(k+1)) − f (x(k)) ≥ γ (k)∇f (x(k))T d(k) ≥ 0. Two widely
used gradient-based algorithms are presented below. For more algorithms, please refer to [20].

1. Gradient Descent Method:

d(k) � −∇f (x(k)).

That is, the search direction at each iteration k is the negative gradient at x(k).

2. Newton’s Method:

d(k) � −(∇2f (x(k))
)−1∇f (x(k)).
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C

x∗

∇f(x∗)

x x − x∗

Contours of f(·)

Figure 4.5: Geometric interpretation of the optimality condition in (4.17).The constraint set C is shown
shaded. The gradient ∇f (x∗) makes an angle less than or equal to 90 degrees with all feasible variations
x − x∗.

Constrained Convex Optimization
A constrained convex optimization problem, or just convex optimization, is one of the form

minimize f (x)

subject to fi(x) ≤ 0, i = 1, ..., m,
(4.16)

where the objective function f (·) and the constraint functions fi(·) are convex. According to (4.11),
the constraint set C is also convex.

The following lemma characterizes the optimality conditions for a constrained convex opti-
mization, that is, the necessary and sufficient conditions for a feasible point to be (globally) optimal.

Lemma 4.6 Suppose the objective function f (·) is convex and differentiable. A feasible point x∗ ∈ C is
a global minimizer of f (·) or a solution of (4.16) if and only if

∇f (x∗)T (x − x∗) ≥ 0, ∀x ∈ C. (4.17)

To better understand the optimality condition (4.17), we illustrate it geometrically in Figure
4.5. At a minimizer x∗, the gradient ∇f (x∗) makes an angle less than or equal to 90 degrees with
all feasible variations x − x∗, so that ∇f (x∗)T (x − x∗) ≥ 0, ∀x ∈ C.

We now turn to the computational methods for solving a constrained optimization problem.
Although there is a great variety of algorithms for this problem, we will restrict ourselves to a limited
class of methods that generate a minimizing sequence of feasible x(k) by searching along descent
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directions (i.e., iterative descent). Similarly, we focus on the most popular gradient-based algorithms,
which have the form

x(k+1) = x(k) + γ (k)d(k).

Two widely used gradient-based algorithms are listed below.

1. The Conditional Gradient Method:

d(k) � x(k) − x(k),

where x(k) � arg maxx∈C ∇f (x(k))T (x − x(k)) subject to ∇f (x(k))T (x − x(k)) < 0. If
∇f (x(k))T (x − x(k)) ≥ 0 for all x ∈ C, then x(k) is the optimal solution by (4.17).

2. Gradient Projection Method:
d(k) � x(k) − x(k),

where x(k) is given by x(k) �
[
x(k) − s(k)∇f (x(k))

]+. Here [·]+ denotes projection on the
constraint set C, and s(k) is a positive scalar.

4.1.3 DUALITY PRINCIPLE
Now we introduce the Lagrangian duality, which plays a central role in convex optimization. By
duality principle, an optimization problem (which we refer to as the primal problem) can usually be
converted into a (Lagrange) dual form, which is termed a (Lagrange) dual problem. The solution
of the dual problem provides a lower bound to the solution of the primal problem. In addition if
the primal problem is convex and satisfies a constraint qualification, then the value of an optimal
solution of the primal problem is given by the dual problem [19].

Lagrange Dual Functions
The basic idea in Lagrangian duality is to take the constraints into account by adding the objective
function with a weighted sum of the constraint functions.The weight associated with each constraint
function fi(x) is referred to as the Lagrange multiplier, denoted by λi . The vector λ � (λ1, ..., λm)

is called the dual variable or Lagrange multiplier vector. The Lagrangian function and dual function
for problem (4.16) are defined as follows.3

Definition 4.7 Lagrangian Function The Lagrangian function (or just Lagrangian) L : R
n ×

R
m → R is defined as

L(x,λ) � f (x) +
m∑

i=1

λifi(x), (4.18)

with the domain D(L) = D × R
m, where λi ≥ 0, and D = D(f ) ∩ D(f1) ∩ ... ∩ D(fm) is the

domain of the optimization problem (4.16).
3Note the following discussions are not only applicable to convex optimization problems, but also to non-convex optimization
problems.
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Definition 4.8 Dual Function The (Lagrange) dual function g : R
m → R is defined as the min-

imum value of the Lagrangian over x:

g(λ) � inf
x∈D

L(x,λ) = inf
x∈D

(
f (x) +

m∑
i=1

λifi(x)

)
. (4.19)

The dual function g(·) is always concave (even when the original problem (4.16) is not convex),
since it is the pointwise infimum of a family of affine functions of λ.

One of the most important properties for the dual function g(·) is that it yields lower bounds
on the optimal value f (x∗) of the problem (4.16): for any λ  0 we have

g(λ) = inf
x∈D

L(x,λ) ≤ inf
x∈C

L(x,λ) ≤ L(x∗,λ) ≤ f (x∗). (4.20)

The first inequality follows because the constraint set is a subset of the domain, i.e., C ⊆ D, the
second inequality follows because the optimal point x∗ lies in the constraint set, i.e., x∗ ∈ C, and
the last inequality follows because fi(x) ≤ 0 for any feasible x ∈ C.

Lagrange Dual Problems
As shown in (4.20), the Lagrange dual function g(·) yields a lower bound on the optimal value
f (x∗) of the optimization problem (4.16), and how far the dual function g(·) is apart from the
optimal value f (x∗) essentially depends on the dual variable λ. Thus, a natural question is: What
is the best lower bound that can be obtained from the Lagrange dual function? This leads to the
following optimization problem

maximize g(λ)

subject to λ  0.
(4.21)

The problem (4.21) is called the (Lagrange) dual problem associated with the problem (4.16), which
we call the primal problem in this context. Obviously, the dual problem (4.21) is convex (even when
the primal problem (4.16) is not convex), since the objective to be maximized is concave and the
constraint set is convex. Therefore, the solution of (4.21) is given by Lemma 4.6 (suppose the dual
function g(·) is differentiable).

Let λ∗ denote a solution (a global maximizer) of the dual problem (4.21). For clarity, we refer
to λ∗ as dual optimal or optimal Lagrange multipliers, and x∗, a solution of the primal problem (4.16),
as primal optimal.The optimal value g(λ∗) of the dual problem (4.21), by definition, is the best lower
bound on f (x∗) that can be obtained from the dual function. In particular, we have

g(λ∗) ≤ f (x∗). (4.22)

This property is called the weak duality. The difference f (x∗) − g(λ∗) is called the optimal duality
gap between the primal problem and the dual problem, which is always nonnegative.
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If the optimal duality gap attains zero, that is,

g(λ∗) = f (x∗), (4.23)

then we say that strong duality holds.
However, strong duality does not always hold, even when the primal problem is convex.There

are a lot of results that establish conditions on the problem under which strong duality holds. These
conditions are called constraint qualifications [21].

KKT Optimality Conditions
Now suppose strong duality holds. For any feasible point x of the primal problem (4.16) and λ of
the dual problem (4.21), we have

f (x) − f (x∗) ≤ f (x) − g(λ), (4.24)

since g(λ) ≤ f (x∗). Hence, dual feasible points allow us to bound how suboptimal a given feasible
point is, without knowing the exact value of f (x∗).

We refer to the gap between primal and dual objectives, i.e., f (x) − g(λ), as the duality gap
associated with the primal feasible point x and dual feasible point λ. Any primal-dual feasible pair
{x,λ} localizes the optimal values of the primal and dual problems to an interval [g(λ), f (x)], that
is,

g(λ) ≤ g(λ∗) ≤ f (x∗) ≤ f (x). (4.25)

Obviously, if the duality gap of a primal-dual feasible pair {x,λ} is zero, i.e., g(λ) = f (x), then x
is the primal optimal, λ is the dual optimal, and strong duality holds.

Let x∗ be a primal optimum and λ∗ be a dual optimum. By strong duality, we have

f (x∗) = g(λ∗) = inf
x∈D

L(x,λ∗) ≤ L(x∗,λ∗) ≤ f (x∗). (4.26)

The first equality states that the optimal duality gap is zero, the second equality follows the definition
of the dual function, the third inequality follows because the primal optimal x∗ ∈ C ⊆ D, and the
last inequality follows because λ  0 and fi(x) ≤ 0, i = 1, ..., m.

We can draw several interesting conclusions from (4.26). Firstly, the last inequality is indeed
an equality, which implies that

∑m
i=1 λ∗

i fi(x∗) = 0; since each term in the sum is non-positive, we
further have λ∗

i fi(x∗) = 0, i = 1, ..., m. This condition is referred to as the complementary slackness,
which holds for any primal optimal x∗ and any dual optimal λ∗ (when strong duality holds). The
complementary slackness can also be expressed as

λ∗
i > 0 ⇒ fi(x

∗) = 0,

or, in other words,
fi(x

∗) > 0 ⇒ λ∗
i = 0.
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Roughly speaking, this means the i-th optimal Lagrange multiplier is zero unless the i-th constraint
is active at the optimum.

Secondly, the third inequality is also an equality, i.e., infx∈D L(x,λ∗) = L(x∗,λ∗), which
implies that x∗ minimizes the Lagrangian L(x,λ∗). This means that

∂L(x∗,λ∗)
∂x

= ∇f (x∗) +
m∑

i=1

λ∗
i ∇fi(x

∗) = 0. (4.27)

Based on above, we can obtain the necessary and sufficient conditions for a primal dual feasible
pair {x∗,λ∗} to be optimal (for the primal problem and dual problem, respectively). We refer to
these conditions as the Karush-Kuhn-Tucker (KKT ) conditions [22].

Lemma 4.9 Karush-Kuhn-Tucker (KKT) Conditions Assume that the primal problem is strictly
convex and the strong duality holds. A primal dual feasible pair {x∗,λ∗} is optimal for the primal problem
and dual problem, respectively, if and only if⎧⎪⎨

⎪⎩
fi(x

∗) ≤ 0, λ∗
i ≥ 0, λ∗

i · fi(x
∗) = 0, i = 1, ..., m

∇f (x∗) +
m∑

i=1

λ∗
i ∇fi(x

∗) = 0.
(4.28)

According to Lemma 4.9, solving the primal problem (4.16) is the same as finding the primal
dual feasible pairs {x,λ} that satisfy the KKT conditions in (4.28). In a few special cases it is possible
to solve the KKT conditions (and therefore, the optimization problem) analytically. Generally, the
KKT conditions are solved by an iterative algorithm.

Shadow Price
There are some interesting interpretations for the Lagrange multipliers λi , i = 1, ..., m. Now we
can give a simple geometric interpretation of the Lagrange multipliers in terms of economics, where
they are often interpreted as prices.

To show this, we first introduce the perturbed version of the original problem (4.16)

minimize f (x)

subject to fi(x) ≤ ui, i = 1, ..., m,
(4.29)

where ui is the perturbing parameter for the i-th inequality constraint. That is, when ui is positive,
it means that we have relaxed the i-th constraint; when ui is negative, it means that we have
tightened the constraint. This perturbed problem coincides with the original problem (4.16) when
u � (u1, ..., um) = 0.

The optimal value of the perturbed problem (4.29) is given by

p∗(u) � inf
x∈C(u)

f (x),



44 4. SOCIAL OPTIMAL PRICING

where C(u) � {x | fi(x) ≤ ui, i = 1, ..., m} is the constraint set of the perturbed problem (4.29).
Note that both the constraint set C(u) and the optimal value p∗(u) of the perturbed problem (4.29)
depend on the perturbing parameters ui , i = 1, ..., m. When u = 0, we have C(u) = C where C is
the constraint set of the original problem (4.16), and p∗(0) = f (x∗) where f (x∗) � infx∈C f (x)

is the optimal value of the original problem (4.16).
Suppose x ∈ C(u) is any feasible point for the perturbed problem (4.29), i.e., fi(x) ≤ ui ,

i = 1, ..., m. For any perturbing parameters u and feasible point x ∈ C(u), we have

p∗(0) = f (x∗) = g(λ∗) ≤ f (x) +
m∑

i=1

λ∗
i fi(x) ≤ f (x) +

m∑
i=1

λ∗
i ui .

The second equality follows from the strong duality, the third inequality follows from the definition
of g(λ∗), and the last inequality follows because fi(x) ≤ ui and λ∗

i ≥ 0, i = 1, ..., m. Since the
above formula holds for any feasible point x ∈ C(u), we have

p∗(u) � inf
x∈C(u)

f (x) ≥ p∗(0) −
m∑

i=1

λ∗
i ui .

Suppose now that p∗(u) is differentiable at u = 0. Then we have

∂p∗(0)

∂ui

= −λ∗
i .

Now we give a simple interpretation of the above result in terms of economics. As we view the
variable x as a firm’s investments on n different resources, the objective f (·) as the firm’s cost, or
−f (·) as the firm’s profit, and each constraint fi(x) ≤ 0 as a limit on some resource investments.
The (negative) perturbed optimal cost function −p∗(u) tells us how much more or less profit could
be made if more, or less, of each resource were made available to the firm. In other words, when u is
close to 0, the Lagrange multiplier λ∗

i tells us approximately how much more profit the firm could
make, for a small increase in the availability of resource i. Thus, λ∗

i can be viewed as the natural or
equilibrium price for resource i. For this reason a dual optimal λ∗ is sometimes called shadow prices.

Solving Dual Problem Using the Subgradient Method
We now consider the methods for solving dual problems, also called dual methods.There are several
incentives for solving the dual problem in place of the primal: (a) The dual problem is a convex
optimization, while the primal may not be convex; (b) The dual problem may have smaller dimension
and/or simpler constraints than the primal; (c) If strong duality holds, the dual optimal value is exactly
the primal optimal value; and (d) Even if strong duality does not hold, the dual optimal value provides
a lower bound to the primal optimal value, which may be useful in designing iterative algorithms.

Of course, we should also consider some of the difficulties in solving the dual problem. The
most critical ones are the following: (a) The evaluation of the dual function g(λ) at any dual variable
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λ requires minimization of the Lagrangian L(x,λ) over all x ∈ D; (b) The dual function g(λ) may
not be differentiable in many types of problems; and (c) If strong duality does not hold, there is a
certain duality gap between the dual optimal and primal optimal.

We will discuss an important type of dual method, namely the subgradient method, which
is particularly suitable for solving a dual problem with nondifferentiable objective function. The
basic idea of subgradient methods is to generate a minimizing sequence of dual feasible λ(k) using
subgradients rather than gradients as search direction.

Given a convex function f : R
n → R, we say that a vector d ∈ R

n is a subgradient of f (·) at
a feasible point x ∈ D(f ) if

f (z) ≥ f (x) + dT (z − x), ∀z ∈ D(f ). (4.30)

If instead f (·) is a concave function, we say that d is a subgradient of f (·) at point x if and only if
−d is a subgradient of −f (·) at x. This means that a subgradient d of the dual function g(λ) at a
dual feasible point λ ∈ D(g) satisfies:

g(μ) ≤ g(λ) + dT (μ − λ), ∀μ ∈ D(g). (4.31)

Thus, the subgradient method generates a minimizing sequence of dual feasible λ(k) according
to the following iteration

λ(k+1) =
[
λ(k) + γ (k)d(k)

]+
, (4.32)

where γ (k) is the step-size, d(k) is the subgradient of g(λ) at point λ(k), and [λ]+ denotes the
projection of λ on the constraint set of the dual problem (4.21).

The fundamental difference between the gradient-based method and the subgradient method
is that with the subgradient method, the new iterative may not improve the dual objective for all
values of the step-size γ (k). That is, for some large γ (k) we may have g(λ(k+1)) < g(λ(k)), whereas
for sufficiently small step-size γ (k) we have g(λ(k+1)) ≥ g(λ(k)). This is shown in the following
Lemma, which also provides an estimate for the range of appropriate step-sizes.

Lemma 4.10 For every dual optimal solution λ∗, we have ||λ(k+1) − λ∗|| < ||λ(k) − λ∗|| for all
step-sizes γ (k) satisfying

0 < γ (k) < 2 · g(λ∗) − g(λ(k))

||d(k)||2 . (4.33)

Unfortunately, the above range for γ (k) requires the dual optimal value g(λ∗), which is usually
unknown. In practice, we can use the following approximate step-size formula

γ (k) = α(k) · g(k) − g(λ(k))

||d(k)||2 , (4.34)

where g(k) is an approximation to the optimal dual value and 0 < α(k) < 2.
There are many variations of subgradient methods that aim to accelerate the convergence of

the basic method. For more details, please refer to [19, 20].
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4.2 APPLICATION I: RESOURCE ALLOCATION FOR
WIRELESS VIDEO STREAMING

With the advances of mobile computing technologies and deployments of new cellular infrastructure,
video communications are becoming more important in many new business applications. However,
there are still many open problems in terms of how to efficiently provision complicated video QoS
requirements for mobile users. One particularly challenging problem is multi-user video streaming
over wireless channels, where the demand for better video quality and small transmission delays
needs to be reconciled with the limited and often time-varying communication resources. We will
resolve this issue through a new framework for resource allocation, source adaptation, and deadline
oriented scheduling.

4.2.1 NETWORK OPTIMIZATION FRAMEWORK

Video

Base Station

Voice

Figure 4.6: A single cell network with mixed voice and video users.

We consider a single cell in a CDMA-based cellular network, with a mixed population of
voice and video users, as shown in Fig. 4.6. A voice transmission is successful if a target Signal-to-
Interference-plus-Noise Ratio (SINR) is reached at the receiver. A video user is more flexible and
can adapt to the network environment in terms of the achieved SINR and the transmission rate.
However, once the video frames are transmitted, stringent delay deadlines need to be satisfied to
guarantee the streaming quality.
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The network’s goal is to maximize the overall quality of the video users, subject to the QoS
constraints of voice users.To achieve this, we need to carefully optimize network resource allocation,
video source signal processing, and video frame scheduling.

We will consider both uplink and downlink video streaming. In the uplink case where users
stream videos to the base station, video users need to limit aggregate interference that they generate
and affect the voice users. In the downlink case where users stream videos frame the base station, the
network needs to limit the amount of transmission power allocated to the video users. In both cases,
the optimal video streaming problem can be modeled in the framework of nonlinear constrained
optimization. Two key questions that need to be answered are: (i) how to allocate resources among
video users in an efficient manner (i.e., maximizing total users’ quality or minimizing total users’
distortion)? (ii) how to make sure that the stringent delivery deadline requirements are met for every
video frame that is chosen for transmission?

The general solution framework that answers the above two questions involves three phases:

1. Average resource allocation.This can be formulated as a constrained network optimization prob-
lem, which exploits the multiuser content diversity to efficiently utilize the network resources.

2. Video source adaptations. Based on the average resource allocation results in phase 1, each
video user adapts the video source by solving a localized optimization problem with video
summarization.

3. Multiuser deadline oriented scheduling. The network decides a transmission schedule based on
video users’ source decisions in phase 2, in order to meet the stringent deadline constraints of
the streaming applications.

In some cases we may not be able to find a feasible scheduling in phase 3. This implies that
although the system resource is enough in an average sense (guaranteed by phase 1), the deadline
requirements might be too stringent to satisfy. In that case, we will go back to phase 1 and re-
optimize the average resource allocation, but with more stringent resource constraints. This will
force the users to be more conservative when doing the source adaptations in phase 2 (i.e., each
video user will transmit fewer frames), thus make it easier to achieve a feasible scheduling in phase
3. Here we will focus the discussions on phase 1, and leave the discussions of phases 2 and 3 to [23].

4.2.2 AVERAGE RESOURCE ALLOCATION
Assume there are N video users in the cell. We characterize the QoS of a video user n by a utility
function un(xn), which is an increasing and strictly concave function of the communication resource
xn allocated to user n. This models various commonly used video quality measures such as the rate-
PSNR function and rate-summarization distortion functions. It is well known from information
theory [24] that the rate-distortion functions for a variety of sources are convex, and in practice, the
operational rate distortion functions are usually convex as well. Thus, the utility functions (defined
as negative distortion) are concave. For the average resource allocation phase, we assume that un (xn)

is continuous in xn.
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The average resource allocation is achieved by solving the following optimization problem,
where Xmax denotes the total limited resource available to the video users (i.e., total transmission
power in the downlink case and total transmission time in the uplink case),

max{xn≥0,1≤n≤N}
∑
n

un (xn) , s.t.
∑
n

xn ≤ Xmax. (4.35)

Next we will solve Problem (4.35) using the dual decomposition technique introduced in
Section 4.1.3, where the base station sets a price on the resource, and each mobile user determines its
average resource request depending on the price and its own utility function in a distributed fashion.

More specifically, the dual-based decomposition works as follows. First, we relax the constraint
in (4.35) with a dual variable λ and obtain the following Lagrangian

L (x, λ) �
∑
n

un (xn) − λ

(∑
n

xn − Xmax

)
, (4.36)

where x = (xn, 1 ≤ n ≤ N). Then Problem (4.35) can be solved at two levels.

• At the lower level, each video user solves the following problem,

max
xn≥0

(un (xn) − λxn) , (4.37)

which corresponds to maximizing the surplus (i.e., utility minus payment) based on price λ.
Denote the optimal solution of (4.37) as xn (λ), which is unique since the utility function is
continuous, increasing, and strictly concave.The video users then feedback the values of xn (λ)

to the base station.

• At the higher level, the base station adjusts λ to solve the following problem

min
λ≥0

g (λ) �
∑
n

gn (λ) + λXmax, (4.38)

where gn(λ) is the maximum value of (4.37) for a given value of λ. The dual function g (λ)

is non-differentiable in general, and (4.38) can be solved using the sub-gradient searching
method,

λ(k+1) = max

{
0, λ(k) + α(k)

(∑
n

xn

(
λ(k)
)

− Xmax

)}
, (4.39)

where k is the iteration index and α(k) is a small step size at iteration k.

Given the assumption on the utility functions, we have the property of strong duality which
implies zero duality gap. In other words, given the optimal dual solution λ∗, the corresponding
xn(λ

∗) for all n are the optimal solution of the primal problem (4.35).
The complete distributed algorithm is given in Algorithm 1, which converges under properly

chosen small step sizes [25].
Next we give two concrete examples of Problem (4.37) for wireless uplink and downlink

streaming.
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Algorithm 1 Dual-based Optimization Algorithm to solve Problem (4.35)
1: Initialization: set iteration index k = 0, and choose 0 < ε � 1 as the stopping criterion.
2: Base station announces an initial price λ(k) > 0.
3: repeat
4: for all video user n do
5: Compute xn

(
λ(k)
) = arg maxxn≥0

(
un (xn) − λ(k)xn

)
.

6: Send the value of xn

(
λ(k)
)

to the base station.
7: end for
8: Base station updates the price λ(k+1) = max

{
0, λ(k) + α(k)

(∑
n xn

(
λ(k)
)− Xmax

)}
.

9: k = k + 1.
10: until |λ(k) − λ(k−1)| < ε.

4.2.3 WIRELESS UPLINK STREAMING
In a wireless CDMA network, different users transmit using different spreading codes. These codes
are mathematically orthogonal under synchronous reception. However, the orthogonality is partially
destroyed when the transmissions are asynchronous, such as in the uplink transmissions.The received
SINR in that case is determined by the users’ transmission power, the spreading factors (defined as
the ratio of the bandwidth and the achieved rate), the modulation scheme used, and the background
noise. The maximum constrained resource of the video users can be expressed as the maximum
received power at the base station, derived based on a physical layer model similar as the one used
in [26].

We consider the uplink transmission in a single CDMA cell with M voice users and N video
streaming users. The total bandwidth W is fixed and shared by all users. Each voice user has a QoS
requirement represented in bit error rates (BER) (or frame error rates (FER)),which can be translated
into a target SINR at the base station, γvoice. Each voice user also has a target rate constraint Rvoice.
Assuming perfect power control, each voice user achieves the same received power at the base station,
P r

voice. The total received power at the base station from all video users is denoted as P
r,all
video. The

background noise n0 is fixed and includes both thermal noise and inter-cell interferences.
In order to support the successful transmissions of all voice users, we need to satisfy

W

Rvoice

GvoiceP
r
voice

n0W + (M − 1) P r
voice + P

r,all
video

≥ γvoice. (4.40)

Here W/Rvoice is the spreading factor, and coefficient Gvoice reflects the fixed modulation and
coding schemes used by all voice users (e.g., Gvoice = 1 for BPSK and Gvoice = 2 for QPSK). For
each voice user, the received interference comes from the other M − 1 voice users and all video users.
From (4.40), we can solve for the maximum allowed value of P

r,all
video, denoted as

P
r,max
video =

(
WGvoice

Rvoiceγvoice

− (M − 1)

)
P r

voice − n0W, (4.41)
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which is assumed to be fixed given fixed number of voice users M .
The network objective is to choose the transmission power of each video user during a time

segment [0, T ], such that the total video’s utility is maximized, i.e.,

max{pn(t),∀n}

N∑
n=1

un

(∫ T

0
rn (p (t)) dt

)
(4.42)

s.t.
N∑

n=1

hnpn (t) ≤ P
r,max
video , ∀t ∈ [0, T ]

0 ≤ pn (t) ≤ P max
n , ∀n,

where pn(t) is the transmission power of video user n at time t , p(t) = (pn(t), ∀n) is the vector of
all video users’ transmission power at time t , P max

n is the maximum peak transmission power of user
n, and hn is the fixed channel gain from the transmitter of user n to the base station. rn (t) is the rate
achieved by user n at time t , and depends on all video users’ transmission power, the channel gains,
the background noise, and interference from voice users. A user n’s utility function un is defined on
the video summarization quality of its transmitted sequence during [0, T ].

Problem (4.42) is not a special case of Problem (4.35), since (i) Problem (4.42) optimizes over
N functions (pn (t) , ∀n), whereas Problem (4.35) optimizes over N variables (xn, ∀n), and (ii) the
objective function in Problem (4.42) is coupled across users, whereas the objective in Problem (4.35)
is fully decoupled. This makes (4.42) difficult to solve in a distributed fashion.

In order to solve Problem (4.42), we will resort to the framework described in Section 4.2.1,
where we will perform average resource allocation (in terms of average transmission power), source
adaptation (to match the average resource allocation), and the deadline scheduling (to determine
the exact power allocation functions by deadline aware water-filling).

To simplify the problem, let us assume that video users transmit in a TDMA fashion (but still
concurrently with voice users). This is motivated by [27], where the authors showed that in order to
achieve maximum total rate in a CDMA uplink, it is better to transmit weak power users in groups
and strong power users one by one. Since video users typically need to achieve much higher rate than
voice users (thus transmit at much higher power), it is reasonable to avoid simultaneous transmissions
among video users, and thus avoid large mutual interference. A more important motivation for TDM
transmission here is to exploit the temporal variation of the video contents, i.e., content diversity.
Under such a TDM transmission scheme, the constrained resource to be allocated to the video users
becomes the total transmission time of length T .The total number of bits that can be transmitted by
user n is determined by the transmission time allocated to it, tn ∈ [0, T ], and the maximum rate it
can achieve while it is allowed to transmit. Let us denote this rate as RT DM

n , and it can be calculated
by,

RT DM
n = W log2

(
1 + min

{
hnP

max
n , P

r,max
video

}
n0W + MP r

voice

)
. (4.43)
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Under the assumption of TDM transmission, Problem (4.42) can be written as

max{tn≥0,∀n}

N∑
n=1

un

(
RT DM

n tn

)
, s.t.

N∑
n=1

tn ≤ T . (4.44)

Problem (4.44) is a special case of Problem (4.35), and the optimal transmission time allocation per
user can be found using Algorithm 1.

Once the transmission time allocations are determined, each user locally adapts its source
using summarization, which leads to the best sequence of video frames that fit into the transmission
time allocation tn. The transmission of each frame needs to meet a certain delivery deadline, after
which the frame becomes useless.This requires the base station to determine a transmission schedule
for all users, as shown in Section III of [23].

4.2.4 WIRELESS DOWNLINK STREAMING
Different from the uplink case, transmissions in the downlink are orthogonal to each other, thus it
is desirable to allow simultaneous transmissions of multiple video users. The resource constraint in
the downlink case is the maximum peak transmission power at the base station. The objective here
is to determine the transmission power functions, pn(t), of each user n during time t ∈ [0, T ], such
that the total user utility (measured in video quality) is maximized.

Following the framework described in Section 4.2.1, the first step is to perform average
resource allocation.For the downlink case,we will allocate the transmission power to each user, subject
to the total transmission power constraint (for video users) at the base station, P base

max . Since there
is no mutual interference, the transmissions of the voice users need not be taken into consideration
when determining the achievable rates of the video users.

At this stage, we will temporality assume that each user n will transmit at a fixed power level
pn throughout the time segment [0, T ]. Hence, user n’s total throughput within [0, T ] is

rn(pn) = T W log2

(
1 + hnpn

n0W

)
. (4.45)

The system optimization problem is then

max{pn≥0,∀n}

N∑
n=1

un (rn(pn)) , s.t.
N∑

n=1

pn ≤ P base
max . (4.46)

Problem (4.46) is a special case of Problem (4.35), and the optimal transmission power per user can
be solved using Algorithm 1.

Due to the differences in frame sizes and locations, transmitting at constant power levels is
not optimal in terms of meeting the frame delivery deadlines. We can further perform an energy-
efficient water-filling power allocation to improve the performance of Problem (4.46). For details,
see Section IV of [23].
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4.3 APPLICATION II: WIRELESS SERVICE PROVIDER
COMPETITION

Due to the deregulation of the telecommunication industry, future wireless users are likely to be
able to freely choose a provider (or providers) offering the best tradeoff of parameters in real time.
This is already happening with some public Wi-Fi connections, where users can connect to wireless
access points of their choices, with usage-based payments and no contracts. Despite the common
presence of a free public Wi-Fi network, some users may still choose more expensive providers who
offer better quality of service.

In this application, we consider a situation where wireless service providers compete to sell
limited wireless resources (e.g., frequency bands, time slots, transmission power) to users who are
free to choose provider(s). We investigate how providers set prices for the resource, and how users
choose the amount of resources they purchase and from which providers.The focus of our study is to
characterize the outcome of this interaction. We consider the general case where different users have
different utility functions and experience different channel conditions to different service providers.

A proper model for this system is a multi-leader-follower game. The providers announce the
wireless resource prices in the first stage, and the users announce their demand for the resource in the
second stage. A user’s choice is based on providers’ prices and its channel conditions. The providers
select their prices to maximize their revenues, keeping in mind the impact of their prices on the
demand of the users. As in [28], we assume that users pay for the allocated resources instead of the
received services. This turns out to be crucial in achieving the globally optimal resource allocation.
However, in this section we will first look at the corresponding social welfare optimization problem,
as well as a distributed primal-dual algorithm that can achieve the optimal solution of the problem.
In Section 6.3, we will revisit this problem and see how to analyze the game theoretical interactions
between the competitive providers. A surprising result there is that the equilibrium of the game is
actually the same as the optimal solution of the social welfare optimization problem studied here
under fairly mild technical assumptions.

4.3.1 SYSTEM MODEL
We consider a set J = {1, . . . , J } of service providers and a set I = {1, . . . , I } of users. Provider
j ∈ J has a total of Qj resource. A user i ∈ I can obtain resource from one or more providers, with
a demand vector qi = (qij , ∀j ∈ J

)
and qij represents the demand from user i to provider j . We

use q = (qi , ∀i ∈ I) to denote the demand vector of all users.
User i ’s utility function would be ui

(∑J
j=1 qij cij

)
, where cij is the channel quality offset for

the channel between user i and the base station of provider j (see Example 4.11 and Assumption
4.13), and ui is an increasing and concave utility function.The communication can be both downlink
or uplink, as long as users do not interfere with each other by using orthogonal resources.

Under this model, a user is allowed to purchase from several providers at the same time. For
this to be feasible, a user’s device might need to have several wireless interfaces. Mathematically, the
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solution of this model gives an upper bound on best performance of any situation where users are
constrained to purchase from one provider alone.

Next we give a concrete example of how our model is mapped into a physical wireless system.

Example 4.11 Consider wireless providers operating on orthogonal frequency bands Wj, j ∈ J .
Let qij be the fraction of time that user i is allowed to transmit exclusively on the frequency band of
provider j , with the constraint

∑
i∈Ij

qij = 1, for all j ∈ J . Furthermore, assume that each user has

a peak power constraint Pi . We can then define cij = Wj log(1 + Pi |hij |2
σ 2

ij Wj
), where hij is the channel

gain and σ 2
ij is the Gaussian noise variance for the channel between user i and network j .

Although the cij channel quality offset factor represents channel capacity in Example 4.11, it
can be any increasing function of the channel strength depending on the specific application scenario.

We make the following assumptions throughout this section:

Assumption 4.12 Utility functions For every user i ∈ I , ui(x) is differentiable, increasing, and
strictly concave in x.

Assumption 4.13 Channel quality offsets and channel gains Channel quality offsets cij

are drawn independently from continuous, possibly different utility distributions. In particular,
Prob(cij = ckl) = 0 for any i, k ∈ I and j, l ∈ J . The channel quality offset accounts for the
effect that buying the same amount of resource from different providers typically has different
effects on a user’s quality of service. As Example 4.11 shows, channel quality offset cij may be a
function of the channel gain hij between user i and provider j . In this case, the assumption is fulfilled
if channel gains are drawn from independent continuous probability distributions (e.g., Rayleigh,
Rician, distance-based path-loss model).

Assumption 4.14 Atomic and price-taking users The demand for an atomic user is not infinitely
small and can have an impact on providers’ prices. Precise characterization of this impact is one of
the focuses of our discussions.
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4.3.2 SOCIAL WELFARE OPTIMIZATION
Next we formulate the social welfare maximization problem, which aims at maximizing the sum of
users’ utility functions. For clarity of exposition, we define the following notation.

Definition 4.15 (Effective resource) Let x = (xi, ∀i ∈ I) be the vector of effective resources,
where xi(qi ) =∑J

j=1 qij cij is a function of user i ’s demand qi = (qij , ∀j ∈ J
)
.

The social welfare optimization problem (SWO) is:

SWO : maximize u(x) =
∑
i∈I

ui (xi) (4.47)

subject to
∑
j∈J

qij cij = xi, ∀i ∈ I, (4.48)

∑
i∈I

qij = Qj, ∀j ∈ J , (4.49)

variables qij , xi ≥ 0, ∀i ∈ I, j ∈ J . (4.50)

For clarity we expressed the SWO in terms of two different variables: effective resource vector
x and demand vector q, even though the problem can be expressed entirely in terms of q. In
particular, a vector q uniquely determines a vector x through equations (4.48), i.e., we can write x
as x(q). With some abuse of notation we will write u(q) when we mean u(x(q)).

Since ui(xi) is strictly concave in xi , then u(x) =∑i∈I ui(xi) is strictly concave in x. The
feasible region defined by constraints (4.48)–(4.50) is convex. Hence, u(x) has a unique optimal
solution x∗ subject to constraints (4.48)–(4.50).

However, notice that even though ui(·) is strictly concave in xi , it is not strictly concave in
the demand vector qi . Hence, SWO is non-strictly concave in q. It is well known that a non-strictly
concave maximization problem might have several different global optimizers (several different
demand vectors q in our case) [29, 30]. In particular, one can choose cij ’s, Qj ’s, and ui(·)’s in such
a way that a demand maximizing vector q∗ of SWO is not unique. However, we can show that
such cases arise with zero probability whenever channel offsets factors cij ’s are independent random
variables drawn from continuous distributions (see Assumption 4.13). For details, see Section III
of [31].

Given an optimal demand vector q∗ of the SWO problem, there exists a unique corresponding
Lagrange multiplier vector p∗, associated with the resource constraints of J providers [20]. This
p∗ actually can be interpreted as the prices announced by the providers, which will be useful for
understanding the following primal-dual algorithm.

4.3.3 PRIMAL-DUAL ALGORITHM
The previous analysis assumes that a centralized decision maker can perform network optimization
with complete network information. This may not be true in practice. Next we present a distributed
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primal-dual algorithm where providers and users only know local information and make local de-
cisions in an iterative fashion. We will show that the primal-dual algorithm converges to a set
containing the optimal solution of SWO. We can further show that this set contains only the unique
optimal solution in most cases, regardless of the values of the updating rates. We first present the
algorithm, and then the proof of its convergence.

We will consider a continuous-time algorithm, where all the variables are functions of time.
For compactness of exposition, we will sometimes write qij and pj when we mean qij (t) and pj (t),
respectively. Their time derivatives ∂qij

∂t
and ∂pj

∂t
will often be denoted by q̇ij and ṗj . We denote

by q∗ and p∗ the unique maximizer of SWO and the corresponding Lagrange multiplier vector,
respectively.

To simplify the notation, we denote by fij (t) or simply fij the marginal utility of user i with
respect to qij when his demand vector is qi(t):

fij = ∂ui(qi)

∂qij

= cij

∂ui(x)

∂x

∣∣∣
x=xi=∑J

j=1 qij cij

. (4.51)

We will use f ∗
ij to denote the value of fij (t) evaluated at q∗

i , the maximizing demand vector of user
i. So, f ∗

ij is a constant that is equal to a user’s marginal utility at the global optimal solution of the
SWO problem, as opposed to fij (t) which indicates marginal utility at a particular time t . We also
define ∇ui(qi) = (fij , ∀j ∈ J ) and ∇ui(q∗

i ) = (f ∗
ij , ∀j ∈ J ), where all the vectors are column

vectors.
We define (x)+ = max(0, x) and

(x)+y =
{

x y > 0

(x)+ y ≤ 0.

Motivated by the work in [32], we consider the following standard primal-dual variable update
algorithm:

q̇ij = k
q
ij

(
fij − pj

)+
qij

, ∀i ∈ I, ∀j ∈ J , (4.52)

ṗj = k
p
j

(
I∑

i=1

qij − Qj

)+

pj

, ∀j ∈ J . (4.53)

Here k
p
ij ’s and k

p
j ’s are the constants representing update rates. The update rule ensures that, when

a variable of interest (qij or pj ) is already zero, it will not become negative even when the direction
of the update (i.e., quantity in the parenthesis) is negative. The tuple (q(t),p(t)) controlled by
equations (4.52) and (4.53) will be referred to as the solution trajectory of the differential equations
system defined by (4.52) and (4.53).

The motivation for the proposed algorithm is quite natural. A provider increases its price
when the demand is higher than its supply and decreases its price when the demand is lower. A user
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decreases his demand when a price is higher than his marginal utility and increases it when a price
is lower. In essence, the algorithm is following the natural direction of market forces.

One key observation is that these updates can be implemented in a distributed fashion. The
users only need to know the prices proposed by the providers. The providers only need to know the
demand of the users for their own resource, and not for the resource of other providers. In particular,
user i only needs to know his own channel offset parameters cij , j ∈ J .

Next we prove the convergence of the algorithm. The first step is construct a lower-bounded
La Salle function V (q(t),p(t)) as follows:

V (q(t),p(t)) = V (t) =
¥∑
i,j

1

k
q
ij

∫ qij (t)

0
(β − q∗

ij )dβ +
¥∑
j

1

k
p
j

∫ pj (t)

0
(β − p∗

j )dβ. (4.54)

It can be shown that V (q(t),p(t)) ≥ V (q∗,p∗), i.e., V is bounded.This ensures that if the function
V is non-increasing, it will eventually reach a constant value (which may or may not be the global
minimum V (q∗,p∗)).

The second step is to show that the value of V (q(t),p(t)) is non-increasing for any solu-
tion trajectory (q(t),p(t)) that satisfies (4.52) and (4.53). More specifically, we can show that the
derivative of V along the solution trajectories of the system,

V̇ (t) =
¥∑
i,j

∂V

∂qij

q̇ij +
¥∑
j

∂V

∂pj

ṗj ,

is always nonpositive. This will ensure that (q(t),p(t)) converge to a set of values that keeps
V (q(t),p(t)) constant.

Proposition 4.16 The pair (q(t),p(t)) that satisfies (4.52) and (4.53) converges to the invariant set
VL = {q(t),p(t) : V̇ (q(t),p(t)) = 0} as t goes to ∞.

It is clear that the invariant set VL contains the solution trajectory that has the value of
the unique maximizer of SWO (q∗(t),p∗(t)) = (q∗,p∗) for all t , since V̇ (q∗,p∗) = 0. However,
it may contain other points as well. When the trajectory (q(t),p(t)) enters the invariant set, it
either reaches its minimum (i.e., by converging to the unique equilibrium point (q∗,p∗)), or it gets
stuck permanently in some limit cycle. In either case, the trajectory will be confined to a subset of
VL = {(q(t),p(t)) : V̇ (q(t),p(t)) = 0}.

The good news is that we can indeed show that the invariant set VL contains only the equi-
librium point (q∗,p∗). This can be done in two steps. First, we show that the set VL has only one
element for the majority of the network scenarios, without any restrictions on the variable update
rates. Second, we provide a sufficient condition on the update rates so that the global convergences
to the unique equilibrium point are also guaranteed in the remaining scenarios. For details, see [31].



4.3. APPLICATION II: WIRELESS SERVICE PROVIDER COMPETITION 57

4.3.4 NUMERICAL RESULTS
For numerical results, we extend the setup from Example 4.11, where the resource being sold is
the fraction of time allocated to the exclusive use of the providers’ frequency band, i.e., Qj = 1 for
j ∈ J . We take the bandwidth of the providers to be Wj = 20MHz, j ∈ J . User i ’s utility function
is ai log(1 +∑J

j=1 qij cij ), where we compute the spectral efficiency cij from the Shannon formula
1
2W log(1 + Eb/N0

W
|hij |2), qij is the allocated time fraction, Eb/N0 is the ratio of transmit power to

thermal noise, and ai is the individual willingness to pay factor taken to be the same across users.
The channel gain amplitudes |hij | = ξij

d
α/2
ij

follow Rayleigh fading, where ξij is a Rayleigh distributed

random variable with parameter 1, and α = 3 is the outdoor power distance loss. We choose the
parameters so that the cij of a user is on average around 3.5Mbps when the distance is 50m, and
around 60Mbps when the distance is 5m. The average signal-to-noise ratio Eb/(N0d

α) at 5m is
around 25dB. We assume perfect modulation and coding choices such that the communication rates
come from a continuum of values. The users are uniformly placed in a 200m by 200m area. We
want to emphasize that the above parameters are chosen for illustrative purposes only. Our theory
applies to any number of providers, any number of users, any type of channel attenuation models,
and arbitrary network topologies.

Figure 4.7: Example of equilibrium user-provider association. The users are labeled by numbers (1-20),
and the providers are labeled by letters (a-e).



58 4. SOCIAL OPTIMAL PRICING

50 100 150 200 250 300 350
200

0

200

400

pe
rc

en
ta

ge
 o

f s
up

pl
y Evolution of difference between demand and supply

Prov. a
Prov. b
Prov. c
Prov. d
Prov. e

50 100 150 200 250 300 350
0

5

10

number of iterations

pr
ic

e

Evolution of prices

Figure 4.8: Evolution of the primal-dual algorithm.

We first consider a single instantiation with 20 users and five providers. In Fig. 4.7, we show
the user-provider association at the equilibrium for a particular realization of channel gains, where
the thickness of the link indicates the amount of resources purchased. The users are labeled by
numbers (1-20), and the providers are labeled by letters (a-e). This figure shows two users (12 and
16) requesting resources from multiple service providers, and that certain users (1,7,13, and 8) do not
purchase any resource at equilibrium. Fig. 4.8 shows the evolution of the mismatch between supply
and demand as well as the prices of the five providers.The equilibrium prices reflect the competition
among users: in Fig. 4.7 we see that provider b has the most customers, so it is not surprising that
its price is the highest, as seen in Fig. 4.8.

4.4 CHAPTER SUMMARY

Pricing can facilitate a wireless network operator to achieve the social optimality in a distributed
fashion. In this chapter, we discussed the theory and applications of such social optimal pricing.

We started by introducing the basic concepts of convex sets and convex functions, as well
as several operations that preserve the convexity of sets and functions. This helps us to define the
convex optimization, which concerns the minimization of convex functions over convex sets. Then
we moved on with the key theory of this chapter: duality-based distributed algorithms for solving a
convex problem.We first introduced the Lagrange dual problem formulation of a primal optimization
problem (not necessarily convex), and characterized the KKT necessary conditions under which a
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primal dual feasible solution pair is optimal for both the primal and dual problems. Most importantly,
the dual variables have the nice interpretations of shadow prices, and the dual problem can be solved
in a distributed fashion through the subgradient method using shadow prices as coordinating signals.

To illustrate the idea of dual-based distributed optimization, we showed two applications in
wireless networks. The first application concerns the resource allocation and scheduling for wireless
video streaming in a single cell CDMA network. The problem is rather complicated as the video
source optimization is often discrete and thus not convex. However, we decompose the network
optimization problem into three phrases: average resource allocation, video source adaptation, and
multiuser deadline oriented scheduling. We showed that it is possible to only consider the “semi-
elastic” nature of today’s video sources to perform average resource allocation via a dual-based
resource allocation. We make the discussions more concrete by considering different formulations
in both wireless uplink and downlink streaming. In the second application, we consider the resource
allocation among multiple wireless service providers serving overlapping areas. As users have the
flexibility of purchasing from one or more service providers, the social welfare maximization turns
out to be convex but not strictly convex.We design a primal-dual algorithm, which is a generalization
of the dual-based algorithm, such that the users and providers can coordinate in a distributed fashion
and converge to the unique global optimal solution. For more details especially mathematical proofs
related to the two applications, see [23, 31].

4.5 EXERCISES
1. Determine the concavity and convexity of the following functions, where x is the variable.

• Shannon Capacity of AWGN Channels

f (x) = log
(

1 + x

σ 2

)
, x ∈ R

+,

where σ 2 is the normalized noise power (constant) and x is the received signal power.

• Sum-Rate Capacity of OFDM Systems

f (x1, ..., xn) =
n∑

i=1

log

(
1 + xi

σ 2
i

)
, xi ∈ R

+, ∀i = 1, ..., n,

where σ 2
i is the normalized noise power (constant) and xi is the received signal power

on the i-th sub-channel.

• Bit-Error-Rate (BER) for BPSK Modulation

f (x) = Q
(√

2x
)

, x ∈ R
+,

where the Q–function is defined as Q(t) = 1√
2π

∫∞
t

e−t2/2dt . (Note: if a function is
neither concave nor convex, then show the region where it is concave or convex.)
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2. Power allocation problem in OFDM systems. Consider an uplink OFDM system, where a mobile
user transmits data to the base station over n sub-channels. Each sub-channel experiences a
different channel gain due to the frequency selective fading effect. Let Gi denote the channel
gain of sub-channel i.The mobile user needs to determine the transmission power on every sub-
channel to maximize the sum-rate capacity, subject to several power constraints. Specifically,
let pi denote the transmission power of sub-channel i. The power constraints are

(i)
n∑

i=1

pi ≤ P tot , and (ii) pi ≤ P one, ∀i,

where (i) is the mobile user’s total power constraint, and (ii) is the per-channel power constraint.
Using the Shannon capacity formula, the sum-rate capacity is

f (p1, ..., pn) =
n∑

i=1

log

(
1 + piGi

σ 2

)
.

Formulate the above power allocation problem, and study its concavity and convexity. Drive
the optimal solution(s).

3. Network flow problem. Consider a network of n nodes. Each pair of nodes (i, j) is connected by
a directed link lij from node i to node j , with a link capacity Bij (i.e., the maximum allowable
flow from node i to j ) and a serving cost Cij (i.e., the unit cost of the flow along the link
lij ). Let Ii ≥ 0 denote the volume of external flows entering the network through node i,
and Oi ≥ 0 denote the volume of flows flowing out of the network through node i. Without
loss of generality, we suppose that the whole network is balanced, i.e.,

∑n
i=1 Ii =∑n

i=1 Oi .
The network flow problem is to schedule the flows among different links to minimize the
total serving cost, subject to the link capacity constraint and the node flow balance constraint.
Specifically, let xij denote the flow from node i to j . Then, the link capacity constraints are

xij ≤ Bij , ∀i, ∀j ;
The node balance constraints are

Ii +
n∑

j=1

xji = Oi +
n∑

j=1

xij , ∀i;

Denote x = {xij , ∀i, ∀j}. The total cost across the network is

f (x) =
n∑

i,j=1

Cij · xij .

Give the detailed formulation such a network flow problem (which is a linear programming
problem). Derive the optimal solution(s).
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C H A P T E R 5

Monopoly and Price
Discriminations

In this chapter, we will move away from social optimal pricing and study the issue of profit maximiza-
tion instead. In particular, we will investigate the case where a single service provider dominates the
market. The provider can charge a single optimized price to all the consumers, or he can charge dif-
ferent prices based on the consumer types if such information is available. Such price differentiation
may significantly improve the provider’s profit.

We first introduce the theory of monopoly pricing and price discriminations, and illustrate
the theory through two examples. In the first example, we consider the revenue maximization of a
cellular operator, who faces users of different channel conditions and hence different capabilities of
utilizing the resources. In the second example, we discuss how a service provider should optimize
partial price differentiation, when it is constrained to charge only a limited number of different prices
to consumers.

5.1 THEORY: MONOPOLY PRICING
In this section, we cover the basic concepts of monopoly pricing. Our discussions follow closely those
in [16, 17].

5.1.1 WHAT IS MONOPOLY?
Before discussing the basic theory in monopoly pricing, we need to define what “monopoly” means.
Etymology suggests that a “monopoly” is a single seller, the only firm in its industry. But such a vague
answer may cause serious confusion. Consider Apple Inc., which is obviously the only firm that sells
iPhone; however, Apple is not the only firm that sells mobile phones.Thus, whether Apple is a single
seller depends on how narrowly we define the market.

In order to avoid such confusions, we will use a different definition relying on the monopoly
power or market power, a widely used concept in economics. As defined in many economic literatures
(e.g., [17]), monopoly power or market power is the ability of a firm to affect market prices through
its actions. A firm with monopoly power is referred to as a monopoly or monopolist. More specifically,

Definition 5.1 Monopoly Power A firm has monopoly power, if and only if (i) it faces a
downward-sloping demand curve for its product, and (ii) it has no supply curve.



62 5. MONOPOLY AND PRICE DISCRIMINATIONS

The first condition implies that a monopolist is not perfectly competitive. That is, he is able to set
the market price so as to shape the demand. The second condition implies that the market price
is a consequence of the monopolist’s actions, rather than a data to which he must react. By this
definition, Apple is obviously a monopoly (in the iPhone market), since it can lower the price of
iPhone to increase the sales of iPhones (i.e., the demand curve for iPhone slops downward). The
competitive soy farmer who can increase/decrease his output and still sell it all at the going market
price is not a monopoly (in the soy market).

In what follows, we will study how a monopolist chooses price and quantity, and what are the
profit consequences of these choices.

5.1.2 PROFIT MAXIMIZATION BASED ON DEMAND ELASTICITY
Let P denote the market price a monopolist chooses. Let Q � D(P ) denote the downward-sloping
demand curve the monopolist faces (or the best quantity the monopolist chooses). A key question
is: how should the monopolist choose a market price to maximize his profit? We will show that the answer
depends greatly on the demand curve the monopolist faces. In particular, it depends on the price
elasticity of demand defined in Section 3.2.

We first consider the monopolist’s total revenue π(P ) under a particular market price P .
Formally, we have

π(P ) � P · Q, where Q = D(P ). (5.1)

It is easy to check that π(P ) is a concave function of P . Therefore, the optimal price P ∗ that
maximizes π(P ) is given by the first-order condition:

dπ(P )

dP
= Q + P · dQ

dP
= 0, (5.2)

which leads to the following optimality condition:

P · �Q

Q · �P
+ 1 = 0, (5.3)

where �Q and �P are small changes in quality and price, respectively.
Next we show that the above revenue maximization problem is closely related to the following

problem: how much does the monopolist have to lower his price to sell one more product? The answer leads
to the price elasticity of demand defined in Section 3.2. Recall that the price elasticity of demand
is defined as the change in demand that results from one unit increase in price, and given by the
formula:

η � �Q/Q

�P/P
= P · �Q

Q · �P
, (5.4)

or equivalently,

�P = P · �Q

Q · η
, (5.5)
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which shows how much the market price must change to sell additional �Q of product. Note that to
sell an extra product, the change in price �P must be negative,which can be confirmed by the fact that
η is always negative. Thus, we can also write the absolute value of �P as |�P | = P ·�Q

Q·|η| = −P ·�Q
Q·η .

Now we consider the consequences of selling an additional product. That is, how much the
monopolist’s total revenue changes by selling an additional product. Specifically, there are two factors
affecting the monopolist’s revenue π . On one hand, the monopolist gains an additional revenue
P · �Q by selling an additional unit �Q of product at price P . On the other hand, the monopolist
suffers a revenue loss |�P | · Q, since the price for the previous Q products is decreased by |�P |.
Thus, the net change in the monopolist’s revenue is

�π � P · �Q − |�P | · Q. (5.6)

Substitute (5.5) into (5.6), we can rewrite the revenue change as

�π = P · �Q − P · �Q

Q · |η| · Q = P · �Q ·
(

1 − 1

|η|
)

, (5.7)

which shows how much the monopolist’s revenue changes by selling an additional unit �Q of
product. Note that when �Q = 1, it is essentially the monopolist’s marginal revenue (MR), i.e., the
change in his revenue by selling one extra product.

The formula (5.7) shows that �π < 0 if |η| < 1. This implies that a monopolist would never
lower the price (or increase the quantity equivalently) when |η| < 1. In other words, a monopolist
must operate on a market price or quantity such that |η| ≥ 1. If in addition there is no other cost,
the optimal price or quantity satisfies �π = 0, which implies that |η| = 1 or 1 + η = 0. This is
obviously equivalent to the first-order condition in (5.2). Note that if there is certain cost (e.g., the
producing cost), the optimal price or quantity satisfies �π = �C, i.e., the change in revenue equals
to the change in cost.

When |η| > 1, we say that the demand curve is elastic; when |η| < 1 we say that the demand
curve is inelastic. An immediate observation is that a profit-maximization monopolist will increase
the price whenever the demand curve is inelastic. Thus, our conclusion for a monopolist’s operation
is given in the following theorem [17].

Theorem 5.2 A monopolist always operates on the elastic portion of the demand curve.

5.2 THEORY: PRICE DISCRIMINATIONS
The analysis of monopoly pricing in Section 5.1 assumes that the monopolist will sell all of products
at a single price.This section deals with a monopolist that can engage in price discrimination (or price
differentiation), i.e., charging different prices for the same product. The goal of price discrimination
is to raise the monopolist’s revenue by reducing consumer surplus.
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Figure 5.1: Increasing the monopolist’s profit by eliminating consumer surplus. When charging a single
monopoly price P ∗ to all consumers, the monopolist’s profit is shown by the shaded area π∗ and consumer
surplus is shown by the shaded area π+. Suppose the monopolist charges each consumer the most that
he would be willing to pay for each product that he buys, the monopolist’s profit is now π∗ + π+ (if still
selling Q∗), and the consumers get zero surplus.

Basically, with price discrimination, the monopolist can either charge different prices to a
single consumer (for different units of products), or charge uniform but different prices to different
groups of consumers. In this section, we will discuss the motivations, conditions, and means of price
discrimination.

5.2.1 AN ILLUSTRATIVE EXAMPLE
We first show that it is possible for a monopolist to improve his revenue and eliminate consumer
surplus by price discrimination.

Consider a simple example with a monopolist facing a downward-sloping demand curve
Q = D(P ) and a production cost C(Q). The demand curve (D), marginal revenue (MR), and
marginal cost (MC) are illustrated in Figure 5.1. The marginal revenue function intersects the
marginal cost function when the monopolist chooses the monopoly quantity Q∗ and sells each
product at the monopoly price P ∗. The monopolist’s total profit is equal to the area labeled π∗, and
the consumer surplus is equal to the area labeled π+.

Note that by charging the single monopoly price P ∗ to all consumers, the monopolist does not
collect all the consumer surplus, since consumers are still left with a surplus of π+. Now suppose that
the monopolist can charge different prices for different units of products. Then, he can collect the
consumer surplus π+ by charging the demand price P(D) for each successive unit of product, i.e.,
charging each consumer the most that he would be willing to pay for each additional product that he
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Figure 5.2: Under first-degree price discrimination, the consumer is charged a price P1 for the first
product he purchases, P2 for the second product he purchases, and so on.

buys. Suppose in addition that the monopolist increases the monopoly quantity Q∗ to Q�, i.e., the
interaction of the marginal cost and the demand curve. Then, he cannot only collect the consumer
surplus in the area π+, but also the surplus in the area π�. In this case, the monopolist collects all the
social surplus π∗ + π+ + π�, which is also the maximum social surplus the monopolist can achieve.
This is essentially the first-degree price discrimination, which will be discussed later.

The above example shows that a monopolist can increase its profit by charging different prices
to a consumer or to different consumers. Next we will show that the amount of additional profit the
monopolist can extract from consumers depends on the information he has about the consumers.
As a result, there are three types of price discriminations: first-, second-, and third-degree, which
will be discussed in the following sections.

5.2.2 FIRST-DEGREE PRICE DISCRIMINATION
With the first-degree price discrimination, or perfect price discrimination, the monopolist charges
each consumer the most that he would be willing to pay for each product that he buys [17]. It
requires that the monopolist knows exactly the maximum price that every consumer is willing to
pay for each product, i.e., the full knowledge about every consumer demand curve. In this case, the
monopolist captures all the market surplus, and the consumer gets zero surplus.

Figure 5.2 illustrates the first-degree price discrimination, where the consumer is willing to
pay a maximum price P1 for the first product,P2 for the second product, and so on. When the price is
between [P2, P1], the total demand is 1; while when the price is between [P4, P3], the total demand
is 3; and so on. The demand curve can be represented by the downward stepped curve shown in
the figure. Under the first-degree price discrimination, the consumer is charged by his maximum
willingness to pay for successive products, i.e., P1 for the first product, P2 for the second product,
and so on. Obviously, the monopolist captures all the market surplus (shown shaded).
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Figure 5.3: Under second-degree price discrimination, the consumer is charged a price P1 for the first
block (from 0 to Q1) of products, P ∗ for the second block (from Q1 to Q∗), and P2 for the third block
(from Q∗ to Q2).

In practice, however, it is difficult or even impossible for the monopolist to obtain the complete
demand information. Thus, the first-degree price discrimination is primarily theoretical and seldom
exists in reality.

5.2.3 SECOND-DEGREE PRICE DISCRIMINATION
With the second-degree price discrimination, or declining block pricing, the monopolist offers a
bundle of prices to the consumers, with different prices for different blocks of units [17]. Recall that
in the first-degree price discrimination, a different price is set for every different unit. In this sense,
the second-degree price discrimination can be viewed as a more limited version of the first-degree
price discrimination.

Figure 5.3 illustrates a second-degree price discrimination, where the monopolist offers a
bundle of prices {P1, P

∗, P2} with P1 > P ∗ > P2 to the consumer.The price P1 is for the first block
(the first Q1 units) of products, P ∗ is for the second block (from Q1 to Q∗) of products, and P2 is for
the third block (from Q∗ to Q2). That is, the consumer pays P1 for each unit (of product) up to Q1

units, P ∗ for each unit between Q1 and Q∗ units, and P2 for each unit between Q∗ and Q2 units.
In effective, we can view the monopolist offers a discount P ∗

P1
for the purchasing quantity above Q1,

and an additional discount P2
P ∗ for the purchasing quantity above Q∗. Without price discrimination,

the monopolist’s maximum profit is P ∗Q∗ − C(Q∗). With second-degree price discrimination, the
monopolist’s profit is shown shaded, which is obviously larger than P ∗Q∗ − C(Q∗). Furthermore,
the monopolist’s profit with the second-degree price discrimination is less than that with the first-
degree price discrimination,and the gap is shown as summation of the blank regions denoted by δ.We
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can see that if the number of prices the monopolist offers is sufficiently large, and the region of each
shaded block is sufficiently close to the demand curve, then the second-degree price discrimination
converges effectively to the first-degree price discrimination (i.e., the blank regions vanish).

It is worth noting that the second-degree price discrimination does not require the monopolist
to know the complete information of every consumer demand curve. For example, the second-degree
price discrimination illustrated in Figure 5.3 requires some particular points on the consumer demand
curve only, i.e., (Q1, P1), (Q2, P2), and (Q∗, P ∗). Obviously, the more information the monopolist
knows, the higher profit he can absorb from the consumer.

5.2.4 THIRD-DEGREE PRICE DISCRIMINATION
A monopolist that performs the first- or second-degree price discrimination knows something about
the demand curve of every individual consumer, and benefits from this information by charging the
consumer different prices.A natural question is whether (and how, if so) the monopolist discriminates
the price to increase his profit, if he has no information on the individual demand curve (but knows
from experience that different groups of consumers have different total demand curves)?

The answer is YES, and it actually leads to the third and the most common form of price
discrimination, the third-degree price discrimination, or multi-market price discrimination [17].
Simply speaking, third-degree price discrimination usually occurs when a monopolist faces two (or
more) identifiably different groups of consumers having different (downward-sloping) total demand
curves, and knows the total demand curve of every group but not the individual demand curve of
every consumer. In this case, the monopolist can potentially increase his profit by setting different
prices for different groups.

To apply third-degree price discrimination, the monopolist first uses some characteristic of
consumers to segment consumers into groups.Then he picks different prices for the different groups
that maximize his profit. In this process, it is implicitly assumed that the monopolist is able to sort
consumers into groups (i.e., identify the type of each consumer), and thus consumers in the group
with a higher price cannot purchase in the lower-priced market. A simple example of this kind of
price discrimination is that the Disney Park offers different ticket prices to children, adults, and
elders.

To show how a monopolist discriminates among groups of consumers, we consider a simple
scenario, where the monopolist sorts consumers into two groups (two markets). The total demand
curves of different markets are different.The monopolist needs to decide the price Pi for each market
i ∈ {1, 2} (and therefore the sales Qi = Di(Pi) in each market i). To maximize his own profit, the
monopolist must decide:

• Whether to charge the same price or different prices in different markets?

• Which market should get the lower price if the firm charges different prices?

• What is the relation between the prices of two markets?
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Under prices P1 and P2, the monopolist’s total profit π(P1, P2) is given by

π(P1, P2) � P1 · Q1 + P2 · Q2 − C(Q1 + Q2), where Qi = Di(Pi). (5.8)

It is easy to check that π(P1, P2) is a concave function of vector (P1, P2), and therefore the optimal
price vector (P ∗

1 , P ∗
2 ) that maximizes π(P1, P2) is given by the first-order condition:

∂π(P1, P2)

∂Pi

= Qi + Pi · dQi

dPi

− C′(Q1 + Q2) · dQi

dPi

= 0, i = 1, 2, (5.9)

where C′(Q1 + Q2) = dC(Q)
dQ

|Q=Q1+Q2 . It leads to the following optimality condition:

C′(Q1 + Q2) = Pi + Qi · dPi

dQi

= Pi ·
(

1 − 1

|ηi |
)

, i = 1, 2, (5.10)

where ηi � Pi

Qi

dQi

dPi
is the price elasticity of market i. Note that the right-hand side in (5.10) is

in fact the marginal revenue in each market i. Thus, the above condition suggests that under the
optimality, the marginal revenue in each market i equals to the marginal cost. This further leads to

P1 ·
(

1 − 1

|η1|
)

= P2 ·
(

1 − 1

|η2|
)

. (5.11)

Intuitively, we can see from (5.10) and (5.11) that under the optimality, the monopolist sets an
optimal price vector (P ∗

1 , P ∗
2 ) such that the marginal revenues in all market are the same, and all

equal to the marginal cost.
The optimality conditions in (5.10) and (5.11) provider answers to the above three questions.

First, we have P1 �= P2 as long as η1 �= η2. That is, the monopolist will charge different prices when
different groups of customers have different elasticities. Second, we have: (i) P1 < P2 if |η1| > |η2|,
and (ii) P1 > P2 if |η1| < |η2|. That is, the market with the higher price elasticity will get a lower
price. Third, the relation between the prices of two markets is given by (5.11).

Figure 5.4 provides a graphic interpretation for the above optimal solution. The MR1 and
MR2 curves are the marginal revenue curves in both markets, and the D1 and D2 curves are the
demand curves in both markets.The MR curve is obtained by summing MR1 and MR2 horizontally.
That is, for any price, read the corresponding quantities of MR1 and MR2, and then add these to
get the corresponding quantity on MR.

The monopolist, to maximize his profit, can equalize his marginal cost and both marginal
revenues by choosing the quantity where his marginal cost curve MC crosses the MR curve (see
from (5.10) and (5.11)). This means that he produces a total of Q1 + Q2 products, so that his
marginal cost is 5 per unit of product. He sells Q1 of these products in market 1 and Q2 in market
2, such that his marginal revenue is 5 per unit in each market. Once the monopolist chooses Q1 and
Q2, the price for each market is implied given by the inverse demand function, i.e., Pi = D−1

i (Qi),
i = 1, 2. From Figure 5.4, we can find that the prices for different markets are different, and the
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Figure 5.4: Under third-degree price discrimination, the monopolist charges a lower price P1 from
market 1 (with a higher price elasticity), and a higher price P2 from market 2 (with a lower price
elasticity), so that he achieves the same marginal revenues from both markets.

market with the lower price elasticity (market 2 in Figure 5.4) gets the higher price (P2 in Figure
5.4).

We can now summarize the necessary conditions to make the third-degree price discrimination
profitable [17].

• Monopoly power—The firm must have the monopoly power (or market power) to affect
market price, which means that there is no price discrimination in perfectly competitive mar-
kets.

• Market segmentation—The firm must be able to split the market into different groups of
consumers, and also be able to identify the type of each consumer.

• Elasticity of demand—There must be a different price elasticity of demand for different
markets. This allows the firm to charge a higher price to the market with a relatively inelastic
demand and a lower price to those with a relatively elastic demand. The firm will then be able
to extract more consumer surplus which will lead to an additional profit.

5.3 APPLICATION I: CELLULAR NETWORK PRICING

5.3.1 NETWORK MODEL
We consider a cellular operator who owns a single base station and a total of B Hz wireless spectrum.
The operator will allocate different parts of the spectrum to different cellular users (such as in the
FDMA or OFDMA systems), and charge users accordingly. As shown in Fig. 5.5, we model the
interactions between the operator and the users as a two-stage Stackelberg game. In Stage I, the
operator determines the price p (per unit bandwidth) to maximize its profit. In Stage II, each user
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Stage I: (Operator pricing)

The operator decides price p and announces to users

Stage II: (Users’ demands)

Each user decides how much bandwidth b to request

Figure 5.5: Two-stage Stackelberg game between the operator and users in Section 5.3.1.

decides how much bandwidth to purchase to maximize its payoff. We next solve this two-stage
Stackelberg game by backward induction.

5.3.2 USERS’ BANDWIDTH DEMANDS IN STAGE II
Different users experience different channel conditions to the base stations due to different locations,
and thus achieve different data rates when using the same amount of bandwidth. We consider that
a user has fixed transmission power P per unit bandwidth (e.g., power spectrum density constraint)
and his average channel gain is h. Without interfering with other users, the user’s spectrum efficiency
is thus

θ = log2(1 + SNR) = log2

(
1 + Ph

n0

)
,

where n0 is the background noise power density. By obtaining b Hz of spectrum, its achieved data
rate is θb bits per second. As users have different channel gains, they perceive different spectrum
efficiency θ . We further normalize θ to the range [0, 1] (see Fig. 5.6). For example, an indoor user
may get a very poor cellular signal reception and hence a small θ . This has been a major issue for
most cellular technologies, and is particularly serious with the latest 4G cellular systems operating
at higher frequency bands with poor penetrating capabilities through walls. For the simplicity of
illustration, we assume that θ is uniformly distributed. We also normalize the total user population
to be 1.

For a user with a spectrum efficiency θ , it obtains a utility u(θ, b) when achieving data rate
θb, i.e.,

u(θ, b) = ln(1 + θb) .

Such utility is commonly used in economic literature to denote the diminishing return of getting
additional resource. The user needs to pay a linear payment pb to the operator, where the price p

is announced by the operator in Stage I. The user’s payoff is the difference between its utility and
payment, i.e.,

π(θ, b, p) = ln(1 + θb) − pb. (5.12)
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Figure 5.6: Distribution of users’ spectrum efficiencies θ .

The optimal value of bandwidth demand that maximizes the user’s payoff is

b∗(θ, p) =
{

1
p

− 1
θ
, if p ≤ θ ,

0, otherwise,
(5.13)

which is decreasing in p and increasing in θ (if p ≤ θ ). The user’s maximum payoff is

π(θ, b∗(θ, p), p) =
{

ln
(

θ
p

)
− 1 + p

θ
, if p ≤ θ ,

0, otherwise,
(5.14)

which is always nonnegative and is increasing in θ .

5.3.3 OPERATOR’S PRICING IN STAGE I
Next we consider the operator’s optimal choice of price p in Stage I. To achieve a positive profit,
the operator needs to set p ≤ maxθ∈[0,1] θ = 1, so that at least some user purchases some positive
bandwidth in Stage II. The fraction of users subscribing to the cellular service is 1 − p as shown in
Fig. 5.6. The total user demand is

Q(p) =
∫ 1

p

(
1

p
− 1

θ

)
dθ = 1

p
− 1 + ln p, (5.15)

which is a decreasing function of p. On the other hand, the operator has a limited bandwidth supply
B, and thus can only satisfy a demand no larger than B.

The operator chooses price p to maximize its revenue, i.e.,

max
0<p≤1

min (Bp, pQ(p)) . (5.16)

Notice that the first term in the min operation of (5.16) is increasing in p, while the second
term is decreasing in p since

dpQ(p)

dp
= ln p < 1 .

By also checking the two terms’ values at the boundary values of p, we can conclude that the optimal
solution to Problem (5.16) is unique and the two terms are equal at the optimality.

Theorem 5.3 The equilibrium price p∗ is the unique solution of the following equation:

B = 1

p∗ − 1 + ln p∗. (5.17)
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Notice that all users with a spectrum efficiency θ less than p∗ will not receive the cellular
service. When the total bandwidth B is small, the equilibrium price p∗ is close to 1 and thus most
users will not get service. This motivates the operator to adopt the so-called femtocell service to
improve the users’ channel conditions and hence the operator’s revenue [33].

5.4 APPLICATION II: PARTIAL PRICE DIFFERENTIATION
5.4.1 SYSTEM MODEL
We consider a network with a total of S units of (infinitely) divisible resource (which can be in the
form of rate, bandwidth, power, time slot, etc.). The resource is allocated by a monopolistic service
provider to a set I = {1, . . . , I } of user groups. Each group i ∈ I has Ni homogeneous users1 with
the same utility function:

ui(si) = θi ln(1 + si), (5.18)

where si is the allocated resource to one user in group i and θi represents the willingness-to-
pay of group i. The logarithmic utility function is commonly used to model the proportionally
fair resource allocation in communication networks. Without loss of generality, we assume that
θ1 > θ2 > · · · > θI . In other words, group 1 contains users with the highest valuation, and group I

contains users with the lowest valuation.
We will assume that the service provider knows each user’s utility function. The significance

of studying the complete information is two-fold. It serves as the benchmark of practical designs
and provides important insights for the incomplete information analysis as in [34].

The interactions between the service provider and the users can be characterized as a two-
stage model. The service provider announces the pricing scheme in Stage 1, and users respond with
their demands in Stage 2. The users want to maximize their surpluses by optimizing their demands
according to the pricing scheme. The service provider wants to maximize its revenue by setting the
right pricing scheme to induce desirable demands from users. Since the service provider has a limited
total resource, he must guarantee that the total demand from users is no larger than what he can
supply.

Next we will discuss the complete price differentiation, where the service provider can charge
each user a different price. We will then discuss the other extreme case, where the service provider
can only charge a single price to all users. Finally, we will discuss the case where the service provider
can charge multiple but a limited number of prices.

5.4.2 COMPLETE PRICE DIFFERENTIATION
We first consider the case of complete information. Since the service provider knows the utility and
the identity of each user, it is possible to maximize the revenue by charging a different price to each

1A special case is Ni=1 for each group, i.e., all users in the network are different.
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group of users. The analysis will be based on backward induction, starting from Stage 2 and then
moving to Stage 1.

User’s Surplus Maximization Problem in Stage 2
If a user in group i has been admitted into the network and offered a linear price pi in Stage 1, then
it solves the following surplus maximization problem,

maximize
si≥0

(ui(si) − pisi) , (5.19)

which leads to the following unique optimal demand

si(pi) =
(

θi

pi

− 1

)+
, where (·)+ � max(·, 0). (5.20)

Service Provider’s Pricing and Admission Control Problem in Stage 1
In Stage 1, the service provider maximizes its revenue by choosing the price pi and the admitted
user number ni for each group i subject to the limited total resource S. The key idea is to perform a
Complete Price differentiation (CP ) scheme, i.e., charging each group with a different price.

CP : maximize
p≥0,s≥0,n

∑
i∈I

nipisi (5.21)

subject to si =
(

θi

pi

− 1

)+
, ∀i ∈ I, (5.22)

ni ∈ {0, . . . , Ni} , ∀i ∈ I, (5.23)∑
i∈I

nisi ≤ S. (5.24)

where p = (pi, ∀i ∈ I), s = (si, ∀i ∈ I), and n = (ni, ∀i ∈ I). Constraint (5.22) is the solution
of the Stage 2 user surplus maximization problem in (5.20). Constraint (5.23) denotes the admission
control decision, and constraint (5.24) represents the total limited resource in the network.

Problem CP is not straightforward to solve, since it is a non-convex optimization problem with
a non-convex objective function (summation of products of ni and pi), a coupled constraint (5.24),
and integer variables n. However, it is possible to convert it into an equivalent convex formulation
through a series of transformations, and thus the problem can be solved efficiently.

First, we can remove the (·)+ sign in constraint (5.22) by realizing the fact that there is no
need to set pi higher than θi for users in group i; users in group i already demand zero resource and
generate zero revenue when pi = θi . This means that we can rewrite constraint (5.22) as

pi = θi

si + 1
and si ≥ 0, i ∈ I. (5.25)

Plugging (5.25) into (5.21), then the objective function becomes
∑

i∈I ni
θisi
si+1 . We can further

decompose Problem CP in the following two subproblems:
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1. Resource allocation: for a fixed admission control decision n, solve for the optimal resource
allocation s.

CP1 : maximize
s≥0

∑
i∈I

ni

θisi

si + 1

subject to
∑
i∈I

nisi ≤ S. (5.26)

Denote the solution of CP1 as s∗ = (s∗
i (n), ∀i ∈ I). We further maximize the revenue of the

integer admission control variables n.

2. Admission control :

CP2 : maximize
n

∑
i∈I

ni

θis
∗
i (n)

s∗
i (n) + 1

(5.27)

subject to ni ∈ {0, . . . , Ni} , i ∈ I

Let us first solve Problem CP1 in s. Note that it is a convex optimization problem. By using
Lagrange multiplier technique, we can get the first-order necessary and sufficient condition:

s∗
i (λ) =

(√
θi

λ
− 1

)+
, (5.28)

where λ is the Lagrange multiplier corresponding to the resource constraint (5.26).
Meanwhile, we note the resource constraint (5.26) must hold with equality, since the objective

is strictly increasing function in si . Thus, by plugging (5.28) into (5.26), we have

∑
i∈I

ni

(√
θi

λ
− 1

)+
= S. (5.29)

This weighted water-filling problem (where 1√
λ

can be viewed as the water level) in general has
no closed-form solution for λ. However, we can efficiently determine the optimal solution λ∗ by
exploiting the special structure of our problem. Note that since θ1 > · · · > θI , then λ∗ must satisfy
the following condition:

Kcp∑
i=1

ni

(√
θi

λ∗ − 1

)
= S, (5.30)

for a group index threshold value Kcp satisfying

θKcp

λ∗ > 1 and
θKcp+1

λ∗ ≤ 1. (5.31)
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In other words, only groups with indices no larger than Kcp will be allocated the positive resource.
This property leads to the simple Algorithm 2 to compute λ∗ and the group index threshold Kcp:
we start by assuming Kcp = I and compute λ. If (5.31) is not satisfied, we decrease Kcp by one and
recompute λ until (5.31) is satisfied. Since θ1 > λ(1) = ( n1

s+n1
)2θ1, Algorithm 2 always converges

and returns the unique values of Kcp and λ∗. The total complexity is O(I ), i.e., linear in the number
of user groups (not the number of users).

Algorithm 2 Solving the Resource Allocation Problem CP1

1: function CP ({ni, θi}i∈I , S)

2: k ← I , λ(k) ←
(∑k

i=1 ni

√
θi

S+∑k
i=1 ni

)2

3: while θk ≤ λ(k) do

4: k ← k − 1, λ(k) ←
(∑k

i=1 ni

√
θi

S+∑k
i=1 ni

)2

5: end while
6: Kcp ← k, λ∗ ← λ(k)

7: return Kcp, λ∗
8: end function

With Kcp and λ∗, the solution of the resource allocation problem can be written as

s∗
i =
{ √

θi

λ∗ − 1, i = 1, . . . , Kcp;
0, otherwise.

(5.32)

For the ease of discussions, we introduce a new notion of the effective market, which denotes all
the groups allocated non-zero resource. For resource allocation problem CP1, the threshold Kcp

describes the size of the effective market. All groups with indices no larger than Kcp are effective
groups, and users in these groups as effective users. An example of the effective market is illustrated
in Fig. 5.7.

Figure 5.7: A 6-group example for effective market: the willingness-to-pay decreases from group 1 to
group 6. The effective market threshold can be obtained by Algorithm 2, and is 4 in this example.
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Now let us solve the admission control problem CP2. In [34], we show that the objective
Rcp(n) is strictly increasing in ni for all i = 1, . . . , Kcp, thus it is optimal to admit all users in the
effective market. The admission decisions for the groups not in the effective market are irrelevant to
the optimization, since those users consume zero resource.Therefore, one of the optimal solutions of
Problem CP1 is n∗

i = Ni for all i ∈ I . Solving Problems CP1 and CP2 leads to the optimal solution
of Problem CP :

Theorem 5.4 There exists an optimal solution of Problem CP that satisfies the following conditions:

• All users are admitted: n∗
i = Ni for all i ∈ I .

• There exist a value λ∗ and a group index threshold Kcp ≤ I , such that only the top Kcp groups of
users receive positive resource allocations,

s∗
i =
{ √

θi

λ∗ − 1, i = 1, . . . , Kcp;
0, otherwise.

with the prices

p∗
i =
{ √

θiλ∗, i = 1, . . . , Kcp;
θi, otherwise.

The values of λ∗ and Kcp can be computed as in Algorithm 2 by setting ni = Ni , for all i ∈ I .

Theorem 5.4 provides the right economic intuition: the service provider maximizes its revenue
by charging a higher price to users with a higher willingness to pay. It is easy to check that pi > pj

for any i < j . The small willingness-to-pay users are excluded from the markets.

5.4.3 SINGLE PRICING SCHEME
We just showed that the CP scheme is the optimal pricing scheme to maximize the revenue under
complete information. However, such a complicated pricing scheme is of high implementational
complexity. Here we study the other extreme of single pricing scheme. It is clear that the scheme
will in general suffer a revenue loss comparing with the CP scheme. We will try to characterize the
impact of various system parameters on such revenue loss numerically in Section 5.4.5.

Let us first formulate the Single Pricing (SP ) problem.

SP : maximize
p≥0, n

p
∑
i∈I

nisi

subject to si =
(

θi

p
− 1

)+
, ∀i ∈ I,

ni ∈ {0, . . . , Ni} , ∀ ∈ I,∑
i∈I

nisi ≤ S.
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Comparing with Problem CP in Section 5.4.2, here the service provider charges a single price p to
all groups of users. After a similar transformation as in Section 5.4.2, we can show that the optimal
single price satisfies the following weighted water-filling condition

∑
i∈I

Ni

(
θi

p
− 1

)+
= S.

Thus, we can obtain the following solution that shares a similar structure as complete price differ-
entiation.

Theorem 5.5 There exists an optimal solution of Problem SP that satisfies the following conditions:

• All users are admitted: n∗
i = Ni , for all i ∈ I .

• There exist a price p∗ and a group index threshold Ksp ≤ I , such that only the top Ksp groups of
users receive positive resource allocations,

s∗
i =
{

θi

p∗ − 1, i = 1, 2, . . . , Ksp,

0, otherwise,

with the price

p∗ = p(Ksp) =
∑Ksp

i=1 Niθi

S +∑Ksp

i=1 Ni

.

The value of Ksp and p∗ can be computed as in Algorithm 3.

Algorithm 3 Search the threshold of Problem SP

1: function SP ({Ni, θi}i∈I , S)

2: k ← I , p(k) ←
∑k

i=1 Niθi

S+∑k
i=1 Ni

3: while θk ≤ p(k) do

4: k ← k − 1, p(k) ←
∑k

i=1 Niθi

S+∑k
i=1 Ni

5: end while
6: Ksp ← k, p∗ ← p(k)

7: return Ksp, p∗
8: end function
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5.4.4 PARTIAL PRICE DIFFERENTIATION
For a service provider facing thousands of user types, it is often impractical to design a price choice
for each user type. The reasons behind this, as discussed in [35], are mainly high system overheads
and customers’ aversion. However, the single pricing scheme may suffer a considerable revenue
loss compared with the complete price differentiation. How to achieve a good tradeoff between
the implementational complexity and the total revenue? In reality, we usually see that the service
provider offers only a few pricing plans for the entire users population; we term it as the partial
price differentiation scheme. In this section, we will answer the following question: if the service
provider is constrained to maintain a limited number of prices, p1, . . . , pJ , J ≤ I , then what is
the optimal pricing strategy and the maximum revenue? Concretely, the Partial Price differentiation
(PP ) problem is formulated as follows.

PP : maximize
ni ,pi ,si ,p

j ,a
j
i

∑
i∈I

nipisi

subject to si =
(

θi

pi

− 1

)+
, ∀ i ∈ I, (5.33)

ni ∈ {0, . . . , Ni}, ∀ i ∈ I, (5.34)∑
i∈I

nisi ≤ S, (5.35)

pi =
∑
j∈J

a
j
i pj , (5.36)

∑
j∈J

a
j
i = 1, a

j
i ∈ {0, 1}, ∀ i ∈ I. (5.37)

Here J denotes the set {1, 2, . . . , J }. Since we consider the complete information scenario in this
section, the service provider can choose the price charged to each group, thus constraints (5.33)–
(5.35) are the same as in Problem CP . Constraints (5.36) and (5.37) mean that pi charged to
each group i is one of J choices from the set {pj , j ∈ J }. For convenience, we define cluster

Cj �= {i | aj
i = 1}, j ∈ J ,which is a set of groups charged with the same pricepj .We use superscript

j to denote clusters, and subscript i to denote groups through this section. We term the binary

variables a
�= {aj

i , j ∈ J , i ∈ I} as the partition, which determines which cluster each group
belongs to.

Problem PP is a combinatorial optimization problem, and is more difficult than Problem CP

and Problem SP . On the other hand, we notice that Problem PP includes Problem CP (J = I )
and Problem SP (J = 1) as special cases. The insights we obtained from solving these two special
cases in Sections 5.4.2 and 5.4.3 will be helpful to solve the general Problem PP .

To solve Problem PP , we decompose and tackle it in three levels. In the lowest level-3,
we determine the pricing and resource allocation for each cluster, given a fixed partition and fixed
resource allocation among clusters. In level-2, we compute the optimal resource allocation among
clusters, given a fixed partition. In level-1, we optimize the partition among groups.
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Level-3: Pricing and resource allocation in each cluster

For a fixed partition a and a cluster resource allocation s
�= {sj }j∈J , we focus the pricing and

resource allocation problems within each cluster Cj , j ∈ J :

Level-3: maximize
ni ,si ,p

j

∑
i∈Cj

nip
j si

subject to si =
(

θi

pj
− 1

)+
, ∀ i ∈ Cj ,

ni ≤ Ni, ∀ i ∈ Cj ,∑
i∈Cj

nisi ≤ sj .

Level-3 Subproblem coincides with the SP scheme discussed in Section 5.4.3, since all groups
within the same cluster Cj are charged with a single price pj . We can then directly apply the results
in Theorem 3 to solve the Level-3 problem. We denote the effective market threshold for cluster Cj

as Kj , which can be computed in Algorithm 3. An illustrative example is shown in Fig. 5.8, where
the cluster contains four groups (group 4, 5, 6, and 7), and the effective market contains groups 4
and 5, thus Kj = 5. The service provider obtains the following maximum revenue obtained from
cluster Cj :

Rj(sj ,a) = sj
∑

i∈Cj , i≤Kj Niθi

sj +∑i∈Cj , i≤Kj Ni

. (5.38)

group 4 group 7group 6group 5

Zero resource Nonzero resource Threshold (size) of effective 
market Kj = 5

Willingness to pay decreasing

Effective
market

A Cluster 

Cj

Figure 5.8: An illustrative example: the cluster contains four groups, group 4, 5, 6, and 7; and the effective
market contains group 4 and 5, thus Kj = 5.

Level-2: Resource allocation among clusters
For a fixed partition a, we then consider the resource allocation among clusters.

Level-2: maximize
sj ≥0

∑
j∈J

Rj(sj ,a)

subject to
∑
j∈J

sj ≤ S.
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In [34], we show that subproblems in Level-2 and Level-3 can be transformed into a complete
price differentiation problem under proper technique conditions. Let us denote the optimal value as
Rpp(a).

Level-1: cluster partition
Finally, we solve the cluster partition problem.

Level-1: maximize
a

j
i ∈{0,1}

Rpp(a)

subject to
∑
j∈J

a
j
i = 1, i ∈ I.

This partition problem is a combinatorial optimization problem. The size of its feasible set is

S(I, J ) = 1
J !

J∑
t=1

(−1)J+tC(J, t)tI , Stirling number of the second kind [36, Chap.13], where C(J, t)

is the binomial coefficient. Some numerical examples are given in the third row in Table 5.1. If the
number of prices J is given, the feasible set size is exponential in the total number of groups I . For
our problem, however, it is possible to reduce the size of the feasible set by exploiting the special
problem structure. More specifically, the group indices in each cluster should be consecutive at the
optimum. This means that the size of the feasible set is C(I − 1, J − 1) as shown in the last row in
Table 5.1, and thus is much smaller than S(I, J ).

Table 5.1: Numerical examples for feasible set size of the partition problem in Level-1

Number of groups I = 10 I = 100 I = 1000
Number of prices J = 2 J = 3 J = 2 J = 3 J = 2

S (I, J ) 511 9330 6.33825 × 1029 8.58963 × 1046 5.35754 × 10300

C(I − 1, J − 1) 9 36 99 4851 999

In [34], we propose an algorithm that solves the three level subproblems in polynomial time
and obtains the optimal solution of Problem PP . In particular, we show that an optimal partition of
Problem PP involves consecutive group indices within clusters, and hence the complexity of solving
the level-1 problem can be greatly reduced (comparing to the exhaustive search).

5.4.5 NUMERICAL RESULTS
We provide a numerical example to quantitatively study two key questions regarding the performance
comparison of different algorithms:

• When is price differentiation most beneficial?
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• What is the best tradeoff of partial price differentiation?

Definition 5.6 (Revenue gain) We define the revenue gain G of one pricing scheme as the ratio
of the revenue difference (between this pricing scheme and the single pricing scheme) normalized
by the revenue of single pricing scheme.

We consider a three-group example and three different sets of parameters as shown inTable 5.2.
To limit the dimension of the problem, we set the parameters such that the total number of users
and the average willingness-to-pay (i.e., θ̄ =∑3

i=1 Niθi/(
∑3

i=1 Ni)) of all users are the same across
three different parameter settings. This ensures that the SP scheme achieves the same revenue in
three different cases when resource is abundant.

Table 5.2: Parameter settings of three-group examples

θ1 N 1 θ2 N 2 θ3 N 3 θ̄
Case 1 9 10 3 10 1 80 2
Case 2 3 33 2 33 1 34 2
Case 3 2.2 80 1.5 10 1 10 2
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Figure 5.9: How the revenue gain G changes with the system parameters in a three-group market.
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Figure 5.9 illustrates how the differentiation gain changing changes in resource S. We observe
that the revenue gain is large only when the high willingness-to-pay users are minorities (e.g., case
1) in the effective market and the resource is limited but not too small (100 ≤ S ≤ 150 in all three
cases). When resource S is large enough (e.g., ≥ 150), the gain will gradually diminish to zero as the
resource increases. For each curve in Fig. 5.9, there are two peak points. Each peak point represents
a change of the effective market threshold in the benchmark SP scheme, i.e., when the resource
allocation to a group becomes zero.

Now let us consider a five-group example with parameters shown in Table 5.3 to illustrate the
tradeoff of partial price differentiation. Note that high willingness-to-pay users are minorities here.
Figure 5.10 shows the revenue gain G as a function of total resource S under different PP schemes
(including the CP scheme as a special case).

Table 5.3: Parameter setting of a five-group example

group index i 1 2 3 4 5
θi 16 8 4 2 1
N i 2 3 5 10 80

We enlarge Fig.5.10 within the range of S ∈ [0, 50],which is the most complex and interesting
part due to several peak points. Similar to Fig. 5.9, we observe I − 1 = 4 peak points for each curve
in Fig. 5.10. Each peak point again represents a change of effective market threshold of the SP
scheme.
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Figure 5.10: Revenue gain of a five-group example under different price differentiation schemes.
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As the resource S increases from 0, all curves in Fig. 5.10 initially overlap with each other, then
the two-price scheme (blue curve) separates from the others at S = 3.41, after that the three-price
scheme (purple curve) separates at S = 8.89, and finally the four-price scheme (dark yellow curve)
separates at S = 20.84. These phenomena are due to the threshold structure of the PP scheme.
When the resource is very limited, the effective markets under all pricing schemes include only one
group with the highest willingness to pay, and all pricing schemes coincide with the SP scheme. As
the resource increases, the effective market enlarges from two groups to finally five groups.

Figure 5.10 provides the service provider a global picture of how to choose the most proper
pricing scheme to achieve the desirable financial target under a certain parameter setting.For example,
if the total resource S = 100, the two-price scheme seems to be a sweet spot, as it achieves a
differential gain of 14.8% comparing to the SP scheme and is only 2.4% worse than the CP

scheme with five prices.

5.5 CHAPTER SUMMARY

This chapter discussed how a monopoly maximizes its profit through proper pricing mechanisms.
We started by discussing how a monopoly should choose a single profit maximizing price based

on the demand elasticity.The key result is that a monopoly will always operate on the elastic portion of
the demand curve.Then we look at the monopolist’s options when it can charge different prices to the
same customer or different customer groups.This leads to three types of price discrimination schemes.
In the first-degree price discrimination, the monopoly knows the complete demand information of
all customers and performs perfect price discrimination. This unrealistic case provides a theoretical
benchmark for other schemes. In the second-degree price discrimination, the monopolist offers
a bundle of prices corresponding to different demand quantities, and let the customers choose
their best choices. This is often applied when the monopolist knows only limited information of
the consumers’ demands. In the last third-degree price discrimination, which is one of the most
commonly used ones, the monopolist segments the market into several groups, and charges different
prices for different groups. This applies for the case that the monopoly knows the total demand
for each group, but not the individual demand information. Both second- and third-degree price
discrimination induce profit loss comparing to the first degree, and this is inevitable due to the lack
of complete information. For more details about the theory, please see [17, 37].

We then introduce two wireless networking examples to illustrate the ideas.We first consider a
revenue maximization problem for a cellular operator, who has limited resources and faces users with
different channel conditions. The operator wants to sell resources to users who can most effectively
utilize the resources and hence have the highest willingness to pay. We can show that under the
revenue-maximizing price, some users with poor channel conditions will be reluctant to subscribe
to the service. This motivates the cellular provider to deploy the so-called femtocell services to
improve the users’ channel conditions and hence improve the total revenue [33]. In the second
example, we study the revenue-maximizing problem for a monopoly service provider with different
number of pricing choices. Our focus is to investigate the tradeoff between the total revenue and the
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implementational complexity. Among the three pricing differentiation schemes we proposed (i.e.,
complete, single, and partial), the partial price differentiation is the most general one and includes
the other two as special cases. By exploiting the unique problem structure, we are able to design an
algorithm that computes the optimal partial pricing scheme in polynomial time, and numerically
quantifies the tradeoff between implementational complexity and total revenue. For more details
about these two examples, please see [33, 34].

5.6 EXERCISES
1. Power Pricing Problem. Consider a cognitive radio network where a licensed primary user

(PU) shares its spectrum with an unlicensed secondary users (SU). The PU charges the SU
a monetary payment based on the received interference from the SU. Let π denote the price
announced by the PU.Then, the SU decides its transmission power p ∈ [0, Pmax] to maximize
its utility, which equals the difference between its benefit of data transmission and its payment
to the PU, i.e.,

Usu(p, π) = R · log

(
1 + p · G0

σ 2

)
− p · G1 · π,

where R is the unit benefit (revenue) for one unit of achieved data rate, G0 is the channel gain
between the SU’s transmitter and receiver, G1 is the interference channel gain from the SU’s
transmitter and the PU’s receiver, and σ 2 is the noise power on the SU’s own communication
channel. The first term is the total benefit and the second term is the total payment. Show
that the SU’s power demand curve is

Q(π) = p∗(π) = R

G1 · π
− σ 2

G0
.

The PU’s utility is defined as the total payment collecting from the SU, i.e.,

Upu(π) = π · Q(π) .

Show that the PU’s marginal revenue curve is

MR = ∂Upu

∂Q
= π2 · σ 2G1

RG0
, ∀π ∈

[
RG0

σ 2G1 + G1G0Pmax

,
RG0

σ 2G1

]
.

(This implies that the PU always has a positive marginal revenue, and thus he will allow the
SU to transmit at the maximum power possible by setting the lowest corresponding price.)

2. We generalize the above problem to multiple SUs. That is, the PU shares its spectrum with
two SUs. Let π1 and π2 denote the prices that the PU offers to two SUs, respectively. The
SUs’ utilities are

Usu1(p1, π1) = R1 · log (1 + p1) − p1 · π1,

Usu2(p2, π2) = R2 · log (1 + p2) − p2 · π2.
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• Show the demand curves of both SUs, and the marginal revenue curve of the PU.

• Suppose that the PU has a zero marginal cost (induced by SUs’ interferences). How much
power will the PU sell to each SU (i.e., allow each SU to transmit), and what will be the
corresponding prices?

• Suppose that the PU’s marginal cost curve is given by:

MC = log(1 + Q1 + Q2),

where Qi is SU i ’s power demand. How much power will the PU sell to each SU, and
what prices should he charge?
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C H A P T E R 6

Oligopoly Pricing
In Chapter 5, we considered how a single decision maker, the monopolist, chooses the price(s) to
maximize the profit. In this chapter, we consider a more complicated and yet more common situ-
ation, where many self-interested individuals (including firms and consumers) make interdependent
interactions, that is, the payoff of each individual depends not only on his own choices, but also on the
choices of other individuals. Such an interaction can be analyzed by game theory. After introducing
the basic concepts of game theory following [38, 39, 40, 41], we will look at multiple classical market
competition models, including the Cournot competition based on output quantities, the Bertrand
competition based on pricing, and the Hotelling model that captures the location information in
the competition.

In terms of applications, we first revisit the wireless service provider competition model dis-
cussed in Chapter 4. We will study how service providers compete in the market by pricing their
resources selfishly to attract customers and maximize their own revenues. In the second example, we
examine how two secondary wireless service providers compete by leasing resources from spectrum
owners and provide services to the same group of customers.

6.1 THEORY: GAME THEORY
6.1.1 WHAT IS A GAME?
A game is a formal representation of a situation in which a number of individuals interact with
strategic interdependence. In other words, each individual’s welfare depends not only on his own
choices but also on the choices of other individuals. To describe a situation of strategic interaction,
we need to define the following:

• Players: Who are involved in the game?

• Rules: What actions can players choose? How and when do they make decisions? What
information do players know about each other when making decisions?

• Outcomes: What is the outcome of the game for each possible action combinations chosen
by players?

• Payoffs: What are the players’ preferences (i.e., utilities) over the possible outcomes?

We assume that each player is rational (self-interested ), whose goal is to choose the actions that
produce his most preferred outcome.1 When facing potential uncertainty over multiple outcomes, a
1We assume that players’ preference orderings are complete and transitive, like in most of the game theory literature [38, 39].
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rational player chooses actions that maximize his expected utility. Under such a situation, a central
issue is to identify the stable outcome(s) of the game called equilibrium(s).

6.1.2 STRATEGIC FORM GAME
We first introduce strategic form games (also referred to as the normal form games). In such a game,
all players make decisions simultaneously without knowing each other’s choices. Thus, we only need
to define the player set, the action set for each player, and the payoff (utility) function for each player.
Formally,

Definition 6.1 Strategic Form Game A strategic form game is a triplet 〈I , (Si )i∈I , (ui)i∈I〉
where

1. I = {1, 2, ..., I } is a finite set of players.

2. Si is a set of available actions (pure strategies) for player i ∈ I . We further denote by si ∈ Si

an action for player i, and by s−i = (sj , ∀j �= i) a vector of actions for all players except i.
We let S � �iSi denote the set of all action profiles. With a slight abuse of notation we write
s = (si, s−i ) ∈ S to denote the action profile where player i selects action si and the other
players use actions as described by s−i . We further denote S−i � �j �=iSj as the set of action
profiles for all players except i.

3. ui : S → R is the payoff (utility) function of player i, which maps every possible action profile
in S to a real number, the utility.

One important concept in game theory is the strictly dominated strategy, which refers to a
strategy that is always worse than another strategy of the same player regardless of the strategy
choices of other players.

Definition 6.2 Strictly Dominated Strategy A strategy si ∈ Si is strictly dominated for player
i, if there exists some s′

i ∈ Si such that

ui(si, s−i ) < ui(s
′
i , s−i ), ∀s−i ∈ S−i .

When a strategy si is strictly dominated, it can be safely removed from player i ’s strategy set
Si without changing the game outcome, as a rational player i will never choose a strictly dominated
strategy to maximize his payoff. This can help us to predict the outcome of some game, such as the
following Prisoner’s Dilemma.

Example 6.3 Prisoner’s Dilemma Two players are arrested for a crime and placed in separate
rooms. The authorities try to extract a confession from them. If they both remain silent, then the
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authorities will not be able to press serious charges against them and they will both serve a short
prison term, say two years (ui = −2 for both players i = 1, 2), for some minor offenses. If only one
of them (say, player 1) confesses, his term will be reduced to one year (u1 = −1 for player 1), as a
reward for him to serve as a witness against the other person, who will get a sentence of five years
(u2 = −5 for player 2). If they both confess, then both of them get a smaller sentence of four years
(ui = −4 for both players i = 1, 2) comparing with the worst case of five years. This game can be
represented in a matrix form as follows, where each row denotes one action of player 1, each column
denotes one action of player 2, and the cell indexed by row x and column y contains a utility pair
(a, b) with a = u1(x, y) and b = u2(x, y).

SILENT CONFESS
SILENT (−2, −2) (−5, −1)

CONFESS (−1, −5) (−4, −4)

Now we show that “SILENT” is a strictly dominated strategy for both players. Let us first
look at player 1 (the row player). When player 2 chooses “SILENT” (the first column), then player
1 obtains a worse payoff of -2 when he chooses “SILENT,” comparing with the payoff of -1 if he
chooses “CONFESS.” When player 2 chooses “CONFESS” (the second column), then player 1
obtains a worse payoff of -5 when he chooses “SILENT,” comparing with the payoff of -4 if he
chooses “CONFESS.” This means that for player 1, the strategy “SILENT” is always worse than
“CONFESS,” and can be eliminated from his strategy set. Since this game is symmetric, the same
conclusion is true for player 2. Hence, the unique game result is (CONFESS, CONFESS), and the
payoffs of both players are (−4, −4).

However, most of the time we cannot predict a game’s outcome by eliminating strictly dom-
inated strategies. Next we introduce the more general method of predicting the game outcome by
looking at the Best Response Correspondence.

Definition 6.4 Best Response Correspondence For each player i, the best response correspon-
dence Bi(s−i ) : S−i → Si is a mapping from the set S−i into Si such that

Bi(s−i ) = {si ∈ Si | ui(si, s−i ) ≥ ui(s
′
i , s−i ), ∀s′

i ∈ Si}.

Let’s use the best response correspondence concept to predict the result of the following Stag
Hunt game.

Example 6.5 Stag Hunt Two hunters decide to hunt together in a forest, and each of them chooses
one animal to hunt: stag or hare. Hunting a stag is challenging and requires cooperation between the
hunters to succeed. Hunting a hare is easy and can be done by a single hunter. When both hunters
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choose to hunt a stag, each of them will get a payoff of 10 (pounds of stag meat). When hunter 1
hunts a stag but hunter 2 hunts a hare, then hunter 1 gets nothing due to the lack of cooperation,
and hunter 2 gets a payoff of 2 (pounds of hare meat). The situation is similar when hunter 1 hunts
a hare and hunter 2 hunts a stag. Finally, when both hunters hunt hares, then each of them will get
a payoff of 2 as there are enough hares around in the forest. This game can be represented in the
matrix form as follows.

STAG HARE
STAG (10, 10) (0, 2)

HARE (2, 0) (2, 2)

One can easily verify that there is no strictly dominated strategy in this game, as choosing
“HARE” is worst than “STAG” for hunter 1 (row player) when hunter 2 chooses “STAG” (the
first column), but choosing “STAG” is worst than “HARE” for hunter 1 when hunter 2 chooses
“HARE” (the second column). However, the above analysis reveals that the hunter 1’s best response
functions are B1(ST AG) = ST AG and B1(HARE) = HARE. As the game is symmetric, we can
similarly show that B2(ST AG) = ST AG and B2(HARE) = HARE. This shows that there are
two strategy profiles, (STAG, STAG) and (HARE, HARE), they are mutual best responses of both
players. For example, if hunter 2 chooses “STAG,” then it is hunter 1’s best response of choosing
“STAG,” and vice versa. Hence, (STAG, STAG) is a robust predication of the game result. So is
(HARE, HARE). In fact, this naturally leads to the concept of Nash Equilibrium defined next.

6.1.3 NASH EQUILIBRIUM

Definition 6.6 Pure Strategy Nash Equilibrium A pure strategy Nash Equilibrium of a strategic
form game 〈I , (Si )i∈I , (ui)i∈I〉 is a strategy profile s∗ ∈ S such that for each player i ∈ I the
following condition holds

ui(s
∗
i , s∗−i ) ≥ ui(s

′
i , s

∗−i ), ∀s′
i ∈ Si .

The above definition can be restated in terms of best-response correspondences:

Definition 6.7 Pure Strategy Nash Equilibrium-Restated A strategy profile s∗ ∈ S is a Nash
Equilibrium of a strategic form game 〈I , (Si )i∈I , (ui)i∈I〉 if and only if

s∗
i ∈ Bi(s

∗−i ), ∀i ∈ I,

where Bi(·) is the best response correspondence defined in Definition 6.4.
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Hence, we know that the Stag Hunt game has two pure strategy Nash equilibria: (STAG,
STAG) and (HARE, HARE). Moreover, we can verify that the Prisoner’s Dilemma has a unique
pure strategy Nash equilibrium: (CONFESS, CONFESS).

We note that a pure strategy Nash Equilibrium may not be a Pareto optimal solution. That
is, there may be other strategy profiles under which all players achieve higher utilities than under a
Nash Equilibrium. For example, in the Prisoner’s Dilemma, choosing (SILENT, SILENT) will lead
to payoffs of (−2, −2), which are better than the payoffs of (−4, −4) under the Nash equilibrium
(CONFESS, CONFESS). Such a loss is due to the selfish nature of the players.

It is worth noting that not every game possesses a pure strategy Nash Equilibrium. To see
this, let us consider the following Matching Pennies Game.

Example 6.8 Matching Pennies The game is played between two players. Each player has a
penny and turns his penny to “HEADS” or “TAILS” secretly and simultaneously with the other
player. If the pennies match (both heads or both tails), player 1 keeps both pennies, so wins one from
player 2 (u1 = 1 for player 1, u2 = −1 for player 2). If the pennies do not match (one heads and one
tails), player 2 keeps both pennies, so receives one from player 1 (u1 = −1 for player 1, u2 = 1 for
player 2). This is an example of a zero-sum game, where one player’s gain is exactly the other player’s
loss. This game can be represented by the following matrix.

HEADS TAILS
HEADS (1, −1) (−1, 1)

TAILS (−1, 1) (1, −1)

It is easy to verify that player 1’s best response is “HEADS” if player 2 selects “HEADS,”
and “TAILS” if player 2 selects “TAILS.” However, player 2’s best response functions are exactly the
opposite. Hence, there is no strategy profile that corresponds mutual best responses of both players,
and hence there is no pure strategy Nash Equilibrium.

Another way to understand the lack of pure strategy equilibrium in the Matching Pennies
game is to consider the following cyclic best response behavior. When player 1 chooses “HEADS,”
player 2 will choose “TAILS” as his best response. In response to this, player 1 will choose “TAILS,”
which makes player 2 choose “HEADS.” Because of this, player 1 will switch to “HEADS,” hence
enters a loop.

When a game does not have a pure strategy Nash Equilibrium, it is natural to ask what kind
of outcome will emerge as an “equilibrium?” If we allow the players to randomize over their actions,
then we can show that the game will reach a mixed strategy Nash Equilibrium.

We need some new notations to explain this new equilibrium concept. Let σi denote a mixed
strategy for player i, which is a probability distribution function (or probability mass function over
the finite set Si) over all pure strategies in set Si . For example, in the Matching Pennies game,
σ1 = (0.4, 0.6) is a mixed strategy for player 1, which means that player 1 picks “HEADS” with
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probability 0.4 and “TAILS” with probability 0.6. Let �i denote the set of all mixed strategies of
player i, i.e., all probability distributions over Si . Let σ = (σi)i∈I ∈ � denote a mixed strategy
profile for all players, where � = �i�i is the set of all mixed strategy profiles. Furthermore, let
σ−i = (σj , ∀j �= i) denote a mixed strategy profile for all players except i, and �−i = �j �=i�j

denote the set of mixed strategy profile for all players except i.
Each player i ’s payoff under a mixed strategy profile σ is given by the expected value of pure

strategy payoffs under the distribution σ . More precisely, we have

ui(σ) =
∑
s∈S

(
�I

j=1σj (sj )
)

· ui(s), (6.1)

where s = (sj , ∀j ∈ I) is a pure strategy profile, and �I
j=1σj (sj ) is the probability of choosing a

particular pure strategy profile s.
Based on above, the mixed strategy Nash Equilibrium is defined as follows [38, 39].

Definition 6.9 Mixed Strategy Nash Equilibrium A mixed strategy profile σ∗ is a mixed strategy
Nash Equilibrium if for every player i ∈ I ,

ui(σ
∗
i ,σ∗−i ) ≥ ui(σ

′
i ,σ

∗−i ), ∀σ ′
i ∈ �i.

Let supp(σi) denote the support of σi , defined as the set supp(σi) � {si ∈ Si | σi(si) > 0},
that is, the support of σi is the set of pure strategies which are assigned positive probabilities. We
have the following useful characterization of a mixed strategy Nash Equilibrium.

Proposition 6.10 A mixed strategy profile σ∗ is a mixed strategy Nash Equilibrium if and only if for
every player i ∈ I , the following two conditions hold:

1. Every chosen action is equally good, that is, the expected payoff given σ∗−i of every si ∈ supp(σi) is
the same.

2. Every non-chosen action is not good enough, that is, the expected payoff given σ∗−i of every si /∈
supp(σi) must be no larger than the expected payoff of si ∈ supp(σi).

Intuitively, Proposition 6.10 states that for a player i, every action in the support of a mixed
strategy Nash Equilibrium is a best response to σ∗−i . This proposition follows from the fact that
if the strategies in the support have different payoffs, then it would be better to just take the pure
strategy with the highest expected payoff. This would contradict the assumption that σ∗ is a Nash
Equilibrium. Using the same argument, it follows that the pure strategies which are not in the
support must have lower (or equal) expected payoffs compared to the ones in the support set.
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For the Matching Pennies game, we can show that σ∗ = (σ ∗
1 , σ ∗

2 ) with σ ∗
i = (0.5, 0.5), i =

1, 2, is the unique mixed strategy Nash Equilibrium. To see this, we can verify that given player 2’s
equilibrium strategy σ ∗

2 = (0.5, 0.5), player 1 achieves the same best expected payoff with both pure
strategies.

An important problem is to determine when a strategic form game possesses a (pure or
mixed) strategy Nash equilibrium. Notice that a pure strategy Nash Equilibrium is a special case of
the mixed strategy Nash Equilibrium. The most important results regarding this are listed in the
following theorems.

Theorem 6.11 Existence (Nash 1950) Any finite strategic game, i.e., a game that has a finite number
of players and each player has a finite number of action choices, has at least one mixed strategy Nash
Equilibrium.

Theorem 6.12 Existence (Debreu-Fan-Glicksburg 1952) The strategic form game 〈I , (Si )i∈I ,
(ui)i∈I〉 has a pure Nash equilibrium, if for each player i ∈ I the following conditions hold:

1. Si is a non-empty, convex, and compact subset of a finite-dimensional Euclidean space.

2. ui(s) is continuous in s and quasi-concave2 in si .

Both theorems can be proved by the Kakutani fixed point theorem (see [42]). Theorem 6.11
guarantees the existence of Nash equilibrium in games like Prisoner’s Dilemma, Stag Hunt, and
Matching Pennies. Theorem 6.12 helps us to understand the existence of a pure Nash equilibrium in
a strategic form game where players have continuous strategy sets (e.g., the Cournot Competition
Game in Section 6.2.1).

6.1.4 EXTENSIVE FORM GAME
We have studied the strategic form games which are used to model one-shot games, in which each
player chooses his action once and all players act simultaneously. In this section, we further study the
extensive form games, where players engage in sequential decision making [38, 39]. Our focus will be
on multi-stage games with observed actions where:

1. All previous actions (called history) are observed, i.e., each player is perfectly informed of all
previous events.

2. Some players may move simultaneously within the same stage.

2A function is quasi-concave if its negative is quasi-convex. A quasi-convex function is a real-valued function defined on an interval
or on a convex subset of a real vector space, such that the inverse image of any set of the form (−∞, a) is a convex set.
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Extensive form games can be conveniently represented by tree diagrams, such as the following
Market Entry game.

Example 6.13 Market Entry There are two players (firms). Player 1, the challenger, can choose
to enter the market (I) or stay out (O). Player 2, the monopolist, after observing the action of the
challenger, chooses to accommodate (A) or fight (F). The detailed process is shown in Figure 6.1.
Note that when player 1 chooses “Out,” there will be no difference for the player 2 to choose “Fight”
or “Accord.” At each of the four leaf nodes, we show the payoff pair of both players. For example,
when player 1 chooses “IN” and player 2 chooses “ACCORD,” then player 1 gets a payoff of 2 and
player 2 gets a payoff of 1.

Player 1
(Challenger)

Player 2
(Monopolist)

IN (I)

OUT (O)

ACCORD (A)

FIGHT (F)

ACCORD (A)

FIGHT (F)

(2,1)

(-3,-1)

(0,2)

(0,2)

Figure 6.1: Market Entry Game.

An extensive form game can be formally defined as follows [38, 39, 43].

Definition 6.14 Extensive Form Game An extensive form game consists of four main elements:

1. A set of players I = {1, 2, ..., I }.
2. Histories: A set H of sequences which can be finite or infinite, defined by⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

h0 = ∅ initial history
h1 = (s0) history after stage 0
h2 = (s0, s1) history after stage 1

... ...

hk+1 = (s0, ..., sk) history after stage k
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where st = (st
i , ∀i ∈ I) is the action profile at stage t .

If the game has a finite number (K + 1) of stages (i.e., from stage 0 to stage K), then it is a
finite horizon game. Let Hk = {hk} be the set of all possible histories after stage k − 1 (i.e.,
at stage k). Then HK+1 = {hK+1} is the set of all possible terminal histories (after stage K),
and H =⋃K+1

k=0 Hk is the set of all possible histories. Consider the Market Entry game in
Figure 6.1, we have H1 = {I, O} and H2 = {(I, A), (I, F), (O, A), (O, F)}.

3. Each pure strategy for player i is defined as a contingency plan for every possible history.
Let Si (hk) be the set of actions available to player i under history hk , and Si (Hk) =⋃

hk∈Hk Si (hk) be the set of actions available to player i under all possible histories at stage k.
Let ak

i : Hk → Si (Hk) be a mapping from Hk to Si (Hk) such that ak
i (h

k) ∈ Si (hk). Then
a pure strategy of player i is a sequence si = {ak

i }Kk=0. The collection of all such sequences
si forms the set of strategies available to player i. The path of strategy profile s includes
s0 = a0(h0), s1 = a1(s0), s2 = a2(s0, s1), and so on, where ak(·) = (ak

i (·), ∀i ∈ I).

4. Preferences are defined on the outcome of the game HK+1 (after stage K). We can represent
the preferences of player i by a utility function ui : HK+1 → R. As the strategy profile s
determines the path (s0, ..., sk), and hence hK+1, we will denote the payoff to player i under
strategy profile s as ui(s).

We want to emphasize that in an extensive form game, a strategy specifies the action the
player chooses for every possible history. This is very different from the strategic form game, where
“pure strategy” and “action” have the same meaning. Consider the Market Entry game in Figure 6.1.
Player 1 moves in the first stage (i.e., stage 0) and player 2 moves in the second stage (i.e., stage
1). The strategy of player 1 is the function a0

1 : H0 = ∅ → S1 = {I, O}. The strategy of player 2
is the function a1

2 : H1 = {I, O} → S2(H1). There are four possible strategies for player 2, which
we can represent as AA, AF, FA, and FF, each corresponding to a contingency plan of player 2
for every possible history in H1 = {I, O}. That is, the strategy AA means that player 2 will select
“ACCORD” under both histories in H1 = {I, O}; the strategy FA means that player 2 will select
“FIGHT” under history h1 = {I} and “ACCORD” under history h1 = {O}. If the strategy profile
is (I, AF) or (I, AA), then the outcome will be (player 1 chooses “IN,” player 2 chooses “ACCORD”).
On the other hand, if the strategy profile is (O, FA) or (O, AA), then the outcome will be (player 1
chooses “OUT,” player 2 chooses “ACCORD”).

Based on above discussions, one might want to represent the extensive form game in the
corresponding strategic form, and solve the equilibria using the methods introduced in Section 6.1.3.
The following matrix shows the strategic form of the Market Entry game.Each row denotes a strategy
of player 1, and each column denotes a strategy of player 2.

By checking the best responses of both players, one can conclude that there are four pure
strategy Nash Equilibria in this game: (I, AA), (I, AF), (O, FA), and (O, FF). However, further
thinking reveals that the two equilibria (O, FA) and (O, FF) are problematic, as both of them rely
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AA AF FA FF
I (2, 1) (2, 1) (−3, −1) (−3, −1)

O (0, 2) (0, 2) (0, 2) (0, 2)

on the empty threat that player 2 will choose “FIGHT” when player 1 chooses “IN.” To see why
this will not happen, we notice that once player 1 chooses “IN,” then player 2 will definitely choose
“ACCORD” and get a payoff of 1 (as “FIGHT” leads to a worse payoff of -1). This will eliminate
player 2’s two strategies: “FA” and “FF.” Hence, the only “reasonable” Nash equilibria will be (I,AA)
and (I,AF).

Next we make the above discussions formal by introducing the concept of subframe perfect
equilibrium.

6.1.5 SUBGAME PERFECT EQUILIBRIUM
The subgame perfect equilibrium (SPE) requires the strategy of each player to be optimal not only at
the start of the game but also after every history [44]. Let hk denote a history at stage k. We define
G(hk) as the game from hk on with

• Histories: hK+1 = (hk, sk, ..., sK).

• Strategies: si|hk is the restriction of si to histories in G(hk).

• Payoffs: ui(si, s−i |hk) is the payoff of player i after histories in G(hk).

Such a game is referred to as the subgame from history hk . Then a subgame perfect equilibrium is
defined as follows:

Definition 6.15 Subgame Perfect Equilibrium A strategy profile s∗ is a subgame perfect equi-
librium for an extensive form game if for every history hk , the restriction s∗

i|hk is an Nash equilibrium

of the subgame G(hk).

For finite horizon games, the subgame perfect equilibria can be derived using backward in-
duction. Let us solve the SPE of the Market Entry game using this method.

We first look at the two subgames from history h1 = {I} and h1 = {O}, which concern the
decision of player 2 in the last stage. In the first subgame G (I) as in Figure 6.2, it is clear that
player 2 will choose “ACCORD” to maximize his payoff (as 1 is better than -1), and hence we can
eliminate “FIGHT.” In the second subgame G (O) as in Figure 6.3, player 2 is indifferent from
choosing “ACCORD” or “FIGHT,” hence we cannot eliminate any action.

Now we proceed to the remaining subgame, which concerns player 1’s decision in the initial
stage as in Figure 6.4. Player 1 now faces two possible payoffs: he will get 2 if he chooses “IN,” and
he will get 0 if he chooses “OUT.” So clearly he will choose “IN.” Hence, the SPEs are (I, AA) and
(I, AF). The final equilibrium path would be (player 1 chooses “IN,” player 2 chooses “ACCORD”),
and the equilibrium payoffs are (2, 1).
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Player 1
(Challenger)

Player 2
(Monopolist)

IN (I)

ACCORD (A)

FIGHT (F)

(2,1)

(-3,-1) (eliminate)

Figure 6.2: Market Entry Game: subgame G (I).

Player 1
(Challenger)

Player 2
(Monopolist)

OUT (O)

ACCORD (A)

FIGHT (F)

(0,2)

(0,2)

Figure 6.3: Market Entry Game: subgame G (O).

6.2 THEORY: OLIGOPOLY

Now we consider three classical strategic form game formulations for competitions among multiple
entities (also called Oligopoly) [45]: the Cournot model, the Bertrand model, and the Hotelling
model. We use these models to illustrate: (a) the translation of an informal problem statement into
a strategic form representation of a game; and (b) the analysis of Nash equilibrium when a player
can choose his strategy from a continuous set.

6.2.1 THE COURNOT MODEL
The Cournot model is an economic model used to describe interactions among firms that compete
on the amount of output they will produce, which they decide independently of each other simulta-
neously [46]. It is named after Antoine Augustin Cournot (1801–1877). A Cournot model usually
has the following key features:

• There are at least two firms producing homogeneous (undifferentiated) products;

• Firms do not cooperate, i.e., there is no collusion;
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Player 1
(Challenger)

Player 2
(Monopolist)

IN (I)

OUT (O)

ACCORD (A)

ACCORD (A)

FIGHT (F)

(2,1) (equilibrium payoffs)

(0,2)

(0,2)

Figure 6.4: Market Entry Game: subgame G (∅).

• Firms compete by setting production quantities simultaneously. The total output quantity
affects the market price;

• The firms are economically rational and act strategically, seeking to maximize profits given
their competitors’ decisions.

For simplicity, we consider a Cournot model between two firms, I = {1, 2}. Each firm i

decides his output quantity qi , under a fixed unit producing cost ci . The market-clearing price is
a decreasing function of the total quantity Q = q1 + q2, denoted by P(Q). In such a competition
model, what is the best quantity choice of each firm?

We first translate the problem into a strategic form game—Coutnot Game. Recall from Defi-
nition 6.1, we have the following strategic form representation of this Cournot game:

• The set of players is I = {1, 2},
• The strategy set available to each player i ∈ I is the set of all nonnegative real numbers, i.e.,

qi ∈ [0, ∞),

• The payoff received by each player i is a function of both players’ strategies, defined by
�i(qi, q−i ) = qi · P(Q) − ci · qi . The first term denotes the player i ’s revenue from sell-
ing qi units of products at a market-clearing price P(Q), and the second term denotes the
player i ’s production cost.

Next we identify the Nash equilibrium of this Cournot game. Given player 2’s strategy q2,
player 1’s payoff (profit) is a function of his quantity q1,

�1(q1, q2) = q1 · P(q1 + q2) − c1 · q1.
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0 q1

q2

a − c1

1
2 (a − c2)

a − c21
2 (a − c1)

B1(q2)

B2(q1)

Nash Equilibrium

Figure 6.5: The Cournot Game.

The best response of player 1 is the strategy q1 which maximizes this function, given player 2’s
strategy q2. The optimal strategy for player 1 needs to satisfy the following first-order condition
(ignoring boundary conditions):

q1 · P ′(q1 + q2) + P(q1 + q2) − c1 = 0.

As an example, we assume that P(q1 + q2) = a − q1 − q2. Then the best response of player 1 is

q∗
1 = B1(q2) = a − q2 − c1

2
,

which is a function of player 2’s strategy q2.
Similarly, given player 1’s strategy q1, the optimal strategy for player 2 or the best response of

player 2 is

q∗
2 = B2(q1) = a − q1 − c2

2
,

which is a function of player 1’s strategy q1.
Recall from Definition 6.6, a strategy profile (q∗

1 , q∗
2 ) is an Nash equilibrium if every player’s

strategy is the best response to others’ strategies, that is,q∗
1 = B1(q

∗
2 ) and q∗

2 = B2(q
∗
1 ).This directly

leads to the following pure strategy Nash equilibrium:

q∗
1 = a + c1 + c2

3
− c1, q∗

2 = a + c1 + c2

3
− c2 .

Here we assume that a is large enough such that q∗
1 > 0 and q∗

2 > 0.
Figure 6.5 illustrates both players’ best response functions and the Nash equilibrium. Geo-

metrically, the Nash equilibrium is the intersection of both players’ best response curves. For more
information about variations of Cournot games, please refer to [38, 39, 46].
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6.2.2 THE BERTRAND MODEL
The Bertrand model is an economic model used to describe interactions among firms (sellers) that
set prices and their customers (buyers) that choose quantities at that price [46]. It is named after
Joseph Louis Francois Bertrand (1822–1900). The Bertrand model has the following key features:

• There are at least two firms producing homogeneous (undifferentiated) products;

• Firms do not cooperate, i.e., there is no collusion;

• Firms compete by setting prices simultaneously;

• Consumers buy everything from a firm with a lower price. If all firms charge the same price,
consumers randomly select among them.

• The firms are economically rational and act strategically, seeking to maximize profits given
their competitors’ decisions.

Similarly, we consider a Bertrand model between two firms, I = {1, 2}. Each firm i chooses
the price pi , rather than quantity as in the Cournot model. Consumers buy from the firm with a
lower price, and the total consumer demand is a decreasing function of the market price, denoted
by D(min{p1, p2}). In such a competition model, what is the best price choice of each firm? It
is important to note that the Bertrand model is a different game than the Cournot model: the
strategy spaces are different, the payoff functions are different, and (as will be shown later) the
market outcomes in the Nash equilibria of the two models are different.

The strategic form representation for this (two firms) Bertrand model, called Bertrand Game,
is as follows:

• The set of players is I = {1, 2},
• The strategy set available to each player i ∈ I is the set of all nonnegative real numbers, i.e.,

pi ∈ [0, ∞),

• The payoff (profit) received by each player i is a function of both players’ strategies, defined
by �i(pi, p−i ) = (pi − ci) · Di(p1, p2), where ci is the unit producing cost and Di(p1, p2)

is the consumers’ demand to player i.

Obviously, if player i ’s price is lower than that of the other player (denoted by −i), then he
gets the total consumer demand D(P ); and if two players’ prices are the same, each player gets half
of the total consumer demand D(P ). That is, Di(p1, p2) = D(pi) if pi < p−i ; Di(p1, p2) = 0 if
pi > p−i ; and Di(p1, p2) = D(pi)/2 if pi = p−i .

Next we identify the (unique) Nash equilibrium of this Bertrand game. Given player 2’s
strategy p2, player 1’s payoff is a function of his price p1,

�1(p1, p2) =
⎧⎨
⎩

(p1 − ci) · D(p1) if p1 < p2

0 if p1 > p2

(p1 − ci) · D(p1)/2 if p1 = p2
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0 p1

p2

c1

c2

B1(p2)

B2(p1)

Nash Equilibrium

Figure 6.6: The Bertrand Game.

Thus, given player 2’s strategy p2, the optimal strategy for player 1 or the best response of player 1
is to select a price p1 slightly lower than p2, under the constraint that p1 ≥ c1.

Similarly, given player 1’s strategy p1, the optimal strategy for player 2 or the best response of
player 2 is to select a price p2 slightly lower than p1, under the constraint that p2 ≥ c2. Thus, for
any strategy profile (p1, p2), both players will gradually decrease their prices, until one player gets
to his lowest acceptable price, i.e., his producing cost. Therefore, the Nash equilibrium is given by

⎧⎨
⎩

p∗
1 = [c2]−, p∗

2 ∈ [c2, ∞) if c1 < c2

p∗
1 ∈ [c1, ∞), p∗

2 = [c1]− if c1 > c2

p∗
1 = p∗

2 = c if c1 = c2 = c

where [x]− denotes the value slightly lower than x. The above Nash equilibrium implies that the
lower producing cost firm will extract all the consumer demand, by setting a price slightly lower than
the other firm’s producing cost. This is geometrically illustrated in Figure 6.6. Note that the above
classic Bertrand model assumes firms compete purely on price, ignoring non-price competition. In
a more general case, firms can differentiate their products and charge a higher price. For detailed
information, please refer to [38, 39, 46].

6.2.3 THE HOTELLING MODEL
The Hotelling model is an economic model used to study the effect of locations on the competition
among two or more firms [46]. It is named after Harold Hotelling (1895–1973). The Hotelling
model has the following key features:

• There are two firms selling the same good. The firms have different locations, which are
represented by two points in the interval [0, 1].
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• The customers are uniformly distributed along the interval. Customers incur a transportation
cost as well as a purchasing cost.

• The firms are economically rational and act strategically, seeking to maximize profits given
their competitors’ decisions.

We take the following model as an example of the Hotelling model. Consider a one mile long
beach on a hot summer day. There are two identical icecream shops on both ends of the beach: store
1 at x = 0 and store 2 at x = 1. The customers are uniformly distributed with density 1 along this
beach. Customers incur a transportation cost w per unit of length (e.g., the value of time spent in
travel). Thus, a customer at location x ∈ [0, 1] will incur a transportation cost of w · x when going
to store 1 and w · (1 − x) when going to store 2.

Each customer buys one icecream and obtains a satisfaction level of s, which is large enough
such that all customers want to purchase one icecream from one of the stores. Each store i ∈ {1, 2}
chooses a unit price pi . A customer will choose a store that has the less generalized cost, i.e., price
plus transportation cost. Each store wants to choose the price to maximize his own profit, by taking
the unit cost into consideration.

The strategic form representation for this Hotelling model, called Hotelling Game, is as follows:

• The set of players is I = {1, 2},
• The strategy set available to each player i ∈ I is the set of all nonnegative real numbers, i.e.,

pi ∈ [0, ∞),

• The payoff received by each player i is a function of both players’ strategies, defined by
�i(pi, p−i ) = (pi − ci) · Di(p1, p2), where ci is the unit producing cost and Di(p1, p2)

is the ratio of consumers coming to player i (which will be analyzed later).

Next we derive the Nash equilibrium of this game. First, let us compute the location of the
customer who is indifferent of choosing either store, x = l(p1, p2), where x is given by equating
the generalized costs,

p1 + w · x = p2 + w · (1 − x).

Thus, the players’ respective demand ratios are

D1(p1, p2) = l(p1, p2) = p2 − p1 + w

2w

and
D2(p1, p2) = 1 − l(p1, p2) = p1 − p2 + w

2w
.

Given player 2’s price p2, the profit of player 1 is given by

�1(p1, p2) = (p1 − c1) · p2 − p1 + w

2w
.
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Figure 6.7: The Hotelling Game.

Thus, the optimal strategy for player 1 or the best response of player 1 is given by the first
order condition, i.e.,

p∗
1 = B1(p2) = p2 + w + c1

2
.

Similarly, given player 1’s price p1, the best response of player 2 is given by

p∗
2 = B2(p1) = p1 + w + c2

2
.

The Nash equilibrium of the Hotelling game is given by p∗
1 = B1(p

∗
2) and p∗

2 = B2(p
∗
1), i.e.,

p∗
1 = 3w + c1 + c2

3
+ c1

3
, p∗

2 = 3w + c1 + c2

3
+ c2

3
.

Figure 6.7 illustrates both players’ best response functions and the Nash equilibrium. Geo-
metrically, the Nash equilibrium is the intersection of both players’ best response curves. Note that
the above classic Hotelling model assumes firms compete purely on price with fixed locations. In a
more general case, firms can choose different locations so as to attract more consumers. For detailed
information, please refer to [38, 39, 46].

6.3 APPLICATION I: WIRELESS SERVICE PROVIDER
COMPETITION REVISITED

Here we revisit the wireless service provider competition model in Section 4.3. In Section 4.3, we
solve the social welfare optimization problem, assuming that all providers are under the control
of the same entity (e.g., regulator). In this section, we look at the market competition case, where
each provider determines its own price to maximize its own revenue. This can be modeled as a
multi-leader-follower provider competition game.
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6.3.1 PROVIDER COMPETITION GAME
We consider a setJ = {1, . . . , J } of service providers and a setI = {1, . . . , I } of users.The provider
competition game consists of two stages. In the first stage, providers announce prices p = (pj , ∀j ∈
J ), where pj is the unit resource price announced by provider j . In the second stage, each user
i ∈ I chooses a demand vector qi = (qij , ∀j ∈ J

)
, where qij represents the demand from user i to

provider j . We use q = (qi , ∀i ∈ I) to denote the demand vector of all users.
In the second stage where prices p are known, the goal of user i is to choose qi to maximize

its payoff (utility minus payment):

vi(qi,p) = ui

⎛
⎝ J∑

j=1

qij cij

⎞
⎠−

J∑
j=1

pjqij , (6.2)

where cij is the channel quality offset for the channel between user i and the base station of provider j

(see Example 4.11 and Assumption 4.13), and ui is an increasing and strictly concave utility function.
In the first stage, a provider j chooses price pj to maximize its revenue pj

∑
i∈I qij subject to the

resource constraint
∑

i∈I qij ≤ Qj , while taking into account the effect of all prices on the user
demands in the second stage.

6.3.2 ANALYSIS OF THE TWO-STAGE GAME
Next we will show that there exists a unique subgame perfect equilibrium (SPE) of the two-stage
game, and such an equilibrium corresponds to the unique social optimal solution of SWO and the
associated Lagrange multipliers discussed in Section 4.3.2 under fairly mild technical assumptions.
The idea is to show that the optimal Lagrange multipliers coincide with the prices announced by
the providers at the SPE.

In this game, a price demand tuple (p∗,q∗(p∗)) is an SPE if no player has an incentive to
deviate unilaterally at any stage of the game. In particular, each user i ∈ I maximizes its payoff
by choosing the demand q∗

i (p∗) given prices p∗. Each provider j ∈ J maximizes its revenue by
choosing the price p∗

j given other providers’ prices p∗−j = (p∗
k , ∀k �= j) and the user demands

q∗(p∗).
We will compute the SPE using backward induction. In Stage II, we will compute the best

response of the users q∗(p) as a function of any given price vector p.Then in Stage I, we will compute
the equilibrium prices p∗.

Equilibrium strategy of the users in Stage II
Consider users facing prices p in the second stage. Each user i ∈ I solves a user payoff maximization
(UPM) problem:

UPM : max
qi≥0

⎛
⎝ui

⎛
⎝ J∑

j=1

qij cij

⎞
⎠−

J∑
j=1

pjqij

⎞
⎠ . (6.3)
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We can show that the optimal solution of Problem UPM is unique in terms of the effective
resource xi as defined in Section 4.3.2.

Lemma 6.16 For each user i ∈ I , there exists a unique nonnegative value x∗
i , such that

∑¥
j=1 cij qij =

x∗
i for every maximizer qi of the UPM problem. Furthermore, for any provider j such that qij > 0,

pj

cij
= mink∈J

pk

cik
.

However, not every user requests resources from a single provider. This leads to the following
definition.

Definition 6.17 (Preference set) For any price vector p, user i ’s preference set Ji (p) includes
each provider j ∈ J with pj

cij
= mink∈J

pk

cik
.

In light of Lemma 6.16, Ji is the set of providers from which user i might request a strictly
positive amount of resource. Users can be partitioned to decided users and undecided users based on the
cardinality of their preference sets. The preference set of a decided user i contains a singleton, and
there is a unique vector qi that maximizes his payoff. By contrast, the preference set of an undecided
user i contains more than one provider, and any choice of qi ≥ 0 such that x∗

i =∑¥
j∈Ji

qij cij

maximizes his payoff.
However, we can construct a bipartite graph representation (BGR) of the undecided users’

preference sets as follows. We represent undecided users by circles, and providers of undecided users
as squares. We place an edge (i, j) between a provider node j and a user node i if j ∈ Ji . Then we
can show that this BGR has no loops with probability 1. This means that we can use the BGR to
uniquely determine (decode) the demands of undecided users.

Suppose that the optimal Lagrange multipliers p∗ from Section 4.3.2 are announced by
providers as prices in this game. Since all users have complete network information, each of them
can calculate all users’ preference sets, and can construct the corresponding BGR. Undecided users
can now uniquely determine their demand vectors by independently running the same BGR decoding
algorithm. The demand q∗ found through BGR decoding will be unique. We can in fact show that
this corresponds to the unique subgame perfect equilibrium of the provider competition game. For
details, see [31].

Equilibrium strategy of the providers in Stage I
The optimal choice of prices for the providers depends on how the users’demand changes with respect
to the price, which further depends on the users’ utility functions. The quantity that indicates how
a user’s demand changes with respect to the price is the coefficient of relative risk aversion [18] of the
utility function ui , i.e.,ki

RRA = −xu′′
i (x)/u′

i (x).We focus on a class of utility functions characterized
in Assumption 6.18.

Assumption 6.18 For each user i ∈ I , the coefficient of relative risk aversion of its utility function
is less than 1.
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Assumption 6.18 is satisfied by some commonly used utility functions, such as log(1 + x)

and the α−fair utility functions x1−α/(1 − α) for α ∈ (0, 1). Under Assumption 6.18, we can show
that a monopolistic provider will sell all of its resource Qj to maximize its revenue. The intuition is
that Assumption 6.18 ensures that user demands are elastic. This encourages a provider to charge
the lowest price (and hence sell all the resources) to maximize his revenue. We show that this is true
even if multiple providers are competing with each other.

Theorem 6.19 Under Assumptions 4.12, 4.13, and 4.14 in Section 4.3.1 and Assumption 6.18 above,
the unique socially optimal demand vector q∗ and the associated Lagrangian multiplier vector p∗ of the
SWO problem constitute the unique sub-game perfect equilibrium of the provider competition game.

It is interesting to see that the competition of providers does not reduce social efficiency. This
is not a simple consequence of the strict concavity of the users’ utility functions; it is also related to
the elasticity of users’ demands.

Figure 6.8 summarizes the three sets of concepts discussed in Sections 4.3.2, 4.3.3, and 6.3.1.

Social Welfare Optimization

Section 4.3.2

maximizing vector q∗

Lagrange multipliers p∗

(q∗, p∗)

Provider Competition Game

Section 6.3.1

equilibrium price p∗
equilibrium user demand q∗

(q∗, p∗)

Primal-Dual Algorithm

Section 4.3.3

limt→∞(q(t), p(t)) = (q∗, p∗)
(q∗, p∗)

Figure 6.8: Relationship between different concepts for wireless service provider competition.

6.4 APPLICATION II: COMPETITION WITH SPECTRUM
LEASING

Wireless spectrum is often considered as a scarce resource, and thus has been tightly controlled by
the government through static license-based allocations. However, several recent field measurements
show that many spectrum bands are often under utilized even in densely populated urban areas. To
achieve more efficient spectrum utilization, secondary users may be allowed to share the spectrum
with the licensed primary users. Various dynamic spectrum access mechanisms have been proposed
along this direction.One of the proposed mechanisms is dynamic spectrum leasing,where a spectrum
owner dynamically transfers and trades the usage right of a temporarily unused part of its licensed
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Stage I: operators decide

leasing bandwidth Bi and Bj

Stage II: operators

announce prices pi and pj

Stage III: each user

decides bandwidth purchase

Figure 6.9: Three-stage dynamic game: the duopoly’s leasing and pricing, and the users’ resource allo-
cation.

spectrum to secondary network operators or users in exchange for monetary compensation. In this
application, we study the competition of two secondary operators under the dynamic spectrum
leasing paradigm.

6.4.1 NETWORK MODEL
We consider two operators (i, j ∈ {1, 2} and i �= j ) and a set K = {1, . . . , K} of users in an ad
hoc network. The operators obtain wireless spectrum from different spectrum owners with different
leasing costs, and compete to serve the same set K of users. Each user has a transmitter-receiver pair.
We assume that users are equipped with software defined radios (SDRs) and can transmit in a wide
range of frequencies as instructed by the operators. A user may switch among different operators’
services (e.g., WiMAX, 3G) depending on operators’ prices. It is important to study the competition
among multiple operators as operators are normally not cooperative.

The interactions between the two operators and the users can be modeled as a three-stage
dynamic game, as shown in Fig. 6.9. Operators i and j first simultaneously determine their leasing
bandwidths in Stage I, and then simultaneously announce the prices to the users in Stage II. Finally,
each user chooses to purchase bandwidth from only one operator to maximize its payoff in Stage III.

Here are several key notations for our problem:

• Leasing decisions Bi and Bj : leasing bandwidths of operators i and j in Stage I, respectively.

• Costs Ci and Cj : the fixed positive leasing costs per unit bandwidth for operators i and j ,
respectively. These costs are determined by the negotiation between the operators and their
own spectrum suppliers.

• Pricing decisions pi and pj : prices per unit bandwidth charged by operators i and j to the users
in Stage II, respectively.

• A user k’s demand wki or wkj : the bandwidth demand of a user k ∈ K from operator i or j . A
user can only purchase bandwidth from one operator.
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6.4.2 USERS’ PAYOFFS AND OPERATORS’ PROFITS
We assume that the users share the spectrum using OFDMA to avoid mutual interferences. If a user
k ∈ K obtains bandwidth wki from operator i, then it achieves a data rate (in nats) of

rk(wki) = wki ln

(
P max

k hk

n0wki

)
, (6.4)

where P max
k is user k’s maximum transmission power, n0 is the noise power density, hk is the channel

gain between user k’s transmitter and receiver. The channel gain hk is independent of the operator,
as the operator only sells bandwidth and does not provide a physical infrastructure. We also assume
that each user experiences a flat fading over the entire spectrum, such as in the current 802.11d/e
standard where the channels are formed through proper interleaving. Here we assume that user k

spreads its power P max
k across the entire allocated bandwidth wki . Furthermore, we focus on the

high SNR regime where SNR � 1, such that Shannon capacity ln(1 + SNR) can be approximated
by ln(SNR). To simplify later discussions, we let

gk = P max
k hk

n0
,

thus gk/wki is the user k’s SNR.
If a user k purchases bandwidth wki from operator i, it receives a payoff of

uk(pi, wki) = wki ln

(
gk

wki

)
− piwki, (6.5)

which is the difference between the data rate and the payment.The payment is proportional to price
pi announced by operator i.

For an operator i, its profit is the difference between the revenue and the total cost, i.e.,

πi(Bi, Bj , pi, pj ) = piQi(Bi, Bj , pi, pj ) − BiCi, (6.6)

where Qi(Bi, Bj , pi, pj ) and Qj(Bi, Bj , pi, pj ) are realized demands of operators i and j . The
concept of realized demand will be defined later in Definition 6.23.

6.4.3 ANALYSIS OF THE THREE-STAGE GAME
We will use backward induction to compute the subgame perfect equilibrium (SPE). We will start
with Stage III and analyze the users’ behaviors given the operators’ investment and pricing decisions.
Then we look at Stage II and analyze how operators make the pricing decisions taking the users’
demands in Stage III into consideration. Finally, we look at the operators’ leasing decisions in Stage
I using the results in Stages II and III.

In the following analysis, we only focus on pure strategy SPE and rule out mixed SPE in the
multi-stage game. We say a conditionally SPE [47] is an SPE with pure strategies only, where the
network’s pure strategies constitute a Nash equilibrium in every subgame. In the following analysis,
we derive the conditionally SPE, which is also referred to as an equilibrium for simplicity.
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Spectrum Allocation in Stage III
In Stage III, each user needs to decide how much spectrum to purchase from which operator, based
on the prices pi and pj announced by the operators in Stage II.

If a user k ∈ K obtains bandwidth wki from operator i, then its payoff uk(pi, wki) is given in
(6.5). Since this payoff is concave in wki , the unique demand that maximizes the payoff is

w∗
ki(pi) = arg max

wki≥0
uk(pi, wki) = gk exp(−(1 + pi)). (6.7)

Demand w∗
ki(pi) is always positive, linear in gk , and decreasing in price pi . Since gk is linear in

channel gain hk and transmission power P max
k , we have that a user with a better channel condition

or a larger transmission power has a larger demand.
Next we explain how each user decides which operator to purchase from. The following

definitions help the discussions.

Definition 6.20 (Preferred User Set) The Preferred User Set KP
i includes the users who prefer

to purchase from operator i.

Definition 6.21 (Preferred Demand) The Preferred Demand Di is the total demand from users
in the preferred user set KP

i , i.e.,

Di(pi, pj ) =
∑

k∈KP
i (pi ,pj )

gk exp(−(1 + pi)). (6.8)

The notations in (6.8) imply that both set KP
i and demand Di only depend on prices (pi, pj )

in Stage II and are independent of operators’ leasing decisions (Bi, Bj ) in Stage I. Such dependence
can be discussed in two cases:

1. Different Prices (pi < pj ): every user k ∈ K prefers to purchase from operator i since

uk(pi, w
∗
ki(pi)) > uk(pj , w

∗
kj (pj )) .

We have KP
i = K and KP

j = ∅, and

Di(pi, pj ) = G exp(−(1 + pi)) and Dj(pi, pj ) = 0 ,

where G =∑k∈K gk represents the aggregate wireless characteristics of the users.

2. Same Prices (pi = pj = p): every user k ∈ K is indifferent between the operators and randomly
chooses one with equal probability. In this case,

Di(p, p) = Dj(p, p) = G exp(−(1 + p))/2 .
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Now let us discuss how much demand an operator can actually satisfy, which depends on the
bandwidth investment decisions (Bi, Bj ) in Stage I.

It is useful to define the following terms.

Definition 6.22 (Realized User Set) The Realized User SetKR
i includes the users whose demands

are satisfied by operator i.

Definition 6.23 (Realized Demand) The Realized Demand Qi is the total demand of users in
the Realized User Set KR

i , i.e.,

Qi

(
Bi, Bj , pi, pj

) =
∑

k∈KR
i (Bi,Bj ,pi ,pj )

gk exp(−(1 + pi)) .

Notice that both KR
i and Qi depend on prices (pi, pj ) in Stage II and leasing decisions

(Bi, Bj ) in Stage I. Calculating the Realized Demands also requires considering two different
pricing cases.

1. Different prices (pi < pj ): The Preferred Demands are Di(pi, pj ) = G exp(−(1 + pi)) and
Dj(pi, pj ) = 0.

• If Operator i has enough resource
(
i.e., Bi ≥ Di

(
pi, pj

))
: all Preferred Demand will be

satisfied by operator i. The Realized Demands are

Qi = min(Bi, Di(pi, pj )) = G exp(−(1 + pi)),

Qj = 0.

• If Operator i has limited resource
(
i.e., Bi < Di

(
pi, pj

))
: since operator i can-

not satisfy the Preferred Demand, some demand will be satisfied by opera-
tor j if it has enough resource. Since the realized demand Qi(Bi, Bj , pi, pj ) =
Bi =∑k∈KR

i
gk exp(−(1 + pi)), then

∑
k∈KR

i
gk = Bi exp(1 + pi).3 The remaining

users want to purchase bandwidth from operator j with a total demand of
(G − Bi exp(1 + pi)) exp(− (1 + pj

)
). Thus, the Realized Demands are

Qi = min(Bi, Di(pi, pj )) = Bi,

Qj = min

(
Bj ,

G − Bi exp(1 + pi)

exp
(
1 + pj

)
)

.

3Here we consider a large number of users and each user is non-atomic (infinitesimal). Thus, an individual user’s demand is
infinitesimal to an operator’s supply and we can claim equality holds for Qi = Bi .
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2. Same prices (pi = pj = p): both operators will attract the same Preferred Demand
G exp(−(1 + p))/2. The Realized Demands are

Qi = min

(
Bi,

G

2 exp(1 + p)
+ max

(
G

2 exp(1 + p)
− Bj , 0

))
,

Qj = min

(
Bj ,

G

2 exp(1 + p)
+ max

(
G

2 exp(1 + p)
− Bi, 0

))
.

Operators’ Pricing Competition in Stage II
In Stage II, the two operators simultaneously determine their prices (pi, pj ) considering the users’
preferred demands in Stage III, given the investment decisions

(
Bi, Bj

)
in Stage I.

An operator i ’s profit is defined earlier in (6.6). Since the payment BiCi is fixed at this stage,
operator i ’s profit maximization problem is equivalent of maximization of its revenue piQi . Note
that users’ total demand Qi to operator i depends on the received power of each user (product of
its transmission power and channel gain). We assume that an operator i knows users’ transmission
powers and channel conditions. This can be achieved in a similar way as it is in today’s cellular
networks, where users need to register with the operator when they enter the network and frequently
feedback the channel conditions. Thus, we assume that an operator knows the user population and
user demand.

Game 6.24 Pricing Game The competition between the two operators in Stage II can be modeled
as the following game:

• Players: two operators i and j .

• Strategy space: operator i can choose price pi from the feasible set Pi = [0, ∞). Similarly, for
operator j .

• Payoff function: operator i wants to maximize the revenue piQi(Bi, Bj , pi, pj ). Similarly,
for operator j .

At an equilibrium of the pricing game, (p∗
i , p

∗
j ), each operator maximizes its payoff assuming

that the other operator chooses the equilibrium price, i.e.,

p∗
i = arg max

pi∈Pi

piQi(Bi, Bj , pi, p
∗
j ), i = 1, 2, i �= j .

In other words, no operator wants to unilaterally change its pricing decision at an equilibrium.
Next we will investigate the existence and uniqueness of the pricing equilibrium. First, we

show that it is sufficient to only consider symmetric pricing equilibrium for Game 6.24.

Proposition 6.25 Assume both operators lease positive bandwidths in Stage I, i.e., min
(
Bi, Bj

)
> 0.

If a pricing equilibrium exists, it must be symmetric, i.e., p∗
i = p∗

j .
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Figure 6.10: Pricing equilibrium types in different (Bi, Bj ).

The intuition is that no operator will announce a price higher than its competitor to avoid
losing its Preferred Demand. This property significantly simplifies the search for all possible equi-
libria.

Next we show that the symmetric pricing equilibrium is a function of (Bi, Bj ) as shown in
Fig. 6.10.

Theorem 6.26 The equilibria of the pricing game are as follows.

• Low Investment Regime (Bi + Bj ≤ G exp(−2) as in region (L) of Fig. 6.10): there exists a
unique nonzero pricing equilibrium

p∗
i (Bi, Bj ) = p∗

j (Bi, Bj ) = ln

(
G

Bi + Bj

)
− 1. (6.9)

The operators’ profits in Stage II are

πII,i(Bi, Bj ) = Bi

(
ln

(
G

Bi + Bj

)
− 1 − Ci

)
, (6.10)

πII,j (Bi, Bj ) = Bj

(
ln

(
G

Bi + Bj

)
− 1 − Cj

)
. (6.11)

denotes the low investment regime.

• Medium Investment Regime (Bi + Bj > G exp(−2) and min(Bi, Bj ) < G exp(−1) as in re-
gions (M1)-(M3) of Fig. 6.10): there is no pricing equilibrium.
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• High Investment Regime (min(Bi, Bj ) ≥ G exp(−1) as in region (H) of Fig. 6.10): there exists a
unique zero pricing equilibrium

p∗
i (Bi, Bj ) = p∗

j (Bi, Bj ) = 0 ,

and the operators’ profits are negative for any positive values of Bi and Bj .

Intuitively, higher investments in Stage I will lead to lower equilibrium prices in Stage II.
Theorem 6.26 shows that the only interesting case is the low investment regime where both operators’
total investment is no larger than G exp(−2), in which case there exists a unique positive symmetric
pricing equilibrium.Notice that same prices at equilibrium do not imply same profits, as the operators
can have different costs (Ci and Cj ) and thus can make different investment decisions (Bi and Bj )
as shown next.

Operators’ Leasing Strategies in Stage I
In Stage I, the operators need to decide the leasing amounts (Bi, Bj ) to maximize their profits.
Based on Theorem 6.26, we only need to consider the case where the total bandwidth of both the
operators is no larger than G exp(−2). We emphasize that the analysis of Stage I is not limited to
the case of low investment regime; we actually also consider the medium investment regime and
the high investment regime. The key observation is that an (conditionally) SPE will not include
any investment decisions (Bi, Bj ) in the medium investment regime, as it will not lead to a pricing
equilibrium in Stage II. Moreover, any investment decisions in the high investment regime lead to
zero operator revenues and are strictly dominated by any decisions in low investment regime. After
the above analysis, the operators only need to consider possible equilibria in the low investment
regime in Stage I.

Game 6.27 Investment Game The competition between the two operators in Stage I can be
modeled as the following game:

• Players: two operators i and j .

• Strategy space: the operators will choose (Bi, Bj ) from the set B = {(Bi, Bj ) : Bi + Bj ≤
G exp(−2)}. Notice that the strategy space is coupled across the operators, but the operators
do not cooperate with each other.

• Payoff function: the operators want to maximize their profits in (6.10) and (6.11), respectively.

At an equilibrium of the investment game, (B∗
i , B∗

j ), each operator has maximized its payoff
assuming that the other operator chooses the equilibrium investment, i.e.,

B∗
i = arg max

0≤Bi≤ G
exp(2)

−B∗
j

πII,i(Bi, B
∗
j ), i = 1, 2, i �= j.
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Figure 6.11: Leasing equilibrium types in different (Ci, Cj ).

To calculate the investment equilibria of Game 6.27, we can first calculate operator i ’s best
response given operator j ’s (not necessarily equilibrium) investment decision, i.e.,

B∗
i (Bj ) = arg max

0≤Bi≤ G
exp(2)

−Bj

πII,i(Bi, Bj ), i = 1, 2, i �= j.

By looking at operator i ’s profit in (6.10), we can see that a larger investment decision Bi will lead
to a smaller price. The best choice of Bi will achieve the best tradeoff between a large bandwidth
and a small price.

After obtaining best investment responses of duopoly, we can then calculate the investment
equilibria, given different costs Ci and Cj .

Theorem 6.28 The duopoly investment (leasing) equilibria in Stage I are summarized as follows.

• Low Costs Regime (0 < Ci + Cj < 1, as region (L) in Fig. 6.11): there exist infinitely many
investment equilibria characterized by

B∗
i = ρG exp(−2), B∗

j = (1 − ρ)G exp(−2), (6.12)

where ρ can be any value that satisfies

Cj ≤ ρ ≤ 1 − Ci. (6.13)

The operators’ profits are

πI,i = B∗
i (1 − Ci), πI,j = B∗

j (1 − Cj) .



6.5. CHAPTER SUMMARY 115

• High Comparable Costs Regime (Ci + Cj ≥ 1 and |Cj − Ci | ≤ 1, as region (HC) in Fig. 6.11):
there exists a unique investment equilibrium

B∗
i = (1 + Cj − Ci)G

2
exp

(
−Ci + Cj + 3

2

)
, (6.14)

B∗
j = (1 + Ci − Cj)G

2
exp

(
−Ci + Cj + 3

2

)
. (6.15)

The operators’ profits are

πI,i =
(

1 + Cj − Ci

2

)2

G exp

(
−
(

Ci + Cj + 3

2

))
,

πI,j =
(

1 + Ci − Cj

2

)2

G exp

(
−
(

Ci + Cj + 3

2

))
.

• High Incomparable Costs Regime (Cj > 1 + Ci or Ci > 1 + Cj , as regions (HI ) and (HI ′) in
Fig. 6.11): For the case of Cj > 1 + Ci , there exists a unique investment equilibrium with

B∗
i = G exp(−(2 + Ci)), B∗

j = 0 ,

i.e., operator i acts as the monopolist and operator j is out of the market. The operators’ profits are

πI,i = G exp(−(2 + Ci)), πI,j = 0 .

The case of Ci > 1 + Cj can be analyzed similarly.

6.5 CHAPTER SUMMARY
This chapter discussed how multiple players compete with each other in a market, where pricing is
one of the major decisions to make.

To understand the competition, we first introduced the basis of game theory. Game theory
describes how multiple strategic players make their decisions to maximize their own payoffs,by taking
the other players’ decisions into consideration. We introduced the basics of noncooperative static and
dynamic games with complete information. We first introduced the strategic form game, which is
often used to model the simultaneous decisions of all players. We defined several important concepts
including strictly dominated strategies, best response correspondence, and the Nash equilibrium. We
further differentiated between pure strategy Nash equilibria and mixed strategy Nash equilibria, and
showed several classical existence results. Then we moved on to introduce the extensive form game,
where players make sequential decisions (also called a dynamic game). In such a game, the game
history becomes very important, and the strategy is no longer a single action but a contingency
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plan based on the game history. We further introduced the concept of subgame perfect equilibrium,
which is a generalization of the Nash equilibrium in a dynamic game.

With the knowledge of game theory, we are able to understand the oligopoly models, which
characterize the competition between multiple firms in the same market. We introduced three types
of oligopoly models: the Cournot model where firms compete based on quantity, the Bertrand model
where firms compete based on pricing, and the Hotelling model that captures the impact of locations
on the competition. Although we have used two firms (duopoly) as examples when introducing these
three models, the results can be easily generalized to the case of more than two firms (oligopoly).

We illustrated the theory using two examples.The first one revisits the wireless service provider
competition in Section 4.3. Instead of looking at the social optimal pricing as in Section 4.3, here we
study how multiple providers will set their prices to maximize their revenues, by considering the users’
locations and other providers’ prices into consideration. We modeled the interactions by a multi-
leader-follower game. Perhaps the most surprising result is that when the utility function satisfies the
proper conditions, we can show that the unique subgame perfect equilibrium of the game is exactly
the same as the unique global optimal solution of the social welfare optimization problem.This result
holds regardless of the number of providers in the network, and thus is quite general and encouraging
in practice. The second application considers a duopoly between two secondary operators, who
will decide their capacity investments through spectrum leasing and market competition through
spectrum pricing. We modeled the interactions between the operators and users as a three-stage
multi-leader-follower game, and derived the conditionally SPE with pure strategies in each stage
of the game. It turns out that when the leasing costs are low for both providers, then they engage
in severe market competition and there are infinitely many equilibria. When the leasing costs are
higher, the market will have a unique equilibrium, either two operators sharing the market or only the
lower cost operator dominates the market. For more details especially mathematical proofs related
to the two applications, please see [31, 48].

6.6 EXERCISES

1. Congestion Game. Consider the following communication congestion game. Two mobile users
transmit on the same channel, each deciding whether or not to transmit its data at a particular
time slot. Each user will incur a cost c from each transmission, which mainly includes the
power cost, channel access fee, etc. Each user can achieve a revenue R > c from each successful
transmission, and a zero revenue if a collision occurs (i.e., if both users transmit at the same
time). The above congestion game can be represented by the following payoff matrix, where
rows denote the actions of user 1, and columns denote the actions of user 2.

Transmit Not Transmit
Transmit (−c, −c) (R − c, 0)

Not Transmit (0, R − c) (0, 0)
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• Determine whether the game has pure strategy equilibria or not. If it does, find the pure
strategy Nash equilibria.

• Find the set of all mixed-strategy Nash equilibria.

2. Power Competition Game. Consider a wireless network with n mobile users. Each user rep-
resents a dedicated pair of transmitter and receiver. All users transmit on the same channel
simultaneously through CDMA, and hence cause mutual interferences. Each user determines
its transmission power to maximize the received signal to interference plus noise ratio (SINR)
(or equivalently the channel capacity). Let pi denote the transmission power of user i, and
Gij denote the channel gain between the transmitter of user i and the receiver of user j . The
utility of user i is defined as the achieved capacity, i.e.,

fi(p1, ..., pn) = log

(
1 + Gii · pi

σ 2 +∑j �=i Gji · pj

)
,

where Gii · pi is the received signal power of user i,
∑

j �=i Gji · pj is the total interference
power (on user i) from all other users, and σ 2 is the noise power. The social welfare as the
aggregate utility of all users, i.e.,

∑n
i=1 fi(p1, ..., pn).

• Derive the social optimality, i.e., the power vector (p1, ..., pn) that maximizes the aggre-
gate SINR of all users.

• Show that there is a unique pure-strategy Nash equilibrium for this power competition
game, in which every user transmits on its maximum power.

• Show that the social optimal solution is different from the Nash equilibrium.

3. Price-based Power Competition Game. We extend the above power competition game by in-
troducing a regulator. The regulator charges every user i a unit price πi for every unit of
transmission power. The utility of user i is defined as the difference between the revenue from
its achieved capacity and the payment to the regulator, i.e.,

fi(p1, ..., pn) = log

(
1 + Gii · pi

σ 2 +∑j �=i Gji · pj

)
− pi · πi.

Derive the Nash equilibrium for this power competition game.
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C H A P T E R 7

Network Externalities
In the previous chapters, we assumed that a decision made by a consumer or producer has no external
effects on the other consumers or producers who are not directly involved. In practice, however,
there are many situations where external or third-party effects are important. In these situations, the
third parties’ actions lead to either benefits or costs to the players who are not involved directly. In
economics, these external effects are termed as externalities [49, 50].

In this chapter, we will first introduce the theory of externality following [49, 50]. Then
we present two applications. In the first application, users generate negative externalities to each
other due to interferences. The key idea to resolve this issue is to internalize the externality through
Pigovian tax. In the second application, a cellular operator decides when to upgrade his service from
3G to 4G considering upgrading cost, user switching cost, and the impact of revenue due to network
effect.

7.1 THEORY: NETWORK EXTERNALITIES

In this section, we cover the basic concepts of externalities, and study some classic externalities.
We will see how externalities can be a source of market or network inefficiency, and study some
approaches to combat such inefficiencies.

7.1.1 WHAT IS EXTERNALITY?
Simply speaking, externalities are the benefits or costs that are imposed by the actions of one player on
a third party not directly involved [49, 50].The office mates who breathe the second-hand smoke, the
wireless users who experience the interferences from the nearby transmitters, the shoppers who enjoy
the department store Christmas displays—these are all good examples of consumers experiencing
the costs or benefits imposed by other consumers. Such costs and benefits are said to be external
and are thus called externalities. External costs (like the smoke and interference) are called negative
externalities, while external benefits (like the pleasure from enjoying the Christmas decorations) are
called positive externalities.

In the context of a free market, we can define externality as “any indirect effect that either
a production or a consumption activity has on the utility function or the consumption set of a
consumer, or the production set of a producer” [50]. By “indirect,” it means that the effect concerns
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a third party other than the one who exerts this activity or who is involved directly, and the effect is
not transferred through prices. More simply, an externality is an economic side effect.

Definition 7.1 Externality An externality is any side effect (benefit or cost) that is imposed by
the actions of a player on a third party not directly involved.

As mentioned previously, externalities may be positive or negative. A negative externality is
also called the external cost, and a positive externality is also called the external benefit. Examples of
negative externalities include pollution (such as air pollution, water pollution, and noise pollution)
and interference in wireless networks. In the examples of pollution, the producer or consumer finances
the goods produced, but the third-party society must bear the cost of pollution that is introduced into
the environment as a by-product. In the example of wireless interference, the mobile user transmits
his own data for benefits, but other users (who are not intended receivers) will suffer performance
degradation due to the interference caused by this user. An example of positive externalities is the
network effect. With network effect, more users consuming goods or services makes a good or service
more valuable. Network effect is an important theme in telecommunication networks and online
social networks. The more people own telephones or access to a social network, the more valuable
the telephone or the social network is to each user, since he can connect to more people by his own
telephone or through the social network.1

Externalities can cause market failure if the price mechanism does not take into account the
external costs and external benefits of production and consumption.The reason is that the producers
or consumers are interested in maximizing their profits only. Therefore, they will only take into
account the private costs and private benefits arising from their supply or demand of the product,
but not the social costs and social benefits. As a consequence, the producers (or consumers) profit
maximizing the level of supply (or demand) will deviate from the social optimum level. We show
this in Figure 7.1.

The left subfigure in Figure 7.1 illustrates the production deviation induced by the negative
externality (or external cost) of production. The social cost includes not only the producers’ private
costs, but also the external costs.Thus, the social marginal cost is larger than the private marginal cost,
as shown in the figure. Accordingly, the social optimum level of supply is Q∗, which is smaller than
the producers’ private profit maximizing level of supply Q1. Similarly, the right subfigure illustrates
the consumption deviation induced by the positive externality (or external benefit) of consumption.
The social benefit (or revenue) includes not only the consumers’ private benefits, but also the external
benefits.Thus, the social marginal revenue is larger than the private marginal revenue, as shown in the
figure. Accordingly, the social optimum level of demand is Q∗, which is larger than the consumers’
private profit maximizing level of demand Q1.

Next we discuss the two types of network externalities in more detail.

1The expression “network effect [53, 54]” is applied most commonly to positive network externalities as in telecommunication
networks and online social networks.
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Figure 7.1: Market failures arising from (left) negative production externalities and (right) positive
consumption externalities.

7.1.2 NEGATIVE EXTERNALITY
As shown in Figure 7.1, negative externalities may cause market failures such as over-production
and over-consumption of the product. Many negative externalities are related to the environmental
consequences of production and consumption.

Example: Pollution
In a pollution model, the producer benefits from his production activity, but a third party such as the
society must bear the cost of pollution. Consumer’s consumption activities can also cause pollution
(like the smoker).

Consider a simple example of pollution. There are two firms: a chemical plant and a water
company. The chemical plant produces chemical products and discharges wastewater into a river,
which causes the water pollution in the river. Each unit chemical product is sold at a market equilib-
rium price of $10.That is, the marginal revenue of each unit of product is $10 for the chemical plant.
The water company produces bottled water by drawing water from the river. The chemical plant’s
wastewater lowers the quality of the water, and therefore the water company must incur additional
costs to purify the water before bottling it. Such an additional cost is the negative externality of
the production activity of the chemical plant. Figure 7.2 shows the private marginal cost of the
chemical plant, and the external marginal cost incurred by the water company. The social cost is the
summation of both costs.

Since there is no incentive for the chemical plant to cover the external cost, it will choose the
quantity of productions that maximizes its own profit, i.e., that equalizes its private marginal cost
and marginal revenue (shown by the point Q1 in the figure). However, this is not optimal from a
social perspective. It is easy to derive that the social optimum quantity is Q∗, which equalizes the
social marginal cost and the marginal revenue. Obviously, Q∗ is smaller than Q1.
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Figure 7.2: Marginal costs in the pollution model.

Now let’s consider the chemical plant’s and the water company’s revenue (or cost) at different
levels of quantity. As the chemical plant’s profit maximizing quantity level Q1, the chemical plant’s
total surplus is the sum of areas A, B, and E (denoted by A + B + E). The water company’s total
surplus is −(C + F) due to the external cost of water purifying. Notice that B = C and F = D + E,
since the social marginal cost is the sum of the private marginal cost of the chemical plant and the
external cost incurred by the water company. Thus, the social surplus at quantity Q1 is A − D.
At the social optimal quantity level Q∗, the chemical plant’s total surplus is A + B, and the water
company’s total surplus is −C. Thus, the social surplus at quantity Q∗ is A. This shows that with
negative externalities, the individual profit maximizing decision may hurt the social surplus.

This example leaves us a key question: is it possible to motivate the chemical plant to produce the
social optimal quantity level in the absence of a centralized planner? Most earlier economists argued
that a decentralized competitive price system could reach the social optimum by either costlessly
internalizing the externality by government or assessing taxes on the firm creating the negative
externality. Due to space limits, we will discuss the second approach briefly as follows.

Solution: Pigovian Tax
Pigovian tax, named after Arthur C. Pigou (1877–1959), is proposed to address the market failure
caused by negative externalities. A Pigovian tax is a tax levied on a market activity that generates
negative externalities [51]. A Pigovian tax equal to the negative externality can correct the market
outcome back to efficiency.

To deal with over-production (or over-consumption similarly), Pigou recommended a tax
placed on the offending producer (or consumer) for each unit of production (or consumption). If
the government can accurately measure the external cost or social cost, the tax could equalize the
marginal private cost and the marginal social cost, and therefore eliminate the market failure. In more
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Figure 7.3: Illustration of the Pigovian tax.

specific terms, the producer would have to pay for the externality cost that it created. This would
effectively reduce the quantity of the product produced, moving the economy back to an efficient
equilibrium.

Figure 7.3 illustrates the effect of a Pigovian tax on the chemical plant’s output. The tax shifts
the private marginal cost curve up by the amount of the tax, and the shaded area A2 + B is the
tax revenue. As shown in the figure, with the tax, the chemical plant has the incentive to reduce its
output to the socially optimum quantity level Q∗. The chemical plant’s surplus at quantity level Q∗
is (A + B) − (A2 + B) = A1, and the water company’s total surplus is still −C.

Although this Pigovian tax works perfectly in theory, the practical implementation is very
difficult due to a lack of complete information on the marginal social cost. Most of the criticism of
the Pigovian tax relates to the determination of the marginal social cost and therefore the tax. In
fact, Pigou himself also pointed out in [51] that the assumption that the government can determine
the marginal social cost of a negative externality and convert that amount into a monetary value is
a weakness of the Pigovian tax.

Further Discussions: The Coase Theorem
In the 1960s, Ronald Coase, a Nobel Prize winner, argued that the traditional analysis on externality
was incomplete [52]. In terms of our example, Coase would say that the fundamental difficulty is
not that the chemical plant creates an externality but that no one owns the quality of water. Coase
would argue that the chemical plant will produce the socially optimal output, if (i) transaction costs
are negligible, and (ii) one or the other party has clearly defined property rights in water quality.The
transaction cost refers to the cost of negotiating, verifying, and enforcing contracts, and the property
right is the exclusive authority to determine how a resource is used, whether that resource is owned by
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government, collective bodies, or by individuals. What was truly remarkable at the time was Coase’s
claim that the output produced by the chemical plant did not depend on which party possesses the
property right. In other words, even if the chemical plant itself owns the property right of the water
quality, it will produce the social optimal quantity level voluntarily!

We show the Coase’s claim by the pollution example mentioned above. Suppose the water
company owns the right of the water quality. Then it can costlessly collect external costs from the
chemical plant, if the chemical plant degrades the water quality. In this case, the marginal cost for
the chemical plant would exactly be the sum of its private marginal cost and the external cost. Thus,
the chemical plant will select the social optimal output. Things are more surprising in the case that
the chemical plant itself owns the right of the water quality. It seems that the chemical plant would
over-produce to maximize its profit, but this will not happen.The reason is that with the right of the
water quality, the chemical plant essentially has the ability to charge the water company for keeping
the water high quality.2 In other words, the chemical plant can charge the water company a certain
amount of money for the decrease of its output from Q1 to Q∗. Obviously, as long as the money
is well designed, e.g., between [E, D + E], both the chemical plant and water company has the
incentive to accept such a deal.

Now let us go back to Coase’s results. In the previous claims, Coase actually introduced an
alternative approach to solve negative externalities, using the property rights theory [52]. Based on
the property rights theory, Coase pointed in his famous article “The Problem of Social Cost [52]”
that if trade in an externality is possible and there are no transaction costs, bargaining will lead to
an efficient outcome regardless of the initial allocation of property rights. This is called the Coase
theorem. Formally,

Theorem 7.2 Coase Theorem As long as private property rights are well defined and transaction costs
are negligible, exchange will eliminate divergence and lead to efficient use of resources or highest valued use
of resources.

Despite the perfection in theory, there are some criticisms about the practical application
of the theorem, among which a key criticism is that the theorem is almost always inapplicable in
economic reality, because real-world transaction costs are rarely low enough to allow for efficient
bargaining.

7.1.3 POSITIVE EXTERNALITY
As shown in Figure 7.1, positive externalities may cause market failures such as under-production
and under-consumption of the product. In computer networking, a typical positive externality is the
network effect, where the higher usage of certain products makes them more valuable [53, 54].

2Such an ability is achieved by the chemical plant’s threat of producing a large number of products (and accordingly degrading the
water quality).
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(I) (II) (III)

Figure 7.4: Illustration of Network Effect. (I) Each user gets one unit of benefit; (II) With the joining
of a new user, each user gets two units of benefit; and (III) When all eight users join the network, each
user gets seven units of benefit.

Example: Network Effect
A classic example of positive externalities is the network effect [53, 54]. In these situations, a product
displays positive network effects when more usage of the product by any user increases the product’s
value for other users (and sometimes all users).

Network effect is one of the most important underlying economic concepts in industrial
organization of IT industries, especially in telecommunication networks and online social networks.
Network effects were first studied in the context of long-distance telephony in the early 1970s (one
of the earliest papers on the topic is [55]). Today, they are widely recognized as a critical aspect of
the industrial organization of IT industries, and are prevalent in a wide variety of sectors, including
software,microprocessors, telecommunications,e-commerce,and electronic marketplaces.Empirical
evidence of network effects has been found in product categories as diverse as spreadsheets, databases,
networking equipment, and DVD players.

Consider a very simple example of network effects in telecommunication networks,where each
user’s benefit is simply defined as the number of users connected. The more people own telephones,
the more valuable the telephone is to each owner. This creates a positive externality because a user
may purchase a telephone without the intention of creating more value for other users, but does so
in any case. The reason is that the purchasing activity of one user essentially increases the range that
other users can connect to, and accordingly increase the value of other users’ telephones. We show
this in Figure 7.4, where the solid square denotes the user with a telephone, and the hollow square
denotes the user without telephone. When there are only two users in the network, each user can
only connect to one person (as shown in subfigure I). If a third person joins the network, each of the
two earlier users benefit from the joining of the third user, since now each of them can connect to
two persons (as shown in subfigure II). We can similarly see the increase of network value to every
existing user as more users join the network (as shown in subfigure III).

To generalize the above discussions further, let us consider a network with N users, where each
user perceives a value that increases with N . If each user attaches the same value to the possibility
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of connecting to any one of the other N − 1 users, it may be considered that he perceives a network
value proportional to N − 1. Then the total value of the network is proportional to N(N − 1), or
roughly N2, which is known as the Metcalfe’s Law [56]. A refined model was suggested by Briscoe
et al. [57], where each user perceives a value of order log(N). In that model, a user ranks the other
users in decreasing order of importance and assigns a value 1/k to the k-th user in that order, for
a total value 1 + 1/2 + · · · + 1/(N − 1) ≈ log(N). The resulting total network value is N log(N),
which is appropriate for cellular networks shown by quantitative studies [57]. This will be useful in
the discussions of Section 7.3.

Network effects become significant after a certain subscription percentage has been achieved,
called critical mass. At the critical mass point, the value obtained from the good or service is greater
than or equal to the price paid for the good or service. As the value of the good is determined by
the user base, this implies that after a certain number of people have subscribed to the service or
purchased the good, additional people will subscribe to the service or purchase the good due to the
value exceeding the price.

Thus, a key business concern will be: how to attract users prior to reaching critical mass. One way
is to rely on extrinsic motivation, such as a payment, a fee waiver, or a request for friends to sign up.
A more natural strategy is to build a system that has enough value without network effects, at least
to early adopters. Then, as the number of users increases, the system becomes even more valuable
and is able to attract a wider user base.This issue is particularly important for online social networks,
whose value greatly relies on the number of subscribed users in the network. This is also the reason
why the QQ (an online social communicating tool) of Tencent company is so popular in China.
Even though Tencent company sometimes provides poor service and charges a higher price (for
some applications), many new people still prefer the QQ network over other alternatives, because its
large number of subscribers (estimated to be 798.2 million by March 2013) make it more valuable
than other social networks in China. Another example is Facebook which went public in 2012. The
high valuation of Facebook is largely because of its enormous number of subscribers around the
world (estimated to be 1.11 billion by March 2013).

Different Types of Network Effect
There are many ways to classify networks effects. One popular segmentation views network effects
as being of four kinds as shown below [53, 54].

1. Direct network effects. The simplest network effects are direct: increases in usage lead to direct
increases in value. The original example of telephone service is a good illustration of this kind.
Another example is online social networks, where users directly benefit from the participation
of other users.

2. Indirect network effects. Network effects may also be indirect, where increased usage of one
product spawns the production of increasingly valuable complementary goods, and this in
turn results in an increase in the value of the original product. Examples of complementary
goods include software (such as an Office suite for operating systems) and DVDs (for DVD
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players).This is why Windows and Linux might compete not just for users,but also for software
developers.

3. Two-sided network effects. Network effects can also be two-sided, where the usage increase by
one set of users increases the value of a complementary product to another distinct set of users,
and vice versa. Hardware/software platforms, reader/writer software pairs, marketplaces, and
matching services all display these kinds of network effects. In many cases, one may think of
indirect network effects as a one-directional version of two-sided network effects.

4. Local network effects. The structure of an underlying social network affects who benefits from
whom. For example, a good displays local network effects when each consumer is influenced
directly by the decisions of only a typically small subset of other consumers, instead of being
influenced by the increase of the total number of consumers. Instant messaging is an example
of a product that displays local network effects.

7.2 APPLICATION I: DISTRIBUTED WIRELESS
INTERFERENCE COMPENSATION

Interference mitigation is an important problem in wireless networks. A basic technique for this
issue is to control the nodes’ transmit powers. In an ad hoc wireless network, the power control
is complicated by the lack of centralized infrastructure, which necessitates the use of distributed
approaches. This application addresses the distributed power control for rate-adaptive users in a
wireless network. We consider a CDMA network, where all users spread their power over a single
frequency band. The transmission rate of each user depends on its received signal-to-interference
plus noise ratio (SINR). Our objective is to coordinate the power levels of all users to optimize the
overall performance, which is measured in terms of the total network utility. To achieve this, we
propose a protocol in which the users exchange price signals that indicate the negative externality
of the received interference.

Because we assume that the users cooperate, we ignore incentive issues, which may occur in
networks with non-cooperative users. For example, in a non-cooperative scenario, a user may attempt
to manipulate its announced interference prices to increase its own utility at the expense of the overall
network utility. It can,of course,compromise the performance of the distributed algorithms presented
here. We note that it may be possible to “hard wire” the power control algorithm into the handsets,
making such a manipulation of price information difficult.

7.2.1 NETWORK MODEL
We consider a snapshot of an ad hoc network with a set M = {1, ..., M} of distinct node pairs. As
shown in Fig. 7.5, each pair consists of one dedicated transmitter and one dedicated receiver. We
use the terms “pair” and “user” interchangeably in the following. In this section, we assume that each
user i transmits through a CDMA scheme over the total bandwidth of B Hz. Over the time period
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Figure 7.5: An example wireless network with four users (pairs of nodes) (Ti and Ri denote the trans-
mitter and receiver of “user” i, respectively).

of interest, the channel gains of each pair are fixed. The channel gain between user i ’s transmitter
and user j ’s receiver is denoted by hij . Note that in general hij �= hji , since the latter represents the
gain between user j ’s transmitter and user i ’s receiver.

Each user i ’s quality of service is characterized by a utility function ui (γi), which is an
increasing and strictly concave function of the received SINR,

γi (p) = pihii

n0 + 1
B

∑
j �=i pjhji

, (7.1)

where p = (p1, · · · , pM) is a vector of the users’ transmission powers and n0 is the background
noise power. The users’ utility functions are coupled due to mutual interference. An example utility
function is a logarithmic utility function ui (γi) = θi log (γi), where θi is a user-dependent priority
parameter.

The problem we consider is to specify p to maximize the utility summed over all users, where
each user i must also satisfy a transmission power constraint, pi ∈ Pi = [P min

i , P max
i

]
, i.e.,

max
{p:pi∈Pi ∀i}

M∑
i=1

ui (γi(p)) . (P1)
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Note that a special case is P min
i = 0; i.e., the user may choose not to transmit.3

Although ui(·) is concave, the objective in Problem P1 may not be concave in p. However,
it is easy to verify that any local optimum, p∗ = (p∗

1, ..., p∗
M

)
, of this problem will be regular (see

p. 309 of [20]), and so must satisfy the Karush-Kuhn-Tucker (KKT) necessary conditions:

Lemma 7.3 KKT conditions: For any local maximum p∗ of Problem P1, there exist unique Lagrange
multipliers λ∗

1,u, ..., λ
∗
M,u and λ∗

1,l , ..., λ
∗
M,l such that for all i ∈ M,

∂ui (γi (p∗))
∂pi

+
∑
j �=i

∂uj

(
γj (p∗)

)
∂pi

= λ∗
i,u − λ∗

i,l , (7.2)

λ∗
i,u(p

∗
i − P max

i ) = 0, λ∗
i,l(P

min
i − p∗

i ) = 0, λ∗
i,u, λ

∗
i,l ≥ 0. (7.3)

Let

πj

(
pj , p−j

) = −∂uj

(
γj

(
pj , p−j

))
∂Ij

(
p−j

) , (7.4)

where Ij

(
p−j

) =∑k �=j pkhkj is the total interference received by user j (before bandwidth scaling).
Here, πj

(
pj , p−j

)
is always nonnegative and represents user j ’s marginal increase in utility per unit

decrease in total interference. Using (7.4), condition (7.2) can be written as

∂ui (γi (p∗))
∂pi

−
∑
j �=i

πj

(
p∗

j , p
∗−j

)
hij = λ∗

i,u − λ∗
i,l . (7.5)

Viewing πj

(= πj

(
pj , p−j

))
as a price charged to other users for generating interference to

user j , condition (7.5) is a necessary and sufficient optimality condition for the problem in which
each user i specifies a power level pi ∈ Pi to maximize the following surplus function

si (pi; p−i , π−i ) = ui (γi (pi, p−i )) − pi

∑
j �=i

πjhij , (7.6)

assuming fixed p−i and π−i (i.e., each user is a price taker and ignores any influence he may have
on these prices). User i therefore maximizes the difference between its utility minus its payment
to the other users in the network due to the interference it generates. The payment is its transmit
power times a weighted sum of other users’ prices, with weights equal to the channel gains between
user i ’s transmitter and the other users’ receivers. This pricing interpretation of the KKT conditions
motivates the following asynchronous distributed pricing (ADP) algorithm.

3Occasionally, for technical reasons, we require P min
i

> 0; in these cases,P min
i

can be chosen arbitrarily small so that this restriction
has little effect. Note that for certain utilities, e.g., θi log (γi ), all assigned powers must be strictly positive, since as pi → 0, the
utility approaches −∞.
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Algorithm 4 The ADP Algorithm

(1) INITIALIZATION: For each user i ∈ M choose some power pi(0) ∈ Pi and price πi(0) ≥
0.

(2) POWER UPDATE: At each t ∈ Ti,p, user i updates its power according to

pi(t) = Wi

(
p−i (t

−), π−i (t
−)
)
.

(3) PRICE UPDATE: At each t ∈ Ti,π , user i updates its price according to

πi(t) = Ci

(
p(t−)

)
.

7.2.2 ASYNCHRONOUS DISTRIBUTED PRICING (ADP) ALGORITHM
In the ADP algorithm, each user announces a single price and all users set their transmission powers
based on the received prices. Prices and powers are asynchronously updated. For i ∈ M, let Ti,p and
Ti,π , be two unbounded sets of positive time instances at which user i updates its power and price,
respectively. User i updates its power according to

Wi (p−i , π−i ) = arg max
p̂i∈Pi

si
(
p̂i; p−i , π−i

)
,

which corresponds to maximizing the surplus in (7.6). Each user updates its price according to

Ci (p) = −∂ui (γi (p))

∂Ii (p−i )
,

which corresponds to (7.4). Using these update rules, the ADP algorithm is given in Algorithm 4.
Note that in addition to being asynchronous across users, each user also need not update its power
and price at the same time.4

In the ADP algorithm not only are the powers and prices generated in a distributed fashion,
but also each user only needs to acquire limited information. To see this note that the power update
function can be written as5

Wi (p−i , π−i ) =
⎡
⎣ pi

γi (p)
gi

⎛
⎝ pi

γi(p)

⎛
⎝∑

j �=i

πjhij

⎞
⎠
⎞
⎠
⎤
⎦

P max
i

P min
i

,

4Of course, simultaneous updates of powers and prices per user and synchronous updating across all the users are just special cases
of Algorithm 4 .

5Notation [x]ba means max {min {x, b} , a}.
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where pi

γi (p)
is independent of pi , and

gi (x) =
⎧⎨
⎩

∞, 0 ≤ x ≤ u′
i (∞) ,

(u′
i )

−1 (x) , u′
i (∞) < x < u′

i (0) ,

0, u′
i (0) ≤ x.

Likewise, the price update can be written as

Ci (p) = ∂ui(γi(p))

∂γi(p)

(γi(p))2

Bpihii

.

From these expressions, it can be seen that to implement the updates, each user i only needs to
know: (i) its own utility ui , the current SINR γi and channel gain hii , (ii) the “adjacent” channel
gains hij for j ∈ M and j �= i, and (iii) the price profile π. By assumption each user knows its
own utility. The SINR γi and channel gain hii can be measured at the receiver and fed back to
the transmitter. Measuring the adjacent channel gains hij can be accomplished by having each
receiver periodically broadcast a beacon; assuming reciprocity, the transmitters can then measure
these channel gains. The adjacent channel gains account for only 1/M of the total channel gains
in the network; each user does not need to know the other gains. The price information could also
be periodically broadcast through this beacon. Since each user announces only a single price, the
number of prices scales linearly with the size of the network. Also, numerical results show that there
is little effect on performance if users only convey their prices to “nearby” transmitters, i.e., those
generating the strongest interference [58].

Denote the set of fixed points of the ADP algorithm by

FADP ≡ {(p,π) | (p,π) = (W (p,π) , C(p))} , (7.7)

whereW(p,π) = (Wk(p−k, π−k))
M
k=1 and C(p) = (Ck(p))Mk=1. Using the strict concavity of ui(γi)

in γi , the following result can be easily shown.

Lemma 7.4 A power profile p∗ satisfies the KKT conditions of Problem P1 (for some choice of Lagrange
multipliers) if and only if (p∗, C(p∗)) ∈ FADP .

If there is only one solution to the KKT conditions, then it must be the global maximum and
the ADP algorithm would reach that point if it converges. In general, FADP may contain multiple
points including local optima or saddle points.

7.2.3 CONVERGENCE ANALYSIS OF ADP ALGORITHM
We next characterize the convergence of the ADP algorithm by viewing it in a game theoretic
context. We can consider a game where each player i ’s strategy includes specifying both a power pi

and a price πi to maximize a payoff equal to the surplus in (7.6). However, since there is no penalty
for user i announcing a high price, it can be shown that each user’s best response is to choose a large
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enough price to force all other users to transmit at P min
i .This is certainly not a desirable outcome and

suggests that the prices should be determined externally by another procedure. Instead, we consider
the following Fictitious Power-Price (FPP) control game,

GFPP = [FW ∪ FC,
{
PFW

i ,PFC
i

}
,
{
sFW
i , sFC

i

}
],

where the players are from the union of the sets FW and FC, which are both copies of M.FW is a
fictitious power player set; each player i ∈ FW chooses a power pi from the strategy set PFW

i = Pi

and receives payoff

sFW
i (pi; p−i , π−i ) = ui (γi (p)) −

∑
j �=i

πjhijpi. (7.8)

FC is a fictitious price player set ; each player i ∈ FC chooses a price πi from the strategy set PFC
i =

[0, π̄i] and receives payoff
sFC
i (πi;p) = − (πi − Ci (p))2 . (7.9)

Here π̄i = supp Ci (p), which could be infinite for some utility functions.
In GFPP , each user in the ad hoc network is split into two fictitious players, one in FW

who controls power pi and the other one in FC who controls price πi . Although users in the real
network cooperate with each other by exchanging interference information (instead of choosing
prices to maximize their surplus), each fictitious player in GFPP is selfish and maximizes its own
payoff function. In the rest of this section, a “user” refers to one of the M transmitter-receiver pairs
in set M, and a “player” refers to one of the 2M fictitious players in the set FW ∪ FC.

In GFPP the players’ best responses are given by

BFW
i (p−i , π−i ) = Wi (p−i , π−i ) , ∀i ∈ FW

and
BFC

i (p) = Ci (p) , ∀i ∈ FC,

whereWi and Ci are the update rules for the ADP algorithm. In other words, the ADP algorithm can
be interpreted as if the players in GFPP employ asynchronous myopic best response (MBS) updates,
i.e., the players update their strategies according their best responses assuming the other player’s
strategies are fixed. It is known that the set of fixed points of MBS updates are the same as the set
of NEs of a game [59, Lemma 4.2.1]. Therefore, we have:

Lemma 7.5 (p∗,π∗) ∈ FADP if and only if (p∗,π∗) is a NE of GFPP .

Together with Lemma 7.4, it follows that proving the convergence of asynchronous MBS
updates of GFPP is sufficient to prove the convergence of the ADP algorithm to a solution of KKT
conditions. We next analyze this convergence using supermodular game theory [59].



7.2. APPLICATION I: DISTRIBUTED WIRELESS INTERFERENCE COMPENSATION 133

We first introduce some definitions.6 A real m-dimensional set V is a sublattice of R
m if

for any two elements a, b ∈ V , the component-wise minimum, a ∧ b, and the component-wise
maximum, a ∨ b, are also in V . In particular, a compact sublattice has a (component-wise) smallest
and largest element. A twice differentiable function f has increasing differences in variables (x, t) if
∂2f/∂x∂t ≥ 0 for any feasible x and t .7 A function f is supermodular in x = (x1, .., xm) if it has
increasing differences in

(
xi, xj

)
for all i �= j .8 Finally, a game G = [M, {Pi} , {si}

]
is supermodular

if for each player i ∈ M, (a) the strategy space Pi is a nonempty and compact sublattice, and (b) the
payoff function si is continuous in all players’ strategies, is supermodular in player i ’s own strategy,
and has increasing differences between any component of player i ’s strategy and any component of
any other player’s strategy. The following theorem summarizes several important properties of these
games.

Theorem 7.6 In a supermodular game G = [M, {Pi} , {si}
]
,

(a) The set of NEs is a nonempty and compact sublattice and so there is a component-wise smallest and
largest NE.

(b) If the users’ best responses are single-valued, and each user uses MBS updates starting from the
smallest (largest) element of its strategy space, then the strategies monotonically converge to the
smallest (largest) NE.

(c) If each user starts from any feasible strategy and uses MBS updates, the strategies will eventually lie
in the set bounded component-wise by the smallest and largest NE. If the NE is unique, the MBS
updates globally converge to that NE from any initial strategies.

Properties (a) follows from Lemma 4.2.1 and 4.2.2 in [59]; (b) follows from Theorem 1 of
[60] and (c) can be shown by Theorem 8 in [61].

Next we show that by an appropriate strategy space transformation certain instances of GFPP

are equivalent to supermodular games, and so Theorem 7.6 applies. We first study a simple two-user
network, then extend the results to an M-user network.

Two-user Networks
Let G2

FPP be the FPP game corresponding to a two-user network; this will be a game with four
players, two in FW and two in FC. First, we check whether G2

FPP is supermodular. Each user
i ∈ FW clearly has a nonempty and compact sublattice (interval) strategy set, and so does each

6More general definitions related to supermodular games are given in [59].
7If we choose x to maximize a twice differentiable function f (x, t), then the first order condition gives ∂f (x, t) /∂x|x=x∗ = 0,
and the optimal value x∗ increases with t if ∂2f/∂x∂t > 0.

8A function f is always supermodular in a single variable x.
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user i ∈ FC if π̄i < ∞.9 Each player’s payoff function is (trivially) supermodular in its own one-
dimensional strategy space. The remaining increasing difference condition for the payoff functions
does not hold with the original definition of strategies (p,π) in G2

FPP . For example, from (7.8),

∂sFW
i

∂pi∂πj

= −hij < 0, ∀j �= i,

e.g., a higher price leads the other users to decrease their powers. However, if we define π ′
j = −πj

and consider an equivalent game where each user j ∈ FC chooses π ′
j from the strategy set

[−π̄j , 0
]
,

then
∂sFW

i

∂pi∂π ′
j

= hij > 0, ∀j �= i,

i.e., sFW
i has increasing differences in the strategy pair

(
pi, π

′
j

)
(or equivalently

(
pj , −πj

)
). If all

the users’ strategies can be redefined so that each player’s payoff satisfies the increasing differences
property in the transformed strategies, then the transformed FPP game is supermodular.

Denote

CRi (γi) = −γiu
′′
i (γi)

u′
i (γi)

,

and let γ min
i = min{γi(p) : pi ∈ Pi ∀i} and γ max

i = max{γi(p) : pi ∈ Pi ∀i}. An increasing, twice
continuously differentiable, and strictly concave utility function ui (γi) is defined to be

• Type I if CRi (γi) ∈ [1, 2] for all γi ∈ [γ min
i , γ max

i

]
;

• Type II if CRi (γi) ∈ (0, 1] for all γi ∈ (γ min
i , γ max

i

]
.

The term CRi (γi) is called the coefficient of relative risk aversion in economics and measures
the relative concaveness of ui (γi). Many common utility functions are either Type I or Type II, as
shown in Table 7.1.

The logarithmic utility function is both Type I and II. A Type I utility function is “more
concave” than a Type II one. Namely, an increase in one user’s transmission power would induce the
other users to increase their powers, i.e.,

∂2ui (γi (p))

∂pi∂pj

≥ 0, ∀j �= i.

A Type II utility would have the opposite effect, i.e.,

∂2ui (γi (p))

∂pi∂pj

≤ 0, ∀j �= i.

9When P min
i

= 0, this bounded price restriction is not satisfied for utilities such as ui(γi ) = θiγ
α
i

/α with α ∈ [−1, 0), since

πi = θiγ
α+1
i

/ (pihiiB) is not bounded as pi → 0. However, as noted above, we can set P min
i

to some arbitrarily small value
without affecting the performance.
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Table 7.1: Examples of Type I and II utility functions

Type I Type II
θi log(γ i ) θi log(γ i )

θi γ α
i /α (with α [− 1, 0)) θi γ α

i /α (with α (0, 1))
1 − e− θi γ i 1 − e− θi γ i

(with 1
γ min

i
≤ θi ≤ 2

γ max
i

) (with θi ≤ 1
γ max

i
)

a (γ i )2 + bγi + c a (γ i )2 + bγi + c
(with 0 ≤ − 3aγ max

i ≤ b ≤ − 4aγ min
i ) (with b ≥ − 4aγ max

i > 0)
θi log (1 + γ i )

∩ ∩

The strategy spaces must be redefined in different ways for these two types of utility functions to
satisfy the requirements of a supermodular game.

Proposition 7.7 G2
FPP is supermodular in the transformed strategies (p1, p2, −π1, −π2) if both users

have Type I utility functions.

Proposition 7.8 G2
FPP is supermodular in the transformed strategies (p1, −p2, π1, −π2) if both users

have Type II utility functions.

The proofs of both propositions consist of checking the increasing differences conditions
for each player’s payoff function. These results along with Theorem 7.6 enable us to characterize
the convergence of the ADP algorithm. For example, if the two users have Type I utility func-
tions (and π̄1, π̄2 < ∞), then FADP is nonempty. In case of multiple fixed points, there exist two
extreme ones

(
pL,πL

)
and
(
pR,πR

)
, which are the smallest and largest fixed points in terms

of strategies (p1, p2, −π1, −π2). If users initialize with (p (0) ,π (0)) = (P min
1 , P min

2 , π̄1, π̄2
)

or(
P max

1 , P max
2 , 0, 0

)
, the power and prices converge monotonically to

(
pL,πL

)
or
(
pR,πR

)
, respec-

tively. If users start from arbitrary initial power and prices, then the strategies will eventually lie in
the space bounded by

(
pL,πL

)
and
(
pR,πR

)
. Similar arguments can be made with Type II utility

functions with a different strategy transformation. Convergence of the powers for both types of
utilities is illustrated in Fig. 7.6.

M-user Networks
Proposition 7.7 can be easily generalized to a network with M > 2:

Corollary 7.9 For an M-user network if all users have Type I utilities, GFPP is a supermodular in the
transformed strategies (p, −π).
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Figure 7.6: Examples of the trajectories of the power profiles under the ADP algorithm for a two-
user network with Type I (left) or Type II (right) utility functions. In both cases, from the indicated
initializations the power profiles will monotonically converge to the indicated “corner” fixed points.

In this case, Theorem 7.6 can again be used to characterize the structure of FADP as well
as the convergence of the ADP algorithm. On the other hand, it can be seen that the strategy
redefinition used in Proposition 7.8, cannot be applied with M > 2 users so that the increasing
differences property holds for every pair of users.

With logarithmic utility functions, it is shown in [62] that Problem P1 is a strictly concave
maximization problem over the transformed variables yi = log pi . In this case Problem P1 has a
unique optimal solution, which is the only point satisfying the KKT conditions. It follows from
Lemma 7.4 and Lemma 7.5 that GFPP will have a unique NE corresponding to this optimal
solution and the ADP algorithm will converge to this point from any initial choice of powers and
prices.10 With some minor additional conditions, the next proposition states that these properties
generalize to other Type I utility functions.

Proposition 7.10 In an M-user network, if for all i ∈ M:

a) P min
i > 0, and

b) CRi (γi) ∈ [a, b] for all γi ∈ [γ min
i , γ max

i ], where [a, b] is a strict subset of [1, 2],
then Problem P1 has a unique optimal solution, to which the ADP algorithm globally converges.

7.2.4 NUMERICAL RESULTS
We simulate a network contained in a 10m×10m square area. Transmitters are randomly placed
in this area according to a uniform distribution, and the corresponding receiver is randomly placed

10Moreover, if each user i ∈ M starts from profile (pi (0) , πi (0)) =
(
P min

i
, θi/ (n0B)

)
or
(
P max

i
, 0
)
, then their strategies will

monotonically converge to this fixed point.
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Figure 7.7: Convergence of the prices and powers for the ADP algorithm (left) and a gradient algorithm
(right) in a network with 10 users and logarithmic utility functions. Each curve corresponds to the power
or price for one user with a random initialization.

within 6m×6m square centered around the transmitter. There are M = 10 users, each with utility
ui = log(γi). The channel gains hij = d−4

ij , P max
i /n0=40dB, and B=128MHz. Figure 7.7 shows

the convergence of the powers and prices for each user under the ADP algorithm for a typical
realization, starting from random initializations. Also, for comparison we show the convergence
of these quantities using a gradient-based algorithm as in [62] with a step-size of 0.01.11 Both
algorithms converge to the optimal power allocation, but the ADP algorithm converges much
faster; in all the cases we have simulated, the ADP algorithm converges about 10 times faster than
the gradient-based algorithm (if the latter converges). The ADP algorithm, by adapting power
according to the best response updates, is essentially using an “adaptive step-size” algorithm: users
adapt the power in “larger” step-sizes when they are far away from the optimal solution, and use
finer steps when close to the optimal.

11In our experiments, a larger step-size than 0.01 would often not converge.
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7.3 APPLICATION II: 4G NETWORK UPGRADE

The third generation (3G) of cellular wireless networks was launched during the last decade. It has
provided users with high-quality voice channels and moderate data rates (up to 2 Mbps). However,
3G service cannot seamlessly integrate the existing wireless technologies (e.g., GSM, wireless LAN,
and Bluetooth), and cannot satisfy users’ fast growing needs for high data rates. Thus, most major
cellular operators worldwide plan to deploy the fourth-generation (4G) networks to provide much
higher data rates (up to hundreds of megabits per second) and integrate heterogeneous wireless
technologies. The 4G technology is expected to support new services such as high-quality video
chat and video conferencing.

One may expect competitive operators in the same cellular market to upgrade to a 4G service
at about the same time. However, many industry examples show that symmetric 4G upgrades do
not happen in practice, even when multiple operators have obtained the necessary spectrum and
technology patents for upgrade. In South Korea, for example, Korean Telecom took the lead to
deploy the world’s first 4G network using WiMAX technology in 2006, whereas SK Telecom started
to upgrade using more mature LTE technology in 2011. In the US, Sprint deployed the first 4G
WiMAX network in late 2008, Verizon waited until the end of 2010 to deploy its 4G LTE network,
and AT&T started deploying its 4G LTE network in 2013. In China, China Mobile and China
Unicom are the two dominant cellular operators, and China Mobile has decided to first deploy 4G
LTE network late 2013. Thus, the key question we want to answer is the following: how do cellular
operators decide the timing to upgrade to 4G networks?

As we will show in the following discussions, there are two key factors that affect the operators’
upgrade decisions: namely, 4G upgrade cost and user switching cost. An existing 3G user can switch to
the 4G service of the same operator or of a different operator, depending on how large the switching
cost is. In a monopoly market where only a dominant operator can choose to upgrade to 4G, this
operator can use the 4G service to capture a larger market share from small operators.The discussions
about the more interesting competition market can be found in [7].

7.3.1 SYSTEM MODEL
Value of Cellular Networks
Here we adopt the N log(N) Law of the network effect [57], where the network value with N users
is proportional to N log(N). The operator of a cellular network prefers a large network value; this is
because the revenue he obtains by charging users can be proportional to the network value. Notice
that the value of a 4G network is larger than a 3G network even when two networks have the
same number of users. This is because the communication between two 4G users is more efficient
and more frequent than between two 3G users. Because the average data rate in the 4G service is
five to ten times faster than the 3G, a 4G network can support many new applications. We denote
the efficiency ratio between 3G and 4G services as γ ∈ (0, 1). That is, by serving all his users via
QoS-guaranteed 4G rather than 3G services, an operator obtains a larger (normalized) revenue
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N log(N) instead of γN log(N).12 Note that this result holds for a single operator’s network that is
not connected to other networks.

Next we discuss the revenues of multiple operators whose networks (e.g., two 3G networks)
are interconnected. For the purpose of illustration, we consider two networks that contain N1 and
N2 users, respectively. The whole market covers N = N1 + N2 users. We assume that two operators’
3G (and later 4G) services are equally good to users, and the efficiency ratio γ is the same for
both operators. The traffic between two users can be intra-network (when both users belong to the
same operator) or inter-network (when two users belong to different operators), and the revenue
calculations in the two cases are different. We assume that the user who originates the commu-
nication session (irrespective of whether the same network or to the other network) pays for the
communication.This is motivated by the industry observations in the EU and many Asian countries.
Before analyzing each operator’s revenue, we first introduce two practical concepts in cellular market:
“termination rate” and “user ignorance.”

When two users of the same operator 1 communicate with each other, the calling user only
pays operator 1. But when an operator 1’s user calls an operator 2’s user, operator 2 charges a
termination rate for the incoming call.13 We denote the two operators’ revenue-sharing portion per
inter-network call as η, where the value of η ∈ (0, 1) depends on the agreement between the two
operators or on governments’ regulation on termination rate.

User ignorance is a unique problem in the wireless cellular network, where users are often
not able to identify which specific network they are calling. Mobile number portability further
exacerbates this problem. Thus, a typical user’s evaluation of two interconnected 3G networks does
not depend on which network he belongs to, and equals γ log(N) where N = N1 + N2. We assume
a call from any user terminates at a user in network i ∈ {1, 2} with a probability of Ni/N . The
operators’ revenues when they are both providing 3G services are given in Lemma 7.11.

Lemma 7.11 When operators 1 and 2 provide 3G services, their revenues are γN1 log(N) and
γN2 log(N), respectively.

Both operators’ revenues are linear in their numbers of users (or market share), and are inde-
pendent of the sharing portion η of the inter-network revenue. Intuitively, the inter-network traffic
between two networks is bidirectional: when a user originates a call from network 1 to another user
in network 2, his inter-network traffic generates a fraction η of corresponding revenue to operator
1; when the other user calls back from network 2 to network 1, he generates a fraction 1 − η of the
same amount of revenue to operator 1. Thus, an operator’s total revenue is independent of η. Later,
in Section 7.3.2, we show that such independence on η also applies when the two operators both
provide 4G services or provide mixed 3G and 4G services.

12We assume that an operator’s operational cost (proportional to network value) has been deducted already, and thus the revenue
here is the normalized one.

13In the US, termination rate follows “Bill and Keep” and is low. Then operator 1 can keep most of the calling user’s payment.
In EU, however, termination rate follows “Calling Party Pays” and is much higher. Then most of the calling user’s payment to
operator 1 is used to compensate for the termination rate charged by operator 2.
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User Churn during Upgrade from 3G to 4G Services
When 4G service becomes available in the market (offered by one or both networks), the existing
3G users have an incentive to switch to the new service to experience a better QoS. Such user churn
does not happen simultaneously for all users, because different users have different sensitivities to
quality improvements and switching costs. We use two parameters λ and α to model the user churn
within and between operators:

• Intra-network user churn: If an operator provides 4G in addition to his existing 3G service, his
3G users need to buy new mobile phones to use the 4G service. The users also spend time to
learn how to use the 4G service on their new phones. We use λ to denote the users’ switching
rate to the 4G service within the same network.

• Inter-network user churn: If a 3G user wants to switch to another network’s 4G service, he
either waits till his current 3G contract expires, or pays for the penalty of immediate contract
termination. This means that inter-network user churn incurs an additional cost on top of
the mobile device update, and thus the switching rate will be smaller than the intra-network
user churn. We use αλ to denote the users’ inter-network switching rate to 4G service, where
α ∈ (0, 1) reflects the transaction cost of switching operators.

We illustrate the process of user churn through a continuous time model. The starting time
t = 0 denotes the time when the spectrum resource and the 4G technology are available for at least
one operator. We also assume that the portion of users switching to the 4G service follows the
exponential distribution (at rate λ for intra-network churn and αλ for inter-network churn).

As an example, assume that operator 1 introduces a 4G service at time t = T1 while operator
2 decides not to upgrade. The numbers of operator 1’s 4G users and 3G users at any time t ≥ 0 are
N4G

1 (t) and N3G
1 (t), respectively. The number of operator 2’s 3G users at time t ≥ 0 is N3G

2 (t). As
time t increases (from T1), 3G users in both networks start to churn to 4G service, and ∀t ≥ 0

N3G
1 (t) = N1e

−λ·max(t−T1,0), N3G
2 (t) = N2e

−αλ·max(t−T1,0), (7.10)

and operator 1’s 4G service gains an increasing market share,

N4G
1 (t) = N − N1e

−λ·max(t−T1,0) − N2e
−αλ·max(t−T1,0). (7.11)

We illustrate (7.10) and (7.11) in Fig. 7.8. We can see that operator 1’s early upgrade attracts users
from his competitor and increases his market share. Notice that (7.11) increases with α, thus operator
1 captures a large market share when α is large (i.e., the switching cost is low).

Operators’ Revenues and Upgrade Costs
Because of the time discount, an operator values the current revenue more than the same amount
of revenue in the future. We denote the discount rate over time as S, and the discount factor is thus
e−St at time t .
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Figure 7.8: The numbers of users in the operators’ different services as functions of time t . Here, operator
1 upgrades at T1 and operator 2 does not upgrade.

We approximate one operator’s 4G upgrade cost as a one-time investment. This is a practical
approximation, as an operator’s initial investment of wireless spectrum and infrastructure can be
much higher than the maintenance costs in the future. For example, spectrum is a very scarce resource
that is allocated (auctioned) infrequently by government agencies. Thus, an operator cannot obtain
additional spectrum frequently after his 4G upgrade. To ensure a good initial 4G coverage, an
operator also needs to update many base stations to cover at least a whole city all at once. Otherwise,
4G users would be unhappy with the service, and this would damage the operator’s reputation. That
is why Sprint and Verizon covered many markets in their initial launch of their 4G services.

More specifically, we denote the 4G upgrade cost at t = 0 as K , which discounts over time
at a rate U . Thus, if an operator upgrades at time t , he needs to pay an upgrade cost Ke−Ut . We
should point out that the upgrade cost decreases faster than the normal discount rate (i.e., U > S).
This happens because the upgrade cost decreases due to both technology improvement and time
discount.

Based on these discussions on revenue and upgrade cost, we define an operator’s profit as
the difference between his revenue in the long run and the one-time upgrade cost. Without loss of
generality, we will normalize an operator’s revenue rate (at any time t), total revenue, and upgrade
cost by N log(N), where N is the total number of users in the market.

7.3.2 4G MONOPOLY MARKET
As an illustration, we will look at the case where only operator 1 can choose to upgrade from 3G
to 4G, while the other operators (one or more) always offer the 3G service because of the lack of
financial resources or the necessary technology. This can be a reasonable model, for example, for
countries such as Mexico and some Latin American ones, where America Movil is the dominant
cellular operator in the 3G market. As the world’s fourth-largest cellular network operator, America
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Movil has the advantage over other small local operators in winning additional spectrum via auctions
and obtaining LTE patents, and he is expected to be the 4G monopolist in that area.

The key question here is how operator 1 should choose his upgrade time T1 from the 3G
service to the 4G service. T1 = 0 means that operator 1 upgrades at the earliest time that the
spectrum and technology are available, and T1 > 0 means that operator 1 chooses to upgrade later
to take advantage of the reduction in the upgrade cost. Because of user churns from the 3G to the
4G service, the operators’ market shares and revenue rates change after time T1. For that reason, we
analyze time periods t ≤ T1 and t > T1 separately.

• Before 4G upgrade (t ≤ T1): Operator 1’s and other operators’ market shares do not change
over time. Operator 1’s revenue rate at time t is

π3G−3G
1 (t) = γ

N1

N
,

which is independent of time t . His revenue during this time period is

π3G−3G
1,t≤T1

=
∫ T1

0
π3G−3G

1 (t)e−Stdt = γN1

SN
(1 − e−ST1). (7.12)

• After 4G upgrade (t > T1): Operator 1’s market share increases over time, and the other op-
erators’ total market share (denoted by N3G

2 (t)/N ) decreases over time. We denote operator
1’s numbers of 3G users and 4G users as N3G

1 (t) and N4G
1 (t), respectively, and we have

N3G
1 (t) + N4G

1 (t) + N3G
2 (t) = N . This implies that

N3G
2 (t) = (N − N1)e

−αλ(t−T1), N3G
1 (t) = N1e

−λ(t−T1),

and
N4G

1 (t) = N − N1e
−λ(t−T1) − (N − N1)e

−αλ(t−T1).

Note that a 3G user’s communication with a 3G or a 4G user is still based on the 3G standard,
and only the communication between two 4G users can achieve a high 4G standard QoS.
Operator 1’s revenue rate is

π4G−3G
1 (t) = γN3G

1 (t)

N
+ N4G

1 (t)

N

(
N4G

1 (t) + γN3G
1 (t)

N
+ γN3G

2 (t)

N

)
,

which is independent of the revenue sharing ratio η between the calling party and receiving
party. Operator 1’s revenue during this time period is then

π4G−3G
1,t>T1

=
∫ ∞

T1

π4G−3G
1 (t)e−Stdt, = e−ST1

(
1

S
+ (1 − γ )

(
N1

N

)2 1

2λ + S

)
, (7.13)

where t → ∞ is an approximation of the long-term 4G service provision (e.g., one decade)
before the emergence of the next generation standard. This approximation is reasonable since
the revenue in the distant future becomes less important because of the discount.
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Figure 7.8 illustrates how the numbers of users of operators’ different services change over
time. Before operator 1’s upgrade (e.g., t ≤ T1 in Fig. 7.8), the number of total users in each network
does not change; after operator 1’s upgrade, operator 1’s and the other operators’ 3G users switch to
the new 4G service at rates λ and αλ, respectively.

By considering (7.12), (7.13), and the decreasing cost Ke−UT1 , operator 1’s long-term profit
when choosing an upgrade time T1 is

π1(T1) =π3G−3G
1,t≤T1

+ π4G−3G
1,t>T1

− Ke−UT1

=e−ST1

⎛
⎜⎝ 1

S
+ (1 − γ )

(
N1
N

)2

2λ + S
+ (1 − γ )

(
N−N1

N

)2

2αλ + S

⎞
⎟⎠

− e−ST1

(
2(1 − γ )

N1
N

λ + S
+ (2 − γ )

N−N1
N

αλ + S

)
− Ke−UT1

+ 2e−ST1(1 − γ )

N1(N−N1)

N2

(1 + α)λ + S
+ N1γ

NS
(1 − e−ST1). (7.14)

We can show that π1(T1) in (7.14) is strictly concave in T1, thus we can compute the optimal upgrade
time T ∗

1 by solving the first-order condition. The optimal upgrade time depends on the following
upgrade cost threshold in the monopoly 4G market,

Kmono
th =(1 − γ )

(
N1
N

)2

2λ+S
+
(

N−N1
N

)2

2αλ+S
− 2

N1
N

λ+S
+ 2

N1(N−N1)

N2

(1+α)λ+S

U/S

+ 1 − γ N1
N

− (2 − γ )N−N1
N

S
αλ+S

U
. (7.15)

Theorem 7.12 Operator 1’s optimal upgrade time in a 4G monopoly market is:

• Low cost regime (upgrade cost K ≤ Kmono
th ): operator 1 upgrades at T ∗

1 = 0.

• High cost regime (K > Kmono
th ): operator 1 upgrades at

T ∗
1 = 1

U − S
log

(
K

Kmono
th

)
> 0. (7.16)

Intuitively, an early upgrade gives operator 1 a larger market share and enables him to get a
higher revenue via the more efficient 4G service. Such advantage is especially obvious in the low
cost regime where the upgrade cost K is small.
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7.4 CHAPTER SUMMARY
This chapter discussed how we should deal with negative and positive externalities in networks. We
first explained the concept of externality, which reflects the side effect that is imposed by the actions
of a player on a third party not directly involved. We then illustrated that both positive and negative
externalities can lead to a deviation from the social optimal solution. As an example of the negative
externality, we illustrated how pollution from a chemical plan will affect the business of a water
company, and how such negative externality can be internalized by the method of Pigovian tax. An
example of the positive externality, we explained the different kinds of network effects.

We then illustrated the application of theory using two applications. In the first application, we
considered the problem of optimal distributed power control in wireless ad hoc networks.The mutual
interferences pose negative externality among wireless users. To mitigate such negative externality,
the wireless users will charge each other the interference prices, which are basically distributively
computed Pigovian tax. Under proper technical conditions, the ADP algorithm designed based on
the asynchronous power and price updates will converge to a global or local optimal solution, much
faster than the usual gradient based method with small step sizes. In the second application, we
considered the economics of 4G upgrade, where the cellular operators need to consider the impact
of network grade in terms of updating cost and benefits of user switching.The positive network effect
will induce a monopoly operator to upgrade as early as possible when the upgrading cost is small.
For more details especially mathematical proofs related to the two applications, please see [7, 63].

7.5 EXERCISES
1. Suppose each pack of cigarette smoked creates X units of externality experienced by other

members of society. Such an externality may include cigarette smokers’ excess use of public
health services, the medical costs of the second-hand smokers, etc. Explain how a Pigovian
tax can be used to correct the externality (such that the smokers consume fewer cigarettes
than socially desired). Also find another way that the government can use to correct the over-
consumption of cigarettes due to neglect of the negative externality.

2. Consider N ordered potential customers for a network product, where the ith customer is
willing to pay i log(n) dollars for the product if there are a total of n customers using the
product. Assume that the product is charged at a price p. Compute the number of customers
who are willing to purchase the product at the “equilibrium,” where there is no customer willing
to change his decision.
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Outlook
In this book, we have assumed that all market players have access to complete market information.
We have also assumed that one player (or one type of player) has the market power to determine the
key market parameters (e.g., production quality or price), and the other market players can only
choose to accept the arrangements or reject to participate in the market. Unfortunately, these two
assumptions are often violated in practice. Usually market information is incomplete to most market
players, and the market power is distributed among various market players.

A number of new issues arise under information asymmetry, among which the most important
one is the truthfulness (also called incentive compatibility). That is, how to design a truthful (or
incentive compatible) mechanism that credibly elicits the private information held by some market
players. The significance of the truthful mechanism is suggested by the revelation principle [64],
which states that “for any outcome resulting from any mechanism, there always exists a payoff-
equivalent revelation mechanism where the players truthfully report their private information.” The
principle is extremely powerful. It allows a market designer to solve for an outcome or equilibrium by
assuming all players truthfully report their private information (subject to the incentive compatibility
constraint). This means that to find an optimal mechanism to achieve a certain objective (e.g., profit
maximization or social welfare maximization), we do not need to search from the infinitely large set
of mechanisms where players can act arbitrarily, but only need to consider those truthful mechanisms
where players act truthfully.Typical examples of truthful mechanisms include auction and contract.1

Problems become significantly different when the market power is distributed among multiple
market players. Specifically, when one player or one type of player (e.g., firms or consumers) has
the total market power, the player(s) will try to extract the social surplus as much as possible. For
example, in a monopoly market where the monopolist has the total market power, the monopolist
can set a monopoly price or perform price discrimination to maximize his profit. In an oligopoly
market where the firms have the total market power, they can set strategic prices or quantities to
maximize their own profits against others’ strategies. This type of self-interested interaction among
players is essentially referred to as the non-cooperative game theory. When the market power is
distributed among different types of market player (e.g., firms and consumers), such self-interested
interactions may no longer work due to the conflicting interests among the players. Consider a
simple example where a firm sells a single product to a consumer. How to determine the price of
the product if both the firm and the consumer have certain market power? This problem cannot
be solved by a self-interested interaction, since the increase of one player’s surplus must lead to the
1Note this is not to say that all auction designs or contract designs are truthful. But rather, a considerable part (and possibly, the
most important part) of auctions and contracts are truthful mechanisms.
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decrease of the other’s surplus. A well-studied discipline to this type of problem is bargaining. Simply
speaking, bargaining solution is such an outcome that both players feel acceptable, rather than strictly
prefer in terms of certain criterion. This type of bargaining interaction is essentially referred to as
the cooperative game theory.

In the rest of the chapter, we will briefly discuss the connections and differences between
pricing, auction, contract, and bargaining models, and provide pointers to some key related papers in
the wireless literature (without an intention of being exhaustive). We hope to provide more detailed
discussions regarding the theories and applications of these different economic mechanisms in a
future book.

8.1 AUCTION

An auction is a process of buying and selling goods or services by offering them up for bid, taking
bids, and then selling the item(s) to the highest bidder(s). Typical issues studied by auction theorists
include the efficiency of a given auction design, optimal and equilibrium bidding strategies, and
revenue comparison. There are many possible designs (or sets of rules) for an auction, among which
the most important two are the allocation rule (who is/are the winner(s) of an auction) and the
payment rule (what will be the payment(s) of the winner(s)). In this sense, an auction can be viewed
as a special kind of the pricing model.

One key difference between the pricing model and the auction model is their application
scenarios. Specifically, the network pricing introduced in this book is often used in the symmetric
and complete information scenario,where the decision-makers know complete information about the
commodities or the market; whereas the auction model is often used in the asymmetric information
scenario where the market players (called bidders) hold certain private information that the decision-
makers (called auctioneers) do not know. In a pricing model, the decision-makers determine the
market price based on their known information; while in an auction model, the auctioneers let the
market (i.e., the community of bidders) set the price, and account for the uncertainty about the
bidders’ valuations. With a careful design, the bidders have the incentive to bid for the commodity
in a truthful manner, and the auctioneers can efficiently allocate the commodity without knowing
the bidders’ private valuations in advance.

Auction has been widely used for wireless network resource allocation and performance opti-
mization. In [65], Huang et al. proposed two divisible auction mechanisms for power allocation to
achieve efficiency and fairness, respectively. In [66], Huang et al. extended the auction mechanisms
to a cooperative communication system with multiple relays. In [67], Li et al. proposed several
truthful (strategy-proof ) spectrum auction mechanisms to achieve the efficiency closed to social
optimal. In [68], Gandhi et al. proposed a real-time spectrum auction framework under interference
constraints. In [69, 70], Zheng et al. proposed truthful single side spectrum auction and double
spectrum auction, respectively, both considering spectrum reuse. In [71], Wang et al. proposed a
general framework for truthful double auction for spectrum sharing. In [72], Gao et al. proposed a
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multi-shot spectrum auction mechanism to achieve social optimal efficiency in dynamic spectrum
sharing.

8.2 CONTRACT

A contract is an agreement entered into voluntarily by two or more parties with the intention of
creating a legal obligation. In economics, contract theory studies how the economic agents construct
contractual arrangements, generally in the presence of asymmetric information. Thus, it is closely
connected to the truthful (or incentive compatible) mechanism design. Several well known contract
models include moral hazard, adverse selection, signaling, and screening. The common spirit of these
models is to motivate one party (the agent) to act in the best interests of another (the principal).

In moral hazard models, the information asymmetry is generated by the principal’s inability
to observe and/or verify the agent’s action (termed as hidden action). Contracts that depend on
observable and verifiable output can often be employed to create incentives for the agent to act in
the principal’s interest. In adverse selection models, the principal is not informed about a certain
characteristic of the agent (termed as hidden information). Two commonly used methods to model
adverse selection are signaling games and screening games. The idea of signaling is that one party
(usually the agent) credibly conveys some information about itself to another party (usually the
principal). The idea of screening is that one party (usually the principal) offers multiple contract
options, which are incentive compatible for another party (usually the agent) such that every agent
selects the option intended for his type. The main difference between signaling and screening is
who moves first. In signaling games, the informed agent moves (signaling) first, and the process
is essentially a Stackelberg game with the agent as the leader. In screening games, however, the
uninformed principal moves (offering the options) first, and the process is essentially a Stackelberg
game with the principal as the leader. In the context of monopoly market, the second degree price
discrimination (in Section 5) is essentially a screening model.

Contract has also been widely used in wireless networks. In [73], Gao et al. proposed a quality-
price screening contract for secondary spectrum trading, where the seller offers a menu of prices for
different qualities to attract different types of buyers. The authors showed that with the contract,
the seller can extract more surplus from the buyers with private information. In [74], Kalathil et
al. proposed a contract-based spectrum-sharing mechanism to avoid possible manipulating in a
spectrum auction. The authors showed that it is possible to achieve socially optimal rate allocations
with contracts in licensed bands. In [75], Duan et al. proposed a time-power screening contract
for cooperative spectrum sharing between primary users and secondary users, where the secondary
users relay traffic for PUs in exchange for the guaranteed access time on the primary users’ licensed
spectrums. In [76, 77], Kasbekar and Sarkar et al. considered the secondary spectrum trading with
two types of contracts: the guaranteed-bandwidth contract, which provides guaranteed access to a
certain amount of bandwidth for a specified duration of time, and the opportunistic-access contract,
which offers restricted (uncertain) access rights on a certain amount of bandwidth at the current
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time slot. In [78], Gao et al. studies the secondary spectrum trading in a hybrid market with both
contract users and spot purchasing users.

8.3 BARGAINING

Bargaining is a type of negotiation in which the buyer and seller of a good or service discuss the
price which will be paid and the exact nature of the transaction that will take place, and eventually
come to an agreement. In this sense, bargaining is an alternative pricing strategy to fixed prices.
Bargaining arises when the market power is distributed among different market players (and thus
no participant has the total market power to determine the solution solely). Solutions to bargaining
come in two flavors: an axiomatic approach where desired properties of a solution are satisfied, and a
strategic approach where the bargaining procedure is modeled in detail as a sequential game. Typical
solutions of bargaining include the Nash bargaining solution, Shapely value, Harsanyi value, and so
on.

The study of bargaining was initiated by J. Nash in 1950 [79], who provided an axiomatic
solution for the outcome of the negotiation among two players. In 1982, A. Rubinstein proposed a
sequential non-cooperative game between two players [80], where the player alternate offers through
an infinite time horizon. As one player offers a proposal, the other player decides to accept or reject.
If a proposal is rejected (by the responder), the proposer and responder change their roles, that
is, the previous responder becomes a proposer offering a new proposal, and the previous proposer
becomes a responder deciding to accept or reject the new proposal. Rubinstein characterized the
subgame perfect equilibrium of this game, and concluded that the subgame perfect equilibrium of
this non-cooperative Rubinstein bargaining game is closely related to the Nash bargaining solution
given by the axiomatic approach.

Although many studies considered that players bargain independently and in an uncoordinated
fashion, a survey of recent economic journals reveals that most applied bargaining papers actually
analyze group bargaining problems [81]. That is, more often than not, players form groups and
bargain jointly in order to improve their anticipated payoff. Examples include labor disputes between
the management which represents the stockholders of a factory, and a union which represents the
workers [82]. In order to predict the bargaining result in such settings, it is necessary to analyze
both the inter-group bargaining and the intra-group bargaining. Usually, bargaining first takes place
among the different groups, and then members within each group bargain with each other in order
to distribute the acquired welfare. In most cases, the grouping improves the payoff of the group
members [83, 84], since it leverages their bargaining power. Moreover, often the bargaining outcome
depends on the bargaining protocol, i.e., bargaining concurrently or sequentially (and the sequence
the players bargain).This aspect was studied in [85, 86], where one dominant player optimally selects
a weak player to bargain in each stage.

Bargaining has also been widely used in wireless networks. In [87], Zhang et al. proposed
a cooperation bandwidth allocation strategy based on the Nash bargaining solution in a wireless
cooperative relaying network. In [88], Cao et al. proposed a local bargaining approach to fair spec-
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trum allocation in mobile ad-hoc networks. In [89], Han et al. proposed a fair scheme to allocate
subcarrier, rate, and power for multiuser OFDMA systems based on Nash bargaining solutions and
coalitions. The above works studied the bargaining problem using axiomatic approaches. In [90],
Yan et al. studied the bargaining problem using strategic approaches. Specifically, they considered
dynamic bargaining between one primary user and several secondary users in a cognitive cooperative
network with incomplete network information. Moreover, in [91], Boche et al. studied the necessary
requirements for the existence and uniqueness of Nash bargaining solution and proportional fairness
solution.
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