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Abstract

This paper develops a receiver structure to perform jointly ML heymisation,
equalisation and detection of a linearly modulated signal transihotter a time-varying,
frequency-selective, Rician faded channel, corrupted by AWGN. Tlee/eeas particularly
suited to a fast fading channel, where other receivers thatorelgstimating the channel
cannot track it quickly enough. The signal mean and autocovariance ededneand a
scheme is proposed for estimating these quantities adaptively.reGéi@er processes the
specular and diffuse components (corresponding to the signal mean and aignceya
separately. Processing the known specular component is the classical detectemm.piidiz
unknown diffuse component is processed by predictors [11]. We show that thegosechet
achieve synchronisation in a novel manner, if synchronisation is requiredioA bound on
the receiver's BER is derived, and it tightly bounds simulated BiERast fading at high
SNRs.



I. Introduction

When communicating with fast moving mobile terminals in a multigagmnel, the
receiver observes a delay and Doppler-spread signal. In the tin@ndahis Doppler spread
is experienced as a time-varying channel. If the Doppler spread iBcsighcompared to the
symbol rate, then the channel becomes difficult to track, and masingxieceiver structures
exhibit an error floor, where an increase in SNR does not improvBERe[1,2]. Several
approaches have been considered in the literature to surmount the probterulaps for

frequency-flat channels [3,4,5].

It is instructive to consider receiver structures that areadlgtoptimal for the time-
varying, frequency-selective, Rician fading channel model. Differgiit sequence
estimators have already been derived, for three different assumpt{on$he channel is
wholly unknown (e.g. the time-invariant channel [2]). This is the blind d#tection
problem. (i) The channel impulse response is unknown, but its mean and autocovamance ar
known (in this context, “unknown” signifies that the diffuse component is unkrmthe
specular component is known. This makes most sense when we redliselyheero-mean
channels have been considered heretofore) [6,7,8,9,10,iill)].THe channel is completely
known [17,22]. In i) and (ii), the receiver is often described as “genie-aided,” since the

receiver is assumed to have knowledge that actually cannot be available.

In approach i, the receiver hypothesises all possible transmitted sequenc®s. F
each, it makes an ML estimate of the signal mean and autocoeqrimom theentire
received sample sequence. Finally the receiver detects the Igipetheequence with the
maximum probability that the received sample sequence was obseovelitioned on the
hypothesised sequence and its estimated mean and autocovariance.s ddiled “per-

sequence-processing,” and leads to an intrinsically non-iterative receiver structure.

A near-optimal, practical approximation to the blind MLSE recem®ploys per-
survivor-processing (PSP) [14]. The signal mean and autocovarianestianated causally,
only a finite number of possible sequences are hypothesised at anymeneand the
conditional probability expression is transformed and simplified intatenative, finite-
complexity metric. Approachi] is also unrealisable, since in practice the signal mean and
autocovariance are unknown to the receiver. They must be estimatedpist received
samples. In fact, a near-optimum, practical approximation to app(achthe same as the

approximated blind MLSE receiver. Since past samples only ack faseestimating the
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signal mean and autocovariance, the receiver's performance is pialtyini Accordingly,
the receiver’s robustness is enhanced when a training sequerasesiitted first, to obtain a

reasonable estimate of the signal mean and autocovariance.

In the literature on these receivers, only [7] proposes a wastitoate the signal’s
autocovariance, for the caseM#PSK, rectangular pulses, and Rayleigh fading. Only [7,12]

analyse the receiver structure’s BER; simulation is used in the other references.

This paper extends these results, and is organised as followssighia¢ model is
generalised in section Il to a time-varying, frequency-sele®ie&an fading channel, and the
receiver's need for synchronisation is explicitly identified. gysecial cases, this model
includes most channels of practical interest. In section IIIMh&E receiver structure is
derived for a signal distorted by a Rician fading channel and requsginghronism. The
diffuse (random, Rayleigh) component of the receiver signal is medeby MMSE
predictors. The receiver derivation in section Ill assumes pedfexwledge of the signal’s
mean and autocovariance, whereas they must be estimated frongrthkisipractice. A
scheme for estimating these quantities adaptively is presantgetiion IV. It employs a
minimisation algorithm to search for the signal mean and the poedap weights which
predict past samples with MMSE. The receiver's BER is eteduanalytically in section V,
using a union bound technique. Finally, analytic and simulation resultpresented in

section VI that illustrate the novel aspects of this paper.

This joint receiver requirea priori only (i) a stable symbol-rate oscillatori)(frame
timing in TDMA systems;i(i) an upper bound on the duration of the received pulses (i.e. the
duration of the transmitted pulse plus an upper bound on the delay spreachiagdetior);

(iv) an upper bound on the bandwidth that the Doppler spread and shifted signa¢giccupi
and {) for ML performance, perfect knowledge of the signal’'s mean armtavériance. In
adaptive operation, the mild constraint is made that the channel statistgigraaidroperties
(i.e. the carrier frequency, carrier phase, symbol timing, noiserp@nd channel mean and
autocovariance) change more slowly than receiver's ability trk tiiae changes. Thus, for
Rayleigh fading channels, the receiver relies on quasi-staticseaond order statistics,

instead of quasi-stationafiyst order statistics, as is usually the case.



[I. System Model

In this section, a mathematical description of the transmittemrel, and receiver

front-end are developed. Figure 1 is a diagram of the communications system.

A. Transmitter

The transmitter maps awvi-ary information sequencegf}, a; O {0, .., M-1}, to a
phasor sequencef3}, taken from anM-ary constellation. The transmitter computes the

complex baseband signal,
a(t) = 3 Bih(t -iT), 1)

then translates it to the carrier frequentgy, h(t) is the transmitter pulse shape ahds the

symbol period.

The lack of an absolute phase reference in the Rayleigh fading tiva@hrences the
design of the signal constellation, and the mapping of bits to symsdefineP such that
the constellation haB-ary rotational symmetry andl = M/P. Then the constellation consists
of P sectors, withA points per sector. Define phad¢( {0, .., P-1} to label uniquely the
sector thaf; is in. Similarly, define amplitudg() [I {0, .., A-1} to label uniquely wher@; is
within a sector. This illustrated for 16-QAM in figure 2.

Consider the transmitted and detected sequenpgsadd {fii }. Defineey; O {0, ..,

P-1} such that phasB() = phase@i) + . Define phase lock as the property that= 0

over a long interval in (apart from occasional errors). For absolute phase shift keying, a
cycle slip or phase slip occurs wheg; becomes non-zero. For differential phase shift
keying, a cycle slip occurs whesy; has one value for a long interval, then subsequently

changes. Similarly, amplitude lock is defined as the property thaplitade@) =

amplitudefsi) for long intervals. Defines,i [0 {0, .., A-1} such that amplitud€)

amplitudefsi) + €,;. Amplitude lock is lost whemp,; # O for an interval in. An amplitude
slip occurs where,; = 0 for an interval, then subsequently changes. The amplitude slip is
corrected whemr,; = 0 for an interval again.

Receivers for random channels may use predictors [6,9,11]. They useigrast

samples as amplitude and phase references for subsequent sampigde Fip affects the
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phases of subsequent decisions, and phase lock between transmittereawedl caninot be
guaranteed after a deep fade in the absence of channel sounding wbleantie is purely
Rayleigh. Thus uncoded transmission is effectively a catastrogbde,” in that there are a
number of valid sequences whose path metrics are the same but whotesiged symbol
sequences differ. If the error involves an amplitude slip, then it is ultimategctedrwhen a
symbol is transmitted that reveals the erroneous amplitude meéeré not before Slips

involving amplitude are nearly catastrophic in large constellatismge the anomalous
amplitude reference may not be corrected for some time, resitdtiteng bursts of errors.
Accordingly, we conclude that the transmitter constellation and magpiogld be designed
to be rotationally-invariant and amplitude-slip-tolerant. A radigyisnmetric constellation is

proposed in the following subsection with these properties.

The mapping from ¢} to { Bi} has two stages. THeg,P phase bits select a sector in
a rotationally invariant manner, such as differential encoding; tieslod,A sector bits select
a point from that sector, in such a way that fewer bit errase drom an amplitude slip.
Differential amplitude encoding achieves this for the radiallpjregtric constellation. For

M-QAM constellations, an effective solution is unclear.

B. Rotationally Symmetric Constellation

A rotationally-invariant and amplitude-slip-tolerant constellation n@st easily

constructed from geometrically spaced shelts/d{ .4, for ris= 1,p, p% ... p**, 0 <p < 1,
and ¢,s = 0, 214, ... 2rtEL. Figure 3 shows one example. To ensure robustness to

amplitude and phase slips, each shell is identically differgntiaddy-encoded usintpg,P

bits. The remainin¢pg,A bits Gray-encode the transitions between shells, with wrap-around
if the outer shell is reached. A phase slip introduces one erroramramplitude slip
introduces one error initially, and a second when the amplitude slgoriected. The
proposed constellation is related to the one presented in [25], excefhtetgathe shell radii

vary arithmetically, whereas here they vary geometrically.

! Consider 16-QAM, wherg; 0 {+{1,3}+j{1,3}}. If symbols from {+1+j} are continually transmitted, but the
receiver incorrectly detects symbols from3{3j} for several symbol periods, then subsequent ptexis also
approximate+3+3j, and accordingly the receiver detects symbols f{at+3j}, causing continual errors.
However, if the transmitter finally sends a symfr@m {+3+3j}, the receiver predict9+9j, and therefore
detects a symbol fromtB+3j} as the closest symbol, thus terminating the error event.
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C. Channel and Receiver Front-End Processing

The real bandpass transmitted signal is distorted by a timegarfrequency-
selective Rician fading channel. Real bandpass noise is added tsigi#d, and the
composite signal is quadrature demodulated by  multiplication with
ex;(— j2T[(fc - fo)t +jq), where f_ - f, is the receiver's estimate & andg is the phase
offset. The complex near-baseband signal is filtered by a nogew filter with transfer

function, rect(fTr), then sampled at the timé€E-ty sec, wherdy is the timing error. The

sampling periodT;, is chosen a3/r, where the integer > 1 is the number of samples per
symbol period. The sampling rate must be sufficiently high thaharse-limiting filter does

not distort the signal, even allowing for the Doppler spread and thetainc@out upper
bounded) carrier frequency offset due to non-ideal oscillators and a Dspgte The signal

is not perfectly bandlimited, so strictly the noise-limitingtefils bandwidth is infinite.
However, in practice another bandwidth definition (such as the -40dB bandwidth) can be used

such that the signal distortion or BER penalty is negligible.

These transformations can be represented simply in complex baseband, as
y, = J’a(ITr —t, —E)(IT, —to,E)cE explj2rlf T, +jo) +n )

wherey; is the received signat(t,¢) is the fading channel; is the residual carrier frequency
offset; andn, is the additive noise. Without loss of generality, (2) ignoresithieg error in
the stationary noise, and lumps f{etfoty term in the complex exponential with the carrier
phase offset. The channg(t,), can be visualised as a densely tapped delay line [16], where
the taps are indexed gy The input at any delayy, is multiplied by they-th tap weight,
Z(t,&0), a time-varying, Rician fading process. For time-invariant cHanr(g¢) = z(0,§); for
frequency-flat channels(t,&) = z(t)d(¢); for the AWGN channelz(t,§) = d(¢). Define the
superscriptsnr and r to denote the non-random (specular) and random (diffuse) signal
components, respectively. Thas(t,f) = E{z(t,)}, Z(t,€) = z(t,€) - E{z(t,£)}, and Z(t,) =
Z'(t€) +Z(1.€).

Substituting (1) into (2) and rearranging, we obtain the familiartiootdor linear

modulations,



ZBI 1,1=ir (3)

where ¢ ,.i; is the complexreceived pulse, accounting for all effects between the original
phasor sequence and the received sfgtthe transmitter pulse shape, carrier frequency
offset, carrier phase, symbol timing, and the Rician fading chanijvever the received
pulse has an extra parameieisince each received pulse is different, due to the time-varying

channel. The received pulse is defined as
G = jh((l =N, ~t, ~€)2IT, ~to,&)explj2nif T, +j@)de. (4)

It can be split into a specular componecft,, , and a diffuse component, due to the

I’I =ir ?

non-random and random components of the channel. @hys= ¢/, +¢f

=ir il =ir

In practice the transmitter pulse is restricted to a fidieation, so thah(t) =
outsidet O [0; HT), where H is the pulse length in symbol periods; from physical
considerations, the maximum total delay spread of the channel is loppeded by some
knownT, so thatz(t,§) = 0, outsid€, [ [0; t]; and the timing errorty, isa priori known to be

upper bounded by son¥g, so thatty [ [0, To]. Define the length of the received pulse (the
channel memory) in symbol periods’ds= [ +(t +T,)/T[]. Theith received pulse is fully

Ui
located within the interval <1 < (L+ir)-1, and (3) is rewritten ag, = ZB, i

—L+1+U1/rD
From (3), the signal autocovariance obeys

mrQ MO

{ |I |erm kr} +t2 E{nlnn} (5)

R, .(8)=E{y/ ¥,

—L+1+D]/r|:| L+1+[]VrD

2 If the noise-limiting filter's passband is too raw, its impulse response affects the receivedepslsape
through a further convolution. Low sampling ratesse been used [8-10], but the influence of aniltérfhas
not been addressed. In effect the filter's passhsmvidened without increasing the sampling rated then the
additional aliased noise is ignored.

® The following notation is usedi¥_Jand [X]are the floor and ceiling functions respectiveiy; overbar X ,
denotes complex conjugatior){H is the Hermitian transpose a&f x mod y denotes the remainder afy;
x®(t) is theith derivative of(t); and'C, =iV/ki(i-K)!



where 3 E{nI ﬁm} =N,/T, 6,,- From (4), the received pulse autocovariance is

$e{di S} = N0, —t, =R -kT. -1, )
$E{Z (1T, ~t,8,)2" (MT, —t,8 .} exelj2n(l —m)f,T, )dg g€ ,

(6)

where the expectation is implicitly conditioned on the synchronisatioanysers. Thus
computing the received pulse autocovariance requires either knowledige pfilse shape,
channel autocovariance, and synchronisation parameters, or a timelioteswavhich the
channel autocovariance and synchronisation parameters are quasi+statiogaenough for

time-averaging or an estimation strategy to converge. Note that (6) does not depend on

Often the channel autocovariance satisfies a WSSUS model [16], so that

ez (m.8.)z (m 8.} =5(e, -& )Py -miT, & ) @)

where P(( ) E) is the channel autocovariance function. When the time

autocovariance is the same for all values of delay (e.g. whenapeld) spread arises from
the mobile’s motion and the expectation in (7) includes the multipatralaangles), this

simplifies to

tE{z (1T,.8,)z (mT, &} =3(8, - )RI(( -m)T)PLE ) ®8)

R} ((I - m)Tr) is the autocovariance of each tap over time, Q@({l) is the mean tap power.

Thus (6) simplifies to

1 roo=r —
2 E{Cl,l—irck,m—kr} -

o 9)
[h(@=ir)T, ~t, =E)R((m=k)T, ~t, ~€)P; €)cE R —m)exp(j2n(l -m)f,T,)
The average bit energy to noise spectral density is defined as
: -
E@”Bht— At,€)c| dt
= (10)

N,log, M

and the Rice factokK, equals



;ng [Bh(t, ~&,)" (tl,él)dzl o
K = E:: ; % (11)
%ED Bkh tz_Ez z tzizz dEz dtzD
Jiprt-erfosde o
D. Notation

It is helpful to have vector and matrix representations of theseitiggntDefine the

[%; and theBxB

lengthB VeCtorS, ylr = [y£B+I LA 'ylr—l]T and r‘);y,l ([3) = % E{ylrmodr ylrmod

L}. We define the lengtiBfr) vectors,

matriX, R I;/y,| (B) = % E{ylrmodr ylrﬂod'

T
y”,=[yir_B,...,y(i+l)r_l] and n”,:[ni,_B,...,n(Hl),_l]T; the length8+r)L vector,

Ct ir = %—Lﬂ+mir -B)/rOir —B—(—L A 4ir —B)/rD)r o Cmir—B)/rDir—B—mir -B)/r[T %’ o %—LJrhm(i +)r =1)/r(i +9r 71{ 4+ —)/r[)r ’

%; the @+r)x(B+r) matrices, Rryy,f(B):%E{yrf,oy?%H ,

Cm(i +)r=0)/rgG +0r 116 +Ir -Y/r3

R %E{nf Ny ,r} ; and the B+r)x(B+r)L matrices,
E( - L+1+[{ir -B)/r[]’" B[ﬂlr -B /r|:|) T %S—L+1+[((i+l)r—l)/rg" B[( i+D)r J)/rg% and
R s %E{cf #CY Ir} The superscripter andr apply as required.

I1l. Receiver Derivation

The MLSE receiver searches all allowed symbol sequences irrghsemission
interval and chooses the one with maximum likelihood. In this sectiondesige the

sequence metric, then manipulate it into a recursive form suited for on-line detection.

By assuming the synchronisation parameters are unknown but not tinregydngey
can be regarded as non-random constants. Hence the gjgeahditioned on the phasor
sequence, is still complex Gaussian, since it is a deterrmoitirstiar combination of only the
complex Gaussian random variables,i; and n. The analysis of [6] applies, and the

sequence log-likelihood can be written as



NB)= Z_z—()+ in(o7,.(8)) (12)

where yl“_l(B) is the expected value gf given the past received samples and a hypothesised
symbol sequence; andl“ 1([3) Is the variance of the prediction. From the principle of
orthogonality, the expectatioryl“_l(B), is the MMSE prediction of the Gaussian random

variable, y;, and (yI —yl“_l(B))/ol“_l(B) is the Innovations process [11].y|“_1([3), is

computed by an MMSE predictor, as

ym ) ZQML Y| e~ Vi (B)) (13)

where b’y ([3) is thekth tap for the ML predictor ofy) =y, —y", assuming the transmitted

sequencef}}; and y" (B) is the expected value gf given a hypothesised sequenfg,{

/o d/ro o
= 2Bdl= 3 BT -t -g2 (Tt Eexe{jarfT +igde
_L+1+D/|’D —L+1+[I/rD

(14)

These predictor tap weights depend on the complete history of treetsyimbols.
To avoid a tree search, the predictors are restricted to haxedanumber of tapd$3, chosen

to be large enough that there is a minor BER penalty only. Thedights are arranged in a
vector, b, (B) = [q s(B).--- ,qyl(s)]T, whereh , () is thekth tap for the MMSE predictor of,

assuming the transmitted sequenpg.{ The prediction, the tap weights, and the MMSEs are

computed according to

Y|\|—1([3) =y +b, (|3)TY|r ) (15)
R}, (B)0,(8) =1y, (B). (16)
0ﬁ|—1(5) =Ry (B) b1 (B)ryy. (B) (17)

It is easy to show from (5) that the signal autocovariances in dt@)(17) are

different for each combination of th& = [B/r[]+ L hypothesised symbols in the vicinity of



|, up to theP-ary phase ambiguity infX}. These symbols are labelled the hypothesis vector,

{amplitude( }. Using fixed length predictors (and assuming that

—W+1+[]/r|:|)’B—W+2+m/rD’ o Bm/rD
signal mean and autocovariance are known) has transformed the drele sgo a trellis
search, where théh symbol's branch metric is

2

NOE Z l%ﬂn(of._l(s)) (18)

There areM™/P distinct branch metrics, and the receiver MAs/P states.

In the purely specular channe}, =0, ym_l(B) =y" ([3) and ol“ 1([3) =2N, /T, is

independent of the hypothesised sequence and can be neglected. AccordinglguEs) tiee
a Euclidean distance, which is related to (5) in [2]: i.e. the corraitiMLSE receiver

structure for a time-invariant, known channel.

In the purely diffuse case, a Euclidean distanceotscomputed between the signal
and a noiseless, hypothesised version of the signal. Instead, a hypotresisience’s
predictors check whether the received sample sequence is intecnallistent with that
hypothesised sequence. This idea is represented in figure 4. Tia eigplves in a
correlated manner, according to the non-stationary transmitted sagullthe correlated
channel. Thus the correlation of the signal is characteristidatermined by the transmitted

sequence, and it is this property that is checked by the predictors.

We see that this receiver structure achieves synchronisationameh manner, since
synchronisation, channel estimation and detection are performed jointhe lyredictor tap
weights. A residual carrier offset causes a rotation of tmeptex signal around the time
axis. The predictor tap weights are computed with this knowledgéact their complex tap
weights rotate helically around the time axis in the oppositettreto the rotation present
in the received samples [18], thereby cancelling it. This is a bofast fading channels,
since the channel's Doppler spread makes PLL-based carrier #oguisichemes
inappropriate [13]. Using predictors makes the carrier phasevamet, since the same carrier

phase multiplies both the received sample being predicted and the signal’s past samples.

Symbol timing is also dealt with by the receiver, since ftastionally-spaced. By
defining a new pulse shapg(t) = h(t-ty), and recognising that the time shifg, in the

stationary fading procesXt,§) can be neglected, then the received pulse can be rearranged as
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00

Gy = [0 =I0)T, —t, =€)z (IT, —to,€) exlj2nif T, +jg)dE
. (19)

00

~ _J'g((l ~in)T =&)z (1T, &) exelj2rdf,T. +j@)dE

Thus acquiring symbol timing is equivalent to detecting the signakngthe
transmitted pulse shapg(t). However, the receiver is designed for arbitrary pulse shapes, a
long as they are restricted kosymbol periods in length. This is satisfied by bbft) and
g(t), from the definition ofL. Detection can only proceed when either the signal’s
autocovariance is known (which requires explicit knowledgw)pbr when the receiver has

sufficient time to estimate the autocovariance.

During detection, the receiver maked"/P complexB-tap predictions, on the zero
mean signal,y) =y, —-y,". The signal meany, can be precomputed up to its Doppler
shift, so the receiver must makeM?'B/P complex operations per symbol period, antf'/P
M-way comparisons. The receiver may need to compute the prediptoweights and
MMSEs from the signal autocovariance matrices; this requippsoaimately rM"“B%6P

complex operations.

IV. Estimating the Signal Mean and Autocovariance

From (15) and (16), the MLSE receiver requires the signal meanuaocbgariance.
In this section we describe an effectively optimal “paramedi@imisation” scheme to
estimate these quantities. It will become clear that thense is impractically complicated,
but it does demonstrate how quickly the signal’'s mean and autocovactemdée estimated.
The transmitted symbol sequence is assumed to be known, either thitoaiging sequence,
tentative decisions, or because the receiver employs PSP and hasoweddon the

transmitted sequence. In the latter case, each survivor has an estimator.

Using the previous definitions,

yrfw,ir = Bf,iCrf",ir (20)
R;/y,f(B)zﬁf,iR(r:c,fB?,i +Rnn,f (21)

The signal mean is calculated frocff; . The predictor tap weights and MMSEs are

11



computed from the (B+1)x(B+1) submatrices oR|, ([3) which can in turn be computed

from the channel and noise autocovariance matrkRgs, andR,, ; .

When the signal mean and predictor tap weights are estimatezttherthe mean

square prediction error is at a minimum. Therefore an intuitisalisfying and near-optimal

andc?

estimation scheme represem§_; , R ¢, as a vector of parameters, then searches

nn,f ?

2

for the parameter vector that minimises the total squared poeditror, Z‘yl - yl“_l(B)

over the transmission duration, as shown in figure 5. The parameter vector isaditialihe
parameters’a priori estimates. From this parameter vector, the signal mean and
autocovariance are computed, then predictor tap weights. The sigaalameé predictor tap
weights are used to predict the received samples of the paat sagnples, conditioned on a
hypothesised sequence, with some total squared prediction error. The miomadgdirithm
iteratively searches for the parameter vector that minimikes error. Assuming the
algorithm converges to the global minimum, the final set of predi@prweights then

approximates the minimum mean square error (MMSE) set.
In this way, R, andR_ ; are estimated up to a scaling ambiguity, which must be

corrected when computing the MMSEIﬁZH_l(B). ThereforeR ; andR ; are scaled so

2 L mrO _ N
Y=Y 5 Y BBEeG) T (22)

r
—L+1+[rO-L+1+[)rO

There is no “best set” of parameters, siacpriori channel information guides the

parameter selection. Some comments can be made. Bip¢e= No/T;l, it only requires
one parameteNo/T,. In parameterisingR,.; when there is n@ priori information, the

entries of R, ; or of its Cholesky decomposition (to guarantee positive definiterages)

appropriate. The number of parameters can be reduced by exploitistatiomarity and

Hermitian symmetry oR ;. Normally however there is considerableriori information,

such as the transmitted pulse shape and the mathematical stofcthee received pulse

autocorrelation, (9). Accordingly, a superior set of parametds3,i&/T, and parameters for

R{t(t), Py (E) These functions can be expanded as the weighted sum of a setsof bas
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functions, where the weights as used as parameters. The basEnfisbould be chosen so
that R (t) and P{E(E) are accurately described by a few weighted functions only. A

polynomial expansion is convenient. The channel’s time autocovariandeecaccurately

represented by the polynomial expansion,

Ri(t) = intZ‘ (23)

when the numberli+1, of coefficients,A, =1A,,... A, , is sufficiently large. Z(t2) is
assumed to have independent real and imaginary parts, so that odd iterthe
autocovariance expansion can be neglected. Similarly, the channebvautacce in
frequency, P; (E) - Ry (f ) can be parameterised by thel coefficients,u, = Ly,,...,H, ,
given the polynomial expansion,

It I

Ri(f)=y m(-jenf) - 5 -1 (24)

1=0 1=0

and a sufficiently largk. With this expansion, the integral in (9) simplifies to

il -0 -£)R: €E =3 T, )i () @)

When there is n@ priori information about the signal mean other tharthen the
appropriate parameters for the impulse response are the realmaginary parts of

nr

G':---»G -1, and the Doppler shift of the specular component relative to the diffuse

component. In the mobile radio channel, the signal mean often corresponds toctheadiire
so the channel mean’s impulse response can be parameterised bedh@ath’s complex

gain only.

Simulations indicate that a simple-minded minimisation algoritham @asily
converge to a local minimum. This may be overcome by invoking the msation

algorithm many times with different initial parameters vestar by employing the technique

of simulated annealing [19]. When computed from parameRfs, ([3) is not guaranteed

positive definite. Calculated MMSEs can be negative, and thus thehbraetric, [18],

operates incorrectly. This generally occurs when too few paessnate used to describe

R{t(t) and Py (E) or when there are insufficient signal samples for the paessé& be
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properly estimated. In the rare times this problem arose inl&iions, the noise power was

repeatedly increased by 20% until all MMSEs were strictly positive.

V. Receiver Analysis

We seek the receiver’'s BER for a Rician fading, frequencysetechannel in white
noise. The rotationally invariant code is assumed to be differemalding, and the signal
mean and autocovariance are ideally known. The same analytiovMoaknapplies to coded

transmissions also.

First some notation is defined. The actual transmitted sequedeaased by B"'}.
Potential error sequences are written 88"{'}. With trellis-based receivers, errors are
dependent and appear as error events. The supersdepibtes the length of the error event
under consideration. The superscrpnumerates each distinct transmitted sequence in the
vicinity of the lengthu error event. Each transmitted sequence can be confused with several
others, so the error sequences are enumerated by a furtherwnd®hen an error occurs,

the ML sequence is one of the error sequen@s;'].

The probability that the sequenc"{}, is transmitted is labelled bP( “'V). The

probability that an error sequence has a better metric than ahentitted sequence (the

pairwise probability of error) is denoted tP}(B“'V - B“*V*W). The number of bit errors that

arise from the error event is Writte(B“'V - [3”1””)_

An upper bound on the BER can be deduced from a union bound over all error events.
Since this is an infinite sum, it must be truncated. The trundsttedd is a credible upper
bound if at least the dominant error events are considered. Thus EhedEd is the union
bound of the dominant error events, averaged across the transmitted ssqoehe vicinity

of the error event,

BER < Z P( U’V)P(Bu’v - BU’V’W)G(B“"’ . BU’V’W)

26
uyv.w logz M ( )

The form of an error sequence ig"{"} = {B“’Vexp(je“*v'w)+ s“'V'W}, where the

sequencesg""} and {6“""} specify the particular error sequence, and are constrained so

that {3"""} is also an allowed sequence. For an error event extending fromhthe the
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(i+u-1)th symbol periodg,”™ = 0 fork <i and fork > i+u-1. 6,""= 0 fork <i+u and is
constant foik > i+u. This remaining phase offset allows the error event to end evem whe
phase lock is lost, since the rotationally invariant code preventsefubit errors. These
constraints ensure that"{""} and {6"""} uniquely describe an error event. Without loss of

generality, the first symbol error is aligned with tiime 0, so that the error sequence can be

written as
(B By Bey + et B+ e, B exdj6) B exhi 2Y) . ) 27)

The pairwise probability of error depends on the hypothesised and trEstsmit

symbols in the vicinity of the error event, since they determinetwpredictor tap weights

uVv Wi

are used. Clearly the erroneous symt{ﬁl&v'w,...ﬁu_l} affect the pairwise error probability.

Define Y=(L+u-2r -1. The signal samplesy ... Yy involve pulse tails from the
erroneous symbols. When these samples are predicted, or are uggdditidon, the wrong

predictor tap weights are used. Define=-B and Q :(L +u —1)r -1+B. The signal

samplesy, ... y,, are used witly, ... yy in predictions, so in fact the symbols that affect the
pairwise probability of error aréBt,‘;V,... $V} and{ PR t};V'W} , Wherey =-W +1 and

Y =W+u-2. Since the ISI from these symbols is different in each qeseyise error
probabilities must be tediously computed for each ISI combination, up #@dherotational

P
M W-gp+1 °

ambiguity. The transmission probability equél%éﬁuvv) =

In slow Rayleigh fading channels, the mean fade duration is long, i dieemany
different yet likely error events. The union bound of (26) is very lod$awever, when the
fading is sufficiently fast and the SNR high, fade durations draction of a symbol period
only. The dominant error event is the cycle slip, and accordinglyuthen bound is
asymptotically tight. A tight union bound also arises when the chasmrsttongly Rician,

since the dominant error events are short there too.

We define normalised predictor tap weights, a bias term and the signal mean as
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(28)

§| Qi"‘l uuvvw @ (29)
yre =y (pUy) oy =y (peee) (30)

Then the pairwise probability of error is the probability that awresous sequence has a

smaller path metric than the transmitted sequence,
P(BU,V R BUVW) P(/\UV >/\UVW)

o & & m#ﬂhuv(yl -« Y|nrkuv)(Y| & y|nrkuv) E

0
= P D >KminD
Z Z uv,wi uvw(yI ) nruvw)(y o, uvw)E E

(31)
=0 k=0 k=0 &) ~ Y« VY

from (18). In Rayleigh fading this simplifies to

P(Buv - UVW i;i huv _huvw qu)Y| kYi-ke mnﬁ (32)

Define k"""

as the left-hand-side of the inequality and the column vector,
T : : : .
:[yw,...,yg,yﬂ,'“v, Yo Y yn e yg’“vw] . k"""is a Gaussian quadratic form in

the Gaussian random variablgs!, and can be written ag""" = y""Hy""y"" where the

kernel, Y*", is a Hermitian symmetric matrix, defined by (31). The estiie the
autocovariance matrixR| = E{(yqu - E{y“’v} )(yqu - E{y”'v} )H} , of y*', are given by (5)

and (6). The characteristic function of a Gaussian quadratic €5tty, is given by [1], as

0- expHiEE(y) "y (1 - jagRy, yerr ) E(ye )

cDLEJ,v,W
de{l ~ J2ER YU

(33)

The pairwise probability is calculated by transforming this datarestic function into a pdf,

then integrating over the error region, as
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p(e . pov) = J-J-(Duvw( £)exe{jex )k ck =3 j'l o (g )Je;i(; j& m.n)dE (34)

Kmin =0

It is unclear how to easily evaluate this integral for the gegnRician case, so

numerical integration is appropriate. For Rayleigh fading chantiedsyector of Gaussian
random variables can be shortenedytty =y :[yw,...,yQ]T, with the matricesR,, and

Y*¥ cropped also. The characteristic function simplifies to

u,v,w H u,v,w 1
®e(g) = defl - j2ER,, Y (35)
and from standard residue calculus, the pairwise probability of error equals
%I‘ DZ eXF( Jpl mln)ﬂ 1 K min s 0
ki (1 pl / pk)
P(* — p) =00 S (36)

0] - iDK ... — :
E+i,D%<OEXF( Jp| mm)gll,(l_ p|/pk) Km|n20

wherep; is theith pole of (35). These poles equaljlaultiplied by the eigenvalues of

R, Y“"", so the poles are found numerically. Equation (36) assumes that theop (i)

are simple. This holds normally, but the more complicated case can also be dealt with [20].

In the non-fading cas® = 0, only the noise is a random variable, B, is partly

diagonal and partly zero, leading to the usual result in terms Q(thiinction.

VI. Results

In this section, the novel aspects of the receiver are chasactdyy simulation, and
analysis where possible. The simulated results are generatedc fMonte-Carlo simulation
of figure 1. Randomly generated data is transmitted and detattiedt least 200 bit errors
are observed. Unless otherwise stated, the simulation para@etexrs follows. The data is
differentially encoded BPSK. A root raised cosine pulse is used, with 50%s daredwidth,
and windowed with a Hanning window td = 3 symbol periods. There is no carrier
frequency offset. The channel is modelled\by 3 Rayleigh fading taps, spaced equally over
T = 0.5 seconds, having equal mean power. Each tap is independent from othemdaps

modelled by passing complex white Gaussian noise through a 192-tap lewlpasiter,
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with impulse response [21]f, = J;(2T|fD'I'r|I|)1I|_% XHanning(ITr), creating a “windowed”

JO(ZT[fDT,|I —rri) The channel is fast fadinfy,T = 0.1 The sampling rate for the transmitter,

channel and receiver are all the same, with3, so the noise-limiting filter is implicit in the
discretisation of time. Synchronisation is assuntgd: 0,f, = 0. The MMSE predictor tap

weights are all precomputed and not further changed. The predicto® h&/&aps.

The analysis of section V is applied whenever the channel isigaybding. Only
cycle slips and one symbol, nearest neighbour error events are cedsider fast fading
BPSK simulationsipT = 0.1, these two error events are dominant above approximately 20dB;

above 30dB only the cycle slips contribute significantly to the BER.

In figure 6, a carrier offset is introduced between transmédtgl receiver. In
producing this figure only, the transmitter and channel are simuétedsampling rate of
2r/T, wherer = 2,.., 4. Noise is added (equivalent to a fiagN, of 25dB), and this received
signal is filtered by a 46tap low pass FIR filter with cutoff frequenay2T, then 1:2 sub-
sampled. The filter is designed in Matlab using a Kaiser windilv parameter 12. When
the carrier offset is large enough, part of the signal ligkenstopband of the filter, causing
signal distortion. This distortion is not accounted for when the prediappmweights are
calculated, so the BER degrades rapidly. This is seen in figur€éhe union bound only
applies when the signal is not significantly distorted by the rimsgng filter. The Doppler
spread, windowed, transmitted pulse occupies approximately the -25dB bdnd@iéf ..
0.9/T. According, whemr = 2, 3, 4 sample per symbol are taken, the noise-limiting fifter c
be neglected for any frequency offset up to approximai@l¢/T, £0.6/T, £1.1/T (in general
the values depend on the SNR). The BER in this region is constaydndthis offset, the
signal is distorted by the noise-limiting filter, and the BERs georse as the signal distortion
increases. Accordingly, given a sufficiently larg¢he receiver can accommodate any carrier

offset, albeit at the cost of linearly increasing complexity in

In figure 7, a timing offsetty, is introduced between transmitter and receifzgi\,
equals 25dB. The predictor tap weights are computed assuming thiatitigeoffset equals
min(to,To). Thus when the timing offset is properly boundgds Ty, the receiver is able to
detect the signal reliably. From figure 7, the BER is fiathis region. Wheiy exceedsly,
there is a mismatch between the predictor tap weights and teevee signal, and

accordingly the receiver's BER degrades rapidly. The union bound onlyeapphien the
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timing mismatch is not significant. The mean variance of the Irmmm& process,
N 2

ﬁZ‘yl - y”,_l(B)‘ /oﬁl_l(B), is approximately unity when the receiver is operating properly.
=1

When the timing mismatch increases, it exhibits a cyclicatian, falling to unity as the
timing mismatch is an integral number of symbol periods. The aserat symbol-spaced
intervals is due to the receiver reliably detecting adjacemibsls. Accordingly, given a
sufficiently largeTy and a training sequence (g), the receiver can acquire any timing error,
albeit at the cost of exponentially increasing complexityfign However, when a training
sequence is unavailable, the receiver can only acquire a timmgoémp toT seconds, due

to theT-second ambiguity in symbol timing.

In figure 8, a simple Rician fading channel is considered. Onlijrdtéap has a non-
zero mean, so the channel tends to an AWGN channel as the Rice conyeiselatrge,
K - o . The benefits are seen in figure 8, where the BER curves impubatantially for
larger values oK. Recall that the signal mean and autocovariance are assumed known, so for

K - oo, the problem tends to the classical detection problem solved in [17].

In figure 9, the influence of different constellations on the BE&x&mined. Due to
the large number of states, the pulse length is reducéti#40l.5 symbol periods and not
windowed. There is a power penalty in increasing the systentsrapefficiency, and also a
substantial increase in complexity. Both 8-PSK andAifiRép = 2/4/0.5 radially-symmetric
constellation have the same spectral efficiency, yet ther ld#s a superior BER.
Accordingly it merits further investigation. The union bound is tightigh SNR due to the

short mean fade duration. Here the error events are almost exclusively cycle slips.

In figure 10, the acquisition performance of the parameter-miniioisactheme and
an RLS-based scheme is studie@@Ny = 20dB. The receiver is trained for a duration with
a random training sequence, then the predictor tap weights aredn@dletection continues
until 200 bit errors are detected. This is repeated 20 times toxamyaite the ensemble of all
training sequences. In this way, the BER as a function of traienggh is calculated. Note
thatW = 6 symbols of the training sequence cannot be used since they contain pulsamnails f

unknown symbols. An unsynchronised, Rayleigh-fading signal is assumed, with2TT, ¢

= 20, andty = 0.7T.

The parameter-minimisation scheme uses the polynomial expansibn; wi2 andl;
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= 6. The scheme learns the channel autocovariance accurately within 50 symbol periods.

As a comparison, a second scheme is considered where each predidi@rcily
adapted by its own RLS processor (there is no information pooling betvaeemitted sub-
sequences or sample positions). At I&stpetitions of each sub-sequence must be received
before the receiver can begin detection, and each predictor can onjydated when its
sample and sub-sequence is transmitted. Thus there is a minisinimgtperiod otM"“B/P
= 192 symbols, and its acquisition time is considerably longer tharhérmparameter-

minimisation scheme. This is seen in figure 10.

In unpublished simulations, the first scheme adapted to Rician fadingeihaalso.

However, the carrier offset cannot be estimated perfectly, soett@ in estimating

c' Dexp(jszoTr) increases in timd, This problem may be solved either by only using

,1=ir
the estimate close to the training sequence, or by continual adaptdi avoid the problem
of local minima, the parameters were initialised to theiremrvalues. The minimisation
algorithm (Powell’'s method [19]) then modified the parameters uh&ly matched the
particular training sequence. Despite the favourable initiadisatector, the algorithm still
required approximately 2000 iterations to converge. Powell's method ruegxploit
derivative information, which can potentially improve the rate of cormrerg. The EM

algorithm may also offer faster convergence [27].

VIl. Conclusions

The MLSE receiver structure of [11] is generalised to Riciading and
unsynchronised signals. The resulting structure deals with the apeandtl diffuse
components of the received signal separately. The receiver'sioparaRayleigh channels
is noteworthy. Given an adequate sampling rate (causing a lm@aase in complexity),
arbitrarily large carrier frequency offsets can be toletat&iven an adequate upper bound on
the timing error (causing an exponential increase in complexatyjifrarily large timing
offsets can be accommodated. Detection can only commence onceestimates of the
channel and noise mean and autocovariance are available. In simuletimate estimates
are available in approximately 50 symbol periods. The receivéER B derived in the
frequency-selective, fast Rician fading channel, and it can be &@lia the case of fast

Rayleigh fading. The analysis shows good agreement with simulation.
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Figure 1: Structural representation of the communications system.
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Figure 3: An example of a radially-symmetric constellatiBrs 8,A = 4,M = 32.
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