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Abstract Mobile robot vision-based navigation has been the source of countless
research contributions, from the domains of both vision and control. Vision is
becoming more and more common in applications such as localization, automatic
map construction, autonomous navigation, path following, inspection, monitoring or
risky situation detection. This survey presents those pieces of work, from the nineties
until nowadays, which constitute a wide progress in visual navigation techniques for
land, aerial and autonomous underwater vehicles. The paper deals with two major
approaches: map-based navigation and mapless navigation. Map-based navigation
has been in turn subdivided in metric map-based navigation and topological map-
based navigation. Our outline to mapless navigation includes reactive techniques
based on qualitative characteristics extraction, appearance-based localization, optical
flow, features tracking, plane ground detection/tracking, etc... The recent concept of
visual sonar has also been revised.
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1 Introduction

Navigation can be roughly described as the process of determining a suitable and safe
path between a starting and a goal point for a robot travelling between them [18, 72].
Different sensors have been used to this purpose, which has led to a varied spectrum
of solutions. In particular, in the last three decades, visual navigation for mobile
robots has become a source of countless research contributions since navigation
strategies based on vision can increase the scope of application of autonomous
mobile vehicles. Among the different proposals, this paper surveys the most recent
ones. In many cases, the performance of a good navigation algorithm is deeply joined
to an accurate robot localization in the environment. Therefore, some vision-based
localization solutions applied and developed for autonomous vehicles have also been
included in this survey.

Traditionally, vision-based navigation solutions have mostly been devised for
autonomous ground vehicles (AGV), but, recently, visual navigation is gaining
more and more popularity among researchers developing unmanned aerial vehicles
(UAV). UAVs offer great perspectives in many applications, such as surveillance,
patrolling, search and rescue, outdoor and indoor building inspection, real-time
monitoring, high risk aerial missions, mapping, fire detection or cinema recording.
Since UAVs move in 3D space they do not have the limitations of ground ro-
bots, which usually cannot overcome rocks, climb stairs or get access to ceilings.
Nevertheless, UAVs need to exhibit a notable degree of awareness and exactness
to accomplish their navigation and obstacle avoidance tasks successfully. Besides,
the typically reduced size of UAVs limits their payload capabilities so that they
cannot carry sensors available for ground vehicles, such as lasers or certain brands
of sonars. In contrast, cameras used in robot vision-based navigation strategies are
light and provide a perception of the environment in a single shot. However, the
image resolution can be restricted due to the fact that UAVs fly at high altitude.

For underwater environments, there is still a preference for more traditional
navigation solutions (i.e. acoustic-based) because of the special characteristics of
light propagation undersea. Dalgleish et al. [22] considered that, according to the
state of the art in underwater autonomous navigation solutions, sonar based systems
are limited in resolution and size. These limits are imposed by the acoustic frequency
used and the need of accommodation space. Vision systems reduce space and cost
and increase the resolution, although their range dramatically decreases in muddy or
turbid waters. At present, a number of solutions for autonomous underwater vehicles
(AUV) can already be found for many undersea critical applications: undersea
infrastructures or installations inspection and maintenance, for any of power, gas or
telecommunications transport cases, sea life monitoring, military missions, sea bed
reconstruction in deep waters, inspection of sunken ancient ships, etc. Vision has
become essential for all these applications, either as a main navigation sensor or as
a complement of sonar. Consequently, there exists a good motivation to improve
AUVs navigation techniques by expanding their autonomy, capabilities and their
usefulness.

Regardless of the type of vehicle, systems that use vision for navigation can be
roughly divided in those that need previous knowledge of the whole environment and
those that perceive the environment as they navigate through it. Systems that need
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a map can be in turn subdivided in metric map-using systems, metric map-building
systems and topological map-based systems [28]. Metric map-using navigation systems
need to be provided with a complete map of the environment before the navigation
task starts. Metric map-building navigation systems build the whole map by them-
selves and use it in the subsequent navigation stage. Other systems that fall within
this category are able to self-localize in the environment simultaneously during the
map construction. Other sorts of map-building navigation systems can be found, as
for example visual sonar-based systems or local map-based systems. These systems
collect data of the environment as they navigate, and build a local map that is used
as a support for on-line safe navigation. This local map includes specific obstacle and
free space data of a reduced portion of the environment, which is usually a function
of the camera field of view. Finally, topological map-based systems build and/or use
topological maps which consist of nodes linked by lines where nodes represent the
most characteristic places of the environment, and links represent distances or time
between two nodes.

Mapless navigation systems mostly include reactive techniques that use visual clues
derived from the segmentation of an image, optical flow, or the tracking of features
among frames. No global representation of the environment exists; the environment
is perceived as the system navigates, recognizes objects or tracks landmarks.

As for sensors, the different visual navigation strategies proposed in the literature
make use of several configurations to get the required environmental information
to navigate. Most systems are based on monocular and binocular (stereo) systems,
although systems based on trinocular configurations also exist. Another structure
that is gaining popularity because of its advantages is that of omnidirectional
cameras. Omnidirectional cameras have a 360◦ view of the environment, and are
usually obtained combining a conventional camera with a convex conic, spherical,
parabolic or hyperbolic mirror. With this kind of cameras it is easier to find and track
features, since they stay longer in the field of view.

The progress made in vision-based navigation and localization for mobile robots
up to the late 1990s was widely surveyed by DeSouza and Kak in [28]. After the late
1990s, some authors have hardly surveyed this area: examples are Kak and DeSouza
[66], whose work is restricted to navigation in corridors, and Abascal and Lazcano [1],
whose work is restricted to behaviour-based indoor navigation. A remarkable outline
of navigation and mosaic-based positioning solutions for autonomous underwater
vehicles (AUV) can be found in [22, 23] and a wide list of underwater vision tracking
techniques was surveyed in [141]. Our survey mostly covers the work performed
from the late nineties until the present day, and includes all the topics related to
visual navigation. The scope of robotics as a discipline and the huge number of
existing contributions make almost impossible to make a complete account, so that
only the ones that had a higher impact (to the authors’ view) have been included
in the survey. Furthermore, instead of grouping navigation strategies in indoor
and outdoor categories, as DeSouza and Kak [28] did, this survey distinguishes
between map-based and mapless navigation, since some navigation systems proposed
for indoor could also be properly adapted to work in outdoor environments and
vice versa.

The rest of the paper is organized as follows: first, Section 2 revises the most
prominent approaches until the late 1990s, mostly coincident with the ones surveyed
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in [28]; second, Section 3 reviews new approaches presented after the submission of
[28]; finally, Section 4 concludes the paper.

2 From the Primary Techniques to the Advances in the Late 1990s

De Souza and Kak in [28] structure robot visual navigation in two main subjects:
indoor navigation and outdoor navigation. Outdoor navigation is in turn subdivided
in structured and unstructured environments, while indoor navigation is subdivided
in map-building-based navigation and mapless navigation. This section of the paper
summarizes visual navigation techniques until the late 1990s. Therefore, it is a
selection of the most outstanding contributions surveyed in the work by De Souza
and Kak, although some references not considered there have also been included.
Table 1 shows the references surveyed in this section. (In order to make compatible
this section of the survey with the one by De Souza and Kak, the rest of this section
is structured in the same way as De Souza and Kak’s survey, maintaining thus the
same category labels.)

2.1 Indoor Navigation

From the first robot developments in 1979 by Giralt [44], many control systems have
incorporated, in a lesser or greater extent, some information about the environment
where the robot had to navigate. The navigation and localization systems proposed
fall mainly within one of the following three groups:

– Map-based navigation systems
– Map-building-based navigation systems
– Mapless navigation systems

2.1.1 Map-Based Navigation

These techniques are based on providing the robot with models of the environment,
with different degrees of detail depending on the study.

The first approaches made use of an occupancy map with a 2D projection of each
prominent feature situated in the environment. Later, the virtual force fields [10, 68]
associated every cell containing an obstacle with a repulsive force towards the robot.
Other authors incorporated uncertainties in occupancy maps to account for sensor
errors [12, 103].

The combination of different sensors has also been employed in other approaches
to increase the robustness and reliability of the map building procedure. In [16],
range finders and cameras work in collaboration to create occupancy grids.1 Once
the robot has acquired the map, it can navigate in the environment, matching the
landmarks found in the on-line image with the expected landmarks of a database.

1An occupancy grid represents an observed region and each cell of the grid is labeled with the
probability of being occupied by an object.
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Table 1 Summary of the most outstanding visual navigation studies from 1987 to late 1990s

Authors Indoor–Outdoor Category Method

[10, 68] Indoor Map based Force fields
[12, 103] Indoor Map based Occupancy grids
[16] Indoor Map based Occupancy grids
[34, 129, 130] Indoor Map based Absolute localization
[5] Indoor Map based Absolute localization
[91] Indoor Map based Incremental localization
[144] Indoor Map based Incremental localization
[19] Indoor Map based Incremental localization
[69, 94, 95, 104] Indoor Map based Topological map

Incremental localization
[65] Indoor Map based Landmark tracking
[57] Indoor Map based Landmark tracking
[96] Indoor Map building Stereo 3D reconstruction
[134] Indoor Map building Occupancy grid
[11] Indoor Map building Occupancy grid
[137] Indoor Map building Grid and topological

representation
[114] Indoor Mapless Optical flow
[9] Indoor Mapless Optical flow
[29] Indoor Mapless Optical flow
[88] Indoor Mapless Appearance-based

navigation
[64] Indoor Mapless Appearance-based

navigation
[101] Indoor Mapless Appearance-based

navigation
[143] Outdoor Structured environments Road following
[47–50] Outdoor Structured environments Road following
[142] Outdoor Structured environments Road following
[135, 136] Outdoor Structured Environments Road following
[63, 106] Outdoor Structured Environments Road following
[146] Outdoor Unstructured environments Random exploration
[71] Outdoor Unstructured environments Given mission exploration
[90] Outdoor Unstructured environments Random exploration

This process is known as self-localization and is fundamental for a correct navigation.
The main steps are:

– Acquire image information,
– Detect landmarks in current views (edges, corners, objects),
– Match observed landmarks with those contained in the stored map according to

certain criteria, and
– Update the robot position, as a function of the matched landmarks location in

the map.

To solve the localization problem, absolute localization methods contrast with
relative localization strategies. In absolute localization methods, the initial position
of the robot is unknown. This self-localization problem has been solved either
using deterministic triangulation [130], Markov [129] or Montecarlo [34] localization.
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Atiya and Hager [5] presented in 1993 a remarkable method based on the recogni-
tion, in the on-line images, of those features (or connecting lines between features)
that stay invariant with respect to the moving robot. This is sufficient to set up cor-
respondences between the environment and the images. These authors also propose
to define the sensor errors as a tolerance measurement.

In relative localization, it is assumed that, at the beginning of the navigation,
the position of the robot is approximately known. Matthies and Shafer [91] used
stereo vision to reduce errors. Tsubouchi and Yuta [144] used a CAD model for
environment representation. Later on, Christensen et al. [19] also used CAD models
for space representation combined with stereo vision to reduce errors. FINALE [69]
self-localizes using a geometrical representation of the environment and a Gaussian
model for location uncertainty. Position uncertainty equations prove that location at
the end of motion depends on previous positions. A model-based Kalman filter is
used to compute landmark position and to project robots location uncertainty into
the image.

NEURO-NAV [94, 95] is a representative example of map-based navigation
strategies based on topological space representations. These navigation techniques use
a nodes-and-lines graph that layouts the most representative points of the hallway.
Both, nodes and lines, are attributed with information about what they represent
(central corridor, door, corner, junctions for nodes, and distances between linked
nodes for lines). NEURO-NAV has two main modules built up with neural networks:
a hallway follower module and a landmark detector module. These two modules
compute edges, detect walls and output the proper steering commands to drive the
robot at a distance of a wall or centered in a corridor. Most of those neural network
outputs are vague and have a degree of confidence. FUZZY-NAV [104] sophisticates
the NEURO-NAV system using fuzzy functions that work with blurred variables.

Finally, in order to self-locate, landmark tracking algorithms determine the po-
sition of the robot, detect landmarks on the camera image and track them in the
consecutive scenes. Landmarks can be artificial or natural. In both cases the robot
needs to know the identity of the landmarks to be able to track them. This method
has been used in map-based navigation systems and in some reactive navigation
architectures. Kabuka and Arenas [65] were the first using artificial landmark
tracking. An example of natural landmark tracking-based navigation system can be
found in [57]. This approach selects landmarks, uses correlation techniques to track
them, computes their 3D position using stereo vision information and selects new
landmarks to keep on moving towards the goal point.

2.1.2 Map-Building-Based Navigation

This section includes all the systems that can explore the environment and build its
map by themselves. The navigation process starts once the robot has explored the
environment and stored its representation. The first to consider this possibility was
Moravec with his Stanford Cart [96]. This system was improved by Thorpe for the
robot FIDO [134], and was used to extract features from images. These features were
then correlated to generate their 3D coordinates. The features were represented in
an occupancy grid of two square meter cells. Although this technique provided a
representation of obstacles in the environment, it was not good enough to model
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the world. Occupancy grid-based strategies can be computationally inefficient for
path planning and localization, specially in complex and great indoor environments.
Furthermore, the validity of these grids for navigation depends on the accuracy
of the motion detection robot sensors during the grid construction process. A
topological representation of the environment is an alternative to an occupancy grid.
These systems are based on generating a graph of nodes representing the space,
and storing metrical information for every node recognized during the navigation
process. The different approaches differ from what constitutes a node, how a node
may be distinguished from others, the possibility of using sensor uncertainties or how
these uncentainties are computed. One of the major difficulties is the recognition of
previously visited nodes.

Thrun [137] went one step further with a remarkable contribution, combining the
best of occupancy grids and topological maps for navigation.

2.1.3 Mapless Navigation

This category includes all navigation approaches that do not need knowledge of the
environment to run. The movements of the robot depend on the elements observed
in the environment (walls, features, doors, desks, etc...). Two main techniques should
to be cited: optical-flow- and appearance-based navigation.

Optical-flow-based solutions estimate the motion of objects or features within a
sequence of images. Researchers compute optical flow mostly using (or improving)
pioneering techniques from Horn and Schunk [59] and Lucas and Kanade [79].

An interesting approach developed by Santos-Victor et al. [114] emulates the
bees’ flying behavior. The system moves in a corridor using two cameras to perceive
the environment, one camera on each side of the robot, pointing to the walls. Bees
keep flying centered in a corridor by measuring the difference of velocities respect
to both walls. If both velocities are equal, bees fly straight ahead in the center of the
corridor. If velocities are different, they move to the wall whose image changes with
minor velocity. The robot calculates the differences in optical flow computed from
the images of both sides. The robot always moves in the direction of the optical flow
minor amplitude. The main problem of this technique is that the walls need to be
textured enough to present an optimum optical flow computation.

Appearance-based matching techniques are based on the storage of images in a
previous recording phase. These images are then used as templates. The robot self-
locates and navigates in the environment matching the current viewed frame with the
stored templates. Examples of these approaches are:

– Matsumoto et al. [88] VSRR (view sequenced route representation), where a
sequence of images is stored to be used as a memory. The robot repeats the same
trajectory comparing the on-line scene with all stored images using correlation.
This approach basically focuses on how to memorize the views.

– Jones et al. [64], where a sequence of images and associated actions are stored in
the robot memory. During navigation, the robot recovers the template that best
matches the on-line frame. If the match is above a threshold, the robot runs the
action associated to that template.
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– Ohno et al.’s [101] solution is similar but faster than Jones’: it only uses vertical
lines from templates and on-line images to do the matching. It saves memory and
computation time.

2.2 Outdoor Navigation

2.2.1 Outdoor Navigation in Structured Environments

Outdoor navigation in structured environments refers to road following. Road
following is the ability to detect the lines of the road and navigate consistently.

Pioneer on these techniques was Tsugawa et al. [143], where a pair of stereo
cameras were used to detect obstacles in an automatic car driving approach. One
of the most outstanding efforts in road following is the NAVLAB project, by Thorpe
[135, 136]. The NAVLAB road following algorithm has three phases: in the first
phase, a combination of color and texture pixel classification is performed defining
a Gaussian distribution for each road and non-road pixels; in the second phase, a
Hough transform and a subsequent votin process is applied to road pixels, to obtain
the road vanishing point and orientation parameters; finally, pixels are classified
again according to the determined road edges, and this classification is used for the
next image in order to have a system adaptable to changing road conditions.

VITS [142] is a road following framework for outdoor environments equipped
with an obstacle detection and avoidance sub-system. This system was firstly de-
veloped for the autonomous land vehicle ALVIN, which used a CCD color camera
combined with a laser range scanner to gather images of the environment. The vision
module of VITS generated a description of the road, either from the image data,
from range information, or from both. This road description is transformed by the
reasoning module into world coordinates to calculate the trajectory of the robot. The
most robust element of the VITS system was the module to segment road pixels and
non-road pixels.

Later, Pomerleau et al. developed ALVINN, a new neural network-based navi-
gation system, used also in the NAVLAB navigation architecture. There are several
versions, from the initial one [106] dated from 1991 to the last one [63] dated from
1995 and known as ALVINN-VC. ALVINN is trained watching a human drive
during several minutes with the aim at learning his/her reactions when driving on
roads with varying properties. The human movements and turns when driving were
incorporated to the robot behavior. The architecture consisted of a pre-trained
network made of three inter-connected layers. Each layer had a pre-defined function.
Mainly: the first one was a 30 × 32 node layer that contained recorded images, the
third one was a 30 node layer that contained all steering angles represented by nodes,
and finally the second one was a 5 node layer that was used as an interface to combine
the first and second layer nodes. Instead of assigning specific node outputs for robot
steering, values were determined from Gaussian distributions centered in each node
associated to the road orientation. This guaranteed finer steering angles and slight
changes in the output activation levels if the orientation of the road changed slightly.

A prominent and successful project for road-following was the EUREKA project
Prometheus [47–50]. The goal of this project was to provide trucks with an automatic
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driving system to replace drivers in monotonous long driving situations. The system
also included a module to warn the driver in potential or imminent dangerous
situations.

2.2.2 Outdoor Navigation in Unstructured Environments

In unstructured environments there are no regular properties that can be tracked for
navigation. In these cases, two kind of situations can be found:

– The robot randomly explores the vicinity, like planetary vehicles. An example
can be found in Wilcox’s et al. vehicle [146].

– The robot executes a mission with a goal position. In this case, a map of the
areas in which the robot moves has to be created and a localization algorithm
is also needed. A remarkable example of a mapping and positioning system is
RATLER (Robotic All-Terrain Lunar Explorer Rover), proposed by Krotkov
and Herbert [71] in 1995.

Another highly notable development is the planetary vehicle Mars Pathfinder [90],
launched in December 1996 and landed in July 1997. The Mars Pathfinder consists of
two components, a lander and a rover. The lander is a static component in which
a stereo camera is fitted to shoot images of the Mars surface, while the rover is
the mobile component which explores the environment. The rover mission path is
determined by human operators in the Earth control station by selecting the goal
point in 3D representations of previously captured images of the terrain. The position
is determined using dead reckoning techniques and, to avoid cumulative errors, the
rover navigation is limited to 10 m/day. Computation of differences between highest
and lowest points of the inspected terrain permits cliff detection.

3 Visual Navigation: from the Late 1990s up to Present

In the last decade, the techniques mentioned so far have matured into more refined
versions, or have evolved into other more accurate and efficient systems. This variety
of old and new techniques have extended the amount and quality of research in this
area and their applications. This section surveys most of these studies distinguishing
between map-based and mapless solutions.

3.1 Map-Based Systems

This section considers techniques that build and/or use metric or topological maps.
Navigation techniques which need a certain knowledge of the environment included
in this paper are: metric map-using navigation systems, metric map-building naviga-
tion systems and topological map-based navigation systems. Systems that are able to
build maps by themselves can perform this function from the complete environment
or just from a portion of it. Therefore, this section also includes local map-based
navigation systems and visual sonar techniques, given their potential relationship with
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producing metric maps, although some authors use them just to reactively avoid
obstacles.

3.1.1 Metric Map-Using and -Building Navigation Systems

This group includes systems that need a complete map of the environment before
the navigation starts. There are systems that are unable to map the environment and
need to be equipped with it (map-using systems). Other systems explore the envi-
ronment and automatically build a map of it (map-building systems). The navigation
phase starts only if the map of the environment is available for the robot or after the
map has been built. The map information can be directly used for navigation, or it
can be post-processed to improve the map accuracy, and thus, achieve a more precise
localization. This is the navigation technique that requires more computational
resources, time and storage capability. Since outdoor environments can be large in
size and extremely irregular, visual navigation techniques based on maps are in most
occasions applied to indoor environments.

Map building and self-localization in the navigation environment are two func-
tionalities that non-reactive systems tend to incorporate. In map-building standard
approaches, it is assumed that the localization in the environment can be computed
by some other techniques, while in pure localization approaches, the map of the
environment is presumably available. Robots using this navigation approach need
to track their own position and orientation in the environment in a continuous way.

This section focuses on metric map-based systems. Metric maps include infor-
mation such as distances or map cell sizes with respect to a predefined coordinate
system, and, in general, are also more sensible to sensor errors. Accurate metric
maps are essential for good localization, and precise localization becomes necessary
for building an accurate map.

If the exploration and mapping of an unknown environment is done automatically
and on-line, the robot must accomplish three tasks: safe exploration/navigation, map-
ping and localization, preferably in a simultaneous way. Simultaneous localization
and mapping (SLAM) and concurrent mapping and localization (CML) techniques
search for strategies to explore, map and self-localize simultaneously in unknown
environments. This paper surveys those SLAM and CML systems which use only
vision sensors to perform their task. Davison and Kita discuss in [27] about sequential
localization and map building, review the state of the art and expose the future
directions that this research domain should take. Furthermore, they present a tutorial
of first-order relative position uncertainty propagation and a software to perform
sequential mapping and localization.

Sim and Dudek propose in [121] a framework to learn a set of landmarks and
track them across the sequence of images maximizing the correlation of the local
image intensity. Landmark features are characterized with position parameters
and subsequently used by the robot for self-localization. Sim and Dudek [122]
extended their previous work with a new strategy for environment exploration and
map building that maximizes coverage and accuracy and minimizes the odometry
uncertainties. This proposal maps image features instead of performing a geometrical
representation of the environment, operating and managing a framework presented
in [121] and adapting an extended Kalman filter localization framework described in
[125] and [74]. In the following stage, exploration policies are chosen among a great
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number of possibilities: (1) seed spreader, by which the robot follows a predefined
navigation pattern throughout the environment; (2) concentric, where the robot
follows concentric circular trajectories, with their center in the starting point, and the
direction of movement changes at every circle; (3) figure eight, by which the robot
follows eight-shaped concentric trajectories; (4) random, where the robot moves
randomly; (5) triangle, by which the robot moves in concentric closed triangular
trajectories; (6) star, where the robot moves along a set of rays that emanate from
the starting point. Experimental results in [122] show that exploration efficiency,
measured in observed images definitely inserted in the map divided by the total
number of processed images, was maximum for the concentric policy, and minimum
for the star policy. Besides, the mean error in odometry was maximum for the random
policy and minimum for the concentric policy.

Sim et al. [123] and Sim and Little [124] outstanding work solves the SLAM
problem with a stereo pair of cameras and a Blackwellised particle filter. The system
implements a hybrid approach consisting of 3D landmark extraction for localization,
and occupancy grid construction for safe navigation. AQUA is a visually guided
amphibious robot developed by Dudek et al. [30, 43]. This system runs on land and
swims into the water. Using a stereo trinocular vision system, it is capable of creating
3D maps of the environment, locate itself and navigate.

In [25], Davison reports a new Bayesian framework that processes image informa-
tion of a single standard camera to perform localization. Weak motion modeling is
used to map strong distinguishable features, which are used to estimate the camera
motion.

Wide angle cameras present a much wider field of view than standard lens
cameras. Therefore, features are visible longer and are present in more frames. Due
to the distortion introduced by a wide angle camera, a previous calibration process
has to be performed in order to get corrected images from original frames. In [26],
Davison et al. extend their previous work by substituting the 50◦ standard camera
with a 90◦ calibrated wide angle camera, leading to a significative improvement
in movement range, accuracy and agility in motion tracking. Camera calibration
improves the calculation of relative positions, and consequently improves the accu-
racy of the localization process. On the other hand, the Shi and Tomasi algorithm
[119] is adopted in [26] to extract the position of the image features, which are
used as landmarks to guide the navigation process. Experimental results prove that
with a wide angle camera some aspects are improved: camera motion can be better
identified, with particular improvements on rotational and translational movements
estimation, the range of movements increase, and large motions or motions with
great acceleration are better dealt with, since they appear much less abrupt. There-
fore, the cases with trackable acceleration increase. Schleicher et al. [115] use a top-
down Bayesian method-based algorithm to perform a vision-based mapping process
consisting in the identification and localization of natural landmarks from images
provided by a wide-angle stereo camera. Simultaneously, a self-localization process is
performed by tracking known features (landmarks) of the environment. The position
of these features is determined through the combination of the epipolar line concept,
characterisic from stereo theory, and the calculation of the fundamental matrix.
The authors prove that using the redundancy of the information extracted from the
images of both cameras increases the robustness and accuracy, and decreases the
processing time of the procedure. The system with a wide-angle stereo camera is
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compared with a SLAM system that uses an single wide-angle camera to prove the
improvements of the stereo-based system.

As for map-building systems that do not explore the possibility of simultaneous
localization, we report systems that build 3D metric environment representations
or, in some cases, use already existing maps in order to perform a safe navigation.
Some researchers have focused their work on approaches to recover 3D environment
structures and/or estimate robot motion models from vision information [92, 140].

Manessis et al. address the 3D environment reconstruction problem using image
sequences captured from n different camera views [82]. The two main contributions
of this proposal are a new geometric theory for surface recovery from 3D sparse data
and an algorithm based on a recursive structure from motion (SFM) method, which
is used to estimate the location of 3D features and then to reconstruct the scene.

The classic process of building a 3D map using stereo images was refined by
Wooden [148] under the DARPA-sponsored project Learning Applied to Ground
Robots (LAGR), and particularly applied on its robot LAGR. The map building
process consisted of four main steps:

– The captured stereo images were transformed into a three-dimensional repre-
sentation by matching small patches in the two images,

– The real possible position of image points were deduced from the geometrical
characteristics of the camera,

– A derivative was applied to the 3D map points to detect abrupt changes in slope,
as for example, trees, rocks, etc..., and,

– In order to decrease the resolution of the map and smooth some variations, the
result of the derivative was transformed into a cost map, where every point value
was the average of the values over a defined 1.2 × 1.2 m region.

Once the map had been created, a process of path planning is used to navigate
through the environment.

When a robot explores an environment and constructs an occupancy grid, it makes
approach of where the free space is. In this case, the object shape is not important,
only the certainty that a fixed location is occupied by an object. In some cases, it is
important to recognize the objects because they have to be picked up or manipulated,
and, in other cases, it is paramount to recognize if the objects are on a table or lying
on the floor. Following this trend, Tomono [139] proposed a high density indoor
map-based visual navigation system on the basis of on-line recognition and shape
reconstruction of 3D objects, using stored object models. A laser range finder was
also used to complement the information provided by the camera. The proposed
method contemplated three main issues:

– Advanced objects model creation, before the navigation starts,
– On-line object recognition and localization, during the navigation stage and,
– Placement of recognized objects in the 3D map of the environment.

Other map-based navigation techniques are those that impose a human-guided
pre-training phase. Kidono et al. [67] developed an approximation to this type of
systems. In their contribution, a human guides the robot through an environment
and during this guided route, the robot records images with a stereo camera and
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constructs the 3D map on-line, incrementally, frame by frame. After the map is built,
the robot can repeat the same route from the starting point to the goal point, tracking
features and computing the closest safe path. In this solution, odometry is used to
support the stereo vision sensor.

An outstanding evolution of this technique using a calibrated wide angle camera
came up from Royer et al. [111]. The robot was guided by a human in a pre-training
navigation stage, recording images from the trajectory. A complete 3D map of the
environment was constructed off-line, using the information extracted from the pre-
recorded images. A collection of useful landmarks and their 3D position in a global
coordinate system were used for localization purposes, during the navigation stage.
In the beginning of navigation, the robot had to self-localize in the starting point
where it had been left, by comparing the current image to all stored key frames to find
the best match. The selected subsequent images had to present a certain movement
perception between them, to provide the system with trackable feature information.
Losing perceptual movement caused problems to the algorithm. In these terms, the
robot was able to follow the same complete pre-recorded trajectory, saving a lot of
time in the positioning process. This approximation was basically directed to city
navigation, rich in visual features, and where kinematic GPS can present a lot of
places with hidden visibility.

Several undersea map construction techniques combined with a proper and
accurate algorithm of position estimation can also be considered to belong to the
CML category. In major cases, undersea bottom mosaics can be used by AUVs for
navigation purposes. Haywood designed a system to mosaic underwater floors using
images attached with accurate position coordinates [58]. Marks et al. [83] developed a
technique to implement real-time mosaics using correlation between on-line images
and stored images. In a subsequent work, and following the same trend, Fleischer
et al. [36] improved the previous work [83] focusing on dead-reckoning error
reduction. Previous systems often assumed that the seafloor was plane and static, and
that the camera was facing it, making the image plane almost parallel to the seafloor
plane. Gracias et al. [46] proposed a method for mosaicing and localization that did
not make any assumption on the camera motion or its relative position to the sea
bottom. The system was based on motion computation by matching areas between
pairs of consecutive images of a video sequence. Finally, an interesting contribution
to underwater mosaicing and positioning was that by Xu and Negahdaripour in
[149]. The vehicle position was computed integrating the motion of the camera from
consecutive frames using Taylor series of motion equations, including the second
order terms, which in previous research was usually ignored.

3.1.2 Topological Map-Based Navigation Systems

A topological map is a graph-based representation of the environment. Each node
corresponds to a characteristic feature or zone of the environment, and can be
associated with an action, such as turning, crossing a door, stopping, or going straight
ahead. Usually, there are no absolute distances, nor references to any coordinate
frame to measure space. This kind of maps are suitable for long distance qualitative
navigation, and specially for path planning. In general, they do not explicitly rep-
resent free space so that obstacles must be detected and avoided on line by other
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means. Topological maps are simple and compact, take up less computer memory,
and consequently speed up computational navigation processes.

Winters and Santos-Victor [147] use an omnidirectional camera to create a
topological map from the environment during a training phase. Nodes are images of
characteristic places and links are sequences of various consecutive images between
two nodes. During the navigation, the position is determined matching the online
image with previously recorded images. The matching process is performed with an
appearance-based method which consists in projecting every online image onto an
eigenspace defined by the covariance matrix of a large image training set.

More recently, Gaspar et al. use [147] to map indoor structured environments and
emulate insect vision-based navigation capabilities [42]. The robot must be able to
advance along corridors, recognize their end, turn into the correct directions and
identify doors. The division of the map into nodes allows splitting the navigation
task along an indoor environment into sub-goals. Every sub-goal is recognizable with
landmarks and covers the movement between two nodes; for instance, two doors
joined by a corridor. Navigation between two nodes works through detection of the
corridor parallel sides and generation of the adequate control signals.

Another topological map-based navigation strategy for indoor environments
comes from Košecka et al. [70]. In a previous exploration stage, video is recorded
and, for each frame, a gradient orientation histogram is computed. After that, a set
of view prototypes are generated using learning vector quantization over the set of
histograms gathered. Each histogram corresponds to a node in the topological map.
During the navigation phase, the gradient orientation histogram of each frame is
compared with the view prototypes to determine the location it most likely comes
from using the nearest neighbour classification. In case the quotient of the distances
with the nearest and the second closest histograms/views is below a certain threshold,
the classification is considered correct and a location is obtained; otherwise, the
classification is refined by comparing sub-images of the new image and the images
in the database closest to the view prototypes.

In recent years, Remazeilles et al. propose a system based on environment
topological representation and a qualitative positioning strategy [108]. Nodes are
represented by views captured in a training phase and edges represent the possibility
of moving from one scene towards another. The robot navigates tracking landmarks
over consecutive frames and keeping them inside the field of view. The localization
strategy used in this approach is qualitative since it informs that the robot is in the
vicinity of a node, instead of giving exact world coordinates.

One of the map-building robot applications that has proved to be greatly useful is
that of museum guiding robots (in contrast to other solutions that need the museum
map to navigate). These robots need to be autonomous in their missions, recognize
people, guide them through different environments and also avoid static and dynamic
obstacles, such as chairs, bookcases or other people. Because of the growing interest
on this application, two relevant contributions are reviewed in the following. Thrun
et al. [138] developed MINERVA, a robot that uses two cameras combined with a
laser sensor to build a complete map of the environment for the navigation process.
Shen and Hu [118] presented ATLAS, a museum guiding robot that combines
topological map building and appearance-based matching algorithms for localization.
ATLAS also incorporates a human face detection algorithm [8] used to actively
approach to new visitors.
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3.1.3 Local Map-Building Navigation Systems and Obstacle Avoidance

The strategies seen so far base their strength in a global description of the environ-
ment. This model can be obtained automatically by the robot, or in a previous human
guided stage, but it has to be acquired before the robot begins the navigation. Since
the early nineties, some authors have developed solutions where visual navigation
processes are supported by the on-line construction of a local occupancy grid. In
vision-based navigation, the local grid represents the portion of the environment that
surrounds the robot and the grid size is determined by the camera field of view. This
local information can be used for a subsequent complete map construction or simply
updated frame by frame and used as a support for on-line safe navigation. Since robot
decisions depend, to a large extent, on what the robot perceives at every moment
in the field of view, these navigation techniques arise a debate about what can be
considered deliberative and what can be considered reactive vision-based navigation
techniques.

Badal et al. reported a system for extracting range information and performing
obstacle detection and avoidance in outdoor environments based on the computation
of disparity from the two images of a stereo pair of calibrated cameras [6]. The
system assumes that objects protrude high from a flat floor that stands out from
the background. Every point above the ground is configured as a potential object
and projected onto the ground plane, in a local occupancy grid called instantaneous
obstacle map (IOM). The commands to steer the robot are generated according to
the position of obstacles in the IOM.

Gartshore et al. [39] developed a map building framework and a feature position
detector algorithm that processes images on-line from a single camera. The system
does not use matching approaches. Instead, it computes probabilities of finding
objects at every location. The algorithm starts detecting the objects boundaries for
the current frame using the Harris edge and corner detectors [56]. Detected features
are back projected from the 2D image plane considering all the potential locations at
any depth. The positioning module of the system computes the position of the robot
using odometry data combined with image feature extraction. Color or gradient from
edges and features from past images help to increase the confidence of the object
presence in a certain location. Experimental results tested in indoor environments
set the size of the grid cells to 25 × 25 mm. The robot moved 100 mm between
consecutive images.

Goldberg et al. [45] introduced a stereo vision-based navigation algorithm for
the rover planetary explorer MER, to explore and map locally hazardous terrains.
The algorithm computes epipolar lines between the two stereo frames to check the
presence of an object, computes the Laplacian of both images and correlates the
filtered images to match pixels from the left image with their corresponding pixels
in the right image. The work also includes a description of the navigation module
GESTALT, which packages a set of routines able to compute actuation, direction, or
steering commands from the sensor information.

Gartshore and Palmer presented in [40] a novel approach for complete unknown
environment visual exploration and map construction with a limited field-of-view
vision system. Afterwards they extended this work to more complex environments
[41]. No landmarks or way-markers are used, and once the navigation has started,
there is no human interaction. The exploration agent has to act as a human might do,
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observing the current view of the environment, exploring it, and deciding in which
direction to advance to explore new areas. The main issues of the incremental map
building process are:

– Vertical edges are extracted from the current frame to define obstacle bound-
aries. In some cases, these edges do not correspond to obstacles, but to shadows
or specularities.

– To discriminate shadows or specularities from real obstacles, a confident mea-
sure is assigned to every edge point. Such a measure is a function of the number
of times the object has been seen and the number of times the same area has
been viewed.

– Features are connected with lines. These lines could either correspond to objects
or just be connecting lines traced for triangulation purposes.

– Lines are also labeled with a confidence of being an obstacle. According to [81]:
a candidate point to be labeled as an obstacle can not intersect the line that joins
the camera with a real obstacle. The confidence measures are recalculated when
points labeled as obstacles are viewed from another point of view as occluding
other real obstacles.

– Obstacles and triangulation information are stored in discrete grids.

3.1.4 Visual Sonar

In recent years, visual sonar has become an original idea to provide range data
and depth measurements for navigation and obstacle avoidance using vision in an
analogous way to ultrasound sensors. Therefore, the originality of the concept is not
in the navigation process itself, but in the way the data is obtained.

Martens et al. were pioneers in using the concept of visual sonar for navigation
and obstacle avoidance [84]. Their ARTMAP neural network combined sonar data
and visual information from a single camera to obtain a more veridical perception
of indoor environments. Real distance to obstacles was calculated from distances
measured in pixels between obstacle edges and the bottom of the image. This
distance computation is based on Horswill’s idea [60]: the image is divided in eight
columns, and the distance, measured in pixels from the bottom of the image to the
object edge in every column, is proportional to the real world distance from the robot
to the detected object.

Lenser and Veloso exposed a new visual sonar-based navigation strategy for the
ROBOCUP competition and the AIBO robots [32, 73]. AIBOs are dog-shaped
robots that have a single camera mounted on their heads. The system segments color
images to distinguish floor, other robots, goals, the ball and other undefined objects.
Once objects are defined, lines are radiated from the center of the image bottom,
every 5◦. An object is identified if there exists a continuous set of pixels in a scan
line which corresponds to the same item class. Distance from object edges to the
focus of the radial lines defines the real distance from the robot to the obstacle. The
system builds a local grid of the environment with the robot centered on it, and avoids
obstacles using contour following techniques. Since error increases with distance,
anything separated more than 2 m can not be measured properly and, consequently,
the algorithm only considers obstacles closer than 0.6 m.

Choi and Oh detect obstacle boundaries in images where the diagonal
Mahalanobis color distance changes abruptly over points situated in radial lines,
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emanating from the calibrated camera to the rest of the image [17]. The system
assumes that floor color and lighting conditions are constant. Odometry information
is used to transform position coordinates on the image plane into world coordinates
over a local occupancy grid, whose cells are labeled with a probability of being
occupied by an obstacle. Experimental tests have been performed on cluttered offices
and the local grid is constructed to support safe navigation. The paper also introduces
the idea of omni-directional observation with a standard camera.

Martin computes depth from single camera images of indoor environments using
also the concept of visual sonar [85]. The novelty of this method is the use of genetic
programming to automatically discover the best algorithm to detect the ground
boundaries in a training phase. These algorithms are then combined with reactive
obstacle avoidance strategies, initially developed for sonar, and later adapted.

3.2 Mapless Navigation

This section includes a representative collection of mainly reactive visual navigation
techniques. Reactive systems usually do not need any previous knowledge of the
environment but they make navigation decisions as they perceive it. Those strategies
process video frames as they gather them, and are able to produce enough infor-
mation about the unknown and just perceived environment to navigate through it
safely.

Prominent mapless visual navigation techniques here included are classified in
accordance with the main vision technique or clue used during navigation: optical
flow, feature detection and tracking, environment appearance, and extraction of
qualitative information from an image.

3.2.1 Optical Flow-Based Navigation Systems

Optical flow can be roughly defined as the apparent motion of features in a sequence
of images. During navigation, the robot movement is perceived as a relative motion
of the field of view, and, in consequence, it gives the impression that static objects
and features move respect to the robot. To extract optical flow from a video stream,
the direction and magnitude of translational or rotational scene feature movement
must be computed at every pair of consecutive camera frames. Optical flow between
two consecutive frames is usually represented by a vector for every pixel, where its
norm depends on the motion speed and its direction represents the movement of the
corresponding pixel in consecutive images. In some cases, the execution time and
the computation resources required can be optimized by first extracting the image
prominent features, such as corners or edges [56, 119], and then computing the optical
flow only for these features. Image optical flow has been used by some researchers
to implement reactive mobile robot navigation strategies, either for indoor or for
outdoor environments. Object boundaries appear as regions with significant optical
flow, and thus as regions to be avoided. Specularities or irregularities on the floor and
textured floors also appear as regions with optical flow and therefore can be wrongly
considered as obstacles causing errors during navigation.

Variations in the optical flow pattern or direction are used by Santos-Victor and
Sandini to detect obstacles in a reactive, fast and robust approach for plane ground
environments using a single camera [113]. Objects that arise from the ground plane
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cause variations in its normal flow pattern. To analyze and determine the presence of
obstacles, the image flow field must be projected inversely onto the horizontal world
plane. For translational motion, the projected flow must be constant for every point
on the ground plane. Obstacles alter this assumption, presenting higher magnitudes
or changes in the vector direction.

Camus et al. [14] compute on-line the optical flow divergence from sequential wide
angle frames to detect and avoid obstacles. Flow divergence is used for computing
time to contact to obstacles in a qualitative way. To command the robot safely, one-
dimensional maps are computed, where every heading direction is labeled with a
potential risk of encountering obstacles.

Talukder et al. [131] implemented a novel and robust optical flow-based solution
to detect the presence of dynamic objects inside the camera field of view . It is
applicable to robots with translational and/or limited rotational movement. The al-
gorithm assumes that moving objects cause a discontinuity in optical flow orientation
and changes in its magnitude with respect to the background pixels optical flow
direction and magnitude. The system is developed and first tested using a single
camera, and then using a stereo camera which provides depth information.

Some authors have proved that the combination of stereo vision, to obtain
accurate depth information, and optical flow analysis provides better navigation
results. Talukder and Matties extended [131] combining the stereo disparity field and
optical flow to estimate depth, to model the robot egomotion and to detect moving
objects of the scene [132]. In [13], stereo information is combined with the optical
flow from one of the stereo images, to build an occupancy grid and perform a real-
time navigation strategy for ground vehicles.

A simple and preliminary qualitative visual-based navigation system was proposed
in [133] by Temizer and Kaelbling, under the DARPA-Mobile Autonomous Robot
Software (MARS) program. Although, to the best of the authors knowledge, this
work does not represent a real progress in the field, it deserves to be included in a
survey due to its simplicity and efficiency. The starting point for this strategy is the
computation of image edge maps by detecting Laplacian of Gaussian (LOG) zero
crossings. A patch matching procedure is subsequently applied using the edge maps
of consecutive frames to compute the corresponding optical flow. Finally, the system
turns away from zones of high optical flow, since they likely correspond to obstacles.

Visual navigation techniques based on optical flow have proved to be specially
useful for unmanned aerial vehicles (UAV) because optical flow gives the scene
qualitative characteristics that can not be extracted in detail from single low quality
images. Within this research trend, an important effort has been devoted to imitate
animal behavior as far as the use and processing of apparent motion is concerned.
Particularly, insects present a high degree of precision in their navigation and
guidance systems, despite the simplicity of their nervous systems and small brains.
Many authors have studied the way honeybees and other insects use optical flow
to avoid obstacles and/or to navigate centered in the middle of corridors or narrow
long ways. Experimental results found by Srinivasan et al. [126] proved that bees fly
balancing the path in the middle of tunnels, evaluating the apparent motion of images
that perceive from both sides.

Van der Zwaan and Santos-Victor [145] implemented a UAV with a camera eye
equivalent to an insect compound eye. The camera eye consisted of an array of
photoreceptors each one connected to an electronic Elementary Motion Detector
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(EMD), which was able to calculate the local optical flow at its particular position.
Contrast on optical flow calculations determined the presence of obstacles, while
identifying the EMD polar coordinates that gave the changes on optical flow mea-
sures permitted to construct a local map with the location of the obstacles.

Netter and Franceschini [100] also implemented a UAV with a camera eye as-
sembled with an array of photosensors and their corresponding EMDs. The infor-
mation given by the set of EMDs was used to determine the presence of obstacles.
Furthermore, when the UAV flew at a constant speed and altitude, a reference
optical flow distribution was calculated from the equation that models the ve-
locity of the artificial retina. To follow the terrain, the system varied thrust and
rudders position to adjust the online computed optical flow with the optical flow
reference.

Nonetheless, the use of optical flow information in terrain following applications
for UAV presents limitations if the aircraft flies at low altitude, at high speed or if it
is landing, even more if the camera is facing the ground. In these cases, optical flow
estimation loses accuracy. Recently, Srinivasan et al. [127] presented a new system
to increase accuracy in the optical flow estimation for insect-based flying control
systems. A special mirror surface is mounted in front of the camera, which is pointing
ahead instead of pointing to the ground. The mirror surface decreases the speed of
motion and eliminates the distortion caused by the perspective. Theoretically, the
image should present a constant and low velocity everywhere, simplifying the optical
flow calculation and increasing its accuracy. Consequently, the system increases the
speed range and the number of situations under which the aircraft can fly safely.
Particularly interesting is the work developed by Green et al. [53], which describes
the design of a UAV prototype called Closed Quarter Aerial Robot (CQAR) that
flies into buildings, takes off and lands controlled by an insect-inspired optical flow-
based system. This aerial vehicle incorporates a microsensor which weighs 4.8 grams,
and is able to image the environment and compute the optical flow. The minimum
flying speed of CQAR is 2 m/s, the turning radius is about 2.5 m and to avoid a
detected obstacle it needs to turn about 5 meters before. Later, Green et al. again
emphasized the relevance of insect-based navigation strategies in an optical flow-
based navigation system for UAVs that fly in near ground environments such as
tunnels, caves, inside buildings or among trees [52]. The navigation principles applied
in both [52] and [53] come from Eq. 1:

F = (v/d) sin(θ) − ω, (1)

where F is the optical flow, v is the translational velocity, d is the distance between
the robot and an object, w is the angular velocity, and θ is the angle between the
direction of travel and the aforementioned object. Equation 1 models the fact that
optical flow of close obstacles has greater magnitude than the optical flow of obstacles
that are at longer distances. Furthermore, optical flow magnitude is maximum for
obstacles situated orthogonally to the robot motion direction.

To finish with this research line, Srinivasan et al. presented an overview of
illustrative insect-inspired navigation strategies for different situations, and the
implementation of those strategies in several robots to test their feasibility [128].

Following a different research line, Cornall and Egan pointed out preliminary
results corresponding to the analysis of optical flow patterns. Images were recorded
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during the UAV flight and transmitted to a ground station to be stored and analyzed.
Optical flow example images of translation, pitch, roll to left/right and yaw motion
were computed off-line and primary conclusions presented in [20].

In urban missions, UAVs have to fly usually among buildings and at low altitude,
avoid obstacles situated at both sides or at the front, and make very steep turns or
even U-turns at dead ends. This increases the possibility of crashing, thus the need
of a very precise and safe navigation strategy. Hrabar et al. present in [62] a novel
navigation technique for UAVs to fly in between of urban canyons. The authors
report a high degree of effectiveness of the system combining stereo forward-looking
cameras for obstacle avoidance and two sideways-looking cameras for stable canyon
navigation. Since the method is applied on UAVs, everything detected at the front
is considered an obstacle. The system projects 3D stereo data onto a 2D map and
performs a growing region process to extract obstacles. The robot stops keeping
constant the altitude or simply changes direction depending on its distance to the
obstacle. Besides, the robot always tries to balance the optical flow from both sides,
moving to the direction of larger optical flow magnitude. The system implements a
hierarchical architecture. Collisions with obstacles in the front are more probable
than on the sides, therefore the stereo output is given priority over the optical
flow output. The authors also expose an alternative for implementing this kind of
hybrid systems, using two forward-facing fisheye cameras that have lenses with a
190◦ field of view. In this last case, the central part of an image can be used for stereo
front obstacle avoidance, and the peripheral part can be used for computing the
optical flow.

3.2.2 Appearance-Based Navigation

Appearance-based strategies consist of two procedures. First, in a pre-training phase,
images or prominent features of the environment are recorded and stored as model
templates. The models are labeled with a certain localization information and/or
with an associated control steering command. Second, in the navigation stage, the
robot has to recognize the environment and self-localize in it by matching the
current on-line image with the stored templates. The main problems of appearance-
based strategies are finding an appropriate algorithm to create the environment
representation and defining the on-line matching criteria.

Deviations between the route followed in the guided pre-training phase and the
route navigated autonomously yield different sets of images for each case, and thus
differences in the perception of the environment. Main researchers have focused
their contributions on improving the way how images are recorded in the training
phase, as well as on the subsequent image matching processes. There are two main
approaches for environment recognition without using a map [87]:

– Model-based approaches. They utilize pre-defined object models to recognize
features in complicated environments and self-localize in it.

– View-based approach. No features are extracted from the pre-recorded images.
The self-localization is performed using image matching algorithms.

Matsumoto et al. presented in [87–89] research results focusing on indoor route
construction with standard or omnidirectional images, definition of correlation equa-
tions to model the concept of distance between images, and view creation using
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stereo divergence for outdoor environments where light conditions change most
often.

Zhou et al. [150] utilize histograms to describe the appearance of pre-recorded
indoor images. Color, gradient, edge density and texture histograms are extracted
from images, and stored in a multi-dimensional histogram database. The recognition
of the environment during the navigation stage is reached by matching the multi-
dimensional histogram of the current image with the multi-dimensional histogram
of the stored templates. Working with histograms has two main advantages: it
saves computation resources and it is simpler and quicker than entire images-based
correlation processes.

Borenstein and Koren presented one of the first navigation and obstacle avoid-
ance strategies for mobile robots based on building certainty grids and using the
concept of potential fields [10]. Pioneers on applying potential fields in vision-based
navigation and obstacle avoidance strategies were Haddad et al. in [54]. Remazeilles
et al. use the concept of potential fields integrated in an appearance-based navigation
method [107]. This system differs from typical appearance-based navigation strate-
gies in the way that navigation is performed. The method defines an image database,
which is a set of views built off-line, representing the whole navigable environment.
When a navigation mission is defined, an image sequence corresponding to what the
robot camera should see during the motion is extracted from the image database. The
robot motion is the result of the on-line detection and matching process between
the models included in the sequence and the perceived scenes. To navigate the
environment, the robot tracks recognizable previously cataloged features. To fit
these scene features in its field of view it uses the attractive potential fields to
approximate them.

Morita et al. reported in [97] a novel appearance-based localization approach
for outdoor navigation. They extended their support vector machine (SVM) -based
algorithm, proposed in [98], to a novel SVM-based localization architecture that uses
vision information from panoramic images. The SVM localization process consists
of two main stages: feature or object learning, recognition and classification, and
scene locations learning based on the previous feature classification. In this work,
the authors show how panoramic images improve considerably training, matching
and localization procedures, since the scenes are less dependent on the variation of
the robot heading.

3.2.3 Image Qualitative Characteristics Extraction for Visual Navigation

Reactive visual techniques for robot navigation and obstacle avoidance are often
devised around the extraction of image qualitative characteristics and their inter-
pretation. There are two main types of reactive visual obstacle avoidance systems:
model-based obstacle avoidance systems, which need pre-defined models of known
objects, and sensor-based obstacle avoidance systems, which process every on-
line sensor information to determine what could be an obstacle or what could
be free space. These strategies can be included in what is known as qualitative
navigation. Reactive navigation systems based on qualitative information avoid as
much as possible using, computing or generating accurate numerical data such as
distances, position coordinates, velocity, projections from image plane onto real
world plane, or contact time to obstacles. In general, a coordinated behavior-based
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architecture is needed to manage all qualitative image information and the subse-
quent reactions [4].

Of particular relevance to this sort of navigation systems, due to their critical
dependence on unprocessed sensorial data, is the change of the imaging conditions:
illumination intensity, position of light sources, glossiness of the scene materials,
etc. As a consequence, and mostly for outdoor applications, depending on time,
weather conditions, season, etc. the performance of certain visual navigation systems
can be seriously limited. One of the earliest solutions to these problems came from
[135]. In 1997, Lorigo et al. proposed a very low resolution vision-based obstacle
avoidance system for unstructured environments [76]. The novelty of the solution
was the construction of three simple modules that based the object detection criteria
on brightness gradients, RGB color and HSV (hue, saturation, value) information.
The goal of this approach was to navigate safely, with no destination point or pre-
designed mission. The method assumed that all objects stayed on the plane ground,
and that closer objects were in the bottom of the image while further objects were on
the top of the image. Apart from the three modules working on brightness, RGB and
HSV, a fourth one analyzed simultaneously their results to extract possible object
boundaries. Afterwards, this information was used to generate motion commands.

The combination of a camera and other sensors such as laser or sonar has been
applied in some reactive approaches to increase safety and the capabilities of the
navigation process. CERES [15] is a behavior-based architecture that combines
seven ultrasound transducers and a single grayscale camera. The vision module
applies a Canny filter to extract edges from images. Edges are a clear evidence
of the presence of obstacles. However, the floor carpet texture of the author’s
test environment generates edges that could be wrongly considered as obstacles.
To avoid this misbehaviour, a threshold is imposed to eliminate false edges. The
system transforms distances over images to real world distances using a rough camera
calibration algorithm. For this particular case, the authors knew that the first fifth
portion of the image, from bottom to top, corresponded to the closest 20 cm of the
scene and that the other four fifths portion corresponded to the next real world
26 cm. Consequently, all those edges found in the first fifth of the image (bottom)
were considered as obstacles to be avoided while the edges on the rest of the image
(top) were considered to be far enough so as to be taken into account. Sonar is used
to keep distance to the walls.

Other authors prefer to use a bi-level image segmentation process to segregate
floor from objects [80]. Floor detection permits determining where the free navigable
space is. In the ROBOCUP competition, the detection of the opponent robot and the
ball becomes a challenging task to play the game properly. Fasola and Veloso [33]
propose to use image color segmentation techniques for object detection, and gray-
scale image processing for detecting the opponent robots.

The concept of fuzzy navigation, and particularly using visual sensors, has been
used by several authors, combining the extraction of qualitative information from
video frames with qualitative navigation algorithms based on fuzzy rules. One
example of these techniques comes from Howard et al. [61]. Their system is focused
basically on ensuring a safe navigation through irregular terrains. It is assumed that
the terrain can present rocks and variations on its slope. A region growing method
based on edge detection and obstacle identification is used to detect rocks on the
ground, while the terrain slope is calculated using existing techniques to retrieve 3D
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information and real Cartesian coordinates from a stereo pair of images. The size
and number of rocks and the slope of the terrain are then classified by an algorithm
that uses fuzzy terms such as big, small, rocky terrain, flat, sloped, steep, etc... Since
the final goal of this system is to mimic as much as possible the human criteria used
to classify a terrain, the system is trained by an expert which evaluates images taken
from the robot point of view and judges the ability of the robot to navigate through
the terrain. The difference between the human classification and the one done by the
robot is an indication of the optimality of the system.

3.2.4 Navigation Techniques Based on Feature Tracking

Techniques for tracking moving elements (corners, lines, object outlines or specific
regions) in a video sequence have become robust enough so as to be useful for
navigation. Many times, the systems divide a tracking task into two sub-problems
[141]: first, motion detection, which, given a feature to be tracked, identifies a region
in the next frame where it is likely to find such a feature, and second, feature
matching, by which the feature tracked is identified within the identified region.

In general, feature tracking-based navigation approaches do not comprise an
obstacle avoidance module, but this task has to be implemented by other means.
Although video tracking and mobile robot navigation belong to separate research
communities, some authors claim to bridge them to motivate the development
of new navigation strategies. Some authors center their research in detecting and
tracking the ground space across consecutive images, and steering the robot towards
free space.

Pears and Liang use homographies to track ground plane corners in indoor
environments, with a new navigation algorithm called H-based Tracker [105]. The
same authors extend their work in [75] using also homographies to calculate height of
tracked features or obstacles above the ground plane during the navigation process.

The accuracy of the navigation strategy must be a strategic point in aerial motion
where the speed is high, the processing time must be reduced and the tracking
process needs to be more accurate. In [102], Ollero et al. propose a new image
tracking strategy that computes and uses a homography matrix to compensate the
UAV motion and detect objects. This system improves their previous work [35]
maintaining the tracking success despite the number of attempts is reduced. Zhou
and Li [151], and Dao et al. [24] compute and use the homography matrix to detect
and track the ground plane over previously tracked image corners or edges using
the Harris corner detector [56]. In a more recent work, other authors prefer to
combine the concept of feature tracking with stereo 3-D environment reconstruction.
In [112], stereo vision is used in a novel navigation strategy applicable to unstructured
indoor/outdoor environments. This system is based on a new, faster and more
accurate corner detector. Detected features are 3D positioned and tracked using
normalized mean-squared differences and correlation measurements.

Support vision information with GPS data in outdoor environments is another
possibility of increasing reliability in position estimation. Saripalli and Sukhatme
combine a feature tracking algorithm with GPS positioning to perform a navigation
strategy for the autonomous helicopter AVATAR [93]. The vision process combines
image segmentation and binarization to identify pre-defined features, such as house
windows, and a Kalman filter-based algorithm to match and track these windows.
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The scale invariant feature transform (SIFT) method, developed by Lowe [78],
stands out among other image feature or relevant points detection techniques, and
nowadays has become a method commonly used in landmark detection applications.
SIFT-based methods extract features that are invariant to image scaling, rota-
tion, and illumination or camera view-point changes. During the robot navigation
process, detected invariant features are observed from different points of view,
angles, distances and under different illumination conditions and thus become highly
appropriate landmarks to be tracked for navigation, global localization [117] and
robust vision-based SLAM performance [116].

Several techniques have been developed for underwater environments. Some
of them are of general application, such as image mosaicing systems, and others
are more application oriented, such as the systems for pipeline or cable tracking.
Mosaicing of the sea floor based on feature identification and tracking using texture-
based operators and correlation-based procedures permits the robot to self-localize
and thus identify its motion model [38]. Pipeline or cable tracking is an essential issue
for accurate maintenance of thousands of kilometers of telecommunication or power
cables between islands, countries and continents. In particular, unburied cables can
be tracked using vision techniques. The first approaches to cable tracking were based
on edge detectors and Hough transform, but they were unable to perform real-time
cable tracking at video rates [55, 86, 110] by that time. Grau et al. [51] propose a
system that generates different texture groups and segment images in regions with
similar textural behavior to track underwater cables or pipes. Foresti and Gentili
[37] implemented a robust neural-based system to recognize underwater objects.
Balasuriya and Ura [7] increased and improved the robustness of the existing systems
by solving the eventual loss of the cable with dead-reckoning positioning prediction
combined with 2D models of the cable. In a recent work, Antich and Ortiz [2] present
a control architecture for AUV’s navigation based on a cable tracking algorithm
that looks for edge alignments related with the cable sides. Finally, the same authors
include a new sonar-based algorithm in the vision-based cable tracking architecture
to escape from trapping zones [3].

Moving-target vision-based tracking strategies have also become a motivating
research trend, specially to improve current fish shoal detection and tracking tech-
niques. Between 2000 and 2001 some relevant solutions were presented by Silpa-
Anan et al. [120] and Fan and Balasuriya [31] respectively. Fan and Balasuriya [31]
presented a process based on two parallel stages: object speed calculation repre-
sented with optical flow, and moving objects positioning with template-matching
techniques. Rife and Rocks went a step forward implementing a system capable of
recognizing and tracking only jellyfish [109].

Estimation of camera motion in underwater unstructured environments, where
there are no pipes or cables to track, in other words, an environment with no defined
references, becomes another complicated and challenging navigation problem. In
this type of navigation strategies, references have to be found in the image, defined
and tracked. There are fundamentally three methods that are used for this purpose:
optical flow, feature tracking or gradient methods. Optical flow-based methods and
feature tracking-based methods can cause failure in algorithms due to scattering
effects, bad image quality or deficient illumination under the sea. Gradient meth-
ods use scene properties such as depth, range, shapes or color intensity, that are
computationally more efficient and more accurate [23]. Station keeping is one of the
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problems that can be solved estimating the motion of the camera. Station keeping
consists in holding the robot around a fixed position on the undersea floor that has a
special interest at that moment. The AUV will hover around the point maintaining
the center of the camera pointing on it. Examples of outstanding related solutions
can be found in [77, 99] and [21].

4 Conclusions

In the last decades, vision has become one of the most cheap, challenging and
promising via for robots to perceive the environment. Accordingly, the number of
prominent navigation approaches based on vision sensors have increased exponen-
tially. Visual navigation techniques have been applied on almost all environments
and in all kind of robots. The most outstanding pieces of work related with visual
navigation from the early nineties until nowadays have been included in this paper
to be used as a reference for novel and experienced researchers that want to first
explore the possibilities of this domain. Map-based navigation techniques have been
contrasted with those systems that do not need a map for navigation in an attempt to
proceed gradually from the most deliverative navigation techniques to the most pure
reactive solutions.

Tables 2 and 3 show an overview of the most outstanding publications referenced
in this survey, from the late nineties to present. The list has been sorted by type of
vehicle to facilitate analysis and comparison of the different strategies used in each of
these vehicles during the last decade. The following conclusions can be drawn from
the aforementioned tables:

– Ground robots do not span the whole amount of applications revised in this
survey but cover almost all the strategies considered. Apparently, some strategies
seem to be exclusive of ground robots because they are rarely found in aerial or
underwater vehicles. This is the case of:

– Visual SLAM systems, because the computation of the environment model
seems to be feasible only for indoor scenarios,

– Homography-based navigation systems, because of their dependency on
floor Detection and tracking and finally,

– Visual sonar systems and human pre-guided map building systems.

– The use of UAVs has generalized during the last decade and, as a consequence,
navigation solutions for this kind of vehicles have improved in safety, accuracy
and scope. The vast majority of UAVs use mapless navigation systems. We
should highlight here the insect-inspired solutions for optical flow processing as
well as for feature tracking and detection. Some of these aerial robots have also
gained in accuracy, operativity and robustness incorporating compound cameras
or camera eyes.

– Visual navigation systems for AUVs have to cope with the special characteristics
of light propagation undersea. Researchers have mostly focused on developing
and/or evolving general visual navigation techniques based on feature tracking,
mainly for mosaicing applications. Researchers have also focused on devising
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application-oriented navigation strategies, in many cases for tracking underwater
cables or pipelines.

– Finally, very few amphibious solutions have been proposed.

To conclude this review, it is convenient to note that during the last decade new
vision techniques have been applied to vision-based navigation systems, such as
those systems based on homographies, visual sonar or visual SLAM. But, it is also
important the impulse and progress of other techniques only used in the past by a
minority, and that have revealed to be essential for UAVs navigation. Examples of
these last techniques are those inspired on insect behavior.
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