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Abstract

In this paper, an approximate formula of the fractional derivatives
(Caputo sense) is derived. The proposed formula is based on the gen-
eralized Laguerre polynomials. Special attention is given to study the
convergence analysis of the presented formula. The spectral Laguerre
collocation method is presented for solving a class of fractional optimal
control problems (FOCPs). The properties of Laguerre polynomials ap-
proximation and Rayleigh-Ritz method are used to reduce FOCPs to
solve a system of algebraic equations which solved using Newton itera-
tion method. Numerical results are provided to confirm the theoretical
results and the efficiency of the proposed method.
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1 Introduction

In this paper, we focus on optimal control problems with the quadratic perfor-
mance index and the dynamic system with the Caputo fractional derivative.
We implement the proposed algorithm for solving the following FOCPs:

minimum J =
1

2

∫ 1

0
[p(t)x2(t) + q(t)u2(t)]dt, (1)

subject to the system dynamics

Dνx(t) = a(t)x(t) + b(t)u(t), (2)

with the initial condition x(0) = x0, where ν > 0 refers to the order of the
Caputo fractional derivatives, p(t) ≥ 0, q(t) > 0, a(t) 6= 0 and b(t) 6= 0 are
given functions. Many authors studied these problems with different numerical
methods. For more details about these problems, see ([5], [6], [8], [11])

2 Preliminaries and Notations

In this section, we present some necessary definitions & mathematical prelim-
inaries of fractional calculus theory required for our subsequent development.

Definition 2.1 The Caputo fractional derivative operator Dν of order ν is
defined in the following form

Dνf(x) =
1

Γ(m− ν)

∫ x

0

f (m)(t)

(x− t)ν−m+1
dt, m− 1 < ν ≤ m, m ∈ N, x > 0.

For the Caputo’s derivative we have Dν C = 0, C is a constant, and

Dν xn =

{
0, for n ∈ N0 and n < dνe;

Γ(n+1)
Γ(n+1−ν)

xn−ν , for n ∈ N 0 and n ≥ dνe. (3)

We use the ceiling function dνe to denote the smallest integer greater than or
equal to ν, and N 0 = {0, 1, 2, ...}. For more details on fractional derivatives
definitions and its properties see ([4], [12]).

The generalized Laguerre polynomials [L
(α)
i (x)]∞i=0, α > −1 are defined on

the unbounded interval (0,∞) and can be determined with the aid of the
following recurrence formula ([3], [16])

(i+1)L
(α)
i+1(x)+(x−2i−α−1)L

(α)
i (x)+(i+α)L

(α)
i−1(x) = 0, i = 1, 2, ..., (4)

where, L
(α)
0 (x) = 1 and L

(α)
1 (x) = α + 1− x.

The analytic form of these polynomials of degree n is given by

L(α)
n (x) =

n∑
k=0

(−1)k

k!

(
n+ α
n− k

)
xk =

(
n+ α
n

)
n∑
k=0

(−n)k
(α + 1)k

xk

k!
, (5)
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L(α)
n (0) =

(
n+ α
n

)
. These polynomials are orthogonal on the interval [0,∞)

with respect to the weight function w(x) = 1
Γ(1+α)

xαe−x.

Any function u(x) belongs to the space L2
w[0,∞) of all square integrable func-

tions on [0,∞) with weight function w(x), can be expanded in the following
Laguerre series

u(x) =
∞∑
i=0

ciL
(α)
i (x), (6)

where the coefficients ci are given by

ci =
Γ(i+ 1)

Γ(i+ α + 1)

∫ ∞
0

xαe−xL
(α)
i (x)u(x)dx, i = 0, 1, ... . (7)

Consider only the first (m+ 1) terms of generalized Laguerre polynomials, so
we can write

um(x) ∼=
m∑
i=0

ciL
(α)
i (x). (8)

For more details on Laguerre polynomials, see ([9], [13]-[19]).

3 The Approximate Fractional Derivatives of

L(α)
n (x) and its Convergence Analysis

The main goal of this section is to introduce the following theorems to derive an
approximate formula of the fractional derivatives of the generalized Laguerre
polynomials and study the truncating error and its convergence analysis.

The main approximate formula of the fractional derivative of u(x) is given
in the following theorem.

Theorem 3.1 [7] Let u(x) be approximated by the generalized Laguerre
polynomials as (8) and also suppose ν > 0 then, its Caputo fractional derivative
can be written in the following form

Dν(um(x)) ∼=
m∑

i=dνe

i∑
k=dνe

ciw
(ν)
i, k x

k−ν , w
(ν)
i, k =

(−1)k

Γ(k + 1− ν)

(
i+ α
i− k

)
. (9)

Theorem 3.2 [7] The Caputo fractional derivative of order ν for the gen-
eralized Laguerre polynomials can be expressed in terms of the generalized La-
guerre polynomials themselves in the following form

DνL
(α)
i (x) =

i∑
k=dνe

k−dνe∑
j=0

Ωi j k L
(α)
j (x), i = dνe, dνe+ 1, ...,m , (10)
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where Ωi j k =
j∑
r=0

(−1)r+k (α + i)!(j)! (k + α− ν + r)!

(k − ν)!(i− k)! (α + k)! r!(j − r)! (α + r)!
.

Remark 1:
We can deduce that the error in approximating Dνu(x) by Dνum(x) is bounded
by [7]

|ET (m)| ≤
∞∑

i=m+1

ciΠν(i, j)
(α + 1)j

j!
ex/2, α ≥ 0, j = 0, 1, 2, ... , (11)

|ET (m)| ≤
∞∑

i=m+1

ciΠν(i, j)
(
2− (α + 1)j

j!

)
ex/2, −1 < α ≤ 0, x ≥ 0, (12)

where, Πν(i, j) =
i∑

k=dνe

k−dνe∑
j=0

Ωi j k and |ET (m)| = |Dνu(x)−Dνum(x)|.

4 Procedure Solution using Laguerre

Collocation Method and Numerical Results

In this section, we demonstrate the capability of the introduced approach with
using the presented approximate formula of fractional derivative (9) to solve
numerically the proposed problem of FOCPs defined in (1)-(2). To achieve
this aim, we solve two widely used examples from the literature.

Problem 1 (Linear time-invariant problem)

Consider the following linear time invariant problem, which described by
the following fractional optimal control problem ([1], [2])

minimum J =
1

2

∫ 1

0
[x2(t) + u2(t)]dt, (13)

subject to the system dynamics

Dνx(t) = −x(t) + u(t), 0 < ν ≤ 1, x(0) = 1. (14)

Our aim is to find the control u(t) which minimizes the quadratic performance
index J .
The procedure of the presented algorithm is given by the following steps:

1. Substitute by Eq.(14) into Eq.(13) gives

J =
1

2

∫ 1

0
[x2(t) + (Dνx(t) + x(t))2]dt. (15)
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2. Approximate the function x(t) using Laguerre polynomials expansion
with m = 3 as follows:

xm(t) =
3∑
i=0

ciL
(α)
i (t), (16)

and its Caputo fractional derivative Dνx(t) using the proposed approxi-
mated formula (9), then Eq.(15) transformed to the following form

J =
1

2

∫ 1

0
[

(
3∑
i=0

ciL
(α)
i (t)

)2

+

(
3∑
i=1

i∑
k=1

ciw
(ν)
i,k t

k−ν +
3∑
i=0

ciL
(α)
i (t)

)2

]dt.

(17)

3. The integral term in Eq.(17) can be found using composite trapezoidal
integration technique as

∫ 1

0

( 3∑
i=0

ciL
(α)
i (t)

)2

+

(
3∑
i=1

i∑
k=1

ciw
(ν)
i,k t

k−ν +
3∑
i=0

ciL
(α)
i (t)

)2
 dt

∼=
h

2
(Ω(t0) + Ω(tN) + 2

N−1∑
k=1

Ω(tk)), (18)

where

Ω(t) =

(
3∑
i=0

ciL
(α)
i (t)

)2

+

(
3∑
i=1

i∑
k=1

ciw
(ν)
i,k t

k−ν +
3∑
i=0

ciL
(α)
i (t)

)2

,

h = 1
N

, for an arbitrary integer N, ti = ih, i = 0, 1, ..., N.
So, we can write Eq.(18) in the following approximated form

J(c0, c1, c2, c3) =
h

4
[Ω(t0) + Ω(tN) + 2

N−1∑
k=1

Ω(tk)]. (19)

4. The extremal values of functionals of the general form (19), according to
Rayleigh-Ritz method gives

∂J

∂c0

= 0,
∂J

∂c1

= 0,
∂J

∂c2

= 0,
∂J

∂c3

= 0,

so, after using the boundary conditions, we obtain a system of nonlinear
algebraic equations.

5. Solve the resulting non-linear system of algebraic equations using New-
ton iteration method to obtain c0, c1, c2, c3, then the function x(t) which
extremes FOCPs (13) has the form (16). Therefore, the control u(t) will
obtain as follows

u(t) = (Dνx(t) + x(t))2. (20)
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Figure 1. The behavior of x(t) for problem 1 at m = 3 with different values of ν.

The behavior of the numerical solutions of this problem with different values of
m and ν are given in figures 1-3. Where in figures 1-2, the numerical solutions
x(t) and u(t), respectively at m = 3 for different values of ν and the exact
solution at ν = 1 are plotted. In figure 3, the numerical solutions x(t) at
ν = 0.8 for different values of m(m = 3, 4, 5) are plotted.

The solution obtained using the presented method is in excellent agreement
with the already exact solution and show that this approach can be solved the
problem effectively. It is evident that the overall errors can be made smaller
by adding new terms from the series (16). Comparisons are made between
approximate solutions and exact solutions to illustrate the validity and the
great potential of the proposed technique and the advantage this method from
the other methods [10].

Figure 2. The behavior of u(t) for problem 1 at m = 3 with different values of ν.
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Figure 3. The behavior of x(t) for problem 1 at ν = 0.8 with m = 3, 4 andm = 5.

Problem 2 (Linear time-variant problem)

In this example, we consider the linear time variant FOCP [2]

minimum J =
1

2

∫ 1

0
[x2(t) + u2(t)]dt, (21)

subject to the system dynamics

Dνx(t) = t x(t) + u(t), x(0) = 1. (22)

Our aim is to find the control u(t) which minimizes the quadratic performance
index J . We will implement the proposed algorithm as described in the previ-
ous problem with m = 3.

The behavior of the numerical solutions of this problem with different values
of m and ν are given in figures 4 and 5. Where in figure 4, the numerical
solutions x(t) at m = 3 for different values of ν and the exact solution at
ν = 1 are plotted. In figure 5, the numerical solutions x(t) at ν = 0.8 for
different values of m(m = 3, 4, 5) are plotted.
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Figure 4. The behavior of x(t) for problem 2 at m = 3 with different values of ν.

Figure 5. The behavior of x(t) for problem 2 at ν = 0.8 with m = 3, 4 andm = 5.

5 Conclusion and Remarks

In this article, we introduced an accurate numerical technique for solving
a certain class of fractional optimal control problems. We have introduced
an approximate formula for the Caputo fractional derivative of the general-
ized Laguerre polynomials in terms of generalized Laguerre polynomials them-
selves. In the proposed method, the properties of the Laguerre polynomials
and Rayleigh-Ritz method are used to reduce the FOCP to solve a system of
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algebraic equations. The error upper bound of the proposed approximate for-
mula is stated and discussed. The results show that the algorithm converges as
the number of m terms is increased. The solution is expressed as a truncated
Laguerre series and so it can be easily evaluated for arbitrary values of time
using any computer program without any computational effort. From illustra-
tive examples, we can conclude that this approach can obtain very accurate
and satisfactory results. For all examples, the solution for the integer order
case of the problem is also obtained for the purpose of comparison. Finally,
from our numerical results using the proposed method, we can see that, the
solutions are in excellent agreement with the exact solution and better than
the numerical results obtained in Agrawal and Lotfi approaches. Also, from
the proposed examples, we can conclude that the presented method is difficult
to extend on fractional optimal control problems with non-quadratic objective,
and also problems with non-linear right hand side of the differential equations.
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quality of this paper.
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