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Linear Dispersion Codes for MIMO Systems Based
on Frame Theory
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Abstract—Multiple-input multiple-output (MIMO) wireless  fading channels. In practical systems, it is desirable to provide
communication systems provide high capacity due to the plurality poth high spectrum efficiency and high reliability; thus, new
of modes available in the channel. Existing signaling techniques space-time signaling techniques are needed.

for MIMO systems have focused primarily on multiplexing for . .
high data rate or diversity for high link reliability. In this paper, we Recognizing that orthogonal space-time block codes [12]

present a new linear dispersion code design for MIMO Rayleigh designed to maximize diversity advantage do not achieve full
fading channels. The proposed design bridges the gap betweenchannel capacity in MIMO channels (this was also observed in
multiplexing and diversity and yields codes that typicallyperform ~ [13]), Hassibi and Hochwald proposed the revolutionary linear
well both in terms of ergodic capacity as well as error probability dispersion codes (LDCs) [1]. These codes use a linear matrix

This is important because, as we show, designs performing well - il . . -
from an ergodic capacity point of view do not necessarily perform modulqtlon framework_, S|mllar to tha_t |n_ 91, in Wh_'Ch _the
well from an error probabmty point of view. Various techniques transm|tted COdeword ISa ||near Comb|nat|0n Of certain dISpeI‘-
are presented for finding codes with good error probability sion matrices with the weights determined by the transmitted
performance. Monte Carlo simulations illustrate performance of symbols. The key to the LDC design is that the basis matrices
some example code designs in terms of ergodic capacity, codewordy e chosen such that the resulting codes maximize the ergodic
error probability, and bit error probability. - .

capacity of the equivalent MIMO system. Unfortunately, the

Index Terms—Dbiversity methods, MIMO systems, smart an- | DCs proposed in [1] only optimize the ergodic capacity;

tennas, space-time codes. thus, corresponding good error probability performance is not
strictly guaranteed [14].
I. INTRODUCTION AND OUTLINE In this paper, we present a family of LDC designs based on

. . frame theory [15]. Our designs are tailored for the frequency flat
ULT'PLE."Nt.PUT mt"t'p'e"_)“tp”t_('\l’”'\"o) "‘;"e'ess independent and identically distributed (i.i.d.) spatially white
i Icotmmunlgta |or; Systems, "te" WITEIESS Sys ert'nstvx(/jl mplex Gaussian channel known perfectly at the receiver but
muftiple transmit and receve antennas, are important Ay o+ ine transmitter. Maximum likelinood (ML) detection is
to their potential for significant spectrum efficiency [1]_[3]'ass med at the receiver. Instead of sending uncoded symbols
Of particular interest are those schemes that assume cha u‘?luframe-based codes convey the coefficients of a frame ex-,
knovx_/ledge qt _the receiver but no knqwledge aF the transmi_t nsion of a vector of symbols. Most existing linear codes, for
[4] since training sequences are typically avf';ulable. _Pract| ample, spatial multiplexing [10], the Alamouti code, other
rr;]odula;uolf sclh %mesf fﬁr MIM.O ”sys.tems with rece“{(e'onl?ﬂrthogonal designs [8], [9], [12], and the previously proposed
channel knowledge fall principally _mto .two areas Knowil g all have a frame-based structure. We show that with suit-
as dlve.rsny anq multiplexing [5]. Dlyer3|ty modulanon, OTaple choice of parameters, frame-based LDCs have equivalent
Space-t|me _codlng [6]._[9]’. uses specially deS|g_ne(_j_codewor annels that achieve the full-ergodic capacity. We extend this
that maximize the _dlver3|ty a_ldvantage or reliability of th%lesign to find low-rate LDCs that are near optimal in terms of
tra_msmntec_i |nfo_rmat|_on. In fading channels, suc_h codes_ma I'pacity yet have a frame-theoretic interpretation. The proposed
mize the d|v9r3|ty gain at the expense of a lass in capacity [ DCs can be conveniently represented using the theory of uni-
Spatlallmu.luplexmg [10] (or BLAST [4]), on the other han.d’tar matrices and tight frames [15]. Since we do not require a
tratnsmlts hl/lnc:tgplenQentd dqta str(ﬁams from'te?chb tranimltt erical optimization, as in [1], we can instead optimize over
zntentn?r.] u'tip exmgf es:gns a o(;/y captam 3& 0 te ac 1'?/(? e space of codes with similar ergodic capacity to find those
ut at the expense of a loss in diversity advantage [11] {Rat also have good performance in terms of error probability.
To illustrate, we show how to improve our frame-based LDCs
using the rank and determinant criteria [6], [7]. Different tech-
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to guarantee a minimum diversity advantage, we further opi
mize our choice of codewords using the rank and determina
criterion [7]. o | Spoce Space-
A . . . . n . g time |—»
LDCs that maximize the received signal-to-noise ratio (SNF Signaling Decoder n
Mt Mr

4

are described in [9]. Such codes, which are also known as ¢
thogonal designs [8], [12], satisfy an orthogonality constraint
on each matrix and a skew Hermitian cross-relation. The rgg. 1. MIMO\communication link employing space-time signaling and
sulting design decouples the symbol streams at the receivef$6°%ing:
simplify ML detection. Unfortunately, codes satisfying the or-
thogonality constraint exist for only a few choices of parameterandom variables with distributiaddA/(0, 1). The matrix is con-
and do not achieve the ergodic capacity when multiple receisgant over the duration of the codeword of interest but varies in-
antennas are available [1]. In contrast, the code design propodegendently from codeword to codeword. Thus, each codeword
herein imposes the less restrictive cross relation that the bases a different channel realization, and the channel coefficients
matrices should be orthogonal in terms of the Frobenius noaheach realization are independent in space and time.
matrix inner product. Our design is general enough that codesThe i.i.d. block fading complex Gaussian channel model has
can be found for many combinations of transmit antennas, geen extensive use in the past, e.g., [6], [7], and [16]. Extension
ceive antennas, codeword lengths, and rates. On the other ham@, more general channel model that includes correlation [17]
our designs do not simplify ML detection. or delay spread [18] is a subject for future work.

This paper is organized as follows. Section I first reviews
the channel model and presents our version of the LDC frant®- Linear Dispersion Codes

work. Section Il reviews the ergodic capacity with LDCs and ~qnsider a space-time block code that transiité bits in

presents the frame-based LDC design. Error probability consifiy,erinds acrosaz, transmit antennas. The code is specified by
era_tlo_ns are addressed in Section IV. Section V contains a ﬂ‘?e codebook and the rule for mapping the incoming bit string
scription of some numerical procedures that can be used to figdhe codewords. For space-time block codes, the codebook is
good frame-based LDCs. Section VI presents example code g@mprised of2®N space-time codewords, each of which is a

signs, comparisons, and simulation results. Finally, Section Y| +rix with dimensions\Z; x T. The rule for mapping bits to

presents our conclusions. space-time codewords is generally the one that minimizes the
bit error probability for the given codebook. Without structure
in the codewords, decoding a general space-time block code
In this section, we review the MIMO communication systermay be difficult due to the significant complexity and storage
considered in this paper. We start with a brief description #gquirements that grow with larger rates. To overcome these dif-
the channel and the assumptions that enable this channel mofifllties, in this paper, we focus on linear dispersion codes [1] in
We then review the linear dispersion code description of lineahich the codewords are a linear function of the data symbols.

II. MIMO C OMMUNICATION USING MATRIX MODULATION

space-time block codes [1]. The linear dispersion encoder derives space-time codewords
_ from linear combinations of certain basis matrices. The encoder
A. Channel Model and Assumptions may operate using complex modulation, in which each com-

A MIMO communication system withh4, transmit antennas plex symbol modulates a different complex codeword matrix,
andM,. receive antennas is illustrated in Fig. 1. The space-tin®é separate modulation, in which the real and imaginary com-
encoder takes input symbols and generates a codeword maffiXyents of a complex symbol each modulate a separate possibly
that is, a codeword with dimension in both space and timeomplex codeword matrix. The original LDCs were based on
The codeword is launched into the propagation environme§fiparate modulation since it allows the conjugation operation,
from M, transmit antennas and arrives at the receive an- Which is a key feature of the Alamouti scheme [8], as well as
tennas. The receiver is assumed to have perfect channel knd¥her orthogonal space-time block codes [12]. For nonorthog-
edge while the transmitter has no channel knowledge. To d@al space-time codes, we do notalways have significant perfor-
scribe the input—output relationship of the system in more deance differences between separate and complex codes (see ex-
tail, we first describe the propagation channel between the traggaples in [19]); therefore, to simplify the explanation, we focus
mitter and receiver. on complex LDCs in this paper.

Suppose that the transmission bandwidth is much less thamet {s.}, =, be a set of scalar symbols from some complex
the coherence frequency of the channel (thus, the channel is f@bstellation that are to be transmitted. {&4,,},_;" be the
quency flat), the antenna spacing is larger than the coherefié of M: x T codeword matrices. Assuming thas, = 0
distance (thus, antennas are decorrelated), the codewordsa@@€|s.|* = 1, the basis matrices should satisfy the power
separated by at least the coherence time of the channel (tfgsistraint
the channel is independent from observation to observation), N_1
and assume sufficient scattering in the environment (so that the tr { Z Man}
each element of the matrix is independent). This gives rise to the rt
so-called block fading Gaussian matrix channel model, wherell ) . . ) N

n this paper¢ stands for expectation,for elementwise conjugatiod, for
transposet! for Hermitian transpose, véqg for the operator that forms a vector

=T 1)

the channel is described by a#, x A, matrix H whose ele-
ments[H],,, x are i.i.d. circularly symmetric complex Gaussiarrom successive columns of a matrix, ands the Kronecker product.



HEATH AND PAULRAJ: LINEAR DISPERSION CODES FOR MIMO SYSTEMS 2431

though more practically, each basis matrix should contain tieepossible using spherical decoding techniques based on the

same power theory of lattice decoders [20]-[22]. In either case, however,
T decoding complexity grows with increasinig; thus, the draw-
tr {Man} =5 "= 0,1,...,N -1 back of linear dispersion codes is that they increase the decoding
complexity as well as an increase decoding delay due to choice
More discussion on normalization is]i;}vel\ilable in [1]. of ' > 1.

A codeword corresponding ts,, },, ~; is constructed by
taking the corresponding linear combination of basis matrices Ill. N EAR-CAPACITY OPTIMAL LINEAR DISPERSIONCODES

N-1 In this section, we introduce a closed-form solution for a
S(s0,81,---,8N_1) = Z M, sp- (2) set of LDCs that are capacity-optimal with appropriate choice
n=0 of parameters and near capacity-optimal otherwise. First, we

The coefficient of the codewori (so, 51 sn_1)],.. gives summarize the ergodic capacity of the MIMO communication
2815 SN=U]im ) . Lo
the symbol to be transmitted on thth transmit antenna during system without LDCs and with capacity-optimal LDCs. We

themth symbol period. The code is fully determined by the Sétgen present a LDC code design that produces capacity-optimal
of codeword matrice&M }N—Ol that are iknown to both trans- LDCs for certain choices of parameters. We extend this design

mitter and receiveand ii) independent of the channel realiza!® find low-rate codes that are near capacity optimal.

tion. o _ A. Summary of Ergodic Capacity Results
After matched filtering and symbol-rate sampling, the ) ] ) ) o

receiver concatenatés observations to form In this paper, we consider the ergodic capacity, which is the
capacity obtained assuming it is possible to code over many in-

Y =V E.HS(so,51,-..,snv-1)+V (3) dependent channel realizations. This is relevant because code

N—1 designs for practical systems often include interleavers that en-

=v/E.H Z M,s, +V (4) ablethe code to experience many different channel realizations.

=0 Thus, the ergodic capacity achieved by codes that experience

where is aM, x T matrix constructed by concatenating thé@n arbitrarily large number of channel realizations is a valuable

T receive vectors, an¥ is aM, x T matrix whose columns upperbound on realistic code performance.

represent realizations of an i.i.d. circular complex additiv The_ ergod_ic capacity of aM,, x M, AWGN channel with
white Gaussian noise (AWGN) process with distributio?ayle'ghfad'ng has been derived by a number of authors (e.g.,

CN(OaNoI]\lT)- 2], [3]) and is giVen by

It is often desirable to write the matrix input—output re- ) E, i

lationship in (4) in an equivalent vector notation. Define Cnoxar, = Emlogdet | Ty, + M,N, HH (6)

the linear transformation matrix’ := [veqM,), veqM,), ) ) o ) o

...,vedMy_1)] and the stacked channel matfix:= I ©H. where the choice of input distribution which maximizes the mu-

Tak7ing the veg) of both sides of (3) gives tual information is circular complex Gaussian with covariance
R, = 1/M,1,,. The significant rate and capacity advantages

vy =vVEHXs+v (5) due to the multivariate nature of the channel are well known.
wherey = vedY), s := [sg,51,...,sn_1]%, andv := B. Capacity-Optimal Linear Dispersion Codes
ved V). Essentially, matrix modulation transforms thi x M, Obtaining the ergodic capacity using a capacity-optimal

linear system into an expanded.7"x IV system. The linear na- | pcs—by definition—requires maximizing the mutual in-
ture of the encoding operation is evident since, in the absefgemation with respect to both the input distribution and the
of noise, the inpus and outpul are related by the linear trans-coefficients of the LDC. Such LDCs have the largest possible
formation 4. _ _ _ ergodic capacity that can be achieved by any LDC with the
_ Inthis paper, the ML decoding rule, optimal assuming equaldgme parameters. Maximizing the ergodic capacity is one
likely transmitted symbols, is used at the receiver. In a vectgptential LDC design criterion and codes designed under this
AWGN channel, the detected vector symbol obtained using tBgterion are described more thoroughly in [1].
ML decoder is the solution of Using the input—output relationship in (5) and applying the
. s 2 results in [2], the ergodic capacity of the AWGN system in (5)
SR v ) ly EH&s|l2 with Rayleigh fading for capacity-optimum complex LDCs is

wheresS is the set of all possible vector symbaisNote that given by

if [s], comes from a constellation witR® points, there are 1 E, ol
S| = 27N possible vector symbols. Thus straightforward im--° = tr vy < 7émlogdet <IMTT + FOHXX H ) :
plementation is exponential iRN. Compared with a general @)
space-time block code, decoding complexity is still exponein expressing (7), we have tak®y, := &,ss” = I without loss
tial; however, the storage requirements are dramatically redua#dyenerality since for anR.,, AR, X7 = XXH for some

for LDCs since the code is fully specified by the dispersion mak. Using some manipulations, (7) can also be obtained from
trices {Mn}ﬁ:ol. Lower complexity decoding with little loss equivalent expressions in [1].
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Comparing (6) and (7), it is clear that the effect of the lineaimal. Therefore, it is of interest to determine how “far” these
code is to color the covariance of the input. 8ptimum LDC codes are from true capacity-optimal designs. For a gi¥en
however, colors the input in such a way that the mutual infousing [2], the maximum ergodic capacity of the equivalent
mation in (7) is maximized. It is clear thét. < Cy; «as,, de- channel is given by
pending on the choice of parameters.

1 E,
Celx =, max TSH log det <IMTT + FHXQA’HHH>

C. Capacity-Optimal Linear Dispersion Codes tr(@) <~

In general, finding a code design that induces an equival§fere the power constraint &is a result of the symbol energy
channel with full channel capacity;. s, is difficult since ngormalization. ClearlyC.;x < Co < Cas s, -
the mutual information cost function is nonconvex. In [1], 0p- For comparison purposes, it is not necessarily desirable to op-
timization is used to solve for capacity-optimal LDCs numerkimize over the input distribution. For example, in practice, the
cally. The resulting solution is not guaranteed to be the globgjut symbols are uncorrelated, a@d= Iy is a good assump-
maximum of the cost function, although it is claimed that it igion, |n addition,Q = I is the input distribution that maxi-
typically near the global maximum. From (7), it is possible tenjzes the mutual information for the capacity-optimal LDC. In

obtain a capacity-maximizing LDC by choosing according these cases, the performance of a gi%toan be evaluated in a

tuting into (7) thatanyt’ such thatt X = 1/M,Ir,, satisfies

the power constraint{& X# } = T and produces an equivalent
channel with a capacity af'y;. x ns,. Essentially, this solution
spreads the input signal across all transmit antennas in all time

. . . . o . Itis apparent thal, |y < C,jy.
periods. Since decoding complexity grows with it is suffi- X ¥ = Ml . . .
cient to takelV = M, T to achieve full capacity. We summarize Typically, when < M, T’ there is a loss of ergodic capacity
in the following since X becomes tall, and it is not possible to excite all the

Theorem 1:Let N = M,T. Any X such thattx# — modes of the effectivéd4,. T’ x M, T MIMO channel. We can
1/MIy, isa é:apacity-optinzallLDC n show, however, that these codes have an ergodic capacity that

Therefore, capacity-optimal LDCs fa¥ = M,T have aX gr(_)rws Esyr?r?totlcally n propolrt tlfOﬂ w/ T trix th K
that is simply a scaled unitary matrix. While this follows from 0 Show this, we USe a resuitirom in matrix theory known as

. L ; : : Poincare Separation Theorem [23, p. 190]./8 bt an arbi-
7), this solution is not as obvious from the capacity ex ressmﬂ? " . .
(7 pactly exp rary M x M Hermitian matrix, and le&’ be aM x N matrix

in [1] due to the difference in the functional relationship therein.’ PN .
Theorem 1 is of extreme importance in the design of cg\lf'thTNh < M that S?;'Si'fhs}‘ X = IIN' ;P;;BFzgl_nc;re Separa-
pacity-optimal LDCs. First, it provides a sufficient and neced!On Theorem says that the eigenvalue In decreasing

sary condition to check if a set of codes to achieve full capacifgf.der b1 Is the largest) satisfy the following set of inequalities:

Second, it shows that there are an infinite number of such codes JHppy JHppy
that are candidate capacity-optimized LDCs. This enables an Hirnr—n (XTBY) < e(B) < ju(ATBX). (10)
improvement in another feature of the code, for example, theNnote thatH2 H is Hermitian, and le8 = HHEH. Let \;, be
error probability performance, without a reduction in capacithe kth singular value of{ (recall thatux(B) = A2). Now we
advantage. can prove the following theorem.

Theorem 2: The mutual information achieved by using any
frame-basedt’ is bounded by

1 E,
Ic|X = TgH logdet <IJ\LT + N

o]

HXXHHH> )

D. Frame-Based Linear Dispersion Codes

In many cases, it will be desirable to také < AT due N
to decoding complexity, memory, or latency constraints. To ag-g Zl (14 Zs 2 <7
commodate this scenario, we propose to modify the capacify 08 M,N, k+MI=N | = Zel¥
optimal design, wherg’ is a scaled unitary matrix by removing =t L X B
the appropriate number of columns and rescaling to giv&'an 1 ) 5 2
such that < 7€ ;108 <1 Y ALN, Ak) 11)

Xty = ZIN- (8) Wwhere), is thekth singular value of{, and the expectation is
N with respect to the distribution of the singular values. [
Atall matrix A" that satisfies this relationship is known atiggnt Theorem 2 shows that a frame-bagedxcitesV of the M, T’
frame[15]. A tight frame allows an overcomplete representatiomodes of the full channel, which is desirable since the code can
of a signal. For example, write= N/TXH(Xs) to express excite at mostV modes. It is easy to find nonframe-bas&d
as a linear function of the columns &f. The redundancy of that excite less thaftv modes (take¥' to be the all ones matrix
the frame is the ratio of rows to columns: in this caddgl’/N. for example). In Fig. 2, we plot the upper and lower bounds for
When X is square and orthogonal, the redundancy is 1. Largé, = M, = 3 and N = 3,4,5,6. Note that the bounds are
redundancy factors reduce the space spanned by the codewtwrdse, which is expected since the best and worst case are low-
and lower the overall data rate. probability events. At high SNR, however, each pair of upper
Since we do not explicitly optimize over the ergodic capacitgnd lower bounds have the same slope, confirming that each
the resulting LDC design is not guaranteed to be capacity aggpproach uses the fulV modes. Due to the factor df/T in
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— UPPER BOUND
— LOWER BOUND

SPECTRUM EFFICIENCY BITS/S/HZ
SPECTRUM EFFICIENCY BITS/S/HZ

SNR

) ) ) ] / Fig. 3. Comparison of the mutual information bounds with the average
Fig. 2. Mutual information bounds for frame-based codes With= M. = mutual information bounds for various randomly chosen frame-based codes
3 andN = 4,5,6. The curves increase witN . with parameterd/, = M, = 3,7 = 2,andN = 4.

(11), asymptotically the capacity grows in proportiongz® A Motivation to Include Error Probability

for frame-based codes. The frame-based code structure can guarantee full or nearly
To get an idea how good or bad frame-based codes perfdiuti capacity depending on the choice &fandZ. It does not,

with respect to capacity, we performed the following experkowever, guarantee good performance in terms of error proba-

ment. We randomly generated a seriestofor M, = M, = 3  bility [14]. To motivate consider the following example.

andN = 4 and estimated the ergodic capacity for using 10 000 Example 1—Error Probability ComparisonConsider two

Monte Carlo simulations. We plot the curves for all 100 canddifferent codes designed féd; = M, = 2,7 = 3,andN = 6.

date codes as well as the upper and lower bounds in Fig. 3. Ndtee first code uses the linear transformation matrix

that there is not much difference between the best and worst X = 1 I
=T
codes. Although the bounds are loose, the upper, lower, and pro- V2
posed bounds appear to increase with the same rate. The second code uses the linear transformation matrix shown

in the equations at the bottom of the page, which were found
using a numerical optimization to be described in the sequel.
The capacity of the equivalent channel induced by each code
In this section, we refine our frame-based code desigmdepicted in the left plot of Fig. 4, whereas the bit error rate
by incorporating error probability considerations. First, wperformance, estimated over 25000 Monte Carlo simulations,
show that error probability performance is not guaranteed sydisplayed in the right plot of Fig. 4. O
capacity maximization. Then, we review some criteria for Each code satisfies Theorem 1 and, thus, induces a channel
evaluating space-time code performance in terms of error ratgth the full ergodic capacity. It can be shown, however, that the
Finally, we propose a linear dispersion code design in whidinst code has a second-order diversity advantage, whereas the
the dispersion matrices are also optimized with respect to thptimized code exhibits a fourth-order advantage for the same
rank and determinant space-time code design criteria. overall rate. Thus, codes with the same asymptotic performance

IV. ERRORPROBABILITY -BASED LINEAR DISPERSIONCODES

r 0.1367 0.2428 0.2521 1
0.1015 +50.2424  —0.0033 + 50.1009  0.2696 — j0.1559
| 0.3698 —50.0207  —0.2291 4 j0.2090 —0.1960 + j0.1943
I =1 02160 — j0.2385 —0.3112+ j0.0926 —0.1163 — j0.3345
—0.3036 + j0.0386 —0.3005 — j0.0676  0.2706 + j0.1926
[ —0.2163 — j0.1749  0.2360 + j0.2805  0.0221 — 50.1648 |
r 0.2867 0.4655 —0.2447 1
—0.3853 +70.0223  0.0568 + j0.1497  —0.0123 4 50.3860
| 02500 —0.0552  —0.0720 + j0.0066 —0.0667 + j0.3389
Y2 =1 00591 — j0.1259  0.2264 + j0.3016  —0.0495 + j0.0402
0.1883 + j0.2585  0.0857 — j0.1440  0.1944 + ;j0.1818
L 0.1083 +50.2645 —0.2754 — j0.0795 —0.2609 + j0.1694 |

X =[)%]




2434

SPECTRUM EFFICIENCY BITS/S/HZ

Fig. 4. Comparison of two different BPSK codes with, = M, = 2,T =
3,andN = 6 in terms of ergodic capacity and probability of bit error.
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wheree,, := s,, — 7, is a difference between two constellation
symbols. Essentially, the rank and determinant depend on all
possible different linear combinations of the matriddsMZ,
where the linear combinations are determined by products of the
error. Interms of X, }/ ' ande” = [eg, ¢y, ..., en—1].,itcan
be shown (we skip the details) that
eHX{J{XOe eHX{){XT_le
(16)

HxH HxH
e"X7_1Xpe e" X7 _Xr_1e

Equation (16) shows how the subspacegXif }7 ' play arole.
Since, for high rate codegy is typically greater thad/;, X,

in terms of ergodic capacity may require further optimization t@ill be fat and will have a null spac&, is in principle Hermi-

achieve good error rate performance.

B. Codeword Error Probability

tian semi-definite. A necessary condition fy, to be full rank
is that every principle submatrix has a determinant that is greater
than zero. Clearly, ie? X X,e = 0 for some error vectoe,

Based on Example 1, a complete code design also optimizegn the resulting code is not full rank.

the codeword matrices based on the error rate. To solve thifased on the parameters of the code the diversity order of
problem, we need to determine how a given LDC influenceslinear code is bounded by the dimensions of the codeword
the error rate. The probability of codeword error can baatrices and is summarized in the following.
upper bounded by the largest pairwise error probability using Theorem 3: The diversity order of a linear code is less than
the union bound [24]. Therefore, we will use the maximurar equal toM, min(M,,T).
pairwise error probability as the performance metric. Proof: R is the product of &/, x 7" matrix with its Her-

For a general space-time code with perfect channel knowitian; therefore, the rank dfy;, ® R, is upper bounded by the
edge at the receiver, [6] and [7] use the Chernoff upper bouninimum of M, and7” times the factor of\/,. due to the Kro-
to derive an upper bound on the average probability that matrigcker product. O
codewords is misdecoded aS. The average is taken with re-  Fully diverse codes achieve equality in Theorem 3. A neces-

spect to the channel and the resulting expression is given bysary condition, which is obvious from the structure of the error
1 vectors, is illustrated in the following proposition.

(12)  proposition 4: A fully diverse code has full-rank codeword
matrices.

whereR, = (S — Q)(S _ g)H_ Let\,, be thenth eigenvalue of Proof: R, should be full rank for all possible error se-
R.. Noté that the eigenvalues Bf éIM are simply\,, with guences. One such set of error sequences are those with a single

multiplicity A,.. For high SNR, it is possible to rewrite (12) as"ONZero value, i.eq, # 0 a”demT: 0 n # m. For such a set
of error sequence® ; = M} M; (« is some scaling factor),

P(S — S) <
‘IJ\LJ\L + #eR, @1y,

1 it i i i ' |
P (S<m) - S(k>) < - anditis necessary thad,, is full rank if the code is fully di-
( 5. )ranKRs)m Hrank(R_g) M- verse. -

IN, n=1 ( The key message of Theorem 3 is that the diversity advantage

c?—f a linear code can be limited by designs that use short block

The diversity advantage [25] of the code, which is the anti M X
pated improvement in the slope of the probability of error curvi€NIthsl’ < M,. While itis tempting to always make as large

is determined by the smallest product réRk)M,.. The coding as possiple,_increases i require corresponding_increases in
advantage, or shift iSNR in the probability of error curve is ¥ [0 Maintain the same rate of the code. Largemtroduces

. ankR.) \ i, . more possible error differences in (15), increasing difficulty in
](cje“terz;r::(nfe{d bZ ;hf igﬂfzﬁrﬁd{g{éﬁmam)‘& » Which, for designing a fully diverse code. It also increases the decoding
u F LDCS' IR runct ted using th ' ° tation i 2memory requirements, latency, and complexity. Thus, for linear
or s, R is computed using the representation in ( )Codes, there is a fundamental tradeoff between the achievable

N—-1 ; .
Let{sn}nz%_dlenote the transmitted sequence CorreSpond'ngoltl(?/ersity, capacity, and the resulting decoding complexity.
S and{r,},_, denote the erroneous received sequence corre-

sponding tdS. The codeword difference matrix is then C. Rank and Determinant-Based Linear Dispersion Codes

We are interested in finding codes that have good perfor-

R,

N-1
<Z M, (sp, — 7n)
n=0

>*

mance in terms of ergodic capacity yet also provide a low error
rate for small block lengths. The rank and determinant criteria

]\T_l T . . .
« Z M, (50 — ) (14) require a.s.earch over all pqsglble error vectors a}nd is constella-
= tion specific. They do nad priori reveal a good design structure.
N—1 N—1 The ergodic capacity, on the other hand, provides a rich struc-
- Z Z M ML e e, (15) ture that is constellation independent (the capacity calculation
ny ng "nip N

TL1:0 n2:0

assumes Gaussian signals).
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Unfortunately, as shown in Fig. 4, capacity-optimal LDCs dbuge disadvantage since it is not easy to find the LDCs that
not necessarily optimize an error probability metric. Furtheglobally maximize the capacity criterion in this case due to the
given the nonconvex optimization that must be solved to fimtbnconvex nature of the capacity cost function [1]. Further, our
a general capacity-optimal LDC, joint error rate and capacitodes still have good performance, at least asymptotically, in
optimization are difficult. Using our closed-form solution forterms of ergodic capacity, and they have the added bonus that
N = M,T', however, we can obtain capacity-optimal codes th#iey improve the error probability. No matter what the choice
also satisfy the rank and determinant criterion. When it is ref IV, note that our codes automatically satisfy side constraints
quired thatV < M,T, we use the frame-based structure to oh} and ii). Our design is flexible enough that we can evenincor-
tain codes with both good error probability and good ergodjmorate constraint iiiand still optimize over the rank and deter-
capacity performance. minant criterionto even further improve performance.

Let a (M;,M,,N.T,C) code be one designed fa¥,
transmit antennas)M, receive antennas, a block length of V. NUMERICAL TECHNIQUES FORFINDING GOOD CODES

T symbol periods, and¥ symbols from constellatiorC.
Assuming that the spectral efficiency of the constellatioiRis di
bits per symbol, the overall rate of this code will ¥&R/T bits
per symbol period. The parametei$, and 7" determine the
dimension of the dispersion matrices, wher@asletermines
the number of such matrices. The parametesandC will
be used in the selection of the coefficients of the codewor
matrices according to the rank and determinant criteria. A. Characterization of Frames

We summarize our design as follows.

Design Criterion 1—High SNR Near-Optimal LDC§or a
(M, M,.,N,T,C) code, choos¢M,, } "=} to satisfy the tight
frame relationship in (8). Within this class of codes, search for
the design that maximizes the minimum rank and product

In this section, we present different techniques for finding
spersion matrices with good error probability performance.
First, we describe how we can use results from frame theory to
parameterize the proposed family of LDCs. Then, we propose a
number of different procedures that can be used to obtain good
gefﬂments for this parameterization.

The benefit of using the proposed LDC structure is that we
can rely on the rich literature on frame expansions [15] to assist
in the selection of optimal codewords. In this section, we present
%IYO different parameterizations that will be useful in the sequel.

1) Projection: Given any full-rankV x M tall matrix A

nonzero singular values. |

Codes designed according to Design Criterion 1 are substan- X =AATA)T? (17)
tially different than the capacity-optimal LDCs presented in [1]s a tight frame, as can be confirmed by checking
To improve error probability performance, [1] imposes various YHy — (AHA)—H/2AHA(AHA)—1/2 (18)

side constraints that try to introduce additional structure in their

_(AHAN—H/2( AHANH/2/ A H A\L/2
LDCs that promote good error probability performance. For =(A7A) (ATA)TH(ATA)

complex LDCs, the equivalent design constraints are (assuming x (AT A)~1/? (19)
that?” < My) =1 (20)
N For an M,T x N matrix A, by scaling the power,
i) Z tr{M,M[} =T X=/T/NA(A" A)~1/2 forms a candidate linear transforma-
n=0 tion matrix that can be evaluated for pairwise error probability
i) tr {M,,,Mff} _ r n=01,.. ,N—1 perfo_rmance. This important result allows con_structior_1 of
candidate codeword matrices from any suitably sized arbitrary
iy MIM, = % Irn=01,...,.N—1. matrix A. Let A = QR be the@R-decomposition ofA,

whereQ is M, T x N,andR is N x N. Itis easy to check that
The first constraint is simply the standard power constraint. TI}:@(AHA)—I/Q = Q; thus, computing¥’ requires computing
second constraint requires that each dispersion matrix contgig QR decomposition ofA. Computational complexity and
the same average power. There is no obvious relationship hplementation issues are detailed in [26].
tween the first two constraints and error probability. The third \While it is useful to construct a tight frame given a random
constraint, however, produces codewords that satisfy the neq@atrix, for the purpose of optimization, it is useful to be able
sary condition in Proposition 4 for a code to achieve full diveto parameterize the family of tight frames. This can be accom-
sity. It was found in [1] that codes designed according to coptished by using analogous results for parameterizing unitary
straint iii) often have good error probability performance, amatrices. The space of unitary matrices is known in the math-
though it does not guarantee that performance. ematics literature as the Stiefel manifold, and a good summary
Codes designed according to Design Criterion 1 differ in th§f representations can be found in [27].
following way. First, to the extent that the rank and determinant 2) Unitary-Based Parameterizationit is possible to con-
criterion is valid (at high SNR), our codes i = M, T willbe  struct anM,T x N tight frame from anM, 7" x M, T unitary
bothcapacity-optimal and error probability-optimal. Of coursematrix U by taking the firstV columns ofU as
we could modify Design Criterion 1 based on a better error per- XY —UZ
formance metric, say the bit error rate, to obtain good bit error
rate performance. We leave this to future work. wh
When N < M,T, our codes are not capacity-optimal, al- 7 [ In }
though they still have good capacity properties. This is not a o

ere

21
Op,r—NxN (21)
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This representation can characterize any tight frame since giverl) Global Optimization: For a givenN, M,, and 7', the
atightframeY’, anX’ can be found (for example, by augmentindinear dispersion matrices are exactly determinedbyhanks
with a random matrix of dimensiol, 17" x M, T — N and using to our frame-based desigh, has a parsimonious parameteri-
the Gram—-Schmidt procedure) such that zation using Householder reflections. Therefore, obtaining an
U=[X /{,] error-probability-optimal LDC (in the rank and determinant

_ ) o _sense) requires optimizing the rank and determinant criterion
is square and unitary. Of course, the representation is not unigg, respect to the constellation.

since any permutations of the columns®flso leads to a pos- Consider &M, M,., N,T,C) code. Lete = {s; — si|s €
. ) Y ) ) . - v v
sible U. o o _ S,s1 € S,k # 1} be the set of all possib®*Y N x 1 error vec-
Since parameterizations bf exist in the literature, they can o5 whereR = |C|. For any error vectas;, € £, the error differ-
be used in turn to specifit’. In this paper, we use the faclence matrisR, (e;) is determined from (15) (we have changed
that any unitary matrix can be written as a product of Housge notation to clarify that the error difference matrix is a func-
holder reflections to develop an equivalent representation fq§n of a particular error vector).

tight frames. Lev "™ form = 1,2,..., M;T be alengt;T  The optimization corresponding to Design Criterion 1 that

vector of the form . produces codes that are optimal with respect to the rank and
vim — [07 .0 17U§m)7 N '7UJ(\Z:?Z“—m:| (22) determinant_criteria is summarized iqthe foIIovv_in_g_.

_ 4 Optimization I: LetD and {+"}_, be an initial set of

Then, the corresponding Householder reflection is Householder parameters with the structure in (228t K <
V.o -1 2v(my(m)H 23 min(M,,T) be the minimum required rank of the LDC. Find
e I (23) (v such that
We can represent am\l; T’ x M, T unitary matrix as K—1
U=DV,---Vu,r (24) J(X) =min f] Ai(Rs(e) (28)
whereD is a diagonal matrix of arbitrary complex exponentials. o ) = .
To makeA tall, we useZ in (21) is maximized subject to the constraint
VeerankR;(e) > K. (29)

[T
X = NDVIVQ V12, (25)

WhenN < M,T, we can reduce the number of terms in (25,5\targetminimum rank o’ < min(M,, T') fixes the minimum
by recognizing thav"™Z = 0 for m > N; thus,V,,Z = Z diversity order achieved by the code. If a code cannot be found

for m > N. Therefore, any potential frame-based code matrith @ minimum rank, then the optimization is infeasible.
can be written Practically, itis best to start with smail and gradually increase
T the size until the optimization terminates with an infeasible so-
X = \/iDVIV2 - VNZ. (26) lution. This ensures that the maximum diversity advantage will
N be achieved with the resulting code.

The total number of real parameters necessary to spaci§/ The optimization can be implemented with any number of

M. T -1 ) numerical methods, for example, a gradient search. The com-
MT +2 Z k= MT+2NM,T - N —N= (27) plexity of any numerical method is high since calculatifgt’)
k=M TN requires computing the SVD af*" (2~ — 1) /2 error covari-

which can be significantly less than tBé/,7'N real parame- ance matrices. Clearly, this is prohibitive for larger rates (as is
ters required to specify an arbitrary comple7’ x N matrix. the ML decoder). The overall complexity depends on the exact
Computing eaclV,,, require2(M, T —m — 1) real multiplies  algorithm chosen for implementation but is quite high since
to compute the outer product and the product with the scalifgbst algorithms require a numerical estimate of the gradient,
factor,(M,1"—m — 1) multiplies to compute the scaling factorwhich is obtained by perturbing the cost function, in addition to
[[v(™|?, and one division. Ignoring the structure¥f,, X can  cost function evaluation at each step in the optimization.
be computed usingV + 1)M,T" x M,T matrix multiplies. Unfortunately, convergence of Optimization 1 is not readily

The Householder representation is nice because it reducesghgranteed. First, the cost function is a nonlinear function of
number of parameters of the search space and because it gi@-Householder parameters. Second, it is nonconvex since it
vides an unconstrained representatiod’ah terms of the coef- maximizes the minimum taken over a discrete space. Thus, a
ficients of the Householder matrices. Other representations geution obtained using Optimization 1 will typically be the best
also possible, for example, using the Given's rotation [26]. fank and determinant solution in the neighborhood of the initial
good summary of these representations for unitary and orth@@ndition. This is not a serious drawback since the capacity-
onal matrices is available in [27]. optimal LDCs in [1] do not consider any such optimizations

) o ] with respect to error probability.

B. Algorithms for Finding Candidate To improve the performance of Optimization 1, it is desirable
Error-Probability-Optimal LDCS to find a good initial condition.

In this section, we provide some algorithms for computing 2) Basis Selection:/An extremely simple procedure to
dispersion matrices that satisfy the frame-constraint and are fabtain an initial condition for Optimization 1 is to choose an
ther optimized with respect to the rank and determinant criteri&f; " x M, unitary matrix and pick theV columns whose
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corresponding codeword matrices are the best in terms af the choice ofM,. For example, ifA; > T, we choose
Design Criterion 1. MHZM, = 1/NI, whereas forl’ < M, we choose
Basis Selection:Let Z be the set of all possible subsets oM, M2 = T/NM,I,,,. This additional side constraint has
N columns of@@. By construction|Z| = CJJ\‘?tT, whereC; = been shown to also improve the performance of frame-based
n!/kl(n—k)!. LetX; denote the matrix formed by tli#a subset LDCs in [28].
in Z. The basis selection algorithm choos&s= /T/NX; To impose side constraints, we propose the following modi-
such that the codeword matrices constructed from the colunication to Random Search I.
of &; maximizeJ(X') subject to the side constraint in (29). Random Search II: ConsiderL candidate realizations of a
The coefficients of the Householder representation cormandom matrixM, 7" x N matrix A, and lete be some stop-
sponding to the Basis Selection optimization can be found apiag value. For each candidate matrik, let X = /T/N
byproduct of the R decomposition. See [26] for details. BasisA (A7 A)~1/2, Then, extrac{M,, }Y_} fromX’, and letM,, =
selection has the advantage of low complexity since it requirtg,, (MZM,,)~*/? and scale appropriately. Repeat the pro-
computingJ (X)) only for n!/k!(n — k)! possible combinations cedure fort’ = [ved M), veo(ﬁl), . ,veo(ﬁN_l)] until
of columns. Of course, it is not helpful whév = T'M, since HXHX - T/N INH < ¢. Choose thet generated from thé
there is only one possible combination of columns. realizations ofA that maximizes/(.X') subject to the side con-
3) Random SearchAn alternative to improve sampling of straints in (29).
the space of frames is to use a random search. This has thagain, the coefficients for Householder representation can
advantage of providing a better sampling of the space of pegjain be found as a byproduct of tge? decomposition. Note
sible frame-based LDCs and typically provides good initial cothat we are alternately enforcing a convex constraint with
ditions for Optimization 1. In fact, codes obtained using thespect to the dispersion matrices, and thus, the iteration in
random search often perform well without further optimizatiorRandom Search Il typically converges quickly.
Of course, since the search is random, they do not guarantee
even a local maximum of the determinant cost function.
One way to perform a random search is to use the projec-

tion-based representation in (17) to genefagebitraryM, T x In this section, we present a number of example code designs
N matricesA and to use the projection in (17) to construct g_btamed through joint capacity and error probability optimiza-

corresponding set ot matrices. Thet’ that maximizes/(X) tion. We compare performance in terms of ergodic capacity,

subject to the rank side constraint is chosen as the initial congifdeword error probability, and bit error probability. Gray la-
tion for Optimization 1. beling was assumed for the bit-to-symbol mapping.

Random Search |: Generate L realizations of A from ) ) ] ) )
some distribution, for example, the multivariate comple&' Comparison of Lllnear Dispersion Codes for Four-Transmit
Gaussian distribution. From all the possible matrices, select Anténna One-Receive Antenna
X = JT/NA(AYA)~'Y/2 such thatX maximizesJ(X) In this example, we compare two (4, 1, 4, 4, @AM) linear
subject to the side constraints in (29). dispersion code designs. The reference LDC is capacity-optimal

The coefficients for Householder representation can againdmed was derived in [1]. The proposed frame-based code was
found as a byproduct of th@ R decomposition. See [26] for generated using Random Search Il with a search over 100 000
details. realizations and the side constraint that the ranRgfshould

For comparison with codes from [1] it is often useful tde 3. The linear transformation matrix for the proposed code is
enforce the side constraint iii). How we enforce iii) dependshown in the equation at the bottom of the page.

VI. DESIGN EXAMPLES

r—0.0360 — 50.0140
0.0048 + 50.4032
—0.0246 + 50.0043
—0.0394 — j0.2894
0.1847 + j0.0048
0.1370 — 50.1306
—0.3409 — 50.0637
0.1476 — j0.1949
—0.1233 4 50.1169
—0.1089 — 50.1982
0.0808 — j0.2558
—0.1831 — 50.2540
—0.3397 — 50.2648
0.0196 + j0.0093
—0.2037 — 50.1250

L 0.0082 + j0.0825

~0.1156 — j0.4268
0.0929 + j0.0153
0.1657 — j0.1040
0.0796 + j0.0313
0.0880 — ;j0.0752
—0.1296 + j0.0497
—0.0824 — j0.3047
—0.3386 — j0.0556
0.1143 + j0.1568
0.2081 — ;j0.0851
0.1048 — j0.2848
0.0930 + j0.2470
—0.0574 — j0.0096
—0.3445 — j0.2295
0.1368 + j0.0360
—0.0188 4 j0.2344

—0.0583 — 50.1780
—0.0975 — 50.1916
—0.1332 + j0.2814
—0.1593 — j0.2154
—0.0380 — j0.0685
—0.3499 + 50.2283
—0.0908 — 50.0130
0.2237 — j0.1041
0.2468 — j0.3387
—0.0235 + 50.0812
0.1622 — j0.1432
—0.1391 — 50.0329
—0.0025 + 50.1820
—0.1465 — 50.0248
—0.1406 — j0.2795
—0.2826 — j0.1305

—0.0659 — j0.1163
—0.0508 + 50.1726
—0.3343 + 50.0493
—0.0463 + 50.2889
—0.2601 — 50.3587
0.1243 — 50.0701
0.0320 — 50.1437
0.0864 — ;0.0646
—0.0693 + 50.0554
—0.2386 + 50.2902
0.0890 — ;0.1766
0.2460 — ;j0.0362
—0.0800 — ;0.1468
—0.1780 + j0.1563
0.0511 + j0.2691
—0.2044 — j0.2216
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Fig. 6. Comparison of the two different (4, 1, 4, 4, ®AM) linear dispersion

g codes in terms of (a) codeword error probability and (b) bit error probability.
The proposed code has been optimized for good error probability performance.

1 L 1

SNR

. _ _ _ _ ~ally only good predictors of code performance at high SNR. To
Fig-5. Comparison of the two different (4, 1, 4, 4, @AM linear dispersion . oh9in petter low SNR performance, an alternative error proba-
codes in terms of spectrum efficiency for one and two receive antennas. ’

Hassibi and Hochwald code is capacity optimal, whereas the proposed cod@'f&ty criterion should be employed in the optimization. In prac-

a noncapacity optimal frame-based code. tice, it is the average error rate that determines the performance
of a given space-time code. Thus, despite the fact that the pro-
posed code is not capacity optimal, it is a better LDC than that

The singular values for thR, with worst determinate aregrrgposed in [1] in the practical error rate comparison.

(2.1141, 1.6267, 0.9405, 0.0050). As designed, the codew
error matrix has a rank of three so it would be expected that this
code exhibits a third-order diversity advantage in this exam%
sinceM, = 1.

The details for the Hassibi—-Hochwald code can be found in!n this example, we compare two code different jointly ca-
[1]. The singular values for thR., matrix with worst rank and pacity-optimal LDCs that are local minima of Optimization 1.
determinant are (1.7899,1.6719, 0.0279, 0.0183). Whdeas First, we consider the (3, 3, 3, 1, 4AM) code with linear
has four nonzero singular values, practically speaking, it hagransformation matrix
rank of two since the other two singular values are quite small.

Thus, we would expect this code to exhibit only a second order V3
diversity advantage. , o

We illustrate the ergodic capacity of the equivalent channelNext we _CO”S'deF the (3, 3, 9, 3, 20AM) code with linear
induced by each linear dispersion code in Fig. 5. As expecté@nsformanon matrix
the capacity of the frame-based code is close but does not quite X=X ]
maximize the ergodic capacity. This is because in this dédse, ¢
M,T, and our design does not guarantee capacity optimalityhere we have (30) and (31), shown at the bottom of the next
We could have chosen largé¥, but then, this would not have page. The second code was designed using Optimization | with
been a fair comparison. The performance difference is smalldesired rank parameter of 2.
particularly as the number of receive antennas increases. For the first code, the wordR is rank one with singular

Next, we illustrate the error rate performance in Fig. 6. Thealues (1.1549,0,0). Therefore, we expect the first code to have
left plot displays the codeword error rate for each code. Noel « 3 = third-order diversity advantage since there are three
that, as designed, the optimized code has a higher order diveceive antennas. For the second code, the wyrst rank two
sity advantage as reflected by the improvement in the slopevaith minimum singular values (1.1549, 1.1549,0). Therefore,
the error rate curve. Even at a codeword error rate 6f 1he we expect this code to provide2ax 3 = 6th-order diversity
proposed code has a 3-dB advantage. This advantage grows waittiantage since there are three receive antennas.
larger SNR due to the larger diversity advantage of the proposedis displayed in Fig. 7, each code achieves the same (in this
code. case the full) ergodic channel capacity. In Fig. 8, however, there

The corresponding bit error rate curves are displayed on tisesignificant difference between the two codes in terms of bit
right plot of Fig. 6. Again, the slope of the optimized curve igrror rate. Th&” = 1 code obtains a maximum third-order di-
improved over that of the unoptimized curve, with the differenceersity advantage, whereas tihhe= 3 code obtains a dramatic
becoming more dramatic at high SNR. At a BER of only$0 sixth order advantage. The difference is significant, providing,
there is again a significant 3—dB difference in the performanesen ata BER of 10°, an advantage of 3 dB. This illustrates that
of the two codes. This difference grows as the BER decreaskes benefit of increasing without decreasing the overall rate is
due to the larger diversity advantage of the proposed codes.a potential improvement in diversity. Of course, the tradeoff is

In both plots, note that there is negligible improvement at loan increase in decoding complexity siriEe= 3 code requires
SNR. This is because the rank and determinant criteria are ja@nt decoding of nine symbols instead of three symbols.

Linear Dispersion Codes for Three-Transmit Antennas
ree-Receive Antennas

1

X o= I,
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Fig. 7. Ergodic capacity comparison of two different frame-based optimiz&dd- 8. Bit error probability comparison of two different frame-based
LDCs with different block lengths but the same rate. optimized LDCs with different block lengths but the same rate.

. . . . For the (3, 1, 3, 1, 4-QAM) code, we used the spatial mul-
C. Linear Dispersion Codes for Three-Transmit Antennas angexing LDC. Note that this code is capacity optimal. For the
One-Receive Antennas (3,1, 3, 2, 4—OAM) code, we found the second equation shown
In this example, we examine the impact of increadinghile  at the bottom of the page, whereas for the (3, 1, 3, 2QAM)

keepingN fixed. The proposed frame-based codes were gerode, we found the equation shown at the bottom of the next
erated using Optimization 1 with maximum possible rank anzhge.

Random Search Il with a search over 1000 realizations to pro-in Fig. 9, we plot both the ergodic capacity and the codeword
vide the initial conditions. The error rate was estimated usirggror probability. Unlike the previous example, where the ratio
100000 Monte Carlo simulations. N/T was fixed and capacity was preserved, in this example, the

- 0.0014 — §0.0000
0.0134 + j0.1767
—0.0888 + 50.2680
—0.2250 + j0.1711

0.3333 + 70.0000
0.0003 — 50.0019
0.0003 — 50.0003
0.0002 — 50.0010

—0.0013 + 50.0000
0.0866 — 70.2688
—0.1148 + 50.1348
—0.1341 — 70.1142

0.0003 — 40.0000
0.0860 — 70.2695
—0.1149 + 50.1336
—0.0333 + 50.1736

—0.0002 + 50.00007
0.1454 — 50.0997
0.2772 — 50.0566

—0.2251 + 50.1711

X, = | —0.0983 +50.1129  0.1713 + j0.1247 —0.1287 — j0.0782  0.1310 — j0.0718  —0.0480 — ;j0.1419 | (30)
0.0847 — 50.0403  0.0993 — j0.2374  —0.1404 — 5j0.1941  0.2387 — j0.0236  —0.0070 + j0.0933
0.0893 — j0.1524  —0.0015 + j0.0007 —0.2690 — j0.0880  0.0588 + j0.2764  0.0888 — j0.1526
—0.0779 + j0.2263 —0.0993 — j0.2374  0.0918 + j0.0157 —0.0584 + 50.0732 —0.1581 — 50.1805
L 0.0993 —j0.1129  0.1713 —j0.1247  0.1274+ j0.0782  —0.1317 4+ j0.0718  0.0471 + j0.1419 |
- —0.0005 — 50.0000  0.3333 — j0.0000 —0.0002 — j0.0000  0.3333 — j0.0000 T
0.1456 — j0.0998  —0.0002 + j0.0002 —0.2762 + j0.0600  0.0001 — j0.0004
0.2770 — 50.0566  —0.0001 — j0.0002  0.1737 + j0.0324  0.0002 4 j0.0001
—0.0350 — j0.2805 —0.0002 — j0.0002 —0.1340 — j0.1157 —0.0002 — 50.0004
X, = | —0.0997 + j0.1118 —0.3333 + j0.0027  0.1315— j0.0717  0.1618 — j0.1282 (31)

0.0844 — ;j0.0406
0.0886 + 50.1529
—0.0766 + 5j0.2272

L 0.0995 — j0.1118

0.0013 — 50.0044
—0.0001 + 50.0002
—0.0013 — j0.0044
—0.3333 — j0.0027

0.2382 — j0.0242
—0.2685 — j0.0876
—0.0585 + j0.0734
—0.1319 + 50.0717

—0.1013 + 50.2414
0.0002 — j0.0003
0.1013 + j0.2414

0.1618 + j0.1282 |

X =

0.3003 — 50.1273
0.1390 + ;0.3748
0.2137 + 5j0.1467
—0.0699 — j0.3776
—0.2410 4 j0.2147
~0.2401 — j0.1549

—0.2303 — 70.1625
—0.2530 — 70.0734

0.3677 + j0.2220
0.2833 — j0.1616
0.1819 4 50.3560
0.2294 4 50.1207

0.3651 — j0.1192
—0.2446 — j0.2106
0.1218 — j0.2585
—0.2783 + j0.0445
—0.2324 + 50.1240
0.4183 — j0.0977
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ious proposed codes for different numbers of transmit and re-
ceive antennas, constellation sizes, and block lengths.

While we considered the Rayleigh channel that is uncorre-
lated in space and time, practical MIMO systems will have chan-
nels with space, time, as well as frequency selectivity [29]-[31].
Future work is necessary to extend the results presented herein
to these practical channels. Further, our designs are optimal only
for the ML receiver. Further work is necessary to extend this
to other low-complexity receivers, for example, the iterative re-
ceiver [4] or the linear receiver [32].
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capacity decreases for largErsince N/T is decreasing. This
rate reduction, however, comes with a much more substantial
improvement in codeword error rate since lar@eallows for

the error difference matrix to have a larger rank.

VIl. CONCLUSION

We have introduced a new linear dispersion code design for[s]
MIMO Rayleigh fading channels that provides codes with good
ergodic capacity and error probability performance. The basig4l
matrices of the code, when suitably rearranged, yield a tight
frame. This gives the intuition that instead of sending uncoded[s]
symbols, the proposed frame-based codes convey the coeffi-
cients of a frame expansion of a vector of symbols. The tight[G]
frame-based structure provides a closed-form solution that can
achieve the full capacity of the channel with appropriate choice

of dimensions.

For a given set of parameters, we showed that there are man[y
choices of frame-based codes that have a similar ergodic ca-
pacity performance. Therefore, we were able to use existing pa-
rameterizations of the space of tight frames to search for the
code that provided the lowest probability of symbol error. This [°]
is important because, as we demonstrated, codes that have the
same ergodic capacity performance may have different errqro]
performance. To ensure good error rate performance, we opti-
mized over the space of tight frames to find the one with the
best performance in terms of the rank and determinant criterion.
We discussed an algorithm to accomplish this optimization an
presented some alternatives to generate good initial conditions.” ¢, es from orthogonal design$EEE Trans. Inform. Theotyol. 48,
Monte Carlo simulations demonstrated the performance of var-

useful comments.

REFERENCES

B. Hassibi and B. Hochwald, “High-rate codes that are linear in space
and time,” inProc. Allerton Conf. Commum., Cont. Compct. 2000.

I. E. Telatar, “Capacity of Multiantenna Gaussian Channels, Tech.
Rep., AT&T Bell Labs. Internal Tech. Memo. 1995,” Eur. Trans.
Telecommun., 1999.

G. J. Foschini and M. J. Gans, “On limits of wireless communications
in a fading environment when using multiple antennaSifeless Pers.
Commun,.vol. 6, no. 3, pp. 311-335, Mar. 1998.

C. J. Foschini, “Layered space-time architecture for wireless commu-
nication in a fading environment when using multiple antennBgf!
Labs. Tech. Jvol. 1, no. 2, pp. 41-59, 1996.

R. W. Heath Jr and A. Paulraj, “Switching between spatial multiplexing
and transmit diversity based on constellation distance?tat. Allerton
Conf. Commun. Cont. CompuOct. 2000.

J.-C. Guey, M. P. Fitz, M. R. Bell, and W.-Y. Kuo, “Signal design for
transmitter diversity wireless communication systems over rayleigh
fading channels,IEEE Trans. Communvol. 47, no. 4, pp. 527-537,
Apr. 1999.

V. Tarokh, N. Seshadri, and R. Calderbank, “Space-time codes for high
data rate wireless communication: Performance criterion and code con-
struction,”|EEE Trans. Inform. Theoryol. 44, pp. 744—765, Mar. 1998.

S. M. Alamouti, “A simple transmit diversity technigue for wireless
communications,”|IEEE J. Select. Areas Commurvol. 17, pp.
1451-1458, Oct. 1998.

G. Ganesan and P. Stoica, “Space-time block codes: A maximum SNR
approach,"lEEE Trans. Inform. Theoryol. 47, pp. 1650-1656, May
2001.

A. Paulrajand T. Kailath, “Increasing capacity in wireless broadcast sys-
tems using distributed transmission/directional reception (DTDR),” U.

S. #5345599, Sept. 1994.
B. A. Bjerke and J. C. Proakis, “Multiple-antenna diversity techniques
for transmission over fading channels,” Wireless Commun. Net-
working Conf, vol. 3, Sept. 1999, pp. 1038-1042.

12] V. Tarokh, H. Jafarkhani, and A. R. Calderbank, “Space-time block

pp. 1456-1467, July 1999.

© 0.1960 + 50.1412
—0.2860 — j0.2102
—0.1191 + 50.3671

0.0607 — j0.2792
—0.2731 — j0.2899
—0.0039 — 50.3051

0.4198 + 50.1308
—0.0176 + 70.2200

L —0.1995 — 70.2269

0.2942 + 50.3268
—0.1274 + 50.1802
—0.0557 — 50.2969
—0.1607 4 50.1804
0.2387 — 50.2627
—0.3528 — j0.1565
—0.1904 4 50.2130
0.0949 + 50.3868
—0.1469 + j0.2674

0.1579 + 50.2381 1
0.3982 + 50.0062
0.2215 + 50.2098

—0.4257 — j0.1103
0.0069 — ;j0.2206
0.2102 4 50.2170
0.2057 + 50.1267

—0.3005 — 50.1890

—0.0923 + 50.3748




HEATH AND PAULRAJ: LINEAR DISPERSION CODES FOR MIMO SYSTEMS 2441

(13]
(14]
[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

(23]
[24]

(25]

(26]

[27]

(28]

[29]

(30]

(31]

(32]

S. Sandhu and A. Paulraj, “Space-time block coding: A capacity pe
spective,”IEEE Commun. Lettersol. 4, pp. 384-386, Dec. 2000.

R. W. Heath Jr, H. Bélcskei, and A. Paulraj, “Space-time signaling ar
frame theory,” inProc. IEEE ICASSPMay 2001, pp. 2445-2448.

I. Daubechies,Ten Lectures on WavelesPhiladelphia, PA: SIAM,
1992.

R. R. Hammons and K. El Gamal, “On the theory of space-time cod
for PSK modulation,IEEE Trans. Inform. Theoryol. 46, pp. 524-542,
Mar. 2000. to 2001, he served as a Senior Consultant for

Y. Mohasseb and M. Fitz, “A 3D spatio-temporal simulation model fo lospan Wireless Inc. In January 2002, he joined the
wireless channels,” iRroc. Int. Conf. CommunJune 2001. Electrical and Computer Engineering Department,

L. Zhigiang and G. B. Giannakis, “Space-time coding with transmit arfFhe University of Texas, Austin, where he serves as an Assistant Professor as
tennas for multiple access regardless of frequency-selective multipatpdrt of the Wireless Networking and Communications Group. His research
in Proc. Sensor Array Multichannel Signal Process. WorksIg890, group, the Wireless Systems Innovations Laboratory, focuses on the theory,

Robert W. Heath, Jr. (5'96—-M'01) received the B.S.
and M.S. degrees from the University of Virginia,
Charlottesville, in 1996 and 1997, respectively, and
the Ph.D. degree from Stanford University, Stanford,
CA, in 2002, all in electrical engineering.

From 1998 to 1999, he was a Senior Member of
Technical Staff at lospan Wireless Inc. (formerly
Gigabit Wireless Inc.), San Jose, CA. From 1999

pp. 178-182. design, and practical implementation of wireless systems. His current research
R. W. Heath Jr, “Space-time signaling in multi-antenna systems,” Ph.iiterests are coding, modulation, equalization, and resource allocation for
dissertation, Stanford Univ., Stanford, CA, 2001. MIMO wireless communication systems.

O. Damen, A. Chkeif, and J.-C. Belfiore, “Lattice code decoder for
space-time codes,[EEE Commun. Lett.vol. 4, pp. 161-163, May
2000.

B. M. Hochwald and S. T. Brink, “Iterative list sphere decoding to attain
capacity on a multi-antenna link,” iRroc. Allerton Conf. Commun.,
Cont., Comput.Oct. 2001.

H. Vikalo and B. Hassibi, “Low-complexity iterative decoding over
multiple antenna channels using a modified sphere decodeRtda.
Allerton Conf. Commun., Cont., Compudct . 2001.

R. A. Horn and C. R. JohnsoMatrix Analysis Cambridge, U.K.:
Cambridge Univ. Press, 1985.

J. G. Proakis,Digital Communications New York: McGraw-Hill,
1995.

A. Paulraj, “Diversity methods,” ilCRC Handbook on Mobile Com-
municationsJ. Gibson, Ed. Boca Raton, FL: CRC, 1995, vol. 12, pp
166-176.

G. H. Golub and C. F. Van LoanMatrix Computations 3rd

Arogyaswami J. Paulraj (F'91) received the Ph.D.
degree from the Naval Engineering College and the
Indian Institute of Technology, Delhi, India, in 1973.
He has been a Professor with the Department of
Electrical Engineering, Stanford University, Stan-
ford, CA, since 1993, where he supervises the Smart
Antennas Research Group. This group consists
of approximately a dozen researchers working on
applications of space-time signal processing for
wireless communications networks. His research

ed. Baltimore, MD: Johns Hopkins Univ. Press, 1996. group has developed many key fundamentals of this
B. Hassibi and B. Hochwald. Cayley differential new field and helped shape a worldwide research and development focus onto
unitary space-time codes. [Online]. Available:this technology. His nonacademic positions included Head, Sonar Division,
http://mars.bell-labs.com/cm/ms/what/mars/index.html Naval Oceanographic Laboratory, Cochin, India; Director, Center for Atrtificial

R. W. Heath Jr and A. Paulraj, “Capacity maximizing linear space-timiatelligence and Robotics, Bangalore, India; Director, Center for Development
codes,” inProc. Int. Symp. Signals, Syst., Electrofokyo, Japan, July of Advanced Computing; Chief Scientist, Bharat Electronics, Bangalore; and
24-27, 2001. Chief Technical Officer and Founder, lospan Wireless Inc., San José, CA. He
D. S. Baum, D. Gore, R. Nabar, S. Panchanathan, K. V. S. Hari, Was also held visiting appointments at Indian Institute of Technology, Delhi,
Erceg, and A. J. Paulraj, “Measurement and characterization of brodddia; Loughborough University of Technology, Loughborough, U.K.; and
band MIMO fixed wireless channels at 2.5 GHz,” lBEE Int. Conf. Stanford University. He sits on several board of directors and advisory boards
Pers. Wireless Commuyr2000, pp. 203-206. for U.S. and Indian companies/venture partnerships. His research has spanned
C. C. Martin, J. H. Winters, and N. R. Sollenberger, “Multiple-inputseveral disciplines, emphasizing estimation theory, sensor signal processing,
multiple-output (MIMO) radio channel measurements,’Piroc. IEEE  parallel computer architectures/algorithms, and space-time wireless communi-
Veh. Technol. Confvol. 2, 2000, pp. 774-749. cations. His engineering experience includes development of sonar systems,
A. L. Swindlehurst, G. German, J. Wallace, and M. Jensen, “Expeniassively parallel computers, and, more recently, broadband wireless systems.
mental measurements of capacity for MIMO indoor wireless channels,” Dr. Paulraj has won several awards for his engineering and research contri-
in Proc. IEEE Third Workshop Signal Process. Adv. Wireless Commubutions. These include two President of India Medals, CNS Medal, Jam Medal,
2001, pp. 30-33. Distinguished Service Medal, Most Dististinguished Service Medal, VASVIK
R. W. Heath Jr and A. Paulraj, “Antenna selection for spatial muMedal, IEEE Best Paper Award (Joint), amongst others. He is the author of over
tiplexing systems based on minimum error rate,”Aroc. Int. Conf. 250 research papers and holds eight patents. He a Member of the Indian Na-
Commun.vol. 7, June 2001, pp. 2276—2280. tional Academy of Engineering.



	Index: 
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index: 
	INDEX: 
	ind: 
	Intentional blank: This page is intentionally blank


