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Direction of arrival (DOA) estimation is a crucial problem in electronic reconnaissance. A novel broadband DOA estimation
method utilizing nested arrays is devised in this paper, which is capable of estimating the frequencies and DOAs of multiple
narrowband signals in broadbands, even though they may have different carrier frequencies. The proposed method converts
the DOA estimation of multiple signals with different frequencies into the spatial frequency estimation. Then, the DOAs and
frequencies are pair matched by sparse recovery. It is possible to significantly increase the degrees of freedom (DOF) with the
nested arrays and the number of sources can be more than that of sensor array. In addition, the method can achieve high estimation
precision without the two-dimensional search process in frequency and angle domain. The validity of the proposed method is

verified by theoretic analysis and simulation results.

1. Introduction

Direction of arrival (DOA) has been an active research
area, playing an important role in electronic reconnaissance
[1], as it is a crucial parameter for sorting and recognition
of sources, directing jamming and passive location. Unlike
radar receiver, there is no priori information of signals for
the reconnaissance receiver. Therefore, the reconnaissance
receiver tends to have large instantaneous bandwidth in order
to cover a wide spectrum [2-4]. This leads to two problems
in DOA estimation: one is that the array aperture must be
increased to satisfy multiple signals of different frequencies
within the reconnaissance band range and the other is that it
must be possible to achieve the frequency and DOA estima-
tion of multiple signals simultaneously in broadband. In [5], a
nested array structure was proposed to increase the degrees of
freedom by vectorizing the covariance matrix of the received
signals among different sensors. Then, Pal and Vaidyanathan
increase degrees of freedom of the coarray by extending the
nesting strategy to multiple levels in [6], namely, the 2gth-
order nested array, whose 2gth-order difference coarray is
proved to contain a uniform linear array with O(N 24) sensors.
It can be viewed as a virtual array with a wider aperture, which
is capable of being utilized to improve the DOA estimation

performance of the multiple signals with same frequency.
However, when the frequencies of the signals are different
and unknown, this technique cannot be applied directly.
By exploiting the four-level nested array, a novel estimation
approach is proposed in [7], which can be extended to
wideband scenarios. However, for each subband signal, the
vectorization is performed twice to construct a fourth order
difference coarray and the spectrum peak search process
is conducted in the whole spatial domain, which suffers
from the complex computation. Signal subspace techniques
such as MUSIC [8] need two-dimensional search process in
frequency and angle domain, which leads to large amount
of computation. In [9], an angle-frequency joint dictionary
is established to achieve the frequency and DOA estimation
by sparse recovery. The results suggest that sparse recovery
becomes more difficult and complicated while the length of
dictionary increases.

A broadband DOA estimation method is investigated in
this paper. A nested array is used to extend the array aperture
and the spatial frequency, which contains the information
of both frequency and angle, is defined. In this way, the
DOA estimation of multiple signals with different frequencies
is converted into the spatial frequency estimation. Then,
the received signals of sensor array are transformed into
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FIGURE 1: A 2-level nested array with N, sensors in the inner
ULA and N, sensors in the outer ULA, with spacings d, and d,,
respectively.

frequency domain. By sparse recovery approach, each of the
signals with different frequency can find its corresponding
spatial frequency in the dictionary composed of spatial
frequencies that have been estimated. Once the frequency and
spatial frequency are pair matched, DOA estimation can be
implemented simply by the definition of spatial frequency.
This paper is organized as follows. In Section 2, we
introduce the nested array model. In Section 3, we propose
the broadband DOA estimation method based on nested
array and analyze the performance. Section 4 presents the
simulation results, and conclusions are made in Section 5.

2. The Nested Array Model

A two-level nested array [10] with N sensors is basically a
concatenation of two uniform linear arrays (ULAs): inner
and outer, where the inner ULA has N, sensors with spacing
d, and the outer ULA has N, sensors with spacing d, =
(N; + 1)d;, as shown in Figure 1. The resulting N sensors
are positioned at S = {n;d;, n; = 0,1,...,N; — 1} U {n,d, —
d;, n, = 1,2,...N,}, in which the first sensor is set to be the
reference.

Assume that there are K sources imping on the array from
directions 0,, 0,, ..., O with carrier frequency f,, f5,..., fx>
respectively. The steering vector a(0;, f;) corresponding to the
ith source signal is expressed as

a (9i> f;) _ [1’ e—j2nd1fi sinGi/c) o e—j2n(Nl—1)d1fi sinBi/c)
@

e—jZﬂ(dz—dl)fi sin0;/c e—jZn(dez—dl)f,» sin Gi/c]T
seees

>

where c is the velocity of wave propagation. The data vector
received at the nested array is expressed as

K
x(t)=Ya(0,f)s O +n@®) =As@®) +n(t), (2)
i=1

where

A=[a(0,,f;) a0y f,) -+ a0k fx)] 3)

T
s(t)=[s,(t) s, () -~ s ()], (4)
where A denotes the array manifold matrix and s(t) denotes
the source signal vector. n(t) is the white noise, which is
uncorrelated from the sources.
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3. The Nested Array Model

3.1. Spatial Frequency Estimation. From (1)-(4), it is obvious
that there is two-dimensional information in broadband
DOA estimation, namely, frequency and angle. Therefore, we
attempt to estimate spatial frequency instead of frequency
and angle, and the spatial frequency Q) is defined as

Q:fsinG. 5)

Cc

Combining (1) and (3), we obtain
A=[a(Q) a(Q,) - a(Qg)], (6)

where

a(Qy) = [Le 7%, e PN o,

>

7)

e—j2n<dez—d1>o,-]T

Here, we assume that the sources are mutually uncorrelated
and each source signal s;(¢) is wide-sense quasistationary [11]
with frame length L; that is,

Eq[s; (l‘)|2 =0r2ni’
{lss @I} ©
Vte[m-1)L,mL-1], m=1,2,...,M.

Then, the autocorrelation matrix of the mth frame received
signal is

R, =E[x(t)x" ()] = AD, A" + 021,
)
Vte[(m-1)L,mL-1],

where D,, = diag(o?,,, 0> ,07 ) is the source covariance

ml> ¥ m2>
matrix at frame m. crfm. is the power of the ith source and aﬁ
is the power of noise. Vectorizing R,,, we get the following

N? x 1 vector:

Y = vec(R,) = (A" 0A)p, + 02, (10

T T T T,T
where p,, = [0? ., 07 an] and 1,, = [e;,e,,...,ey]

m1> O e+ o
with e] being a column vector of all zeros except a 1 at the
ith position. Comparing it with (2), we can say that y,, in
(10) behaves like the data vector received at an array whose
manifold is given by A* ® A, where ® denotes the Khatri-Rao
(KR) product.

By stacking [y;,V,,...,¥Yy] = Y, we have that
Y=(A"0A)P+0E, 1)

where P = [p1,ps-- Py and E=[1,,1,,..., 1]

The noise subspaces U, can be obtained by applying
singular value decomposition (SVD) on Y, which satisfies
that

i=1,2,...,K. (12
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Then, the conventional subspace-based DOA estimation
approach as MUSIC can be exploited as follows:

P

music

Q)
~ 1 (13)
@ (@ ea(@)"U,UH @ (Q)®a(Q)

It is interesting to note that spectrum peak search process
is applied in the spatial frequency domain instead of the angle
domain. The source signals with different frequencies and
angles correspond to respective spatial frequency; therefore
they can be separated in the spatial frequency domain. Since
the spatial frequency includes both frequency and angle
information, we will show how to determine their matching
relation in the following part.

3.2. Pair Matching. According to the definition of spatial
frequency in (5), once we know the frequency of each signal
and match it to the corresponding spatial frequency, DOA can
be obtained by simple computation. Hence, the pair matching
of frequency and angle is equivalent to that of frequency and
spatial frequency.

Consider the frequency domain model of (2), which is
given by

X(f;)=A(f)s(f)+N(f), j=12..) (4

where X( f;) is the received data at the array with frequency
fj»> which is achieved by the Fourier transform of x(). Our
pair matching process is targeted at finding one or more
spatial frequencies corresponding to X(f;) among those that
have been already estimated. We can treat this problem as a
sparse recovery problem [12]; that is,

minimize [v]|,
(15)
subject to X ( f]) = ApitV>

where

Age=[a(@)),a(0)0ca (@] 6)
A 4i¢ is an overcomplete dictionary composed of the steering
vector generated by the estimated values of spatial frequency.
v is the sparse vector whose position of nonzero elements
represents the spatial frequency matched to X(f;). However,
the /,-minimization is NP-hard in general. Thus, it is often
converted into /;-minimization [13] as follows:

minimize |v]|;
17)
subject to X ( f]) = ApiV.

The support of v can be obtained by convention sparse
recovery algorithms, such as Basis Pursuit (BP) [14] and
Orthogonal Matching Pursuit (OMP) [15]. Considering the
scenario that some of the source signals are with the same
frequency, the sparse recovery problem in the case of high
sparsity ratio may exist. Kwon et al. proposed a multipath

matching pursuit (MMP) algorithm [16], which has been
proved effective in high sparsity ratio case. Therefore, the
MMP sparse recovery algorithm is selected.

As it is described above, it is possible to find the matched
spatial frequency in the dictionary Ay, for each X(f;) with
the MMP algorithm.

3.3. Frequency and DOA Estimation. The set of {f;};;l
achieved by Fourier transform on the rows of x(t) is regarded
as the estimation of frequency. Since the pair matching for
the set of { fj}ﬁzland {ﬁ,-}fi | has been already implemented,
the DOA estimation is given by

. Q.
0, = arcsin <%> , (18)
j

where f}” denotes the frequency corresponding to O);. As 0, is

obtained by the matched f] and ;, 0, and f] are pair matched
automatically.

3.4. Performance Analysis. The implementation steps of the
proposed method are summarized as follows.

Given: a received signal sequence {x(t)}tT;Ol, T = ML, a source
number K, and a frame length L.

Step 1. Compute R,,, y,, = vec(R,,), form = 1,2,...,M.
Then, form a data matrix Y = [y;,¥,, ..., Yal-

Step 2. Perform SVD on Y in order to obtain the noise
subspace matrix U,. Then, compute the spatial frequency
spectrum by (13) and obtain Q;, fori = 1,2,..., K.

Step 3. Compute the Fourier transform of x(t) and pick up
the data X(f;) for each frequency f;, for j = 1,2,...,].

Step 4. Compute the support of X(f;) in Ap; by sparse

recovery and determine the corresponding Q to f 5

Step 5. Compute 6, by (18) with the matched Q; and fJ

Step 6. Repeat Steps 4 and 5 for each X(f;) and obtain the set
{éi}fil as the DOA estimation.

It is obvious that the performance of DOA estimation is
related to the spatial frequency and frequency. The precision
of frequency estimation is due to discrete Fourier transform
(DFT) points N;, whose maximum value is the number of
snapshot. From (18), we have

@ _ Qc
df £ h_QZCZ/fZ (19)

This means that the influence of frequency estimation
error on the DOA estimation decreases with the growth of
frequency. Therefore, the DOA estimation precision is mainly



due to the spatial frequency estimation precision when the
carrier frequency is high. As the nested array, which is capable
of extending the array aperture effectively, is utilized in
spatial frequency estimation, we can achieve high estimation
precision compared to the ULA. If the spatial frequency is
estimated accurately, the DOA estimation with high precision
follows.

In fact, the broadband DOA estimation problem includes
two-dimensional parameter: frequency and angle. It is nor-
mally implemented with a two-dimensional search process
in frequency and angle domain. Compared with traditional
method, the proposed method only needs to conduct spectral
searching process once in the spatial frequency domain and
a simple pair matching process. However, the traditional
method, which uses band-pass filters for each element and
obtains narrowband DOA estimation by MUSIC, needs
multiple search processes for the signals with different
frequencies. Therefore, the proposed method reduces the
computational complexity to some extent.

4. Simulation Results

In this section, we provide several sets of simulation results
to demonstrate the performance of the proposed method.
In all the simulation examples below, we suppose that f €
(0.1,1.5) GHz, 6 € (-90°,90°), for all the source signals. The
root mean square error (RMSE) of angle from L Monte Carlo
trials is used as our performance measure and it is defined as

RMSE = IKG ol (20)
~\wz2le-af.

where 6, and 0, denote the true and estimation DOAs,
respectively.

4.1. Simulation and Setting

Example 1. This simulation example considers an under-
determined case where 13 uncorrelated source signals (K =
13) impinge on the nested array with 6 sensors (N; = N, =
3). The number of snapshots T' (T = ML) and SNR are set
to M x L (M = 32, L = 1024) and 15 dB, respectively. The
true DOAs are given by {0,,60,,...,0¢} = {-60°,-51°,-40°,
-30°,-20°,-7°,5°,18°%,25°,31°,45°,53°,60°} with the carrier
frequency {fy, for---» fi} = {1.15,1.03,1.03,0.57,1.35,0.8,
1.03,1.35,0.57,1.35,0.8,1.03,1.15} GHz. Figures 2 and 3
show the spatial frequency and frequency estimated results,
respectively, and Figure 4 shows the pair matching results of
frequency and angle by MMP algorithm.

Example 2. In this simulation example, we consider the
spatial frequency estimation performance with respect to
SNR. Five source signal angles and frequencies are set
to {1.0,0.9,1.1,1.2,1.3} GHz and {-30°,-15°,5%,15%,30°},
respectively. The SNR varies from —10dB to 15dB in 2.5dB
intervals. Figure 5 shows the RMSE of the spatial frequency
estimation as a function of SNR, averaged over 1000 Monte
Carlo trials.
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FIGURE 2: Spatial frequency estimated results of 13 source signals,
N =6,M =32,L = 1024, and SNR =15dB.
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FIGURE 3: Frequency estimated results, N; = 4096 and SNR =15 dB.
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FIGURE 4: Pair mathcing results of 13 source signals, SNR = 15 dB.
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FIGURE 6: RMSE of angle versus frequencies, N = 6, K = 3, and
SNR =15dB.

Example 3. In this simulation example, we consider the
influence of frequency estimated error on RMSE of angle.
Three DOAs are set to —15°, 30°, and 45°with SNR = 15dB.
The frequency varies from 0.1 GHz to 1.5 GHz with interval
0.2 GHz. Every fixed frequency conducts 1000 Monte Carlo
trials. Figure 6 shows the RMSE of angles as a function of
frequency with different o (standard deviation of frequency
estimation).

Example 4. In this example, we examine the DOA estimation
performance with respect to SNR and snapshots. The sim-
ulation conditions are similar to those of Example 1 except

L5
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FIGURE 7: RMSE of angle versus SNR and snapshots, N = 6 and
K =13.
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FIGURE 8: RMSE comparison, N = 4, K = 5, and SNR =15dB.

the SNR and snapshots. The SNR varies from -5 dB to 20 dB
in 2.5dB intervals. The RMSE of angle as a function of SNR
with different snapshots is shown in Figure 7.

Example 5. In this example, we compare with traditional
method, which uses band-pass filters for each element and
obtains narrowband DOA estimation by MUSIC. The SNR
varies from —5dB to 15dB in 2.5dB intervals. We choose
five source signals with different frequencies and DOAs.
Every fixed SNR conducts 1000 Monte Carlo trials. Figure 8
compares the RMSE of the proposed method and MUSIC
method based on band-pass filtering. The CPU runtime of
MUSIC and the proposed method as a function of source
number are shown in Figure 9.
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FIGURE 9: CPU time comparison, N = 6, L = 1024, and M = 32.

4.2. Discussion and Analysis. From Figures 2 and 3, we see
that the proposed method is effective for spatial frequency
and frequency estimation. In Figure 4, ® and O denote the
true values and estimated values, respectively, which prove
that the frequency and angle can be pair matched correctly
by MMP algorithm.

The RootCRB(N) in Figure 5 denotes the square root of
Cramer-Rao bound with N sensors. It is interesting to note
that the RootCRB is for spatial frequency instead of angle.
Since the nested array increases the DOF from N to (N* —
2)/2+ N (N is even) [4], we compare it with the RootCRB(6)
and RootCRB(23). From Figure 5, we observe that the nested
array with 6 sensors yields better RMSE of spatial frequency
than the ULA with 6 sensors, but still not as good as the ULA
with 23 sensors.

The results of Figure 6 show that the smaller of is, the
better RMSE we can obtain. However, with the same o7,
the RMSE of angle will decrease when the frequency varies
from 0.1GHz to 1.5 GHz. Therefore, we can conclude that
the frequency estimation error has less influence at higher
frequencies, and vice versa for lower frequencies, which is
equal to the analysis in (19).

From Figure 7, we see that better RMSE of angle can be
obtained by increasing M with fixed L or increasing L with
fixed M, as it increases the number of snapshots T = ML in
both scenarios. However, when the number of snapshots is
fixed at T' = 16384, the case of L = 512 and M = 32 provides
better RMSE than that of L = 1024 and M = 16. Hence, this
set of empirical results suggests that, for a fixed T, trying to
obtain more frames M by decreasing the frame length L (L
should not be overly small) tends to be a better option for
performance improvement than the opposite.

From Figure 8, we see that the RMSE of the proposed
method is better than MUSIC. This is because it extends
the array aperture by nested array, which improves the DOA
estimation precision. The results of Figure 9 show that CPU
time of the proposed method is less than MUSIC and varies
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little with the growth of source number. The reason is that the
proposed method can estimate the spatial frequencies of all
the signals in a single spectral search process, which is less
affected by source number. However, the times of spectral
search in MUSIC are related to the source number, which
equals the number of signals with different frequencies.
Therefore, the CPU runtime becomes longer significantly
when the source number is large.

5. Conclusion

This paper has addressed the broadband DOA estimation
problem with nested array. The proposed method can obtain
the frequency and angle estimation of multiple source signals
by spatial frequency estimation and pair matching with
sparse recovery. The pair matching process is conducted in
the set of spatial frequency that have been estimated for
reducing the computation. Moreover, the proposed method
can work in broadband, underdetermined, and low SNR
cases, which is very suitable for electronic reconnaissance
system.
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