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An effective decision making approach based on VIKOR and Choquet integral is developed to solve multicriteria group decision
making problemwith conflicting criteria and interdependent subjective preference of decisionmakers in a fuzzy environmentwhere
preferences of decision makers with respect to criteria are represented by interval-valued intuitionistic fuzzy sets. First, an interval-
valued intuitionistic fuzzy Choquet integral operator is given. Some of its properties are investigated in detail.The extended VIKOR
decision procedure based on the proposed operator is developed for solving themulticriteria group decisionmaking problemwhere
the interactive criteria weight is measured by Shapley value. An illustrative example is given for demonstrating the applicability of
the proposed decision procedure for solving the multi-criteria group decision making problem in interval-valued intuitionistic
fuzzy environment.

1. Introduction

The increasing complexity of the socioeconomic environ-
ments makes it less and less possible for a single decision
maker to consider all relevant aspects of a problem. Hence,
in order to get a more reasonable decision result, a decision
organization, such as the board of directors of a company,
which contains a collection of decision makers, is set up
explicitly or implicitly to assess the alternatives. The analysis
must be extended to account, somehow, for group decision
makers, each one potentially exhibiting a unique preference
structure, perceiving different consequences, and responding
to a diverse array of aspirations [1].

Multiple criteria or attribute decisionmaking (MCDMor
MADM) problems is to find the best compromise solution
among all feasible alternatives assessed on the basis of mul-
tiple criteria or attributes, both quantitative and qualitative.
Due to the complex structure of the problem and conflicting
nature of the criteria for multi-criteria decision making,
trade-offs assessment is one of the most difficult issues in
multi-criteria decision making. There may be no solution
satisfying all criteria simultaneously.Thus, the solution is a set
of noninferior solutions or a compromise solution according
to the decision maker’s preferences. By using compromise

programming, the compromise solution was established by
Yu [2] and Zeleny [3] for a problem with conflicting criteria
and it can be helping the decisionmakers to reach a final solu-
tion.The compromise solution is a feasible solution, which is
the closest to the ideal, and compromise means an agreement
established bymutual concessions. Based on the compromise
programming [3], many MCDM ranking methods have
been investigated, such as the TOPSIS (technique for order
preference by similarity to an ideal solution) method [4],
the VIKOR (vlsekriterijumska optimizacija i kompromisno
resenje in Serbian, meaning multicriteria optimization and
compromise solution) method [5], the PROMETHEE (pref-
erence ranking organization method for enrichment evalua-
tions) method [6], and the ELECTRE (elimination et choice
translating reality) method [7].

As one of the compromise ranking approaches for mul-
tiple criteria decision making problems,The VIKORmethod
focuses on ranking and selecting from the alternatives with
conflicting and different units criteria.The vIKORmethod of
compromise ranking determines a compromise solution that
provides the maximum group utility for the majority and a
minimum of individual regret [8] for the opponent. Within
the VIKOR method, the compromise ranking could be per-
formed by comparing the measure of closeness to the ideal
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alternative through the process of ranking and selecting a
set of alternatives in the presence of conflicting criteria. The
obtained compromise solution could be accepted by the deci-
sion makers because it provides a maximum group utility
of the majority and a minimum individual regret of the
opponent. The compromise solutions could be the base for
negotiation, involving the decisionmakers’ preference by cri-
teria weights and a balance between total and individual sat-
isfaction. The VIKOR has been developed for multi-criteria
optimization in complex systems and enjoys a wide accep-
tance. Opricovic and Tzeng [9] made a comparative anal-
ysis of VIKOR and TOPSIS. Furthermore, Opricovic and
Tzeng [10] extended the VIKORmethod with a stability anal-
ysis determining the weight stability intervals and with trade-
offs analysis and also compared it deeply with the TOPSIS
method, the PROMETHEE method, and the ELECTRE
method. According to the comparisons, it is obvious that the
VIKOR method has many advantages in handling the
MCDM problems especially when they are with conflicting
and noncommensurable criteria. Tzeng et al. [11] used and
compared the VIKOR and TOPSIS methods in solving a
public transportation problem. Sayadi et al. [12] extended
the VIKOR method to MADM problem with interval num-
bers. Chang and Hsu [13] showed that the VIKOR method
is advantageous for evaluating the relative environmental
vulnerability of subdivisions in a watershed. Up to now, the
VIKOR method has been applied widely in many fields,
such asmountain destination choosing [9], alternative hydro-
power systems evaluating [9], forestation and forest preser-
vation [14], postearthquake sustainable reconstruction [15],
airlines service quality evaluation [16], and selection of the
renewable energy project [17].

In complex decision making problems, imprecision and
uncertainty are often involved in decision making process
due to incomplete information, abundant information, con-
flicting evidence, ambiguous information, and subjective
information [18–20].The preference information provided by
decision maker is also imprecise or uncertain due to time
pressure, lack of data, or the decision maker’s limited atten-
tion and information processing capacities. To adequately
model such decision making situations, fuzzy set [21] and its
higher order extensions such as intuitionistic fuzzy set (IFS)
[22] and interval-valued intuitionistic fuzzy set (IVIFS) [23]
have been successfully used to handle imprecise and uncer-
tain human decision behaviors [20, 24, 25].

Recently, The VIKOR method has been developed for
fuzzy multi-criteria decision making in complex systems.
Opricovic and Tzeng [26] suggested using fuzzy logic for
the VIKOR method. Büyüközkan and Ruan [27] extended
the VIKOR method to effectively solve software evaluation
problem under a fuzzy environment. Sanayei et al. [28] pro-
posed a hierarchy MCDM model based on fuzzy sets theory
and VIKORmethod to deal with the supplier selection prob-
lems in the supply chain system. Opricovic [29] proposed
fuzzy VIKOR method for water resources planning man-
agement. Chen and Wang [30] proposed a more efficient
delivery approach for evaluating and assessing possible sup-
pliers/vendors by using the fuzzy VIKOR method. Du and
Liu [31] developed three extensions of the VIKOR method

based on the expected values of the intuitionistic trapezoidal
fuzzy numbers and the distances between the intuitionis-
tic trapezoidal fuzzy numbers and the interval numbers,
respectively. Devi [32] extended VIKOR method to an intu-
itionistic fuzzy environment for robot selection. Park et al.
[33] extended the VIKOR method for dynamic intuitionistic
fuzzy multiple attribute decision making. Park et al. [34]
extended the concept of the VIKOR method to develop a
methodology for solving theMCDMproblems with interval-
valued intuitionistic fuzzy numbers.

It is worthwhile noting that the above different kinds of
extensions of the VIKOR are based on the assumption that
the criteria and subjective preferences of the decision maker
are independent with the use of a linear-based mathematical
model for facilitating the human decision making process,
which is characterized by an independence axiom [35, 36].
However, for real MCDM problems, there is always some
degree of interdependent characteristics among criteria [37–
41]. For example, we are to evaluate a set of students in
relation to three subjects: {mathematics, physics, literature};
we want to give more importance to science-related subjects
than to literature, but on the other hand we want to give some
advantage to students that are good both in literature and in
any of the science-related subjects [38]. Individual decision
makers may come from the same or similar research fields in
a given situation. They often have similar knowledge, social
status, and preference. As a result, their subjective preferences
in the group decision-making process often show some
interactive characteristics. Traditional additive aggregation
operators such as the weighted average or ordered weighted
averaging (OWA) operator [42] are based on an implicit
assumption that the criteria or the preferences of individual
decision maker is independent of each another. This leads
to a wide application of the additive expected utility mode
[35] based on the mutual preferential independence [36] for
solving the multi-criteria group decision making problem.
There are, however, some experiments that show that the
additive expected utilitymodel and the assumption ofmutual
preferential independence are often violated [43], which
restricts the potential applications of the traditional additive
aggregation operators to more extensive areas.

As the generalization of the weighted average operator
and the OWA operator, the Choquet integral with respect
to fuzzy measure [41] is an effective tool for extending the
additive expected utility model that allow weakening the
inherent independence hypotheses for modeling the sub-
jective human decision making process [44]. In order to
overcome the drawback of those extensions of the VIKOR, it
is necessary to develop a new extension of theVIKORmethod
for fuzzy group multi-criteria decision making. The aim of
this paper is to extend the classical VIKOR method to solve
the fuzzy multi-criteria group decision making problems in
interval-valued intuitionistic fuzzy environmentwhere all the
preference information provided by the decision maker is
presented as interval-valued intuitionistic fuzzy set, where
inter-dependent or interactive characteristics among criteria
and preference of decisionmakers are also taken into account.
The motivation and main features of the proposed extended
VIKOR method in this paper are summarized as follows.
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(i) Although [34] extended the VIKOR for the multi-
criteria group decision making problems in interval-valued
intuitionistic fuzzy environment, they did not take the inter-
active characteristics among preference of decision makers
into account. An additive interval-valued intuitionistic fuzzy
aggregation operator, the interval-valued intuitionistic fuzzy
weighted geometric operator, was used to aggregate decision
makers’ preferences. This paper considers the interactive
characteristics among decisionmakers’ preferences, a nonlin-
ear aggregation operator; interval-valued intuitionistic fuzzy
Choquet integral operator, is proposed for aggregating deci-
sionmakers’ preferences where the interactive characteristics
among decision-makers’ preferences are expressed by means
of fuzzy measure. It is shown that when the fuzzy measure is
an additive fuzzy measure, decision-makers’ subjective pref-
erences are independent; the nonlinear aggregation operator
is reduced to an additive interval-valued intuitionistic fuzzy
aggregation operator.

(ii) When inter-dependent or interactive characteristics
among criteria are taken into account, the weights of interac-
tive criteria should not be determined by traditionalmethods.
In this paper, we use fuzzy measure to measure the inter-
dependent characteristics among criteria; then Shapley value
is used to determine the interactive criteria weights, which
reflects decision-maker’s subjective preference to criteria as
well as the inherent objective characteristics of criteria. It
is shown that when the fuzzy measure is an additive fuzzy
measure, the Shapley weights is reduced to the classical
weights.

(iii) In the classical VIKOR, the criteria weights and deci-
sion-maker’s weights are also given in advance. Furthermore,
the classical VIKOR is only appropriate for the decision
making problems with the crisp assessment information and
cannot solve the fuzzy multi-criteria group decision making
with interval-valued intuitionistic fuzzy sets. The fundamen-
tal characteristic of the interval-valued intuitionistic fuzzy set
is that the value of the membership function and nonmem-
bership function of the interval-valued intuitionistic fuzzy set
is interval rather than exact number in [0, 1], respectively.
The interval-valued intuitionistic fuzzy set ismore suitable for
dealing with imprecise and uncertain information than fuzzy
set or intuitionistic fuzzy set. The extended VIKOR method
has more flexible for dealing with fuzzy information.

(iv) Compared with the similar methods, the proposed
method in this paper can maximize the group utility and
minimize the individual regret, and the inter-dependent or
interactive characteristics among criteria and preference of
decisionmakers are taken into account simultaneously, which
make the decision result more reasonable. The decision-
makers can adjust the coefficient of decision mechanism to
reflect the different importance of group utility and indi-
vidual regret, which greatly enhances the flexibility of the
proposedmethod.Moreover, though the proposedmethod is
developed to solve multi-criteria group decisionmaking with
interval-valued intuitionistic fuzzy set, it also can be used to
solve MCDM with intuitionistic fuzzy set.

The remaining of this paper is organized as follows. We
first present some preliminary concepts including fuzzy
measure, Choquet integral, and interval-valued intuitionistic

fuzzy set in Sections 2 and 3, respectively. An interval-
valued intuitionistic fuzzy Choquet integral operator is given,
and some of its properties are investigated in detail in
Section 4. In Section 5, subjective and objective weights of
criteria are proposed according to fuzzymeasure and Shapley
value. In Section 6, the extended VIKOR decision procedure
based on the proposed operator is developed for effectively
tackling the multi-criteria group decision making problem
in an interval-valued intuitionistic fuzzy environment. In
Section 7, we give an example for illustrating the applicability
of the proposed decision procedure for solving the real world
decision problem. Finally, the paper is concluded with some
observations in Section 8.

2. Fuzzy Measure and Choquet Integral

Fuzzy measure (a nonadditive measure) is proposed for
addressing the issue of nonadditivity in the traditional addi-
tive utility model in decision making. It can be defined as
follows [41].

Definition 1. Let 𝑋 = {𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
} be a universe of dis-

course and let𝑃(𝑋) be the power set of𝑋. A fuzzymeasure on
𝑋 is a set function 𝜇 : 𝑃(𝑋) → [0, 1], satisfying the following
conditions:

(i) 𝜇(0) = 0, 𝜇(𝑋) = 1.
(ii) If 𝐴, 𝐵 ∈ 𝑃(𝑋) and 𝐴 ⊆ 𝐵, then 𝜇(𝐴) ≤ 𝜇(𝐵).

In themulti-criteria decisionmaking, 𝜇(𝐴) can be viewed
as the grade of subjective importance of decision criteria set
𝐴. Thus, in addition to the usual weights on criteria taken
separately, weights on any combination of criteria are also
defined. To determine such fuzzy measures, it needs to find
2
𝑛

− 2 values for 𝑛 criteria in a given multi-criteria group
decision making situation. With the definition as above,
the values of 𝜇(0) and 𝜇(𝑋) are always equal to 0 and 1,
respectively. It is obvious that such an evaluation process is
quite complex with the structure being difficult to grasp. To
reduce the computational complexity, the 𝜆-fuzzy measure 𝑔

that acts as a special kind of fuzzy measure is proposed which
is defined as follows [45].

Definition 2. Let 𝑋 = {𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
} be a universe of dis-

course; a fuzzy measure 𝑔 on𝑋 is called 𝜆-fuzzy measure if it
satisfies the following conditions:

𝑔 (𝐴 ∪ 𝐵) = 𝑔 (𝐴) + 𝑔 (𝐵) + 𝜆𝑔 (𝐴) 𝑔 (𝐵) , (1)

where 𝜆 ∈ (−1,∞) for all 𝐴, 𝐵 ∈ 𝑃(𝑋) and 𝐴 ∩ 𝐵 = 0.

When 𝜆 = 0, 𝑔(𝐴 ∪ 𝐵) = 𝑔(𝐴) + 𝑔(𝐵). This means that
𝐴 and 𝐵 are mutually independent, that is; 𝑔 is additive
measure and there exists no interaction between 𝐴 and 𝐵.
𝜆 ̸= 0 indicates that 𝑔 is nonadditive and there exist some
degrees of interdependency between 𝐴 and 𝐵. If 𝜆 > 0,
𝑔(𝐴 ∪ 𝐵) > 𝑔(𝐴) + 𝑔(𝐵). This implies that the set {𝐴, 𝐵} has
multiplicative effect. If 𝜆 < 0, 𝑔(𝐴 ∪ 𝐵) < 𝑔(𝐴) + 𝑔(𝐵). This
shows that the set {𝐴, 𝐵} has substitutive effect. With the use
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of parameter 𝜆, the interaction between criteria in multi-
criteria decision making can be adequately represented.

If 𝑋 is a finite set, ⋃𝑛
𝑖=1

𝑥
𝑖
= 𝑋. The 𝜆-fuzzy measure 𝑔

satisfies the following equation:

𝑔 (𝑋) = 𝑔(

𝑛

⋃
𝑖=1

𝑥
𝑖
)

=

{{{{

{{{{

{

1

𝜆
(

𝑛

∏
𝑖=1

[1 + 𝜆𝑔 (𝑥
𝑖
)] − 1) , if 𝜆 ̸= 0,

𝑛

∑
𝑖=1

𝑔 (𝑥
𝑖
) , if 𝜆 = 0,

(2)

where 𝑥
𝑖
∩ 𝑥
𝑗

= 0 for all 𝑖, 𝑗 = 1, 2, . . . , 𝑛 and 𝑖 ̸= 𝑗. 𝑔(𝑥
𝑖
)

for a subset with a single element 𝑥
𝑖
is called a fuzzy density,

denoted by 𝑔
𝑖
= 𝑔(𝑥

𝑖
).

Especially for every subset 𝐴 ∈ 𝑃(𝑋), we have

𝑔 (𝐴) =

{{{

{{{

{

1

𝜆
(∏
𝑖∈𝐴

[1 + 𝜆𝑔 (𝑖)] − 1) , if 𝜆 ̸= 0,

∑
𝑖∈𝐴

𝑔 (𝑖) , if 𝜆 = 0.
(3)

The value 𝜆 can be uniquely determined based on (2) from
𝑔(𝑋) = 1 by solving the equation

𝜆 + 1 =

𝑛

∏
𝑖=1

(1 + 𝜆𝑔
𝑖
) . (4)

It should be noted that 𝜆 can also be uniquely determined by
𝑔(𝑋) = 1.

As a generalization of the linear Lebesgue integral, the
Choquet integral is defined as follows [41].

Definition 3. Let 𝑓 be a positive real-valued function on 𝑋,
and let 𝜇 be a fuzzy measure on 𝑋. The discrete Choquet
integral of 𝑓 with respect to 𝜇 is defined by

𝐶
𝜇
(𝑓) =

𝑛

∑
𝑖=1

𝑓 (𝑥
(𝑖)

) [𝜇 (𝐴
(𝑖)

) − 𝜇 (𝐴
(𝑖+1)

)] , (5)

where the subscript (⋅) indicates a permutation on𝑋 such that
𝑓(𝑥
(1)

) ≤ 𝑓(𝑥
(2)

) ≤ ⋅ ⋅ ⋅ ≤ 𝑓(𝑥
(𝑛)

). Also, 𝐴
(𝑖)

= {𝑥
(𝑖)

, . . . , 𝑥
(𝑛)

},
and 𝐴

(𝑛+1)
= 0.

The Choquet integral is popular in tackling real decision
making problems as it coincides with the Lebesgue integral in
which the measure is additive. An additive measure may be
directly tied to the notions of the additive expected utility the-
ory andmutual preferential independence [36].The Choquet
integral is able to aggregate the criteria weighting information
even when the mutual preferential independence is violated
[44].

3. Interval-Valued Intuitionistic Fuzzy Set

Let 𝑋 be a universe of discourse; a fuzzy set 𝐴 in 𝑋 can be
expressed as

𝐴 = {⟨𝑥, 𝑡
𝐴
(𝑥)⟩ | 𝑥 ∈ 𝑋} , (6)

where 𝑡
𝐴

: 𝑋 → [0, 1] is a membership function which
characterizes the degree of membership of the element 𝑥

in the set 𝐴. The main characteristic of fuzzy sets is that a
membership function value is assigned to each element 𝑥 in
a universe of discourse 𝑋. A nonmembership degree equals
to one minus the membership degree [21]. This means that
this single membership degree combines the evidence for
𝑥and the evidence against 𝑥 without indicating how much
there is for each. This single membership value therefore
tells us nothing about the lack of knowledge in describing
the element 𝑥. In real applications, however, the information
about an object corresponding to a fuzzy concept may be
incomplete. That means that the sum of the membership
degree and the nonmembership degree of that object in a
universe of discourse corresponding to a fuzzy concept may
be less than one. In the fuzzy sets theory, there is no means
to incorporate the lack of knowledge with the membership
degree. To effectively deal with this issue, intuitionistic fuzzy
set [22] is introduced as an extension of the traditional fuzzy
set as follows.

Definition 4. Let 𝑋 = {𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
} be a universe of

discourse; an intuitionistic fuzzy set in 𝑋 is an expression 𝐴

given by

𝐴 = {⟨𝑥, 𝑡
𝐴
(𝑥) , 𝑓

𝐴
(𝑥)⟩ | 𝑥 ∈ 𝑋} , (7)

where 𝑡
𝐴

: 𝑋 → [0, 1], 𝑓
𝐴

: 𝑋 → [0, 1] with the condition:
0 ≤ 𝑡
𝐴
(𝑥) + 𝑓

𝐴
(𝑥) ≤ 1, for all 𝑥 in 𝑋. The numbers 𝑡

𝐴
(𝑥) and

𝑓
𝐴
(𝑥) represent the degree of membership and the degree of

nonmembership of the element 𝑥 in the set 𝐴, respectively.

For each intuitionistic fuzzy set 𝐴 in 𝑋, if 𝜋
𝐴
(𝑥) = 1 −

𝑡
𝐴
(𝑥)−𝑓

𝐴
(𝑥), for all 𝑥 ∈ 𝑋, then 𝜋

𝐴
(𝑥) is called the degree of

indeterminacy of 𝑥 to 𝐴. Especially, if 𝜋
𝐴
(𝑥) = 1 − 𝑡

𝐴
(𝑥) −

𝑓
𝐴
(𝑥) = 0, for all 𝑥 ∈ 𝑋, the intuitionistic fuzzy set 𝐴 is

reduced to a fuzzy set.
Interval-valued intuitionistic fuzzy set [23] is a gener-

alization of the intuitionistic fuzzy sets. The fundamental
characteristic of the interval-valued intuitionistic fuzzy set
is that the value of the membership function and non-
membership function of the interval-valued intuitionistic
fuzzy set is interval rather than exact number.

Definition 5. Let 𝑋 be a universe of discourse and let 𝐷[0, 1]

be the set of all closed subintervals of the interval [0, 1]. An
interval-valued intuitionistic fuzzy set𝐴 in𝑋 is an expression
given by

𝐴 = {⟨𝑥, 𝑡
𝐴
(𝑥) , 𝑓

𝐴
(𝑥)⟩ | 𝑥 ∈ 𝑋} , (8)

where 𝑡
𝐴

: 𝑋 → 𝐷[0, 1], 𝑓
𝐴

: 𝑋 → 𝐷[0, 1] with the con-
dition 0 ≤ sup 𝑡

𝐴
(𝑥) + sup𝑓

𝐴
(𝑥) ≤ 1. The intervals 𝑡

𝐴
(𝑥)

and 𝑓
𝐴
(𝑥) denote, respectively, the degree of belongingness

and the degree of nonbelongingness of the element 𝑥 to the
set 𝐴.

For any two intervals [𝑎, 𝑏] and [𝑐, 𝑑] with 𝑏 + 𝑑 ≤ 1

belonging to 𝐷[0, 1], let 𝑡
𝐴
(𝑥) = [𝑎, 𝑏], and 𝑓

𝐴
(𝑥) = [𝑐, 𝑑].

An interval-valued intuitionistic fuzzy set can be denoted by
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𝐴 = {⟨𝑥, [𝑎, 𝑏], [𝑐, 𝑑]⟩ | 𝑥 ∈ 𝑋}. In this paper, ([𝑎, 𝑏], [𝑐, 𝑑])
is referred as an interval-valued intuitionistic fuzzy value. For
convenience, let Ω be the set of all intervalvalued intuition-
istic fuzzy values on 𝑋. Obviously, 𝑎+ = ([1, 1], [0, 0]) and
𝑎
−

= ([0, 0], [1, 1]) are the largest and smallest interval-valued
intuitionistic fuzzy values, respectively. A distance measure
between inter-valued intuitionistic fuzzy values is defined as
follows [24].

Definition 6. Let 𝑋 = {𝑥
1
, . . . , 𝑥

𝑛
} be a universe of discourse,

and 𝑎 = ([𝑎
𝑖
, 𝑏
𝑖
], [𝑐
𝑖
, 𝑑
𝑖
]) and 𝑏̃ = ([𝑎

󸀠

𝑖
, 𝑏
󸀠

𝑖
], [𝑐
󸀠

𝑖
, 𝑑
󸀠

𝑖
]) (𝑖 =

1, . . . , 𝑛) be two interval-valued intuitionistic fuzzy values on
𝑋;

𝑑 (𝑎, 𝑏̃) =
1

4

𝑛

∑
𝑖=1

󵄨󵄨󵄨󵄨󵄨
𝑎
𝑖
− 𝑎
󸀠

𝑖

󵄨󵄨󵄨󵄨󵄨
+

󵄨󵄨󵄨󵄨󵄨
𝑏
𝑖
− 𝑏
󸀠

𝑖

󵄨󵄨󵄨󵄨󵄨
+

󵄨󵄨󵄨󵄨󵄨
𝑐
𝑖
− 𝑐
󸀠

𝑖

󵄨󵄨󵄨󵄨󵄨
+

󵄨󵄨󵄨󵄨󵄨
𝑑
𝑖
− 𝑑
󸀠

𝑖

󵄨󵄨󵄨󵄨󵄨 (9)

is called the normalized Hamming distance between 𝑎 and 𝑏̃,
if

𝑑 (𝑎, 𝑏̃) =
1

4

𝑛

∑
𝑖=1

𝑤
𝑖
(
󵄨󵄨󵄨󵄨󵄨
𝑎
𝑖
− 𝑎
󸀠

𝑖

󵄨󵄨󵄨󵄨󵄨
+

󵄨󵄨󵄨󵄨󵄨
𝑏
𝑖
− 𝑏
󸀠

𝑖

󵄨󵄨󵄨󵄨󵄨

+
󵄨󵄨󵄨󵄨󵄨
𝑐
𝑖
− 𝑐
󸀠

𝑖

󵄨󵄨󵄨󵄨󵄨
+

󵄨󵄨󵄨󵄨󵄨
𝑑
𝑖
− 𝑑
󸀠

𝑖

󵄨󵄨󵄨󵄨󵄨
) ,

(10)

where 𝑤 = (𝑤
1
, 𝑤
2
, . . . , 𝑤

𝑛
) is the weight vector of 𝑥

𝑗
such

that 𝑤
𝑖

∈ [0, 1] and ∑
𝑛

𝑖=1
𝑤
𝑖

= 1, and 𝑑(𝑎, 𝑏̃) is called the
weighted Hamming distance between 𝑎 and 𝑏̃.

The following expressions are defined for any two inter-
val-valued intuitionistic fuzzy values 𝑎

1
= ([𝑎
1
, 𝑏
1
], [𝑐
1
, 𝑑
1
])

and 𝑎
2
= ([𝑎
2
, 𝑏
2
], [𝑐
2
, 𝑑
2
]) [24]:

(i)

𝑎
1
≤ 𝑎
2

iff 𝑏
1
≤ 𝑏
2
, 𝑎
1
≤ 𝑎
2
, 𝑑
1
≥ 𝑑
2
, 𝑐
1
≥ 𝑐
2
, (11)

(ii)

𝑎
1
= 𝑎
2

iff 𝑏
1
= 𝑏
2
, 𝑎
1
= 𝑎
2
, 𝑑
1
= 𝑑
2
, 𝑐
1
= 𝑐
2
. (12)

Equation (11), however, is not always satisfied in some
decision making situations. To address this issue, the fol-
lowing order relation between interval-valued intuitionistic
fuzzy values is defined [46].

Definition 7. Let 𝑎
1

= ([𝑎
1
, 𝑏
1
], [𝑐
1
, 𝑑
1
]) and 𝑎

2
= ([𝑎

2
, 𝑏
2
],

[𝑐
2
, 𝑑
2
]) be two interval-valued intuitionistic fuzzy values, let

𝑆(𝑎
1
) = (𝑎

1
− 𝑐
1
+𝑏
1
−𝑑
1
)/2 and 𝑆(𝑎

2
= (𝑎
2
− 𝑐
2
+𝑏
2
−𝑑
2
)/2 be

the score functions of 𝑎
1
and 𝑎
2
, respectively, and let𝐻(𝑎

1
) =

(𝑎
1
+ 𝑐
1
+ 𝑏
1
+ 𝑑
1
)/2 and 𝐻(𝑎

2
) = (𝑎

2
+ 𝑐
2
+ 𝑏
2
+ 𝑑
2
)/2 be the

accuracy functions of 𝑎
1
and 𝑎
2
, respectively:

(a) if 𝑆(𝑎
1
) < 𝑆(𝑎

2
), 𝑎
1
is smaller than 𝑎

2
, denoted by 𝑎

1
<

𝑎
2
;

(b) if 𝑆(𝑎
1
) = 𝑆(𝑎

2
):

(i) if 𝐻(𝑎
1
) < 𝐻(𝑎

2
), 𝑎
1
is smaller than 𝑎

2
, denoted

by 𝑎
1
< 𝑎
2
;

(ii) if 𝐻(𝑎
1
) = 𝐻(𝑎

2
), 𝑎
1
and 𝑎
2
represent the same

information, denoted by 𝑎
1
= 𝑎
2
.

4. Interval-Valued Intuitionistic Fuzzy
Choquet Integral Operator

In interval-valued intuitionistic fuzzy multi-criteria group
decision making problems, some additive linear operators,
such as interval-valued intuitionistic fuzzy weighted averag-
ing [46], interval-valued intuitionistic fuzzy weighted geo-
metric [47, 48], or interval-valued intuitionistic fuzzy OWA
[48] operators, are applied for aggregating the decision
maker’s preference information. Existing research for multi-
criteria group decision making does not adequately address
the issue of interdependencies among criteria or decision-
makers’ preference. Inspired by the idea of the Choquet inte-
gral operator in decision making, in this section, an interval-
valued intuitionistic fuzzy Choquet integral operator is given
for effectively addressing the issue of interdependence among
decision-makers’ preference in a fuzzy environment [49,
50]. And some of its properties are investigated in detail.
The relation between this operator and the additive linear
interval-valued intuitionistic fuzzy aggregation operators is
analyzed. To do this, first two operational laws for interval-
valued intuitionistic fuzzy values [24, 46] are introduced.

Definition 8. Let 𝑎
1

= ([𝑎
1
, 𝑏
1
], [𝑐
1
, 𝑑
1
]) and 𝑎

2
= ([𝑎

2
, 𝑏
2
],

[𝑐
2
, 𝑑
2
]) be two interval-valued intuitionistic fuzzy values;

(i) 𝑎
1
+ 𝑎
2
= ([𝑎
1
+ 𝑎
2
− 𝑎
1
𝑎
2
, 𝑏
1
+ 𝑏
2
− 𝑏
1
𝑏
2
], [𝑐
1
𝑐
2
, 𝑑
1
𝑑
2
]);

(ii) 𝜆𝑎
1
= ([1 − (1 − 𝑎

1
)
𝜆
, 1 − (1 − 𝑏

1
)
𝜆
], [𝑐
𝜆

1
, 𝑑
𝜆

1
]), 𝜆 > 0.

These two operational laws have two properties described
as follows.

Proposition 9. Let 𝑎
1

= ([𝑎
1
, 𝑏
1
], [𝑐
1
, 𝑑
1
]) and 𝑎

2
= ([𝑎
2
, 𝑏
2
],

[𝑐
2
, 𝑑
2
]) be two interval-valued intuitionistic fuzzy values, and

let 𝑐 = 𝑎
1
+ 𝑎
2
and 𝑑 = 𝜆𝑎

1
; both 𝑐 and 𝑑 are also interval-

valued intuitionistic fuzzy values.

Proposition 10. Let 𝑎
1
= ([𝑎
1
, 𝑏
1
], [𝑐
1
, 𝑑
1
]) and 𝑎

2
= ([𝑎
2
, 𝑏
2
],

[𝑐
2
, 𝑑
2
]) be two interval-valued intuitionistic fuzzy values, for

all 𝜆
1
, 𝜆
2
> 0,

(i) 𝑎
1
+ 𝑎
2
= 𝑎
2
+ 𝑎
1
;

(ii) 𝜆
1
(𝑎
1
+ 𝑎
2
) = 𝜆
1
𝑎
1
+ 𝜆
1
𝑎
2
;

(iii) 𝜆
1
𝑎
1
+ 𝜆
2
𝑎
1
= (𝜆
1
+ 𝜆
2
)𝑎
1
.

According to these operational laws, an interval-valued
intuitionistic fuzzy Choquet integral operator is defined as
follows [49, 51].

Definition 11. Let 𝑎
𝑖

= ([𝑎
𝑖
, 𝑏
𝑖
], [𝑐
𝑖
, 𝑑
𝑖
]) (𝑖 = 1, 2, . . . , 𝑛) be

a collection of interval-valued intuitionistic fuzzy values on
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𝑋, and let 𝜇 be a fuzzy measure on 𝑋. The discrete interval-
valued intuitionistic fuzzy Choquet integral (I-IFC) of 𝑎

𝑖
with

respect to 𝜇 is defined by

I-IFC
𝜇
(𝑎
1
, . . . , 𝑎

𝑛
)

= 𝑎
(1)

(𝜇 (𝐴
(1)

) − 𝜇 (𝐴
(2)

)) + 𝑎
(2)

(𝜇 (𝐴
(2)

) − 𝜇 (𝐴
(3)

))

+ ⋅ ⋅ ⋅ + 𝑎
(𝑛)

(𝜇 (𝐴
(𝑛)

) − 𝜇 (𝐴
(𝑛+1)

))

=

𝑛

∑
𝑖=1

𝑎
(𝑖)

(𝜇 (𝐴
(𝑖)

) − 𝜇 (𝐴
(𝑖+1)

)) .

(13)

Further, the aggregated value is also an interval-valued intu-
itionistic fuzzy value, and

I-IFC
𝜇
(𝑎
1
, . . . , 𝑎

𝑛
)

= ([1 −

𝑛

∏
𝑖=1

(1 − 𝑎
(𝑖)

)
𝜇(𝐴(𝑖))−𝜇(𝐴(𝑖+1)),

1 −

𝑛

∏
𝑖=1

(1 − 𝑏
(𝑖)

)
𝜇(𝐴(𝑖))−𝜇(𝐴(𝑖+1))] ,

[

𝑛

∏
𝑖=1

(𝑐
(𝑖)

)
𝜇(𝐴(𝑖))−𝜇(𝐴(𝑖+1)),

𝑛

∏
𝑖=1

(𝑑
(𝑖)

)
𝜇(𝐴(𝑖))−𝜇(𝐴(𝑖+1))]) ,

(14)

where the subscript (⋅) indicates a permutation onX such that
𝑎
(1)

≤ 𝑎
(2)

≤ ⋅ ⋅ ⋅ ≤ 𝑎
(𝑛)
. And 𝐴

(𝑖)
= ((𝑖), . . . , (𝑛)), 𝐴

(𝑛+1)
= 0.

Remark 12. Obviously if interval-valued intuitionistic fuzzy
value 𝑎

𝑖
= ([𝑎
𝑖
, 𝑏
𝑖
], [𝑐
𝑖
, 𝑑
𝑖
]) (𝑖 = 1, 2, . . . , 𝑛) is reduced to intu-

itionistic fuzzy values, the interval-valued intuitionistic fuzzy
Choquet integral of 𝑎

𝑖
with respective to 𝜇 is reduced to an

intuitionistic fuzzy Choquet integral operator [52].

Remark 13. Let 𝑎
𝑖

= ([𝑎
𝑖
, 𝑏
𝑖
], [𝑐
𝑖
, 𝑑
𝑖
]) and 𝑏̃

𝑖
= ([𝑎

󸀠

𝑖
, 𝑏
󸀠

𝑖
],

[𝑐
󸀠

𝑖
, 𝑑
󸀠

𝑖
]) (𝑖 = 1, 2, . . . , 𝑛) be two collections of interval-

valued intuitionistic fuzzy values on 𝑋. Since 𝑎
𝑖
, 𝑏
𝑖
, 𝑐
𝑖
, 𝑑
𝑖
,

𝑎
󸀠

𝑖
, 𝑏
󸀠

𝑖
, 𝑐
󸀠

𝑖
, 𝑑
󸀠

𝑖
∈ [0, 1] for any 𝑖, if we assume that𝑇

𝑃
(𝑐
𝑖
, 𝑐
󸀠

𝑖
) = 𝑐
𝑖
𝑐
󸀠

𝑖
,

𝑇
𝑃
(𝑑
𝑖
, 𝑑
󸀠

𝑖
) = 𝑑
𝑖
𝑑
󸀠

𝑖
, 𝑆
𝑃
(𝑎
𝑖
, 𝑎
󸀠

𝑖
) = 𝑎
𝑖
+ 𝑎
󸀠

𝑖
− 𝑎
𝑖
𝑎
󸀠

𝑖
, and 𝑆

𝑃
(𝑏
𝑖
, 𝑏
󸀠

𝑖
) =

𝑏
𝑖
+ 𝑏
󸀠

𝑖
− 𝑏
𝑖
𝑏
󸀠

𝑖
, then 𝑇

𝑃
(𝑐
𝑖
, 𝑐
󸀠

𝑖
) and 𝑇

𝑃
(𝑑
𝑖
, 𝑑
󸀠

𝑖
) are two of the basic

𝑡-norms, called the product, which is satisfying the following
properties [53]: 𝑇

𝑃
(𝑥, 1) = 𝑥 (boundary); 𝑇

𝑃
(𝑥, 𝑦) ≤ 𝑇

𝑃
(𝑥, 𝑧)

whenever 𝑦 ≤ 𝑧 (monotonicity); 𝑇
𝑃
(𝑥, 𝑦) = 𝑇

𝑃
(𝑦, 𝑥)

(commutativity); and 𝑇
𝑃
(𝑥, 𝑇
𝑃
(𝑦, 𝑧)) = 𝑇

𝑃
(𝑇
𝑃
(𝑥, 𝑦)) (asso-

ciativity), where 𝑥, 𝑦, 𝑧 ∈ [0, 1]. 𝑆
𝑃
(𝑎
𝑖
, 𝑎
󸀠

𝑖
) and 𝑆

𝑃
(𝑏
𝑖
, 𝑏
󸀠

𝑖
) are

two of the basic 𝑡-conorms, called the probabilistic sum,
and 𝑆

𝑃
is also called the dual 𝑡-conorm of 𝑇

𝑃
, which is

satisfying the boundary; that is, 𝑆
𝑃
(𝑥, 0) = 𝑥, monotonicity,

commutativity, and associativity [53]. The associativity of 𝑡-
norms and 𝑡-conorms allows us to extend the product 𝑇

𝑃

and probabilistic sum 𝑆
𝑃
in unique way to an 𝑛-ary operation

in the usual way by induction, defining for each 𝑛-tuple

(𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
) ∈ [0, 1]

𝑛 and (𝑦
1
, 𝑦
2
, . . . , 𝑦

𝑛
) ∈ [0, 1]

𝑛, respec-
tively,

𝑇
𝑃
(𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
) =
𝑛

𝑇
𝑃

𝑖=1

𝑥
𝑖

= 𝑇
𝑃
(
𝑛−1

𝑇
𝑃

𝑖=1

𝑥
𝑖
, 𝑥
𝑛
) =

𝑛

∏
𝑖=1

𝑥
𝑖
,

𝑆
𝑃
(𝑦
1
, 𝑦
2
, . . . , 𝑦

𝑛
) =
𝑛

𝑆
𝑃

𝑖=1

𝑦
𝑖

= 𝑆
𝑃
(
𝑛−1

𝑆
𝑃

𝑖=1

𝑦
𝑖
, 𝑦
𝑛
) = 1 −

𝑛

∏
𝑖=1

(1 − 𝑦
𝑖
) .

(15)

Assume that 𝑦
𝑖

= 1 − (1 − 𝑎
(𝑖)

)
𝜇(𝐴(𝑖))−𝜇(𝐴(𝑖+1)), 𝑦

󸀠

𝑖
= 1 −

(1 − 𝑏
(𝑖)

)
𝜇(𝐴(𝑖))−𝜇(𝐴(𝑖+1)), and 𝑥

𝑖
= (𝑐
(𝑖)

)
𝜇(𝐴(𝑖))−𝜇(𝐴(𝑖+1)), 𝑥

󸀠

𝑖
=

(𝑑
(𝑖)

)
𝜇(𝐴(𝑖))−𝜇(𝐴(𝑖+1)),

I-IFC
𝜇
(𝑎
1
, . . . , 𝑎

𝑛
)

= ([𝑆
𝑃
(𝑦
1
, . . . , 𝑦

𝑛
) , 𝑆
𝑃
(𝑦
󸀠

1
, . . . , 𝑦

󸀠

𝑛
)] ,

[𝑇
𝑃
(𝑥
1
, . . . , 𝑥

𝑛
) , 𝑇
𝑃
(𝑥
󸀠

1
, . . . , 𝑥

󸀠

𝑛
)] ) .

(16)

This means that the interval-valued intuitionistic fuzzy Cho-
quet integral operator can be represented by one of the basic
𝑡-norms 𝑇

𝑃
and 𝑡-conorms 𝑆

𝑃
.

In the following, we discuss some desirable properties
about the interval-valued intuitionistic fuzzy Choquet inte-
gral operator.

Proposition 14. Let 𝑎
𝑖
= ([𝑎
𝑖
, 𝑏
𝑖
], [𝑐
𝑖
, 𝑑
𝑖
]) (𝑖 = 1, 2, . . . , 𝑛) be

a collection of interval-valued intuitionistic fuzzy values on 𝑋,
and let 𝜇 be a fuzzy measure on 𝑋. If all 𝑎

𝑖
(𝑖 = 1, 2, . . . , 𝑛)

are equal; that is, for all 𝑖, 𝑎
𝑖
= 𝑎 = ([𝑎, 𝑏], [𝑐, 𝑑]), 𝐼-𝐼𝐹𝐶

𝜇
(𝑎
1
,

. . . , 𝑎
𝑛
) = 𝑎.

Proof. According to (14), we have if for all 𝑖 (𝑖 = 1, 2, . . . , 𝑛),
𝑎
𝑖
= 𝑎,

I-IFC
𝜇
(𝑎
1
, . . . , 𝑎

𝑛
)

= ([1 − (1 − 𝑎)
∑
𝑛
𝑖=1 𝜇(𝐴(𝑖))−𝜇(𝐴(𝑖+1)),

1 − (1 − 𝑏)
∑
𝑛
𝑖=1 𝜇(𝐴(𝑖))−𝜇(𝐴(𝑖+1))] ,

[𝑐
∑
𝑛
𝑖=1 𝜇(𝐴(𝑖))−𝜇(𝐴(𝑖+1)),

𝑑
∑
𝑛
𝑖=1 𝜇(𝐴(𝑖))−𝜇(𝐴(𝑖+1))]) .

(17)

Since ∑
𝑛

𝑖=1
(𝜇(𝐴
(𝑖)

) − 𝜇(𝐴
(𝑖+1)

)) = 1, we have that

I-IFC
𝜇
(𝑎
1
, . . . , 𝑎

𝑛
) = ([𝑎, 𝑏] , [𝑐, 𝑑]) = 𝑎. (18)
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Proposition 15. Let 𝑎
𝑖
= ([𝑎
𝑖
, 𝑏
𝑖
], [𝑐
𝑖
, 𝑑
𝑖
]) and 𝑏̃

𝑖
= ([𝑎

󸀠

𝑖
, 𝑏
󸀠

𝑖
],

[𝑐
󸀠

𝑖
, 𝑑
󸀠

𝑖
]) (𝑖 = 1, 2, . . . , 𝑛) be two collections of interval-valued

intuitionistic fuzzy values on 𝑋, and let 𝜇 be a fuzzy measure
on𝑋. The subscript (⋅) indicates a permutation such that 𝑎

(1)
≤

⋅ ⋅ ⋅ ≤ 𝑎
(𝑛)

and 𝑏̃
(1)

≤ ⋅ ⋅ ⋅ ≤ 𝑏̃
(𝑛)
. If 𝑏
(𝑖)

≤ 𝑏
󸀠

(𝑖)
, 𝑎
(𝑖)

≤ 𝑎
󸀠

(𝑖)
and

𝑑
(𝑖)

≥ 𝑑
󸀠

(𝑖)
, 𝑐
(𝑖)

≥ 𝑐
󸀠

(𝑖)
for all 𝐼; that is, 𝑎

(𝑖)
≤ 𝑏̃
(𝑖)
,

𝐼-𝐼𝐹𝐶
𝜇
(𝑎
1
, . . . , 𝑎

𝑛
) ≤ 𝐼-𝐼𝐹𝐶

𝜇
(𝑏̃
1
, . . . , 𝑏̃

𝑛
) . (19)

Proof. Since𝐴
(𝑖+1)

⊆ 𝐴
(𝑖)
, then 𝜇(𝐴

(𝑖)
)−𝜇(𝐴

(𝑖+1)
) ≥ 0. For all

𝑖, 𝑏
(𝑖)

≤ 𝑏
󸀠

(𝑖)
, 𝑎
(𝑖)

≤ 𝑎
󸀠

(𝑖)
and 𝑑

(𝑖)
≥ 𝑑
󸀠

(𝑖)
, 𝑐
(𝑖)

≥ 𝑐
󸀠

(𝑖)
,

1−∏
𝑛

𝑖=1
(1−𝑎
(𝑖)

)
𝜇(𝐴(𝑖))−𝜇(𝐴(𝑖+1)) ≤ 1−∏

𝑛

𝑖=1
(1−𝑎
󸀠

(𝑖)
)
𝜇(𝐴(𝑖))−𝜇(𝐴(𝑖+1)),

1−∏
𝑛

𝑖=1
(1−𝑏
(𝑖)

)
𝜇(𝐴(𝑖))−𝜇(𝐴(𝑖+1)) ≤ 1−∏

𝑛

𝑖=1
(1−𝑏
󸀠

(𝑖)
)
𝜇(𝐴(𝑖))−𝜇(𝐴(𝑖+1)),

∏
𝑛

𝑖=1
(𝑓
𝑎(𝑖)

)
𝜇(𝐴(𝑖))−𝜇(𝐴(𝑖+1)) ≥ ∏

𝑛

𝑖=1
(𝑓
𝑏(𝑖)

)
𝜇(𝐴(𝑖))−𝜇(𝐴(𝑖+1)),

∏
𝑛

𝑖=1
(𝑑
(𝑖)

)
𝜇(𝐴(𝑖))−𝜇(𝐴(𝑖+1)) ≥ ∏

𝑛

𝑖=1
(𝑑
󸀠

(𝑖)
)
𝜇(𝐴(𝑖))−𝜇(𝐴(𝑖+1)).

According to (14) and (11), we have

I-IFC
𝜇
(𝑎
1
, . . . , 𝑎

𝑛
) ≤ I-IFC

𝜇
(𝑏̃
1
, . . . , 𝑏̃

𝑛
) . (20)

Proposition 16. Let 𝑎
𝑖
= ([𝑎
𝑖
, 𝑏
𝑖
], [𝑐
𝑖
, 𝑑
𝑖
]) (𝑖 = 1, 2, . . . , 𝑛) be

a collection of interval-valued intuitionistic fuzzy values on 𝑋,
and let 𝜇 be a fuzzy measure on 𝑋. If

𝑎
−

= ([min
𝑖

𝑎
𝑖
,min
𝑖

𝑏
𝑖
] , [max

𝑖

𝑐
𝑖
,max
𝑖

𝑑
𝑖
]) ,

𝑎
+

= ([max
𝑖

𝑎
𝑖
,max
𝑖

𝑏
𝑖
] , [min

𝑖

𝑐
𝑖
,min
𝑖

𝑑
𝑖
]) ,

(21)

then 𝑎
−

≤ 𝐼-𝐼𝐹𝐶
𝜇
(𝑎
1
, . . . , 𝑎

𝑛
) ≤ 𝑎
+.

Proof. For any 𝑎
𝑖
= ([𝑎
𝑖
, 𝑏
𝑖
], [𝑐
𝑖
, 𝑑
𝑖
]) (𝑖 = 1, . . . , 𝑛), it is obvious

that 𝑎
−and 𝑎

+are interval-valued intuitionistic fuzzy values.
Since 𝐴

(𝑖+1)
⊆ 𝐴
(𝑖)
, then 𝜇(𝐴

(𝑖)
) − 𝜇(𝐴

(𝑖+1)
) ≥ 0. Let the

subscript (⋅) indicate a permutation such that 𝑎
(1)

≤ ⋅ ⋅ ⋅ ≤ 𝑎
(𝑛)
;

for all 𝑖, we have

min
𝑖

𝑎
𝑖
≤ 𝑎
(𝑖)

≤ max
𝑖

𝑎
𝑖
, min

𝑖

𝑏
𝑖
≤ 𝑏
(𝑖)

≤ max
𝑖

𝑏
𝑖
,

min
𝑖

𝑐
𝑖
≤ 𝑐
(𝑖)

≤ max
𝑖

𝑐
𝑖
, min

𝑖

𝑑
𝑖
≤ 𝑑
(𝑖)

≤ max
𝑖

𝑑
𝑖
.

(22)

Thus,

1 −

𝑛

∏
𝑖=1

(1 − min
𝑖

𝑎
𝑖
)
𝜇(𝐴(𝑖))−𝜇(𝐴(𝑖+1))

≤ 1 −

𝑛

∏
𝑖=1

(1 − 𝑎
(𝑖)

)
𝜇(𝐴(𝑖))−𝜇(𝐴(𝑖+1))

≤ 1 −

𝑛

∏
𝑖=1

(1 − max
𝑖

𝑎
𝑖
)
𝜇(𝐴(𝑖))−𝜇(𝐴(𝑖+1))

,

1 −

𝑛

∏
𝑖=1

(1 − min
𝑖

𝑏
𝑖
)
𝜇(𝐴(𝑖))−𝜇(𝐴(𝑖+1))

≤ 1 −

𝑛

∏
𝑖=1

(1 − 𝑏
(𝑖)

)
𝜇(𝐴(𝑖))−𝜇(𝐴(𝑖+1))

≤ 1 −

𝑛

∏
𝑖=1

(1 − max
𝑖

𝑏
𝑖
)
𝜇(𝐴(𝑖))−𝜇(𝐴(𝑖+1))

,

𝑛

∏
𝑖=1

(min
𝑖

𝑐
𝑖
)
𝜇(𝐴(𝑖))−𝜇(𝐴(𝑖+1))

≤

𝑛

∏
𝑖=1

(𝑐
(𝑖)

)
𝜇(𝐴(𝑖))−𝜇(𝐴(𝑖+1))

≤

𝑛

∏
𝑖=1

(max
𝑖

𝑐
𝑖
)
𝜇(𝐴(𝑖))−𝜇(𝐴(𝑖+1))

,

𝑛

∏
𝑖=1

(min
𝑖

𝑑
𝑖
)
𝜇(𝐴(𝑖))−𝜇(𝐴(𝑖+1))

≤

𝑛

∏
𝑖=1

(𝑑
(𝑖)

)
𝜇(𝐴(𝑖))−𝜇(𝐴(𝑖+1))

≤

𝑛

∏
𝑖=1

(max
𝑖

𝑑
𝑖
)
𝜇(𝐴(𝑖))−𝜇(𝐴(𝑖+1))

;

(23)

that is,

1 − (1 − min
𝑖

𝑎
𝑖
)
∑
𝑛
𝑖=1 𝜇(𝐴(𝑖))−𝜇(𝐴(𝑖+1))

≤ 1 −

𝑛

∏
𝑖=1

(1 − 𝑎
(𝑖)

)
𝜇(𝐴(𝑖))−𝜇(𝐴(𝑖+1))

≤ 1 − (1 − max
𝑖

𝑎
𝑖
)
∑
𝑛
𝑖=1 𝜇(𝐴(𝑖))−𝜇(𝐴(𝑖+1))

,

1 − (1 − min
𝑖

𝑏
𝑖
)
∑
𝑛
𝑖=1 𝜇(𝐴(𝑖))−𝜇(𝐴(𝑖+1))

≤ 1 −

𝑛

∏
𝑖=1

(1 − 𝑏
(𝑖)

)
𝜇(𝐴(𝑖))−𝜇(𝐴(𝑖+1))

≤ 1 − (1 − max
𝑖

𝑏
𝑖
)
∑
𝑛
𝑖=1 𝜇(𝐴(𝑖))−𝜇(𝐴(𝑖+1))

,

(min
𝑖

𝑐
𝑖
)
∑
𝑛
𝑖=1 𝜇(𝐴(𝑖))−𝜇(𝐴(𝑖+1))

≤

𝑛

∏
𝑖=1

(𝑐
(𝑖)

)
𝜇(𝐴(𝑖))−𝜇(𝐴(𝑖+1))

≤ (max
𝑖

𝑐
𝑖
)
∑
𝑛
𝑖=1 𝜇(𝐴(𝑖))−𝜇(𝐴(𝑖+1))

,
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(min
𝑖

𝑑
𝑖
)
∑
𝑛
𝑖=1 𝜇(𝐴(𝑖))−𝜇(𝐴(𝑖+1))

≤

𝑛

∏
𝑖=1

(𝑑
(𝑖)

)
𝜇(𝐴(𝑖))−𝜇(𝐴(𝑖+1))

≤ (max
𝑖

𝑑
𝑖
)
∑
𝑛
𝑖=1 𝜇(𝐴(𝑖))−𝜇(𝐴(𝑖+1))

.

(24)

So we have

min
𝑖

𝑎
𝑖
≤ 1 −

𝑛

∏
𝑖=1

(1 − 𝑎
(𝑖)

)
𝜇(𝐴(𝑖))−𝜇(𝐴(𝑖+1)) ≤ max

𝑖

𝑎
𝑖
,

min
𝑖

𝑏
𝑖
≤ 1 −

𝑛

∏
𝑖=1

(1 − 𝑏
(𝑖)

)
𝜇(𝐴(𝑖))−𝜇(𝐴(𝑖+1)) ≤ max

𝑖

𝑏
𝑖
,

min
𝑖

𝑐
𝑖
≤

𝑛

∏
𝑖=1

(𝑐
(𝑖)

)
𝜇(𝐴(𝑖))−𝜇(𝐴(𝑖+1)) ≤ max

𝑖

𝑐
𝑖
,

min
𝑖

𝑑
𝑖
≤

𝑛

∏
𝑖=1

(𝑑
(𝑖)

)
𝜇(𝐴(𝑖))−𝜇(𝐴(𝑖+1)) ≤ min

𝑖

𝑑
𝑖
.

(25)

According to (14) and (11), we have

([min
𝑖

𝑎
𝑖
,min
𝑖

𝑏
𝑖
] , [max

𝑖

𝑐
𝑖
,max
𝑖

𝑑
𝑖
])

≤ I-IFC
𝜇
(𝑎
1
, . . . , 𝑎

𝑛
)

≤ ([max
𝑖

𝑎
𝑖
,max
𝑖

𝑏
𝑖
] , [min

𝑖

𝑐
𝑖
,min
𝑖

𝑑
𝑖
]) ;

(26)

that is, 𝑎− ≤ I-IFC
𝜇
(𝑎
1
, . . . , 𝑎

𝑛
) ≤ 𝑎
+.

Proposition 17. Let 𝑎
𝑖
= ([𝑎
𝑖
, 𝑏
𝑖
], [𝑐
𝑖
, 𝑑
𝑖
]) (𝑖 = 1, 2, . . . , 𝑛) be

a collection of interval-valued intuitionistic fuzzy values on 𝑋,
and let 𝜇 be a fuzzy measure on 𝑋. If 𝑠 = ([𝑎, 𝑏], [𝑐, 𝑑]) is an
interval-valued intuitionistic fuzzy value on 𝑋, then

𝐼-𝐼𝐹𝐶
𝜇
(𝑎
1
+ 𝑠, . . . , 𝑎

𝑛
+ 𝑠) = 𝐼-𝐼𝐹𝐶

𝜇
(𝑎
1
, . . . , 𝑎

𝑛
) + 𝑠. (27)

Proof. Since for any 𝑖 (𝑖 = 1, 2, . . . , 𝑛),

𝑎
𝑖
+ 𝑠 = ([𝑎

𝑖
+ 𝑎 − 𝑎

𝑖
𝑎, 𝑏
𝑖
+ 𝑏 − 𝑏

𝑖
𝑏] , [𝑐
𝑖
𝑐, 𝑑
𝑖
𝑑])

= ([1 − (1 − 𝑎
𝑖
) (1 − 𝑎) ,

1 − (1 − 𝑏
𝑖
) (1 − 𝑏)] , [𝑐

𝑖
𝑐, 𝑑
𝑖
𝑑]) .

(28)

According to (14), we have

I-IFC
𝜇
(𝑎
1
+ 𝑠, . . . , 𝑎

𝑛
+ 𝑠)

= ([1 −

𝑛

∏
𝑖=1

((1 − 𝑎
(𝑖)

) (1 − 𝑎))
𝜇(𝐴(𝑖))−𝜇(𝐴(𝑖+1)) ,

1 −

𝑛

∏
𝑖=1

((1 − 𝑏
(𝑖)

) (1 − 𝑏))
𝜇(𝐴(𝑖))−𝜇(𝐴(𝑖+1))] ,

[

𝑛

∏
𝑖=1

(𝑐
(𝑖)

𝑐)
𝜇(𝐴(𝑖))−𝜇(𝐴(𝑖+1)) ,

𝑛

∏
𝑖=1

(𝑑
(𝑖)

𝑑)
𝜇(𝐴(𝑖))−𝜇(𝐴(𝑖+1))])

= ([1 − (1 − 𝑎)

𝑛

∏
𝑖=1

(1 − 𝑎
(𝑖)

)
𝜇(𝐴(𝑖))−𝜇(𝐴(𝑖+1)) ,

1 − (1 − 𝑏)

𝑛

∏
𝑖=1

(1 − 𝑏
(𝑖)

)
𝜇(𝐴(𝑖))−𝜇(𝐴(𝑖+1))] ,

[𝑐

𝑛

∏
𝑖=1

(𝑐
(𝑖)

)
𝜇(𝐴(𝑖))−𝜇(𝐴(𝑖+1)),

𝑑

𝑛

∏
𝑖=1

(𝑑
(𝑖)

)
𝜇(𝐴(𝑖))−𝜇(𝐴(𝑖+1))]) .

(29)

According to Definition 8, we have

I-IFC
𝜇
(𝑎
1
, . . . , 𝑎

𝑛
) + 𝑠

= ([1 − (1 − 𝑎)

𝑛

∏
𝑖=1

(1 − 𝑎
(𝑖)

)
𝜇(𝐴(𝑖))−𝜇(𝐴(𝑖+1)),

1 − (1 − 𝑏)

𝑛

∏
𝑖=1

(1 − 𝑏
(𝑖)

)
𝜇(𝐴(𝑖))−𝜇(𝐴(𝑖+1))] ,

[𝑐

𝑛

∏
𝑖=1

(𝑐
(𝑖)

)
𝜇(𝐴(𝑖))−𝜇(𝐴(𝑖+1)),

𝑑

𝑛

∏
𝑖=1

(𝑑
(𝑖)

)
𝜇(𝐴(𝑖))−𝜇(𝐴(𝑖+1))]) .

(30)

Thus,

I-IFC
𝜇
(𝑎
1
+ 𝑠, . . . , 𝑎

𝑛
+ 𝑠) = I-IFC

𝜇
(𝑎
1
, . . . , 𝑎

𝑛
) + 𝑠. (31)

Proposition 18. Let 𝑎
𝑖
= ([𝑎
𝑖
, 𝑏
𝑖
], [𝑐
𝑖
, 𝑑
𝑖
]) (𝑖 = 1, 2, . . . , 𝑛) be

a collection of interval-valued intuitionistic fuzzy values on 𝑋,
and let 𝜇 be a fuzzy measure on 𝑋. If 𝑟 > 0; then

𝐼-𝐼𝐹𝐶
𝜇
(𝑟𝑎
1
, . . . , 𝑟𝑎

𝑛
) = 𝑟𝐼-𝐼𝐹𝐶

𝜇
(𝑎
1
, . . . , 𝑎

𝑛
) . (32)

Proof. According to Definition 8, for any 𝑖 (𝑖 = 1, 2, . . . , 𝑛)

and 𝑟 > 0, we have

𝑟𝑎
𝑖
= ([1 − (1 − 𝑎

𝑖
)
𝑟

, 1 − (1 − 𝑏
𝑖
)
𝑟

] , [(𝑐
𝑖
)
𝑟

, (𝑑
𝑖
)
𝑟

]) . (33)
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According to (14), we have

I-IFC
𝜇
(𝑟𝑎
1
, . . . , 𝑟𝑎

𝑛
)

= ([1 −

𝑛

∏
𝑖=1

((1 − 𝑎
(𝑖)

)
𝑟

)
𝜇(𝐴(𝑖))−𝜇(𝐴(𝑖+1))

,

1 −

𝑛

∏
𝑖=1

((1 − 𝑏
(𝑖)

)
𝑟

)
𝜇(𝐴(𝑖))−𝜇(𝐴(𝑖+1))

] ,

[

𝑛

∏
𝑖=1

((𝑐
(𝑖)

)
𝑟

)
(𝜇(𝐴(𝑖))−𝜇(𝐴(𝑖+1)))

,

𝑛

∏
𝑖=1

((𝑑
(𝑖)

)
𝑟

)
(𝜇(𝐴(𝑖))−𝜇(𝐴(𝑖+1)))

])

= ([1 −

𝑛

∏
𝑖=1

(1 − 𝑎
(𝑖)

)
𝑟(𝜇(𝐴(𝑖))−𝜇(𝐴(𝑖+1))),

1 −

𝑛

∏
𝑖=1

(1 − 𝑏
(𝑖)

)
𝑟(𝜇(𝐴(𝑖))−𝜇(𝐴(𝑖+1)))] ,

[

𝑛

∏
𝑖=1

(𝑐
(𝑖)

)
𝑟(𝜇(𝐴(𝑖))−𝜇(𝐴(𝑖+1))),

𝑛

∏
𝑖=1

(𝑑
(𝑖)

)
𝑟(𝜇(𝐴(𝑖))−𝜇(𝐴(𝑖+1)))]) .

(34)

Since

𝑟I-IFC
𝜇
(𝑎
1
, . . . , 𝑎

𝑛
)

= 𝑟([1 −

𝑛

∏
𝑖=1

(1 − 𝑎
(𝑖)

)
𝜇(𝐴(𝑖))−𝜇(𝐴(𝑖+1)) ,

1 −

𝑛

∏
𝑖=1

(1 − 𝑏
(𝑖)

)
𝜇(𝐴(𝑖))−𝜇(𝐴(𝑖+1))] ,

[

𝑛

∏
𝑖=1

(𝑐
(𝑖)

)
𝜇(𝐴(𝑖))−𝜇(𝐴(𝑖+1)) ,

𝑛

∏
𝑖=1

(𝑑
(𝑖)

)
𝜇(𝐴(𝑖))−𝜇(𝐴(𝑖+1))])

= ([1 − (

𝑛

∏
𝑖=1

(1 − 𝑎
(𝑖)

)
𝜇(𝐴(𝑖))−𝜇(𝐴(𝑖+1)))

𝑟

,

1 − (

𝑛

∏
𝑖=1

(1 − 𝑏
(𝑖)

)
𝜇(𝐴(𝑖))−𝜇(𝐴(𝑖+1)))

𝑟

] ,

[(

𝑛

∏
𝑖=1

(𝑐
(𝑖)

)
𝜇(𝐴(𝑖))−𝜇(𝐴(𝑖+1)))

𝑟

,

(

𝑛

∏
𝑖=1

(𝑑
(𝑖)

)
𝜇(𝐴(𝑖))−𝜇(𝐴(𝑖+1)))

𝑟

])

= ([1 −

𝑛

∏
𝑖=1

(1 − 𝑎
(𝑖)

)
𝑟(𝜇(𝐴(𝑖))−𝜇(𝐴(𝑖+1))),

1 −

𝑛

∏
𝑖=1

(1 − 𝑏
(𝑖)

)
𝑟(𝜇(𝐴(𝑖))−𝜇(𝐴(𝑖+1)))] ,

[

𝑛

∏
𝑖=1

(𝑐
(𝑖)

)
𝑟(𝜇(𝐴(𝑖))−𝜇(𝐴(𝑖+1))),

𝑛

∏
𝑖=1

(𝑑
(𝑖)

)
𝑟(𝜇(𝐴(𝑖))−𝜇(𝐴(𝑖+1)))]) ,

(35)

thus, I-IFC
𝜇
(𝑟𝑎
1
, . . . , 𝑟𝑎

𝑛
) = 𝑟I-IFC

𝜇
(𝑎
1
, . . . , 𝑎

𝑛
).

According to Propositions 17 and 18, the following corol-
lary can be derived.

Corollary 19. Let 𝑎
𝑖

= ([𝑎
𝑖
, 𝑏
𝑖
], [𝑐
𝑖
, 𝑑
𝑖
]) (𝑖 = 1, 2, . . . , 𝑛) be

a collection of interval-valued intuitionistic fuzzy values on
𝑋, and let 𝜇 be a fuzzy measure on 𝑋. If 𝑟 > 0 and 𝑠 =

([𝑎, 𝑏], [𝑐, 𝑑]) is an interval-valued intuitionistic fuzzy value on
𝑋,

𝐼-𝐼𝐹𝐶
𝜇
(𝑟𝑎
1
+ 𝑠, . . . , 𝑟𝑎

𝑛
+ 𝑠) = 𝑟𝐼-𝐼𝐹𝐶

𝜇
(𝑎
1
, . . . , 𝑎

𝑛
) + 𝑠.

(36)

Remark 20. From the above analysis, the interval-valued
intuitionistic fuzzy Choquet integral operator has the same
properties as these of the intuitionistic fuzzyChoquet integral
operator [52].

Definition 21. Let 𝑎
𝑖

= ([𝑎
𝑖
, 𝑏
𝑖
], [𝑐
𝑖
, 𝑑
𝑖
]) (𝑖 = 1, . . . , 𝑛) be

a collection of interval-valued intuitionistic fuzzy values on
𝑋. An interval-valued intuitionistic fuzzy ordered weighted
averaging (I-IFOWA) operator of dimension 𝑛 is a mapping
I-IFOWA: Ω𝑛 → Ω, that has an associated weight vector
𝑤 = (𝑤

1
, 𝑤
2
, . . . , 𝑤

𝑛
) such that 𝑤

𝑖
∈ [0, 1] and ∑

𝑛

𝑖=1
𝑤
𝑖
= 1,

and

I-IFOWA
𝑤
(𝑎
1
, 𝑎
2
, . . . , 𝑎

𝑛
) = 𝑤
1
𝑎
(1)

+ 𝑤
2
𝑎
(2)

+ ⋅ ⋅ ⋅ + 𝑤
𝑛
𝑎
(𝑛)

,
(37)

where the subscript (⋅) indicates a permutation such that
𝑎
(1)

≤ ⋅ ⋅ ⋅ ≤ 𝑎
(𝑛)
. Furthermore,

I-IFOWA
𝑤
(𝑎
1
, . . . , 𝑎

𝑛
)

= ([1 −

𝑛

∏
𝑖=1

(1 − 𝑎
(𝑖)

)
𝑤𝑖 , 1 −

𝑛

∏
𝑖=1

(1 − 𝑏
(𝑖)

)
𝑤𝑖] ,

[

𝑛

∏
𝑖=1

(𝑐
(𝑖)

)
𝑤𝑖 ,

𝑛

∏
𝑖=1

(𝑑
(𝑖)

)
𝑤𝑖]) .

(38)
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Theorem 22. Let 𝑎
𝑖

= ([𝑎
𝑖
, 𝑏
𝑖
], [𝑐
𝑖
, 𝑑
𝑖
]) (𝑖 = 1, 2, . . . , 𝑛) be

a collection of interval-valued intuitionistic fuzzy values on
𝑋, and let 𝜇 be a fuzzy measure on 𝑋. Any interval-valued
intuitionistic fuzzy ordered weighted averaging operator with
the weighted vector 𝑤 = (𝑤

1
, . . . , 𝑤

𝑛
) is a special interval-

valued intuitionistic fuzzy Choquet integral operator, whose
fuzzymeasure𝜇 is defined by𝜇(𝑆) = ∑

𝑛

𝑖=𝑛−𝑠+1
𝑤
𝑖
(𝑆 ⊆ 𝑋, 𝑆 ̸= 0)

where 𝑛, 𝑠 is denoted the cardinality of 𝑆, 𝑋, respectively.
Reciprocally, any commutative interval-valued intuitionistic
fuzzy Choquet integral operator is such that 𝜇(𝑆) depends only
on 𝑠, where 𝑠 denotes the cardinality of 𝑆 (𝑆 ⊆ 𝑋) and coincides
with an interval-valued intuitionistic fuzzy ordered weighted
averaging operator, whose weights are 𝑤

𝑛−𝑠
= 𝜇(𝑆 ∪ 𝑖) − 𝜇(𝑆),

𝑖 ∈ 𝑋, 𝑆 ⊆ 𝑋 \ 𝑖.

The proof of Theorem 22 is similar to that of Proposition
12 in [52].

Remark 23. The analysis above shows that the relationship
between the I-IFC operator and the I-IFOWA operator is
similar to that between Choquet integral and OWA operator.
Furthermore, If 𝜇 is an additive fuzzymeasure on𝑋 such that
𝜇(𝐴) = ∑

𝑖∈𝐴
𝑤
𝑖
(𝐴 ⊆ 𝑋), the interval-valued intuitionistic

fuzzy Choquet operator is reduced to the interval-valued
intuitionistic fuzzy weighted averaging operator [46]. This
means that the interval-valued intuitionistic fuzzy Choquet
integral operator generalizes both the interval-valued intu-
itionistic fuzzy ordered weighted averaging and the interval-
valued intuitionistic fuzzy weighted averaging operators.
There are interactive or interdependent characteristics among
decision making criteria or subjective preferences of indi-
vidual decision makers; the proposed operator not only
can overcome the limitation of these traditional interval-
valued intuitionistic fuzzy aggregation operators. But also
can be used for better modeling the uncertain and imprecise
information in the decision making process.

5. Shapley Weights

In multi-criteria decision making problems, weighting coef-
ficients (weight 𝑤

𝑖
) are introduced to express the relative

importance of different criteria. Each criterion is endowed
with a specific importance weight. Generally, it is seen that
weighting methods are categorized into two categories: sub-
jectivemethods and objectivemethods [54]. Subjectivemeth-
ods determineweights solely based on the preference or judg-
ments of decisionmakers.However, objectivemethods utilize
mathematical models, automatically without considering the
decision makers’ preferences.

The VIKOR method was developed as a multi-criteria
decisionmaking method to solve a discrete decision problem
with conflicting criteria [9]. For conflicting criteria, the
overall importance of a criterion 𝑖 ∈ 𝑁 (𝑁 denotes a criteria
set) is not solely determined by itself 𝑖 but also by all other
criteria 𝑇, 𝑖 ∉ 𝑇. Suppose that 𝑤(𝑖) denotes the importance
degree of 𝑖.𝑤(𝑖) = 0 suggests that the element is unimportant.
For conflicting criteria, however, it may happen that formany
subsets𝑇 ⊆ 𝑁,𝑤(𝑇∪𝑖) is much greater than𝑤(𝑇), suggesting
that 𝑖 is actually an important criterion in the decisionmaking

process. So for decision making problems with conflicting
criteria, we consider not only subjective weight of criteria but
also objective weight. The fuzzy measure defined as above is
capable of modeling this situation, which represents a weight
on not only each criterion but also each combination of
criteria so that the total of all the 𝑤

𝑖
(𝑖 = 1, 2, . . . , 𝑛) does not

necessarily equal to one. As a result, the conflicting phenom-
ena between criteria can be represented.

Taking this case into consideration in 1953, Shapley [55]
proposed a definition of a coefficient of importance, based on
a set of reasonable axioms. The importance index or Shapley
value of criterion 𝑖 with respect to fuzzy measure 𝜇 is defined
by

𝜙
𝑖
(𝜇) = ∑

𝑇⊆𝑁\𝑖

(𝑛 − 𝑡 − 1)!𝑡!

𝑛!
[𝜇 (𝑇 ∪ 𝑖) − 𝜇 (𝑇)] , (39)

where 𝑛 and 𝑡 denote the cardinality of set 𝑁, and 𝑇, respec-
tively. Further, according to (3), for 𝜆-fuzzy measure 𝑔, the
importance index or Shapley value 𝜙

𝑖
(𝑔) of criterion 𝑖 can be

expressed by

𝜙
𝑖
(𝑔) = ∑

𝑇⊆𝑁\𝑖

(𝑛 − 𝑡 − 1)!𝑡!

𝑛!
𝑔 (𝑖)∏
𝑗∈𝑇

[1 + 𝜆𝑔 (𝑗)] , (40)

where fuzzy density, 𝑔(𝑖), is a subjective assessment or pref-
erence of decision maker to criterion 𝑖, which can be seen as
a subjective weight of criterion 𝑖.

A basic property of the Shapley value is

𝑛

∑
𝑖=1

𝜙
𝑖
(𝜇) = 1, (41)

which mean that {𝜙
𝑖
(𝜇)}
𝑖∈𝑁

is a weight vector. When 𝜇 is
additive, we clearly have

𝜙
𝑖
(𝜇) = 𝜇 (𝑖) = 𝑤

𝑖
, 𝑖 ∈ 𝑁. (42)

In this case decision maker’s subjective preference is only
taken into account in the weighting coefficients.

If 𝜇 is nonadditive then some criteria are dependent and
(42) generally does not hold anymore. This shows that it
is sensible to search for a coefficient of overall importance
for each criterion, where the importance index or Shapley
value takes into account both decision makers’ subjective
preference and the objective weighting of the criteria which
is calculated by (40). Thus, the importance index or value
of criterion is capable of being deployed as a weighting
calculationmethod. Shapley weight provides a subjective and
objective assessment of criteria in the decision making
process.

6. Extended VIKOR Method with Interval-
Valued Intuitionistic Fuzzy Information

In this section, we extend the VIKORmethod to solve multi-
criteria group decision making problems in which all pref-
erence information provided by decision makers is expressed
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as interval-valued intuitionistic fuzzy values, and the inter-
action phenomena among the preference of individual deci-
sion makers and conflicting criteria are taken into account.
For multi-criteria group decision making problem, let 𝐸 =

(𝑒
1
, 𝑒
2
, . . . , 𝑒

𝑟
) be the set of 𝑟 decision makers, 𝐴 = (𝑎

1
, 𝑎
2
,

. . . , 𝑎
𝑚
) the set of 𝑚 alternatives, and 𝐶 = (𝑐

1
, 𝑐
2
, . . . , 𝑐

𝑛
) the

set of 𝑛 criteria.
To adequately model the multi-criteria group decision

making problem as above, first, the proposed interval-valued
intuitionistic fuzzy Choquet integral operator is used for
effectively aggregating all the opinions of individual decision
makers into a collective opinion under an interval-valued
intuitionistic fuzzy group decision making environment.
Further, based on the VIKOR method, an interval-valued
intuitionistic fuzzy VIKOR method has been developed to
provide a rational, systematic decision making process by
which one discovers the best solution and a compromise
solution that can be used to resolve a fuzzy multi-criteria
decision making problem. The extended VIKOR decision
procedure of multi-criteria group decision making based
on interval-valued intuitionistic fuzzy Choquet integral is
summarized as follows.

Step 1. For every alternative 𝑎
𝑖
(𝑖 = 1, 2, . . . , 𝑚), each expert

𝑒
𝑘
(𝑘 = 1, 2, . . . , 𝑟) is invited to express their individual eval-

uations or preferences with respect to each criterion 𝑐
𝑗
(𝑗 =

1, 2, . . . , 𝑛) by an interval-valued intuitionistic fuzzy value
𝑎
𝑘

𝑖𝑗
= ([𝑎
𝑎
𝑘
𝑖𝑗
, 𝑏
𝑎
𝑘
𝑖𝑗
], [𝑐
𝑎
𝑘
𝑖𝑗
, 𝑑
𝑎
𝑘
𝑖𝑗
]) (𝑖 = 1, 2, . . . , 𝑚; 𝑗 = 1, 2, . . . , 𝑛, 𝑘 =

1, 2, . . . , 𝑟), where [𝑎
𝑎
𝑘
𝑖𝑗
, 𝑏
𝑎
𝑘
𝑖𝑗
] indicates the uncertain degree

where expert 𝑒
𝑘
considers what the alternative 𝑎

𝑖
should

satisfy the criteria 𝑐
𝑗
and [𝑐

𝑎
𝑘
𝑖𝑗
, 𝑑
𝑎
𝑘
𝑖𝑗
] indicates the uncertain

degree where expert 𝑒
𝑘
considers what the alternative 𝑎

𝑖

should not satisfy the criteria 𝑐
𝑗
. Then we can obtain the

decision making matrix as follows:

𝐷
𝑘
= (

𝑎
𝑘

11
, 𝑎
𝑘

12
, . . . , 𝑎

𝑘

1𝑛

𝑎
𝑘

21
, 𝑎
𝑘

22
, . . . , 𝑎

𝑘

2𝑛

...
𝑎
𝑘

𝑚1
, 𝑎
𝑘

𝑚2
, . . . , 𝑎

𝑘

𝑚𝑛

). (43)

Step 2. Since the interaction phenomena among the prefer-
ence of individual decision makers are considered, the 𝜆-
fuzzy measure 𝑔 is used for determining the importance of
each expert 𝑒

𝑘
(𝑘 = 1, 2, . . . , 𝑟), that is, the fuzzy density 𝑔

𝑘
=

𝑔(𝑒
𝑘
) of each expert 𝑒

𝑘
. According to (4), the parameter 𝜆

of expert 𝑒
𝑘
can be calculated. Then the importance of each

combination of experts can be obtained by (3).

Step 3. By (11) or Definition 7, 𝑎𝑘
𝑖𝑗
is reordered such that 𝑎(𝑘)

𝑖𝑗
≤

𝑎
(𝑘+1)

𝑖𝑗
. Utilize the interval-valued intuitionistic fuzzyChoquet

integral operator

𝑎
𝑖𝑗

= I-IFC
𝑔
(𝑎
1

𝑖𝑗
, . . . , 𝑎

𝑟

𝑖𝑗
)

= ([1 −

𝑟

∏
𝑘=1

(1 − 𝑎
𝑎
(𝑘)

𝑖𝑗

)
𝑔(𝐴(𝑘))−𝑔(𝐴(𝑘+1))

,

1 −

𝑟

∏
𝑘=1

(1 − 𝑏
𝑎
(𝑘)

𝑖𝑗

)
𝑔(𝐴(𝑘))−𝑔(𝐴(𝑘+1))

] ,

[

𝑟

∏
𝑘=1

(𝑐
𝑎
(𝑘)

𝑖𝑗

)
𝑔(𝐴(𝑘))−𝜇(𝐴(𝑘+1))

,

𝑟

∏
𝑘=1

(𝑑
𝑎
(𝑘)

𝑖𝑗

)
𝑔(𝐴(𝑘))−𝜇(𝐴(𝑘+1))

])

(44)

to aggregate all the interval-valued intuitionistic fuzzy deci-
sion matrices 𝐷

𝑘
= (𝑎

𝑘

𝑖𝑗
)
𝑚×𝑛

(𝑘 = 1, 2, . . . , 𝑟) into a
collective interval-valued intuitionistic fuzzy decision matrix
𝐷 = (𝑎

𝑖𝑗
)
𝑚×𝑛

, where 𝑎
𝑖𝑗

= ([𝑎
𝑎𝑖𝑗

, 𝑏
𝑎𝑖𝑗

], [𝑐
𝑎𝑖𝑗

, 𝑑
𝑎𝑖𝑗

]) (𝑖 = 1, 2,

. . . , 𝑚; 𝑗 = 1, 2, . . . , 𝑛), 𝐴
(𝑘)

= {𝑒
(𝑘)

, . . . , 𝑒
(𝑟)

}, 𝐴
(𝑟+1)

= 0, and
𝑔(𝐴
(𝑘)

) can be calculated by (3).

Step 4. Let 𝐽
1
be a collection of benefit criteria (the larger

the 𝑐
𝑗
, the greater the preference) and 𝐽

2
a collection of cost

criteria (the smaller the 𝑐
𝑗
, the greater the preference). The

interval-valued intuitionistic fuzzy positive-ideal solution
(IV-IFPIS), denoted by 𝛼̃

+, and the interval-valued intuition-
istic fuzzy negative-ideal solution (IV-IFNIS), denoted by
𝛼̃
−

= (𝛼̃
−

1
, 𝛼̃
−

2
, . . . , 𝛼̃

−

𝑛
), are defined as follows:

𝛼̃
+

= {⟨𝑐
𝑗
, ([(max

𝑖

𝑎
𝑎𝑖𝑗

,max
𝑖

𝑏
𝑎𝑖𝑗

) | 𝑗 ∈ 𝐽
1
,

(min
𝑖

𝑎
𝑎𝑖𝑗

,min
𝑖

𝑏
𝑎𝑖𝑗

) | 𝑗 ∈ 𝐽
2
] ,

[(min
𝑖

𝑐
𝑎𝑖𝑗

,min
𝑖

𝑑
𝑎𝑖𝑗

) | 𝑗 ∈ 𝐽
1
,

(max
𝑖

𝑐
𝑎𝑖𝑗

,max
𝑖

𝑑
𝑎𝑖𝑗

) | 𝑗 ∈ 𝐽
2
])⟩

| 𝑖 = 1, 2, . . . , 𝑚}

= (𝛼̃
+

1
, 𝛼̃
+

2
, . . . , 𝛼̃

+

𝑛
) ,

(45)

where 𝛼̃
+

𝑗
= ([𝑎
𝛼̃
+
𝑗
, 𝑏
𝛼̃
+
𝑗
], [𝑐
𝛼̃
+
𝑗
, 𝑑
𝛼̃
+
𝑗
])(𝑗 = 1, 2, . . . , 𝑛). Consider

𝛼̃
−

= {⟨𝑐
𝑗
, ([(min

𝑖

𝑎
𝑎𝑖𝑗

,min
𝑖

𝑏
𝑎𝑖𝑗

) | 𝑗 ∈ 𝐽
1
,

(max
𝑖

𝑎
𝑎𝑖𝑗

,max
𝑖

𝑏
𝑎𝑖𝑗

) | 𝑗 ∈ 𝐽
2
] ,

[(max
𝑖

𝑐
𝑎𝑖𝑗

,max
𝑖

𝑑
𝑎𝑖𝑗

) | 𝑗 ∈ 𝐽
1
,

(min
𝑖

𝑐
𝑎𝑖𝑗

,min
𝑖

𝑑
𝑎𝑖𝑗

) | 𝑗 ∈ 𝐽
2
])⟩

| 𝑖 = 1, 2, . . . , 𝑚}

= (𝛼̃
−

1
, 𝛼̃
−

2
, . . . , 𝛼̃

−

𝑛
) ,

(46)

where 𝛼̃
−

𝑗
= ([𝑎
𝛼̃
−
𝑗
, 𝑏
𝛼̃
−
𝑗
], [𝑐
𝛼̃
−
𝑗
, 𝑑
𝛼̃
−
𝑗
] (𝑗 = 1, 2, . . . , 𝑛).
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Step 5. For conflicting criteria, the 𝜆-fuzzy measure 𝑔 can
be used for determining the subjective assessment, that is,
the importance of each criterion 𝑐

𝑗
(𝑗 = 1, 2, . . . , 𝑛), and the

fuzzy density 𝑔
𝑖
= 𝑔(𝑐

𝑖
) of each criterion. According to (4),

parameter 𝜆
2
of criteria can be determined.Then the Shapley

weight of each criterion is calculated by (39) or (40).

Step 6. Inspired by the idea ofVIKOR, in this step, compute 𝑆
𝑖

and 𝑅
𝑖
values for 𝑖 = 1, 2, . . . , 𝑚, which symbolize the average

and the worst group scores for the alternative𝐴
𝑖
, respectively,

with the relations as follows:

𝑆
𝑖

=

𝑛

∑
𝑗=1

𝑤
𝑗

×
(
󵄨󵄨󵄨󵄨󵄨󵄨
𝑎
𝛼̃
+
𝑗
− 𝑎
𝑎𝑖𝑗

󵄨󵄨󵄨󵄨󵄨󵄨
+

󵄨󵄨󵄨󵄨󵄨󵄨
𝑏
𝛼̃
+
𝑗
− 𝑏
𝑎𝑖𝑗

󵄨󵄨󵄨󵄨󵄨󵄨
+

󵄨󵄨󵄨󵄨󵄨󵄨
𝑐
𝛼̃
+
𝑗
− 𝑐
𝑎𝑖𝑗

󵄨󵄨󵄨󵄨󵄨󵄨
+

󵄨󵄨󵄨󵄨󵄨󵄨
𝑑
𝛼̃
+
𝑗
− 𝑑
𝑎𝑖𝑗

󵄨󵄨󵄨󵄨󵄨󵄨
)

(
󵄨󵄨󵄨󵄨󵄨󵄨
𝑎
𝛼̃
+
𝑗
− 𝑎
𝛼̃
−
𝑗

󵄨󵄨󵄨󵄨󵄨󵄨
+

󵄨󵄨󵄨󵄨󵄨󵄨
𝑏
𝛼̃
+
𝑗
− 𝑏
𝛼̃
−
𝑗

󵄨󵄨󵄨󵄨󵄨󵄨
+

󵄨󵄨󵄨󵄨󵄨󵄨
𝑐
𝛼̃
+
𝑗
− 𝑐
𝛼̃
−
𝑗

󵄨󵄨󵄨󵄨󵄨󵄨
+

󵄨󵄨󵄨󵄨󵄨󵄨
𝑑
𝛼̃
+
𝑗
− 𝑑
𝛼̃
−
𝑗

󵄨󵄨󵄨󵄨󵄨󵄨
)
,

(47)

where 𝑆
𝑖
is interpreted as “concordance” and can provide

decisionmakers with information about themaximumgroup
“utility” or “majority.”

Consider

𝑅
𝑖

= max
𝑗

(𝑤𝑗

(

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑎
𝛼̃
+
𝑗
− 𝑎𝑎𝑖𝑗

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
+

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑏
𝛼̃
+
𝑗
− 𝑏𝑎𝑖𝑗

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
+

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑐
𝛼̃
+
𝑗
− 𝑐𝑎𝑖𝑗

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
+

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑑
𝛼̃
+
𝑗
− 𝑑𝑎𝑖𝑗

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
)

(

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑎
𝛼̃
+
𝑗
− 𝑎
𝛼̃
−
𝑗

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
+

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑏
𝛼̃
+
𝑗
− 𝑏
𝛼̃
−
𝑗

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
+

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑐
𝛼̃
+
𝑗
− 𝑐
𝛼̃
−
𝑗

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
+

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑑
𝛼̃
+
𝑗
− 𝑑
𝛼̃
−
𝑗

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
)

) ,

(48)

where𝑅
𝑖
is interpreted as “discordance” andprovides decision

makers with information about the minimum individual
regret of the “opponent.”

Step 7. Compute the index values 𝑄
𝑖
. These index values are

defined as

𝑄
𝑖
=

{{{{{{{{{

{{{{{{{{{

{

𝑅
𝑖
− 𝑅
−

𝑅+ − 𝑅−
, if 𝑆

+
= 𝑆
−
,

𝑆
𝑖
− 𝑆
−

𝑆+ − 𝑆−
, if 𝑅

+
= 𝑅
−
,

𝛾
𝑆
𝑖
− 𝑆
−

𝑆+ − 𝑆−
+ (1 − 𝛾)

𝑅
𝑖
− 𝑅
−

𝑅+ − 𝑅−
, otherwise,

(49)

where 𝑆
+

= Max 𝑆
𝑖
, 𝑆− = Min 𝑆

𝑖
, which denotes that 𝑆

−

is the maximum majority rule or maximum group utility;
𝑅
+

= Max𝑅
𝑖
, 𝑅− = Min𝑅

𝑖
, which denotes that 𝑅

− is the
minimum individual regret of the opponent. Thus, the index
𝑄
𝑖
is based on the consideration of both the group utility and

individual regret of the opponent. In addition 𝛾 is introduced
as aweight for the strategy of “themajority of criteria” (or “the

maximum group utility”), whereas 1 − 𝛾 is the weight of the
individual regret. The value of 𝛾 lies in the range of 0–1 and
these strategies can be compromised by 𝛾 = 0.5.

Step 8. Rank the alternatives, sorting by the values 𝑆, 𝑅, and
𝑄 in decreasing order. The results are three ranking lists.

Step 9. Propose as a compromise solution the alternative
(𝑎
(1)

) which is the best ranked by the measure 𝑄 (minimum)
if the following two conditions are satisfied.

(C1) Acceptable advantage:

𝑄(𝑎
(2)

) − 𝑄 (𝑎
(1)

) ≥ 𝐷𝑄, (50)

where 𝑎
(2) is the alternative with second place in the ranking

list by 𝑄; 𝐷𝑄 = 1/(𝑚 − 1), 𝑚 is the number of alternatives.
(C2) Acceptable stability in decision making: the alterna-

tive 𝑎
(1) should also be the best ranked by 𝑆 or/and 𝑅. This

compromise solution is stable within the decision making
process, which could be the strategy of maximum group
utility (when 𝛾 > 0.5 is needed), or “by consensus” 𝛾 ≈ 0.5, or
“with veto” (𝛾 < 0.5). Here, 𝛾 is the weight of decisionmaking
strategy of maximum group utility.

If one of the conditions is not satisfied, then a set of
compromise solutions is proposed, which consists of:

(C3) alternatives 𝑎(1) and 𝑎
(2) if only the C2 is not satisfied

or
(C4) alternatives 𝑎

(1)
, 𝑎
(2)

, . . . , 𝐴
(𝑘) if the C1 is not satis-

fied; 𝑎(𝑘) is determined by the relation𝑄(𝑎
(𝑘)

)−𝑄(𝑎
(1)

) < 𝐷𝑄

for maximum 𝑘 (the positions of these alternatives are “in
closeness”).

The best alternative, ranked by 𝑄, is the one with the
minimum value of 𝑄. The main ranking result is the com-
promise ranking list of alternatives and the compromise
solution with “average rate.” The obtained compromise solu-
tion could be accepted by the decision makers because it
provides a maximum “group utility” (represented by min 𝑆)
of the “majority,” and a minimum of the “individual regret”
(represented by min 𝑅) of the “opponent.” The compromise
solutions are the basis for negotiations, involving the decision
maker’s preference by criteria weights.

7. A Numerical Example

Assume that there is an investment company who wants to
invest a sum of money in the best option. There is a panel
with five possible alternatives to invest the money: 𝑎

1
is a car

company; 𝑎
2
is a food company; 𝑎

3
is a computer company; 𝑎

4

is an arms company; and 𝑎
5
is a TV company.The investment

company must take a decision according to the following
four criteria: 𝑐

1
is the profit ability; 𝑐

2
is the growth analysis;

𝑐
3
is the social-political impact; and 𝑐

4
is the enterprise

culture. The five possible alternatives 𝑎
𝑖
(𝑖 = 1, 2, 3, 4, 5) are

to be evaluated using the interval-valued intuitionistic fuzzy
information by three decisionmakers 𝑒

𝑘
(𝑘 = 1, 2, 3), as listed

in the following matrix [49]:
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𝐷
1
=

[
[
[
[
[

[

([0.4, 0.5] , [0.3, 0.4]) ([0.4, 0.6] , [0.2, 0.4]) ([0.1, 0.3] , [0.5, 0.6]) ([0.3, 0.4] , [0.3, 0.5])

([0.6, 0.7] , [0.2, 0.3]) ([0.6, 0.7] , [0.2, 0.3]) ([0.4, 0.7] , [0.1, 0.2]) ([0.5, 0.6] , [0.1, 0.3])

([0.6, 0.7] , [0.1, 0.2]) ([0.5, 0.6] , [0.3, 0.4]) ([0.5, 0.6] , [0.1, 0.3]) ([0.4, 0.5] , [0.2, 0.4])

([0.3, 0.4] , [0.2, 0.3]) ([0.6, 0.7] , [0.1, 0.3]) ([0.3, 0.4] , [0.1, 0.2]) ([0.3, 0.7] , [0.1, 0.2])

([0.7, 0.8] , [0.1, 0.2]) ([0.3, 0.5] , [0.1, 0.3]) ([0.5, 0.6] , [0.2, 0.3]) ([0.3, 0.4] , [0.5, 0.6])

]
]
]
]
]

]

,

𝐷
2
=

[
[
[
[
[

[

([0.3, 0.4] , [0.4, 0.5]) ([0.5, 0.6] , [0.1, 0.3]) ([0.4, 0.5] , [0.3, 0.4]) ([0.4, 0.6] , [0.2, 0.4])

([0.3, 0.6] , [0.3, 0.4]) ([0.4, 0.7] , [0.1, 0.2]) ([0.5, 0.6] , [0.2, 0.3]) ([0.6, 0.7] , [0.2, 0.3])

([0.6, 0.8] , [0.1, 0.2]) ([0.5, 0.6] , [0.1, 0.2]) ([0.5, 0.7] , [0.2, 0.3]) ([0.1, 0.3] , [0.5, 0.6])

([0.4, 0.5] , [0.3, 0.5]) ([0.5, 0.8] , [0.1, 0.2]) ([0.2, 0.5] , [0.3, 0.4]) ([0.4, 0.7] , [0.1, 0.2])

([0.6, 0.7] , [0.2, 0.3]) ([0.6, 0.7] , [0.1, 0.2]) ([0.5, 0.7] , [0.2, 0.3]) ([0.6, 0.7] , [0.1, 0.3])

]
]
]
]
]

]

,

𝐷
3
=

[
[
[
[
[

[

([0.2, 0.5] , [0.3, 0.4]) ([0.4, 0.5] , [0.1, 0.2]) ([0.3, 0.6] , [0.2, 0.3]) ([0.3, 0.7] , [0.1, 0.3])

([0.2, 0.7] , [0.2, 0.3]) ([0.3, 0.6] , [0.2, 0.4]) ([0.4, 0.7] , [0.1, 0.2]) ([0.5, 0.8] , [0.1, 0.2])

([0.5, 0.6] , [0.3, 0.4]) ([0.7, 0.8] , [0.1, 0.2]) ([0.5, 0.6] , [0.2, 0.3]) ([0.4, 0.5] , [0.3, 0.4])

([0.3, 0.6] , [0.2, 0.4]) ([0.4, 0.6] , [0.2, 0.3]) ([0.1, 0.4] , [0.3, 0.6]) ([0.3, 0.7] , [0.1, 0.2])

([0.6, 0.7] , [0.1, 0.3]) ([0.5, 0.6] , [0.3, 0.4]) ([0.5, 0.6] , [0.2, 0.3]) ([0.5, 0.6] , [0.2, 0.4])

]
]
]
]
]

]

.

(51)

To effectively solve this problem, the proposed decision
procedure as above is followed for determining the most
desirable alternative as follows.

Step 1. The fuzzy density of each decision maker and its 𝜆

parameter are determined first. Suppose that 𝑔(𝑒
1
) = 0.40,

𝑔(𝑒
2
) = 0.40, and 𝑔(𝑒

3
) = 0.40. Parameter 𝜆 of expert

can be determined: 𝜆1 = −0.44. According to (3), we have
𝑔(𝑒
1
, 𝑒
2
) = 𝑔(𝑒

1
, 𝑒
3
) = 𝑔(𝑒

2
, 𝑒
3
) = 0.73, 𝑔(𝑒

1
, 𝑒
2
, 𝑒
3
) = 1.

Step 2. By (11) or Definition 21, 𝑎
𝑘

𝑖𝑗
is reordered such that

𝑎
(𝑘)

𝑖𝑗
≤ 𝑎
(𝑘+1)

𝑖𝑗
; utilize the interval-valued intuitionistic fuzzy

Choquet integral operator

𝑎
𝑖𝑗

= I-IFC
𝑔
(𝑎
1

𝑖𝑗
, 𝑎
2

𝑖𝑗
, 𝑎
3

𝑖𝑗
)

= ([1 −

3

∏
𝑘=1

(1 − 𝑎
𝑎
(𝑘)

𝑖𝑗

)
𝑔(𝐴(𝑘))−𝑔(𝐴(𝑘+1))

,

1 −

3

∏
𝑘=1

(1 − 𝑏
𝑎
(𝑘)

𝑖𝑗

)
𝑔(𝐴(𝑘))−𝑔(𝐴(𝑘+1))

] ,

[

3

∏
𝑘=1

(𝑐
𝑎
(𝑘)

𝑖𝑗

)
𝑔(𝐴(𝑘))−𝑔(𝐴(𝑘+1))

,

3

∏
𝑘=1

(𝑑
𝑎
(𝑘)

𝑖𝑗

)
𝑔(𝐴(𝑘))−𝑔(𝐴(𝑘+1))

])

(52)

to aggregate all decisionmaker’s interval-valued intuitionistic
fuzzy decision matrices 𝐷

𝑘
= (𝑎
𝑘

𝑖𝑗
)
5×4

(𝑘 = 1, 2, 3) into a
collective interval-valued intuitionistic fuzzy decision matrix
𝐷 = (𝑎

𝑖𝑗
)
5×4

as

𝐷 =

[
[
[
[
[

[

([0.31, 0.47] , [0.32, 0.42]) ([0.44, 0.57] , [0.12, 0.28]) ([0.29, 0.50] , [0.29, 0.40]) ([0.33, 0.60] , [0.17, 0.38])

([0.42, 0.68] , [0.22, 0.32]) ([0.47, 0.68] , [0.16, 0.28]) ([0.43, 0.68] , [0.12, 0.22]) ([0.54, 0.72] , [0.13, 0.26])

([0.58, 0.72] , [0.13, 0.24]) ([0.59, 0.70] , [0.13, 0.24]) ([0.50, 0.64] , [0.16, 0.30]) ([0.33, 0.45] , [0.29, 0.45])

([0.33, 0.51] , [0.22, 0.39]) ([0.51, 0.72] , [0.12, 0.26]) ([0.22, 0.44] , [0.19, 0.34]) ([0.34, 0.70] , [0.10, 0.20])

([0.64, 0.74] , [0.12, 0.26]) ([0.50, 0.62] , [0.14, 0.28]) ([0.50, 0.64] , [0.20, 0.30]) ([0.50, 0.60] , [0.19, 0.40])

]
]
]
]
]

]

. (53)

Step 3. Since ([1, 1], [0, 0]) and ([0, 0], [1, 1]) are the largest
and smallest interval-valued intuitionistic fuzzy values,
respectively, for benefit criteria 𝑐

1
, 𝑐
2
, 𝑐
3
, 𝑐
4
, IV-IFPIS 𝛼̃

+and
IV-IFNIS 𝛼̃

− can be simply denoted as follows:

𝛼̃
+

= (([1, 1] , [0, 0]) , ([1, 1] , [0, 0]) ,

([1, 1] , [0, 0]) , ([1, 1] , [0, 0])) ,

𝛼̃
−

= (([0, 0] , [1, 1]) , ([0, 0] , [1, 1]) ,

([0, 0] , [1, 1]) , ([0, 0] , [1, 1])) .

(54)

Alternatives 𝑎
𝑖
(𝑖 = 1, 2, . . . , 5) are denoted by 𝑥

𝑖
= (𝑎
𝑖1
,

𝑎
𝑖2
, 𝑎
𝑖3
, 𝑎
𝑖4
) as follows:

𝑥
1
= (([0.31, 0.47] , [0.32, 0.42]) ,

([0.44, 0.57] , [0.12, 0.28]) ,

([0.29, 0.50] , [0.29, 0.40]) ,

([0.33, 0.60] , [0.17, 0.38]))

𝑥
2
= (([0.42, 0.68] , [0.22, 0.32]) ,
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([0.47, 0.68] , [0.16, 0.28]) ,

([0.43, 0.68] , [0.12, 0.22]) ,

([0.54, 0.72] , [0.13, 0.26])) ,

𝑥
3
= (([0.58, 0.72] , [0.13, 0.24]) ,

([0.59, 0.70] , [0.13, 0.24]) ,

([0.50, 0.64] , [0.16, 0.30]) ,

([0.33, 0.45] , [0.29, 0.45])) ,

𝑥
4
= (([0.33, 0.51] , [0.22, 0.39]) ,

([0.51, 0.72] , [0.12, 0.26]) ,

([0.22, 0.44] , [0.19, 0.34]) ,

([0.34, 0.70] , [0.10, 0.20])) ,

𝑥
5
= (([0.64, 0.74] , [0.12, 0.26]) ,

([0.50, 0.62] , [0.14, 0.28]) ,

([0.50, 0.64] , [0.20, 0.30]) ,

([0.50, 0.60] , [0.19, 0.40])) .

(55)

Step 4. The fuzzy density of each criterion and its 𝜆
2
param-

eter are calculated. Suppose that 𝑔(𝑐
1
) = 0.40, 𝑔(𝑐

2
) = 0.25,

𝑔(𝑐
3
) = 0.37, and 𝑔(𝑐

4
) = 0.20, according to (4); the 𝜆

2
of

criteria can be determined: 𝜆
2

= −0.44. According to (3),
we have 𝑔(𝑐

1
, 𝑐
2
) = 0.60, 𝑔(𝑐

1
, 𝑐
3
) = 0.70, 𝑔(𝑐

1
, 𝑐
4
) = 0.56,

𝑔(𝑐
2
, 𝑐
3
) = 0.68, 𝑔(𝑐

2
, 𝑐
4
) = 0.43, 𝑔(𝑐

3
, 𝑐
4
) = 0.54, 𝑔(𝑐

1
, 𝑐
2
, 𝑐
3
) =

0.88, 𝑔(𝑐
1
, 𝑐
2
, 𝑐
4
) = 0.75, 𝑔(𝑐

2
, 𝑐
3
, 𝑐
4
) = 0.73, 𝑔(𝑐

1
, 𝑐
3
, 𝑐
4
) =

0.84, and 𝑔(𝑐
1
, 𝑐
2
, 𝑐
3
, 𝑐
4
) = 1.0. By means of (39), weighting

coefficients of criteria are obtained as follows:

𝑤
1
= 0.32, 𝑤

2
= 0.22, 𝑤

3
= 0.31, 𝑤

4
= 0.15.

(56)

Step 5. According to (47)–(49), the values of 𝑅, 𝑆, and 𝑄 are
calculated for all alternatives as follows.

𝑆
1
= 0.441, 𝑆

2
= 0.325, 𝑆

3
= 0.321,

𝑆
4
= 0.397, 𝑆

5
= 0.313

𝑅
1
= 0.157, 𝑅

2
= 0.116, 𝑅

3
= 0.102,

𝑅
4
= 0.145, 𝑅

5
= 0.105,

𝑄
1
= 1, 𝑄

2
= 0.2545 − 0.1607𝛾,

𝑄
3
= 0.0938𝛾, 𝑄

4
= 0.7818 − 0.1295𝛾,

𝑄
5
= 0.0545 − 0.0545𝛾.

(57)

Step 6. The ranking order of the alternatives by 𝑅, 𝑆 and 𝑄 is
shown in a decreasing order (see Table 1).

Step 7. From Table 1, the decision results are obtained as fol-
lows.

The best candidate (alternative) is 𝑎
3
and the ranked

ordered of all candidates is 𝑎
3

≻ 𝑎
5

≻ 𝑎
2

≻ 𝑎
4

≻ 𝑎
1
if

0 ≤ 𝛾 < 0.378; the best candidate is 𝑎
3
and 𝑎

5
, the ranked

order of all candidates is 𝑎
3
∼ 𝑎
5
≻ 𝑎
2
≻ 𝑎
4
≻ 𝑎
1
if 𝛾 = 0.378;

the best candidate is 𝑎
5
; and the ranked order of all candidates

is 𝑎
5

≻ 𝑎
3

≻ 𝑎
2

≻ 𝑎
4

≻ 𝑎
1
if 0.378 < 𝛾 < 1; the best

candidate is 𝑎
5
, and the ranked ordered of all candidates is

𝑎
5
≻ 𝑎
3
∼ 𝑎
2
≻ 𝑎
4
≻ 𝑎
1
if 𝛾 = 1.

However, for 0 ≤ 𝛾 ≤ 0.018, 𝑄(𝑎
(2)

) − 𝑄(𝑎
(1)

) <

1/(5 − 1), the set of compromise solutions is 𝑎
3
and 𝑎

5
; for

0.018 < 𝛾 ≤ 0.378, 𝑄(𝑎
(3)

) − 𝑄(𝑎
(1)

) < 1/(5 − 1), the set
of compromise solutions is 𝑎

3
, 𝑎
5
, and 𝑎

2
; for 0.378 < 𝛾 ≤ 1,

𝑄(𝑎
(3)

) − 𝑄(𝑎
(1)

) < 1/(5−1), the set of compromise solutions
is 𝑎
5
, 𝑎
3
, and 𝑎

2
.

Remark 24. In [49], Tan et al. have extended TOPSISmethod
to solve this decision making problems with interval-valued
intuitionistic fuzzy information. Here we simply make a
comparison between these two methods.

Using the extended TOPSIS [49], the ranking of this
example in descending order is 𝑎

5
≻ 𝑎
2
≻ 𝑎
3
≻ 𝑎
4
≻ 𝑎
1
.

Mainly, the best alternative in two methods is the same.
The order of the alternatives obtained by the extended
TOPSIS is litter different from that obtained by the extended
VIKOR. Although the extended TOPSIS method introduces
two reference points, the shortest distance from the ideal
solution and the farthest distance from the negative-ideal
solution, but it does not consider the relative importance of
the distances from these points, which does not mean that
it is always the closest to the ideal solution. In the extended
VIKOR, the group majority preference to the alternative
is taken into account besides individual decision-maker’s
preference to the alternative. So the extendedVIKORmethod
proposes the set of compromise solutions with an advantage
rate.

8. Conclusions

VIKOR method focused on ranking and selecting from a set
of alternatives in the presence of conflicting criteria and is a
helpful tool in multi-criteria decision making; the obtained
compromise solution could be accepted by the decision
makers because it provides a maximum group utility of the
majority and a minimum of the individual regret of the
opponent. The fact that social, economic, technological, and
environmental factors need to be taken into consideration
in decision-making makes the process more complex and
need multiple decision makers to make decision together.
Traditional single-person decision-making is no longer able
to handle these complex problems properly. Based on an
intuitionistic fuzzy Choquet integral operator, in this paper,
we proposed an extension of VIKOR for effectively solv-
ing the multiple criteria group decision making problem
in which the interaction phenomena among preference of
the decision makers are taken into account and all the
criteria values are expressed in interval-valued intuitionistic
fuzzy values. Subjective and objective weights of criteria are
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Table 1: Decision result obtained from the extended VIKOR method.

𝑆
𝑖

𝑅
𝑖

𝑄
𝑖

a1 0.441 0.157 1
a2 0.325 0.116 0.2545–0.1607𝛾
a3 0.321 0.102 0.0938𝛾
a4 0.397 0.145 0.7818–0.1295𝛾
a5 0.313 0.105 0.0545–0.0545𝛾
Ranking order 𝑎

5
≻ 𝑎
3
≻ 𝑎
2
≻ 𝑎
4
≻ 𝑎
1

𝑎
3
≻ 𝑎
5
≻ 𝑎
2
≻ 𝑎
4
≻ 𝑎
1

𝑎
3
≻ 𝑎
5
≻ 𝑎
2
≻ 𝑎
4
≻ 𝑎
1
(0 ≤ 𝛾 < 0.378)

𝑎
3
∼ 𝑎
5
≻ 𝑎
2
≻ 𝑎
4
≻ 𝑎
1
(𝛾 = 0.378)

𝑎
5
≻ 𝑎
3
≻ 𝑎
2
≻ 𝑎
4
≻ 𝑎
1
(0.378 < 𝛾 < 1)

𝑎
5
≻ 𝑎
3
∼ 𝑎
2
≻ 𝑎
4
≻ 𝑎
1
(𝛾 = 1)

considered together, where subjective weights are obtained
directly from the decision makers while objective weights
are determined based on Shapley value. Using the proposed
operator, a decision procedure is developed for solving the
multi-criteria group decision making problem in an interval-
valued intuitionistic fuzzy environment. Finally we proposed
a numerical example to illustrate an application of the prop-
osed method. It shows that the proposed procedure is cap-
able of considering the interaction phenomena between pref-
erence of experts and conflicting criteria, which makes the
decision proceduremore feasible and practical for solving the
multi-criteria group decision-making problem.
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