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Abstract—Multiple-input multiple-output (MIMO) wireless
communication systems provide high capacity due to the plurality
of modes available in the channel. Existing signaling techniques
for MIMO systems have focused primarily on multiplexing for
high data rate or diversity for high link reliability. In this paper, we
present a new linear dispersion code design for MIMO Rayleigh
fading channels. The proposed design bridges the gap between
multiplexing and diversity and yields codes that typicallyperform
well both in terms of ergodic capacity as well as error probability.
This is important because, as we show, designs performing well
from an ergodic capacity point of view do not necessarily perform
well from an error probability point of view. Various techniques
are presented for finding codes with good error probability
performance. Monte Carlo simulations illustrate performance of
some example code designs in terms of ergodic capacity, codeword
error probability, and bit error probability.

Index Terms—Diversity methods, MIMO systems, smart an-
tennas, space-time codes.

I. INTRODUCTION AND OUTLINE

M ULTIPLE-INPUT multiple-output (MIMO) wireless
communication systems, i.e., wireless systems with

multiple transmit and receive antennas, are important due
to their potential for significant spectrum efficiency [1]–[3].
Of particular interest are those schemes that assume channel
knowledge at the receiver but no knowledge at the transmitter
[4] since training sequences are typically available. Practical
modulation schemes for MIMO systems with receive-only
channel knowledge fall principally into two areas known
as diversity and multiplexing [5]. Diversity modulation, or
space-time coding [6]–[9], uses specially designed codewords
that maximize the diversity advantage or reliability of the
transmitted information. In fading channels, such codes maxi-
mize the diversity gain at the expense of a loss in capacity [1].
Spatial multiplexing [10] (or BLAST [4]), on the other hand,
transmits independent data streams from each transmitting
antenna. Multiplexing designs allow capacity to be achieved
but at the expense of a loss in diversity advantage [11] in
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fading channels. In practical systems, it is desirable to provide
both high spectrum efficiency and high reliability; thus, new
space-time signaling techniques are needed.

Recognizing that orthogonal space-time block codes [12]
designed to maximize diversity advantage do not achieve full
channel capacity in MIMO channels (this was also observed in
[13]), Hassibi and Hochwald proposed the revolutionary linear
dispersion codes (LDCs) [1]. These codes use a linear matrix
modulation framework, similar to that in [9], in which the
transmitted codeword is a linear combination of certain disper-
sion matrices with the weights determined by the transmitted
symbols. The key to the LDC design is that the basis matrices
are chosen such that the resulting codes maximize the ergodic
capacity of the equivalent MIMO system. Unfortunately, the
LDCs proposed in [1] only optimize the ergodic capacity;
thus, corresponding good error probability performance is not
strictly guaranteed [14].

In this paper, we present a family of LDC designs based on
frame theory [15]. Our designs are tailored for the frequency flat
independent and identically distributed (i.i.d.) spatially white
complex Gaussian channel known perfectly at the receiver but
not at the transmitter. Maximum likelihood (ML) detection is
assumed at the receiver. Instead of sending uncoded symbols,
our frame-based codes convey the coefficients of a frame ex-
pansion of a vector of symbols. Most existing linear codes, for
example, spatial multiplexing [10], the Alamouti code, other
orthogonal designs [8], [9], [12], and the previously proposed
LDCs all have a frame-based structure. We show that with suit-
able choice of parameters, frame-based LDCs have equivalent
channels that achieve the full-ergodic capacity. We extend this
design to find low-rate LDCs that are near optimal in terms of
capacity yet have a frame-theoretic interpretation. The proposed
LDCs can be conveniently represented using the theory of uni-
tary matrices and tight frames [15]. Since we do not require a
numerical optimization, as in [1], we can instead optimize over
the space of codes with similar ergodic capacity to find those
that also have good performance in terms of error probability.
To illustrate, we show how to improve our frame-based LDCs
using the rank and determinant criteria [6], [7]. Different tech-
niques are presented for finding good codes using optimization
with various initial conditions.

The original LDCs proposed in [1] are designed via a numer-
ical optimization, to maximize the mutual information between
transmit and receiver. In contrast, we present a closed-form code
design that, in some cases, produces an equivalent channel that
maximizes the ergodic capacity. We show that capacity opti-
mization, as performed in [1], does not necessarily guarantee
good performance in terms of diversity advantage. Therefore,
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to guarantee a minimum diversity advantage, we further opti-
mize our choice of codewords using the rank and determinant
criterion [7].

LDCs that maximize the received signal-to-noise ratio (SNR)
are described in [9]. Such codes, which are also known as or-
thogonal designs [8], [12], satisfy an orthogonality constraint
on each matrix and a skew Hermitian cross-relation. The re-
sulting design decouples the symbol streams at the receiver to
simplify ML detection. Unfortunately, codes satisfying the or-
thogonality constraint exist for only a few choices of parameters
and do not achieve the ergodic capacity when multiple receive
antennas are available [1]. In contrast, the code design proposed
herein imposes the less restrictive cross relation that the basis
matrices should be orthogonal in terms of the Frobenius norm
matrix inner product. Our design is general enough that codes
can be found for many combinations of transmit antennas, re-
ceive antennas, codeword lengths, and rates. On the other hand,
our designs do not simplify ML detection.

This paper is organized as follows. Section II first reviews
the channel model and presents our version of the LDC frame-
work. Section III reviews the ergodic capacity with LDCs and
presents the frame-based LDC design. Error probability consid-
erations are addressed in Section IV. Section V contains a de-
scription of some numerical procedures that can be used to find
good frame-based LDCs. Section VI presents example code de-
signs, comparisons, and simulation results. Finally, Section VII
presents our conclusions.

II. MIMO C OMMUNICATION USING MATRIX MODULATION

In this section, we review the MIMO communication system
considered in this paper. We start with a brief description of
the channel and the assumptions that enable this channel model.
We then review the linear dispersion code description of linear
space-time block codes [1].

A. Channel Model and Assumptions

A MIMO communication system with transmit antennas
and receive antennas is illustrated in Fig. 1. The space-time
encoder takes input symbols and generates a codeword matrix,
that is, a codeword with dimension in both space and time.
The codeword is launched into the propagation environment
from transmit antennas and arrives at the receive an-
tennas. The receiver is assumed to have perfect channel knowl-
edge while the transmitter has no channel knowledge. To de-
scribe the input–output relationship of the system in more de-
tail, we first describe the propagation channel between the trans-
mitter and receiver.

Suppose that the transmission bandwidth is much less than
the coherence frequency of the channel (thus, the channel is fre-
quency flat), the antenna spacing is larger than the coherence
distance (thus, antennas are decorrelated), the codewords are
separated by at least the coherence time of the channel (thus,
the channel is independent from observation to observation),
and assume sufficient scattering in the environment (so that the
each element of the matrix is independent). This gives rise to the
so-called block fading Gaussian matrix channel model, where
the channel is described by an matrix whose ele-
ments are i.i.d. circularly symmetric complex Gaussian

Fig. 1. MIMO\communication link employing space-time signaling and
decoding.

random variables with distribution . The matrix is con-
stant over the duration of the codeword of interest but varies in-
dependently from codeword to codeword. Thus, each codeword
sees a different channel realization, and the channel coefficients
at each realization are independent in space and time.

The i.i.d. block fading complex Gaussian channel model has
seen extensive use in the past, e.g., [6], [7], and [16]. Extension
to a more general channel model that includes correlation [17]
or delay spread [18] is a subject for future work.

B. Linear Dispersion Codes

Consider a space-time block code that transmits bits in
periods across transmit antennas. The code is specified by

the codebook and the rule for mapping the incoming bit string
to the codewords. For space-time block codes, the codebook is
comprised of space-time codewords, each of which is a
matrix with dimensions . The rule for mapping bits to
space-time codewords is generally the one that minimizes the
bit error probability for the given codebook. Without structure
in the codewords, decoding a general space-time block code
may be difficult due to the significant complexity and storage
requirements that grow with larger rates. To overcome these dif-
ficulties, in this paper, we focus on linear dispersion codes [1] in
which the codewords are a linear function of the data symbols.

The linear dispersion encoder derives space-time codewords
from linear combinations of certain basis matrices. The encoder
may operate using complex modulation, in which each com-
plex symbol modulates a different complex codeword matrix,
or separate modulation, in which the real and imaginary com-
ponents of a complex symbol each modulate a separate possibly
complex codeword matrix. The original LDCs were based on
separate modulation since it allows the conjugation operation,
which is a key feature of the Alamouti scheme [8], as well as
other orthogonal space-time block codes [12]. For nonorthog-
onal space-time codes, we do not always have significant perfor-
mance differences between separate and complex codes (see ex-
amples in [19]); therefore, to simplify the explanation, we focus
on complex LDCs in this paper.

Let be a set of scalar symbols from some complex
constellation that are to be transmitted. Let be the
set of codeword matrices. Assuming that
and , the basis matrices should satisfy the power
constraint1

tr (1)

1In this paper,E stands for expectation,for elementwise conjugation, for
transpose, for Hermitian transpose, vec(�) for the operator that forms a vector
from successive columns of a matrix, and
 is the Kronecker product.
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though more practically, each basis matrix should contain the
same power

tr

More discussion on normalization is available in [1].
A codeword corresponding to is constructed by

taking the corresponding linear combination of basis matrices

(2)

The coefficient of the codeword gives
the symbol to be transmitted on theth transmit antenna during
the th symbol period. The code is fully determined by the set
of codeword matrices that are i)known to both trans-
mitter and receiverand ii) independent of the channel realiza-
tion.

After matched filtering and symbol-rate sampling, the
receiver concatenatesobservations to form

(3)

(4)

where is a matrix constructed by concatenating the
receive vectors, and is a matrix whose columns

represent realizations of an i.i.d. circular complex additive
white Gaussian noise (AWGN) process with distribution

.
It is often desirable to write the matrix input–output re-

lationship in (4) in an equivalent vector notation. Define
the linear transformation matrix vec vec

vec and the stacked channel matrix .
Taking the vec of both sides of (3) gives

(5)

where vec , , and
vec . Essentially, matrix modulation transforms the
linear system into an expanded system. The linear na-
ture of the encoding operation is evident since, in the absence
of noise, the input and output are related by the linear trans-
formation .

In this paper, the ML decoding rule, optimal assuming equally
likely transmitted symbols, is used at the receiver. In a vector
AWGN channel, the detected vector symbol obtained using the
ML decoder is the solution of

where is the set of all possible vector symbols. Note that
if comes from a constellation with points, there are

possible vector symbols. Thus straightforward im-
plementation is exponential in . Compared with a general
space-time block code, decoding complexity is still exponen-
tial; however, the storage requirements are dramatically reduced
for LDCs since the code is fully specified by the dispersion ma-
trices . Lower complexity decoding with little loss

is possible using spherical decoding techniques based on the
theory of lattice decoders [20]–[22]. In either case, however,
decoding complexity grows with increasing; thus, the draw-
back of linear dispersion codes is that they increase the decoding
complexity as well as an increase decoding delay due to choice
of .

III. N EAR-CAPACITY OPTIMAL LINEAR DISPERSIONCODES

In this section, we introduce a closed-form solution for a
set of LDCs that are capacity-optimal with appropriate choice
of parameters and near capacity-optimal otherwise. First, we
summarize the ergodic capacity of the MIMO communication
system without LDCs and with capacity-optimal LDCs. We
then present a LDC code design that produces capacity-optimal
LDCs for certain choices of parameters. We extend this design
to find low-rate codes that are near capacity optimal.

A. Summary of Ergodic Capacity Results

In this paper, we consider the ergodic capacity, which is the
capacity obtained assuming it is possible to code over many in-
dependent channel realizations. This is relevant because code
designs for practical systems often include interleavers that en-
able the code to experience many different channel realizations.
Thus, the ergodic capacity achieved by codes that experience
an arbitrarily large number of channel realizations is a valuable
upperbound on realistic code performance.

The ergodic capacity of an AWGN channel with
Rayleigh fading has been derived by a number of authors (e.g.,
[2], [3]) and is given by

(6)

where the choice of input distribution which maximizes the mu-
tual information is circular complex Gaussian with covariance

. The significant rate and capacity advantages
due to the multivariate nature of the channel are well known.

B. Capacity-Optimal Linear Dispersion Codes

Obtaining the ergodic capacity using a capacity-optimal
LDCs—by definition—requires maximizing the mutual in-
formation with respect to both the input distribution and the
coefficients of the LDC. Such LDCs have the largest possible
ergodic capacity that can be achieved by any LDC with the
same parameters. Maximizing the ergodic capacity is one
potential LDC design criterion and codes designed under this
criterion are described more thoroughly in [1].

Using the input–output relationship in (5) and applying the
results in [2], the ergodic capacity of the AWGN system in (5)
with Rayleigh fading for capacity-optimum complex LDCs is
given by

tr
(7)

In expressing (7), we have taken without loss
of generality since for any , for some

. Using some manipulations, (7) can also be obtained from
equivalent expressions in [1].



2432 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 50, NO. 10, OCTOBER 2002

Comparing (6) and (7), it is clear that the effect of the linear
code is to color the covariance of the input. Anoptimum LDC,
however, colors the input in such a way that the mutual infor-
mation in (7) is maximized. It is clear that , de-
pending on the choice of parameters.

C. Capacity-Optimal Linear Dispersion Codes

In general, finding a code design that induces an equivalent
channel with full channel capacity is difficult since
the mutual information cost function is nonconvex. In [1], op-
timization is used to solve for capacity-optimal LDCs numeri-
cally. The resulting solution is not guaranteed to be the global
maximum of the cost function, although it is claimed that it is
typically near the global maximum. From (7), it is possible to
obtain a capacity-maximizing LDC by choosing according
to and . Consider . It is easy to show by substi-
tuting into (7) that any such that satisfies
the power constraint tr and produces an equivalent
channel with a capacity of . Essentially, this solution
spreads the input signal across all transmit antennas in all time
periods. Since decoding complexity grows with, it is suffi-
cient to take to achieve full capacity. We summarize
in the following.

Theorem 1: Let . Any such that
is a capacity-optimal LDC.

Therefore, capacity-optimal LDCs for have a
that is simply a scaled unitary matrix. While this follows from
(7), this solution is not as obvious from the capacity expressions
in [1] due to the difference in the functional relationship therein.

Theorem 1 is of extreme importance in the design of ca-
pacity-optimal LDCs. First, it provides a sufficient and neces-
sary condition to check if a set of codes to achieve full capacity.
Second, it shows that there are an infinite number of such codes
that are candidate capacity-optimized LDCs. This enables an
improvement in another feature of the code, for example, the
error probability performance, without a reduction in capacity
advantage.

D. Frame-Based Linear Dispersion Codes

In many cases, it will be desirable to take due
to decoding complexity, memory, or latency constraints. To ac-
commodate this scenario, we propose to modify the capacity
optimal design, where is a scaled unitary matrix by removing
the appropriate number of columns and rescaling to give an
such that

(8)

A tall matrix that satisfies this relationship is known as atight
frame[15]. A tight frame allows an overcomplete representation
of a signal. For example, write to express
as a linear function of the columns of . The redundancy of
the frame is the ratio of rows to columns: in this case .
When is square and orthogonal, the redundancy is 1. Large
redundancy factors reduce the space spanned by the codewords
and lower the overall data rate.

Since we do not explicitly optimize over the ergodic capacity,
the resulting LDC design is not guaranteed to be capacity op-

timal. Therefore, it is of interest to determine how “far” these
codes are from true capacity-optimal designs. For a given,
using [2], the maximum ergodic capacity of the equivalent
channel is given by

tr

where the power constraint onis a result of the symbol energy
normalization. Clearly, .

For comparison purposes, it is not necessarily desirable to op-
timize over the input distribution. For example, in practice, the
input symbols are uncorrelated, and is a good assump-
tion. In addition, is the input distribution that maxi-
mizes the mutual information for the capacity-optimal LDC. In
these cases, the performance of a givencan be evaluated in a
natural way by the mutual information

(9)

It is apparent that .
Typically, when , there is a loss of ergodic capacity

since becomes tall, and it is not possible to excite all the
modes of the effective MIMO channel. We can
show, however, that these codes have an ergodic capacity that
grows asymptotically in proportion to .

To show this, we use a result from in matrix theory known as
the Poincare Separation Theorem [23, p. 190]. Letbe an arbi-
trary Hermitian matrix, and let be a matrix
with that satisfies . The Poincare Separa-
tion Theorem says that the eigenvalues of in decreasing
order ( is the largest) satisfy the following set of inequalities:

(10)

Note that is Hermitian, and let . Let be
the th singular value of (recall that ). Now we
can prove the following theorem.

Theorem 2: The mutual information achieved by using any
frame-based is bounded by

(11)

where is the th singular value of , and the expectation is
with respect to the distribution of the singular values.

Theorem 2 shows that a frame-basedexcites of the
modes of the full channel, which is desirable since the code can
excite at most modes. It is easy to find nonframe-based
that excite less than modes (take to be the all ones matrix
for example). In Fig. 2, we plot the upper and lower bounds for

and . Note that the bounds are
loose, which is expected since the best and worst case are low-
probability events. At high SNR, however, each pair of upper
and lower bounds have the same slope, confirming that each
approach uses the full modes. Due to the factor of in
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Fig. 2. Mutual information bounds for frame-based codes withM =M =

3 andN = 4; 5; 6. The curves increase withN .

(11), asymptotically the capacity grows in proportion to
for frame-based codes.

To get an idea how good or bad frame-based codes perform
with respect to capacity, we performed the following experi-
ment. We randomly generated a series offor
and and estimated the ergodic capacity for using 10 000
Monte Carlo simulations. We plot the curves for all 100 candi-
date codes as well as the upper and lower bounds in Fig. 3. Note
that there is not much difference between the best and worst
codes. Although the bounds are loose, the upper, lower, and pro-
posed bounds appear to increase with the same rate.

IV. ERRORPROBABILITY -BASED LINEAR DISPERSIONCODES

In this section, we refine our frame-based code design
by incorporating error probability considerations. First, we
show that error probability performance is not guaranteed by
capacity maximization. Then, we review some criteria for
evaluating space-time code performance in terms of error rate.
Finally, we propose a linear dispersion code design in which
the dispersion matrices are also optimized with respect to the
rank and determinant space-time code design criteria.

Fig. 3. Comparison of the mutual information bounds with the average
mutual information bounds for various randomly chosen frame-based codes
with parametersM = M = 3, T = 2, andN = 4.

A. Motivation to Include Error Probability

The frame-based code structure can guarantee full or nearly
full capacity depending on the choice of and . It does not,
however, guarantee good performance in terms of error proba-
bility [14]. To motivate consider the following example.

Example 1—Error Probability Comparison:Consider two
different codes designed for , , and .
The first code uses the linear transformation matrix

The second code uses the linear transformation matrix shown
in the equations at the bottom of the page, which were found
using a numerical optimization to be described in the sequel.
The capacity of the equivalent channel induced by each code
is depicted in the left plot of Fig. 4, whereas the bit error rate
performance, estimated over 25 000 Monte Carlo simulations,
is displayed in the right plot of Fig. 4.

Each code satisfies Theorem 1 and, thus, induces a channel
with the full ergodic capacity. It can be shown, however, that the
first code has a second-order diversity advantage, whereas the
optimized code exhibits a fourth-order advantage for the same
overall rate. Thus, codes with the same asymptotic performance
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Fig. 4. Comparison of two different BPSK codes withM = M = 2, T =

3, andN = 6 in terms of ergodic capacity and probability of bit error.

in terms of ergodic capacity may require further optimization to
achieve good error rate performance.

B. Codeword Error Probability

Based on Example 1, a complete code design also optimizes
the codeword matrices based on the error rate. To solve this
problem, we need to determine how a given LDC influences
the error rate. The probability of codeword error can be
upper bounded by the largest pairwise error probability using
the union bound [24]. Therefore, we will use the maximum
pairwise error probability as the performance metric.

For a general space-time code with perfect channel knowl-
edge at the receiver, [6] and [7] use the Chernoff upper bound
to derive an upper bound on the average probability that matrix
codeword is misdecoded as. The average is taken with re-
spect to the channel and the resulting expression is given by

(12)

where . Let be the th eigenvalue of
. Note that the eigenvalues of are simply with

multiplicity . For high SNR, it is possible to rewrite (12) as

rank rank

(13)
The diversity advantage [25] of the code, which is the antici-

pated improvement in the slope of the probability of error curve,
is determined by the smallest product rank . The coding
advantage, or shift inSNR, in the probability of error curve is

determined by the smallest productrank , which, for
full rank , is a function of the determinant of .

For LDCs, is computed using the representation in (2).
Let denote the transmitted sequence corresponding to

and denote the erroneous received sequence corre-
sponding to . The codeword difference matrix is then

(14)

(15)

where is a difference between two constellation
symbols. Essentially, the rank and determinant depend on all
possible different linear combinations of the matrices ,
where the linear combinations are determined by products of the
error. In terms of and , it can
be shown (we skip the details) that

...
...

... (16)

Equation (16) shows how the subspaces of play a role.
Since, for high rate codes, is typically greater than ,
will be fat and will have a null space. is in principle Hermi-
tian semi-definite. A necessary condition for to be full rank
is that every principle submatrix has a determinant that is greater
than zero. Clearly, if for some error vector,
then the resulting code is not full rank.

Based on the parameters of the code the diversity order of
a linear code is bounded by the dimensions of the codeword
matrices and is summarized in the following.

Theorem 3: The diversity order of a linear code is less than
or equal to .

Proof: is the product of a matrix with its Her-
mitian; therefore, the rank of is upper bounded by the
minimum of and times the factor of due to the Kro-
necker product.

Fully diverse codes achieve equality in Theorem 3. A neces-
sary condition, which is obvious from the structure of the error
vectors, is illustrated in the following proposition.

Proposition 4: A fully diverse code has full-rank codeword
matrices.

Proof: should be full rank for all possible error se-
quences. One such set of error sequences are those with a single
nonzero value, i.e., and . For such a set
of error sequences, ( is some scaling factor),
and it is necessary that is full rank if the code is fully di-
verse.

The key message of Theorem 3 is that the diversity advantage
of a linear code can be limited by designs that use short block
lengths . While it is tempting to always make as large
as possible, increases in require corresponding increases in

to maintain the same rate of the code. Largerintroduces
more possible error differences in (15), increasing difficulty in
designing a fully diverse code. It also increases the decoding
memory requirements, latency, and complexity. Thus, for linear
codes, there is a fundamental tradeoff between the achievable
diversity, capacity, and the resulting decoding complexity.

C. Rank and Determinant-Based Linear Dispersion Codes

We are interested in finding codes that have good perfor-
mance in terms of ergodic capacity yet also provide a low error
rate for small block lengths. The rank and determinant criteria
require a search over all possible error vectors and is constella-
tion specific. They do nota priori reveal a good design structure.
The ergodic capacity, on the other hand, provides a rich struc-
ture that is constellation independent (the capacity calculation
assumes Gaussian signals).
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Unfortunately, as shown in Fig. 4, capacity-optimal LDCs do
not necessarily optimize an error probability metric. Further,
given the nonconvex optimization that must be solved to find
a general capacity-optimal LDC, joint error rate and capacity
optimization are difficult. Using our closed-form solution for

, however, we can obtain capacity-optimal codes that
also satisfy the rank and determinant criterion. When it is re-
quired that , we use the frame-based structure to ob-
tain codes with both good error probability and good ergodic
capacity performance.

Let a code be one designed for
transmit antennas, receive antennas, a block length of

symbol periods, and symbols from constellation .
Assuming that the spectral efficiency of the constellation is
bits per symbol, the overall rate of this code will be bits
per symbol period. The parameters and determine the
dimension of the dispersion matrices, whereasdetermines
the number of such matrices. The parametersand will
be used in the selection of the coefficients of the codeword
matrices according to the rank and determinant criteria.

We summarize our design as follows.
Design Criterion 1—High SNR Near-Optimal LDCs:For a

code, choose to satisfy the tight
frame relationship in (8). Within this class of codes, search for
the design that maximizes the minimum rank and product of
nonzero singular values.

Codes designed according to Design Criterion 1 are substan-
tially different than the capacity-optimal LDCs presented in [1].
To improve error probability performance, [1] imposes various
side constraints that try to introduce additional structure in their
LDCs that promote good error probability performance. For
complex LDCs, the equivalent design constraints are (assuming
that )

i) tr

ii) tr

iii)

The first constraint is simply the standard power constraint. The
second constraint requires that each dispersion matrix contain
the same average power. There is no obvious relationship be-
tween the first two constraints and error probability. The third
constraint, however, produces codewords that satisfy the neces-
sary condition in Proposition 4 for a code to achieve full diver-
sity. It was found in [1] that codes designed according to con-
straint iii) often have good error probability performance, al-
though it does not guarantee that performance.

Codes designed according to Design Criterion 1 differ in the
following way. First, to the extent that the rank and determinant
criterion is valid (at high SNR), our codes for will be
bothcapacity-optimal and error probability-optimal. Of course,
we could modify Design Criterion 1 based on a better error per-
formance metric, say the bit error rate, to obtain good bit error
rate performance. We leave this to future work.

When , our codes are not capacity-optimal, al-
though they still have good capacity properties. This is not a

huge disadvantage since it is not easy to find the LDCs that
globally maximize the capacity criterion in this case due to the
nonconvex nature of the capacity cost function [1]. Further, our
codes still have good performance, at least asymptotically, in
terms of ergodic capacity, and they have the added bonus that
they improve the error probability. No matter what the choice
of , note that our codes automatically satisfy side constraints
i) and ii). Our design is flexible enough that we can evenincor-
porate constraint iii)and still optimize over the rank and deter-
minant criterionto even further improve performance.

V. NUMERICAL TECHNIQUES FORFINDING GOOD CODES

In this section, we present different techniques for finding
dispersion matrices with good error probability performance.
First, we describe how we can use results from frame theory to
parameterize the proposed family of LDCs. Then, we propose a
number of different procedures that can be used to obtain good
coefficients for this parameterization.

A. Characterization of Frames

The benefit of using the proposed LDC structure is that we
can rely on the rich literature on frame expansions [15] to assist
in the selection of optimal codewords. In this section, we present
two different parameterizations that will be useful in the sequel.

1) Projection: Given any full-rank tall matrix

(17)

is a tight frame, as can be confirmed by checking

(18)

(19)

(20)

For an matrix , by scaling the power,
forms a candidate linear transforma-

tion matrix that can be evaluated for pairwise error probability
performance. This important result allows construction of
candidate codeword matrices from any suitably sized arbitrary
matrix . Let be the -decomposition of ,
where is , and is . It is easy to check that

; thus, computing requires computing
the decomposition of . Computational complexity and
implementation issues are detailed in [26].

While it is useful to construct a tight frame given a random
matrix, for the purpose of optimization, it is useful to be able
to parameterize the family of tight frames. This can be accom-
plished by using analogous results for parameterizing unitary
matrices. The space of unitary matrices is known in the math-
ematics literature as the Stiefel manifold, and a good summary
of representations can be found in [27].

2) Unitary-Based Parameterization:It is possible to con-
struct an tight frame from an unitary
matrix by taking the first columns of as

where

(21)
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This representation can characterize any tight frame since given
a tight frame , an can be found (for example, by augmenting
with a random matrix of dimension and using
the Gram–Schmidt procedure) such that

is square and unitary. Of course, the representation is not unique
since any permutations of the columns ofalso leads to a pos-
sible .

Since parameterizations of exist in the literature, they can
be used in turn to specify . In this paper, we use the fact
that any unitary matrix can be written as a product of House-
holder reflections to develop an equivalent representation for
tight frames. Let for be a length
vector of the form

(22)

Then, the corresponding Householder reflection is

(23)

We can represent any unitary matrix as

(24)

where is a diagonal matrix of arbitrary complex exponentials.
To make tall, we use in (21)

(25)

When , we can reduce the number of terms in (25)
by recognizing that for ; thus,
for . Therefore, any potential frame-based code matrix
can be written

(26)

The total number of real parameters necessary to specifyis

(27)

which can be significantly less than the real parame-
ters required to specify an arbitrary complex matrix.
Computing each requires real multiplies
to compute the outer product and the product with the scaling
factor, multiplies to compute the scaling factor

, and one division. Ignoring the structure of , can
be computed using matrix multiplies.

The Householder representation is nice because it reduces the
number of parameters of the search space and because it pro-
vides an unconstrained representation ofin terms of the coef-
ficients of the Householder matrices. Other representations are
also possible, for example, using the Given’s rotation [26]. A
good summary of these representations for unitary and orthog-
onal matrices is available in [27].

B. Algorithms for Finding Candidate
Error-Probability-Optimal LDCS

In this section, we provide some algorithms for computing
dispersion matrices that satisfy the frame-constraint and are fur-
ther optimized with respect to the rank and determinant criteria.

1) Global Optimization: For a given , , and , the
linear dispersion matrices are exactly determined by. Thanks
to our frame-based design, has a parsimonious parameteri-
zation using Householder reflections. Therefore, obtaining an
error-probability-optimal LDC (in the rank and determinant
sense) requires optimizing the rank and determinant criterion
with respect to the constellation.

Consider a code. Let
be the set of all possible error vec-

tors where . For any error vector , the error differ-
ence matrix is determined from (15) (we have changed
the notation to clarify that the error difference matrix is a func-
tion of a particular error vector).

The optimization corresponding to Design Criterion 1 that
produces codes that are optimal with respect to the rank and
determinant criteria is summarized in the following.

Optimization I: Let and be an initial set of
Householder parameters with the structure in (22). Let

be the minimum required rank of the LDC. Find
such that

(28)

is maximized subject to the constraint

rank (29)

A target minimum rank of fixes the minimum
diversity order achieved by the code. If a code cannot be found
with a minimum rank , then the optimization is infeasible.
Practically, it is best to start with small and gradually increase
the size until the optimization terminates with an infeasible so-
lution. This ensures that the maximum diversity advantage will
be achieved with the resulting code.

The optimization can be implemented with any number of
numerical methods, for example, a gradient search. The com-
plexity of any numerical method is high since calculating
requires computing the SVD of error covari-
ance matrices. Clearly, this is prohibitive for larger rates (as is
the ML decoder). The overall complexity depends on the exact
algorithm chosen for implementation but is quite high since
most algorithms require a numerical estimate of the gradient,
which is obtained by perturbing the cost function, in addition to
cost function evaluation at each step in the optimization.

Unfortunately, convergence of Optimization 1 is not readily
guaranteed. First, the cost function is a nonlinear function of
the Householder parameters. Second, it is nonconvex since it
maximizes the minimum taken over a discrete space. Thus, a
solution obtained using Optimization 1 will typically be the best
rank and determinant solution in the neighborhood of the initial
condition. This is not a serious drawback since the capacity-
optimal LDCs in [1] do not consider any such optimizations
with respect to error probability.

To improve the performance of Optimization 1, it is desirable
to find a good initial condition.

2) Basis Selection:An extremely simple procedure to
obtain an initial condition for Optimization 1 is to choose an

unitary matrix and pick the columns whose
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corresponding codeword matrices are the best in terms of
Design Criterion 1.

Basis Selection:Let be the set of all possible subsets of
columns of . By construction, , where

. Let denote the matrix formed by theth subset
in . The basis selection algorithm chooses
such that the codeword matrices constructed from the columns
of maximize subject to the side constraint in (29).

The coefficients of the Householder representation corre-
sponding to the Basis Selection optimization can be found as a
byproduct of the decomposition. See [26] for details. Basis
selection has the advantage of low complexity since it requires
computing only for possible combinations
of columns. Of course, it is not helpful when since
there is only one possible combination of columns.

3) Random Search:An alternative to improve sampling of
the space of frames is to use a random search. This has the
advantage of providing a better sampling of the space of pos-
sible frame-based LDCs and typically provides good initial con-
ditions for Optimization 1. In fact, codes obtained using the
random search often perform well without further optimization.
Of course, since the search is random, they do not guarantee
even a local maximum of the determinant cost function.

One way to perform a random search is to use the projec-
tion-based representation in (17) to generatearbitrary

matrices and to use the projection in (17) to construct a
corresponding set of matrices. The that maximizes
subject to the rank side constraint is chosen as the initial condi-
tion for Optimization 1.

Random Search I: Generate realizations of from
some distribution, for example, the multivariate complex
Gaussian distribution. From all the possiblematrices, select

such that maximizes
subject to the side constraints in (29).

The coefficients for Householder representation can again be
found as a byproduct of the decomposition. See [26] for
details.

For comparison with codes from [1] it is often useful to
enforce the side constraint iii). How we enforce iii) depends

on the choice of . For example, if , we choose
, whereas for , we choose

. This additional side constraint has
been shown to also improve the performance of frame-based
LDCs in [28].

To impose side constraints, we propose the following modi-
fication to Random Search I.

Random Search II: Consider candidate realizations of a
random matrix matrix , and let be some stop-
ping value. For each candidate matrix , let

.Then, extract from , and let
and scale appropriately. Repeat the pro-

cedure for vec vec vec until
. Choose the generated from the

realizations of that maximizes subject to the side con-
straints in (29).

Again, the coefficients for Householder representation can
again be found as a byproduct of the decomposition. Note
that we are alternately enforcing a convex constraint with
respect to the dispersion matrices, and thus, the iteration in
Random Search II typically converges quickly.

VI. DESIGN EXAMPLES

In this section, we present a number of example code designs
obtained through joint capacity and error probability optimiza-
tion. We compare performance in terms of ergodic capacity,
codeword error probability, and bit error probability. Gray la-
beling was assumed for the bit-to-symbol mapping.

A. Comparison of Linear Dispersion Codes for Four-Transmit
Antenna One-Receive Antenna

In this example, we compare two (4, 1, 4, 4, 4—QAM) linear
dispersion code designs. The reference LDC is capacity-optimal
and was derived in [1]. The proposed frame-based code was
generated using Random Search II with a search over 100 000
realizations and the side constraint that the rank ofshould
be 3. The linear transformation matrix for the proposed code is
shown in the equation at the bottom of the page.
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Fig. 5. Comparison of the two different (4, 1, 4, 4, 4—QAM) linear dispersion
codes in terms of spectrum efficiency for one and two receive antennas. The
Hassibi and Hochwald code is capacity optimal, whereas the proposed code is
a noncapacity optimal frame-based code.

The singular values for the with worst determinate are
(2.1141, 1.6267, 0.9405, 0.0050). As designed, the codeword
error matrix has a rank of three so it would be expected that this
code exhibits a third-order diversity advantage in this example
since .

The details for the Hassibi–Hochwald code can be found in
[1]. The singular values for the matrix with worst rank and
determinant are (1.7899,1.6719, 0.0279, 0.0183). Whereas
has four nonzero singular values, practically speaking, it has a
rank of two since the other two singular values are quite small.
Thus, we would expect this code to exhibit only a second order
diversity advantage.

We illustrate the ergodic capacity of the equivalent channel
induced by each linear dispersion code in Fig. 5. As expected,
the capacity of the frame-based code is close but does not quite
maximize the ergodic capacity. This is because in this case,

, and our design does not guarantee capacity optimality.
We could have chosen larger, but then, this would not have
been a fair comparison. The performance difference is small,
particularly as the number of receive antennas increases.

Next, we illustrate the error rate performance in Fig. 6. The
left plot displays the codeword error rate for each code. Note
that, as designed, the optimized code has a higher order diver-
sity advantage as reflected by the improvement in the slope of
the error rate curve. Even at a codeword error rate of 10, the
proposed code has a 3-dB advantage. This advantage grows with
larger SNR due to the larger diversity advantage of the proposed
code.

The corresponding bit error rate curves are displayed on the
right plot of Fig. 6. Again, the slope of the optimized curve is
improved over that of the unoptimized curve, with the difference
becoming more dramatic at high SNR. At a BER of only 10,
there is again a significant 3–dB difference in the performance
of the two codes. This difference grows as the BER decreases
due to the larger diversity advantage of the proposed codes.

In both plots, note that there is negligible improvement at low
SNR. This is because the rank and determinant criteria are re-

Fig. 6. Comparison of the two different (4, 1, 4, 4, 4—QAM) linear dispersion
codes in terms of (a) codeword error probability and (b) bit error probability.
The proposed code has been optimized for good error probability performance.

ally only good predictors of code performance at high SNR. To
obtain better low SNR performance, an alternative error proba-
bility criterion should be employed in the optimization. In prac-
tice, it is the average error rate that determines the performance
of a given space-time code. Thus, despite the fact that the pro-
posed code is not capacity optimal, it is a better LDC than that
proposed in [1] in the practical error rate comparison.

B. Linear Dispersion Codes for Three-Transmit Antennas
Three-Receive Antennas

In this example, we compare two code different jointly ca-
pacity-optimal LDCs that are local minima of Optimization 1.

First, we consider the (3, 3, 3, 1, 4—QAM) code with linear
transformation matrix

Next, we consider the (3, 3, 9, 3, 4—QAM) code with linear
transformation matrix

where we have (30) and (31), shown at the bottom of the next
page. The second code was designed using Optimization I with
a desired rank parameter of 2.

For the first code, the worst is rank one with singular
values (1.1549,0,0). Therefore, we expect the first code to have
a third-order diversity advantage since there are three
receive antennas. For the second code, the worstis rank two
with minimum singular values (1.1549, 1.1549,0). Therefore,
we expect this code to provide a th-order diversity
advantage since there are three receive antennas.

As displayed in Fig. 7, each code achieves the same (in this
case the full) ergodic channel capacity. In Fig. 8, however, there
is significant difference between the two codes in terms of bit
error rate. The code obtains a maximum third-order di-
versity advantage, whereas the code obtains a dramatic
sixth order advantage. The difference is significant, providing,
even at a BER of 10 , an advantage of 3 dB. This illustrates that
the benefit of increasing without decreasing the overall rate is
a potential improvement in diversity. Of course, the tradeoff is
an increase in decoding complexity since code requires
joint decoding of nine symbols instead of three symbols.
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Fig. 7. Ergodic capacity comparison of two different frame-based optimized
LDCs with different block lengths but the same rate.

C. Linear Dispersion Codes for Three-Transmit Antennas and
One-Receive Antennas

In this example, we examine the impact of increasingwhile
keeping fixed. The proposed frame-based codes were gen-
erated using Optimization 1 with maximum possible rank and
Random Search II with a search over 1000 realizations to pro-
vide the initial conditions. The error rate was estimated using
100 000 Monte Carlo simulations.

Fig. 8. Bit error probability comparison of two different frame-based
optimized LDCs with different block lengths but the same rate.

For the (3, 1, 3, 1, 4—QAM) code, we used the spatial mul-
tiplexing LDC. Note that this code is capacity optimal. For the
(3, 1, 3, 2, 4—QAM) code, we found the second equation shown
at the bottom of the page, whereas for the (3, 1, 3, 2, 4—QAM)
code, we found the equation shown at the bottom of the next
page.

In Fig. 9, we plot both the ergodic capacity and the codeword
error probability. Unlike the previous example, where the ratio

was fixed and capacity was preserved, in this example, the

(30)

(31)
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Fig. 9. Comparison of three different frame-based LDCs in terms of (a) mutual
information and (b) codeword error rate.

capacity decreases for largersince is decreasing. This
rate reduction, however, comes with a much more substantial
improvement in codeword error rate since largerallows for
the error difference matrix to have a larger rank.

VII. CONCLUSION

We have introduced a new linear dispersion code design for
MIMO Rayleigh fading channels that provides codes with good
ergodic capacity and error probability performance. The basis
matrices of the code, when suitably rearranged, yield a tight
frame. This gives the intuition that instead of sending uncoded
symbols, the proposed frame-based codes convey the coeffi-
cients of a frame expansion of a vector of symbols. The tight
frame-based structure provides a closed-form solution that can
achieve the full capacity of the channel with appropriate choice
of dimensions.

For a given set of parameters, we showed that there are many
choices of frame-based codes that have a similar ergodic ca-
pacity performance. Therefore, we were able to use existing pa-
rameterizations of the space of tight frames to search for the
code that provided the lowest probability of symbol error. This
is important because, as we demonstrated, codes that have the
same ergodic capacity performance may have different error
performance. To ensure good error rate performance, we opti-
mized over the space of tight frames to find the one with the
best performance in terms of the rank and determinant criterion.
We discussed an algorithm to accomplish this optimization and
presented some alternatives to generate good initial conditions.
Monte Carlo simulations demonstrated the performance of var-

ious proposed codes for different numbers of transmit and re-
ceive antennas, constellation sizes, and block lengths.

While we considered the Rayleigh channel that is uncorre-
lated in space and time, practical MIMO systems will have chan-
nels with space, time, as well as frequency selectivity [29]–[31].
Future work is necessary to extend the results presented herein
to these practical channels. Further, our designs are optimal only
for the ML receiver. Further work is necessary to extend this
to other low-complexity receivers, for example, the iterative re-
ceiver [4] or the linear receiver [32].
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