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This Letter presents a new snapshot approach to hyperspectral imaging via dual-optical coding and compressive
computational reconstruction. We demonstrate that two high-speed spatial light modulators, located conjugate to
the image and spectral plane, respectively, can code the hyperspectral datacube into a single sensor image such that
the high-resolution signal can be recovered in postprocessing. We show various applications by designing different
optical modulation functions, including programmable spatially varying color filtering, multiplexed hyperspectral
imaging, and high-resolution compressive hyperspectral imaging. © 2014 Optical Society of America
OCIS codes: (120.6200) Spectrometers and spectroscopic instrumentation; (110.1758) Computational imaging;

(110.4234) Multispectral and hyperspectral imaging.
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Hyperspectral (HS) imaging is concerned with capturing
a 3D datacube with 2D spatial and 1D spectral variation.
This kind of data has important applications in a wide
range of fields, including remote sensing, scientific imag-
ing, surveillance, and spectroscopy. The most widely
used approaches for spectral imaging use mechanical
or temporal scanning techniques that record one or a few
data points at a time. Compared with scanning methods,
snapshot approaches capture the full 3D datacube in a
single image, which is a distinct advantage for capturing
dynamic scenes or aerial imaging. Snapshot approaches
can be implemented by multiplexing a high-dimensional
signal onto a 2D sensor, thereby sacrificing image reso-
lution. Examples of that approach include the 4D imaging
spectrometer (4DIS) [1], the snapshot image mapping
spectrometer (IMS) [2], and also computed tomography
imaging spectrometer (CTIS) [3].
Recently, a coded aperture snapshot spectral imager

(CASSI) [4,5] was proposed that applies compressive
computational reconstructions to encode optical signals.
This computational imaging approach was demonstrated
to overcome previous tradeoffs between spatial and
spectral image resolution. The CASSI system can be im-
proved by acquiring multiple shots that are recorded
from a coded mask that shifts on a piezostage [6]. A more
flexible alternative is the digital micromirror device-
based (DMD) multishot spectral imaging system
(DMD-SSI) proposed in [7]. The trend toward computa-
tional imaging systems that optically code recorded data
and recover it via compressive computation is obvious
[8]. However, all approaches to compressive spectral
imaging code the color spectrum in a spatially uniform
manner, which places a fundamental limit on the quality
that can be expected from compressive sparsity con-
strained compressive reconstruction algorithms.
In this Letter, we present a new snapshot approach to

compressive hyperspectral imaging that we call dual-
coded hyperspectral imaging (DCSI). The proposed
approach separately codes both spatial and spectral
dimensions within a single exposure, achieving an inde-
pendent spectral code for each sensor pixel. By combin-
ing spectral and spatial modulation, DCSI facilitates

extremely flexible capture modes customized for differ-
ent applications. For example, DCSI can be used to im-
plement programmable spatially varying color filtering
(such as Bayer filtering, Fig. 2) or multiplexed hyperspec-
tral imaging (Fig. 3). More importantly, from a single
shot, DCSI allows for compressive HS imaging with
high-quality and high-resolution reconstructions for both
the spatial and spectral dimensions. Compared with
CASSI and DMD-SSI approaches, DCSI provides a higher
degree of randomness in the measured projections,
which is beneficial for compressive reconstruction algo-
rithms, as described by the restricted isometry property
(RIP) and the mutual incoherence property (MIP) [9,10].
Basically, a more flexible amount of signal mixing is
achieved when a high-dimensional signal is optically
projected to a lower-dimensional space. We present HS
reconstruction results with physical experiments and
evaluate the proposed techniques in simulation.

Figure 1 shows a schematic of the proposed optical
system and a photograph of the prototype device. DCSI
is presented as a two-arm system, including a spatial
modulation arm and a spectral modulation arm. In the
spatial modulation arm, an objective lens (focal length
150 mm, diameter 50.8 mm) is used to optically form
images onto a DMD. A DMD is employed as a high-
resolution spatial light modulator which can provide high
contrast and light-efficient binary modulation for pixel-
wise coded exposures. The DMD used in our setup is
a Texas Instruments (TI) 4100, with a resolution of 1920 ×
1080 micromirrors and a pixel pitch of 10.8 μm. In the
spectral modulation arm, a diffraction grating is applied
to disperse the spatially modulated light into its spectrum
[11], and a liquid crystal on silicon (LCOS) display is
added as the spectral modulator. An off-the-shelf trans-
mission diffraction grating (Thorlabs GT50-06V with
600 grooves∕mm and 28.7 deg blaze angle) is used and
the LCOS is taken from a Newsmy PHO5C projector with
a resolution of 1024 × 768 pixels. A bandpass filter with
transmission window 400–820 nm is used to filter out
unwanted spectral bands from the system. The sensor
is a PointGray GRAS-50S5M-C grayscale camera with
resolution 2448 × 2048 and pixel pitch 3.45 μm. In our
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experiments, each signal pixel is represented by a 4 × 4
window of a DMD micromirrors subset; hence the maxi-
mum modulation resolution is 480 × 270, and each DMD
pixel subset is imaged onto an area of the sensor with a
size of 5 × 5 pixels. During the exposure time of a single
image, we dynamically modulated the spectrum over
a range of bands while selectively coding the exposure
pattern of each pixel.
In DCSI, the coded sensor image i�x� is formed by a

spatio-spectral modulation m�x; λ� on the HS datacube
h�x; λ�, followed by a projection along the spectral dimen-
sion over the domain Ωλ:

i�x� �
Z
Ωλ

h�x; λ�m�x; λ�dλ; (1)

where x � fx; yg is the 2D spatial coordinate on the
sensor and λ is the wavelength. Note that m is a modu-
lation function imposed by the pixel states of both SLMs.
The spectral sensitivity and other sensor-specific effects
are ignored in this formulation, because, in preprocess-
ing, they can be calibrated and corrected.
In practice, Eq. (1) is discretized as

i � Φh; (2)

where i ∈ RM and h ∈ RN are the vectorized pixel
measurements and the vectorized target HS datacube,
respectively, and Φ ∈ RM×N is the modulation matrix.
By decoupling and synchronizing the spectral and spatial
coding, DCSI facilitates various modulation functions
that can be designed for different applications with the
goal of achieving flexible HS imaging modalities.
Programmable Spatially-varying Color Filtering: DCSI

provides various imaging modes. The most intuitive one
achieves programmable spatially varying color filtering,
for example, Bayer filtering where red, green, and blue
samples of the datacube are captured in an interleaved
grid (see Fig. 2). Assuming that response functions for
the Bayer color channels are f 0�λ�; f 1�λ�; f 2�λ�, the modu-
lation function can be formulated as m�xk; λ� � f k�λ� for
pixels in channel xk; k � 0; 1; 2. This modulation is
achieved by dividing the sensor into a grid of interleaved
segments - one for each color channel. The spatial
sampling pattern xk is selected by the DMD and the
corresponding spectral filter function f k is imposed by
the LCOS. Based on this intuitive, all-optical technique,
we can either apply color-demosaicing algorithms to a
multiplexed sensor image or capture the high-resolution
signal in multiple shots.

Multiplexed HS imaging: Bayer-type multiplexing can
be easily extended to include different spectral coding,
as well as different spatial layouts. All of these ap-
proaches trade spatial resolution for spectral resolution
if captured in a single exposure. As shown in Fig. 3, we
can group different spectral codes into super-pixels,
with each pixel inside forming a single channel, e.g., xk
(k � 0; 1;…; 16 in Fig. 3). In this example, we sequen-
tially expose channel xk with spectral filter f k using a
Hadamard multiplexed scheme to achieve a higher light
efficiency. Assuming that all pixels in any super-pixels
share the same spectral profile, a low spatial resolution
HS datacube can be recovered by applying the inverse
Hadamard matrix to each super-pixel.

Compressive HS imaging: By combining optical spatio-
spectral modulation and the sparsity-constrained
reconstruction algorithm, a high-resolution HS data cube

Fig. 1. (a) Schematic of the DCSI system and (b) a photograph showing the prototype system.

Fig. 2. Programmable spatially varying color filtering. A tradi-
tional Bayer color filter array, implemented with the proposed
prototype, is shown in this example (Media 1).

Fig. 3. Multiplexed hyperspectral imaging. In this example, an
HS data cube with 16 spectral channels is reconstructed via
demosaicing.
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can be computed from a single DCSI snapshot measure-
ment. For this purpose, we solve for h in the highly
under-determined linear system [Eq. (2)] with sparsity
constraint on the underlying signal.
As shown in Fig. 4(a), the individual slices in 3D HS

datacube are highly redundant. Based on compressive
sensing theory [12,13], h can be faithfully resolved if it
has sparse representation α, for instance using a diction-
ary D as

h � Dα � d1α1 � � � � � dkαk; (3)

where d1;…; dk ∈ RN are the atoms (columns) of the dic-
tionary D ∈ RN×K , and α � �α1;…; αk�T are sparse coeffi-
cients. As shown in Fig. 4(b), when approximating a
hyperspectral datacube with only a few coefficients, dic-
tionary atoms provide better quantitative compression
for this example than other basis representations. We
also qualitatively compare the compressibility of a single,
small 3D patch using the 3D discrete cosine transform
(3D DCT) and the proposed atoms. Atoms provide more
faithful reconstructions (Fig. 4(c) first row). In addition,
we compare sparse reconstruction from a simulated
snapshot coded projection with both DCT and the HS
atoms. Again, 3D HS atoms can significantly improve
the reconstruction quality (Fig. 4(c), second row).
The over-complete dictionary D is learned from a

collection of training samples that are small 3D spatio-
spectral patches, each with a resolution of 10 × 10 ×
31 pixels. These samples can be obtained by randomly
choosing a predefined number of patches from public
hyperspectral data sets (e.g., [14,15]). The dictionary
learning is formulated as an optimization problem:

min
fD;Ag

‖T − DA‖22; s.t. ∀ i; ‖αi‖0 ≤ k; (4)

where T ∈ RM×O is a training set composed of O small
patches, and A ∈ RK×O is a matrix containing the
k-sparse vectors αi in its columns. We use the K-SVD
algorithm [16] to solve Eq. (4). An example of such a
dictionary is visualized in Fig. 5. HS atoms represent the
essential building blocks of natural HS images—most HS
images can be represented by weighted sum of very few
of these atoms.
With a dictionary-based sparse representation, the

random modulated image can be formulated as

i � Φh � ΦDα: (5)

We randomly modulate both the spectral and spatial
dimensions during the exposure time, which provides
a theoretical light efficiency of 25%. These codes are en-
coded as the projection matrix Φ. We apply the SPGL1
algorithm [17] for robust recovery of the sparse unknown
vector α and solve the basis pursuit denoise problem
(BPDN) as

min
α

‖α‖1 s.t. ‖i −ΦDα‖22 ≤ ε: (6)

The optimizations are solved on all 3D patches independ-
ently. The recovered HS patches are merged to recover
the desired 3D HS datacube.

Figure 6 shows the reconstruction of a resolution chart
with the proposed dual-coded compressive HS imaging
approach. In this example, a 31 waveband HS image with
a resolution of 470 × 260 pixels is recovered by applying
overlapping patches reconstruction. This example shows
the resolution performance of our system. The utilization
of random dual-coding decreases the captured photon
count by a factor of four. Thus, we also demonstrate
the sensitivity of sparse reconstructions w.r.t. to noise

Fig. 4. (a), (b) We quantitatively evaluate compressibility by transforming the HS datacube into different bases as well as the
proposed over-complete dictionary. (c) Comparison of 3D HS images reconstructed from a single-coded 2D projection. (d) Sensi-
tivity of the proposed sparse reconstruction algorithm w.r.t. to sensor noise.

Fig. 5. Visualization of learned hyperspectral atoms in an
over-completed dictionary.

Fig. 6. Compressive hyperspectral imaging. An HS data cube
containing a resolution chart with 31 spectral channels is
reconstructed in this example.
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for different, simulated experiments in Fig. 4(d). In this
implementation, we add zero-mean independent and
identically distributed Gaussian noise to the modulated
image and calculate the peak signal-to-noise ratio
(PSNR) of the reconstruction. Fig. 4(d) shows that the
proposed dictionary-based method works well, even with
high noise levels.
We also evaluate the accuracy of the proposed com-

pressive algorithm in Fig. 7. The reconstructed results
in Fig. 7(b) are calibrated for lighting and camera re-
sponse, as shown by the yellow curve in Fig. 7(c). The
light and camera response is precalibrated using the
color checker. The normalized intensity variation of 31
spectral channels for three of the color checker patches
marked in red, green, and blue, respectively, are shown
in Fig. 7(c) and compared to ground truth. In this case,
the sum of squares due to error (SSE) between recon-
structed results and ground truth are 0.0204, 0.0040,
and 0.0197, respectively. Finally, we synthetically com-
pare DCSI with CASSI [4] in Fig. 8 by using the data-
set from [15]. The proposed method provides better
accuracy (31.9 dB) for this example than the coded
aperture method (26.3 dB).
In summary, the proposed dual-coded compressive

hyperspectral imaging approach provides flexible cap-
ture modes, but requires two spatial light modulators.
Whereas this is more expensive and requires additional
calibration efforts, the DMD and relay optics used in the
presented experiments allow for pixel-wise coded expo-
sures. In future sensor implementations, these could be
directly fabricated in silicon. Compared with spectral
scanning methods, the proposed approach provides

significant improvements in sensor readout time and
facilitates dynamic scene capture.

Yet, our current prototype has several limitations.
First, the optical relay imposes a tradeoff between
f-number (photon count) and sensitivity in the spectral
plane [11]. Second, we assume that photographed scenes
are static during the exposure time. In the future, we
would like to experiment with static codedmasks in front
of the sensor that would make the setup significantly
more inexpensive and improve the form factor.
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Fig. 7. Compressive HS imaging of a color checker scene. [(a), bottom row] and (b). From a randomly coded image, a high-
resolution HS image with 31 waveband is reconstructed (Media 1). [(a), top]. A color-coded image of the reconstruction is shown.
(c). We plot the retrieved spectrum of individual regions and compare them to ground-truth.

Fig. 8. Comparison between coded aperture method (CASSI,
top row) and proposed approach (bottom row).
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