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Abstract—The use of intelligent techniques in the manufac- known meta heuristics are simulated annealing (SA) [14] and
turing field has been growing the last decades due to the fact that tabu search [15]-[17].
modstNrgakrlwu?ctTuk:i.ng optimization problemts dare Icombintat(.)riallh The aim of this paper is to illustrate recent developments in
an ard. This paper examines recent developments in the - - : : ;
field of evolutionary computation for manufacturing optimiza- th.e f'?'d of e\./0|un0nary com.pu_tatlpn for manufgcturlng opti-
tion. Significant papers in various areas are highlighted, and mlzat|on.AW|c_ie range of optimization problems is considered,
comparisons of results are given wherever data are available. A from the classic job-shop and flow-shop scheduling problems,
wide range of problems is covered, from job shop and flow shop to assembly line balancing and aggregate production planning.
scheduling, to process planning and assembly line balancing. We focus mainly on recent publications, but there are pointers

Index Terms—Assembly lines, cellular manufacturing, design, € Significant earlier approaches. In this way, the reader who is
evolutionary computation, genetic algorithms, manufacturing op- interested in a particular problem can use this paper as a starting
timization, process planning, scheduling. point. The term “evolutionary algorithms” (EA's) is used inter-

changeably in this paper to describe different evolutionary com-
putation methods.
. INTRODUCTION The rest of the paper is organized as follows. Section Il ex-

INCE the 1950’s, some authors have been using concepf§ines recent evolutionary algorithms for the job-shop sched-
ased on Darwin’s evolution theory for the solution of Opulmg problem. The same procedure is followed in Section Il
timization problems [1]-[3]. Numerous algorithms based on tf{ the flow-shop scheduling problem, in Section IV for the dy-

same concepts have been developed over the last 30 years. ﬂ?ég'c scbr;eduh_ngs[orotkl)lem\,/llr} Sect:;)r: vV for th? ptrogess pltan-
are usually described by the term “evolutionary computati nzat?(;(r)l ?cr)nb,lérr]ns ei(;]I%r(]actionor\/ﬁefc;Jr izrs;ne%]&a%utr;;ﬁzgﬁol;]
methods.” The most notable members of this group are sim;g?é P ' y op

genetic algorithms (GA's) [4], [5], evolution strategies [6], evoproblems, and in Section VIII for design optimization problems.

luti ing 171, classif g q Section IX overviews some recent developments in other man-
utionary programming [7], classi er systems [8], an : genetlﬁjfacturing optimization areas, and Section X draws the conclu-
programming [9]. Baclet al. [10] give an excellent review of

. . A sions of this paper.
evolutionary computation methods, and highlight some recent

developments in the field. For the reader not familiar with evo-
lutionary computation concepts, additional information can be [l. THE JOB-SHOP SCHEDULING PROBLEM

found in [11] and [12]. _ _ A, Introduction and Historical Development
A large number of combinatorial problems are associated

with manufacturing optimization. Most of them are NP com- Considerable work in the field of evolutionary computation
plete, i.e., there is no polynomial-time algorithm that can po32S been devoted to the solution of the job-shop scheduling

sibly solve them, unless itis proved tHat= NP [13]. Heuristic problem (JSSP). Davis [18] made the first attempt to solve the

methods are normally employed for the solution of these pro?)r-Oblem more than ten years ago using the concept of prefer-

lems. A arowing number of researchers have adopted the us€ af¢ lists, which will be explained later in this section. Yamada
A9 9 P %3R4 Nakano [20] later proposed a more natural representation

meta-heuristic techniques (“smart heuristics”) for large com%
nato_rla_l problems. Evolutionary computation methods are m%ﬁerations. Since then, the number of relevant publications has
heuristics that are able to search large regions of the solutiogsa, growing rapidly, and so has the number of different ap-
space without being trapped in local optima. Some other weljroaches that have been proposed for solving the problem.

Manuscript received June 1, 1998; revised December 4, 1998 and MarciBl, Formulation of the Problem
1999. The work of C. Dimopoulos was supported by the Greek State Fund ) ] ) B
(1LK.Y.). The job-shop scheduling problem consists of orderingbs

C. Dimopoulos is with the Department of Automatic Control and Sy ; i ; ;
tems Engineering, University of Sheffield, Sheffield S1 3JD, U.K. (e—ma:ialt:-0 be processed im. machines. Each JOb involves a number of

cop97cd@sheffield.ac.uk). different machining operations. The following conditions hold

A. M. S. Zalzala is with the Department of Computing and Electrical Engifor the classic formulation of the JSSP:

neering, Heriot-Watt University, Edinburgh, EH14 4AS, Scotland, U.K. (e-mail: . . .
a.zalzala@hw.ac.uk). » each machine can process only one job at a time

Publisher Item Identifier S 1089-778X(00)02628-X. « the sequence of operations for each job is predefined

1089-778X/00$10.00 © 2000 IEEE



94 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 4, NO. 2, JULY 2000

* two operations of the same job cannot be processed at thethod from Chengt al. [43].) A data structure comprising a

same time “direct” representation according to our classification needs no
» preemption is not allowed (an operation cannot be witliransformation at all. Burns [39] was perhaps the first researcher

drawn from a machine unless it is completed) to employ an EA with direct representation for the solution of
 processing times are known in advance a production scheduling problem. His representation explicitly
* transportation time between machines is zero. defined the process plan for each job, machine assignment for

The quality criterion most often used for the JSSP is the mirffidch operation, and individual start-end times. A traditional
mization of makespafCy,. ). Makespan is defined as the ComscheQUllng algorithm initialized the population with feaS|bIg
pletion time of the final job to leave the system [38]. The Jssqmlutlpns, and_ purpose-based operators ensured that solutions
is also known as the /m /G /Cuax [21] problem. Bierwirthet rémained valid throughout the evolutionary procedure (a
al. [22] describe it as a “representative of constrained combir@Scussion on variation operators will follow in the section on
torial problems.” Garegt al.[23] have illustrated that it is NP flow-shop scheduling). An alternative approach is the use of an
hard in the strong sense (proof by transformation of the 3-PARPartitioned permutation (where is the total number of ma-
TITION problem to the associated JSSP decision problem). §Rines), with each partition representing the complete schedule
this section, we consider the static version of the problem, @ an independent machine. This representation is especially
which unexpected events are not taken in account. The dynafPular in sequencing problems, where the solution is not par-
version of the JSSP will be discussed in a following section. fffioned, so all well-known traveling salesman problem (TSP)
the special case of = m, the problem is described as the “genPerators can be_ easily apphed. Dagli and _S|tt|sathanca| [_37],
eralized assignment problem.” An EA-based heuristic for tH&0] émployed this type of direct representation for the solution
solution of this problem has been proposed by Chu and BeasRlythe JSSP. They overcame feasibility problems by using
[24]. legal schedules to initialize the population and an ordgr-based

1) Variations from the Basic FormCaoet al. [26] argue Crossover operator to preserve the preced_ence constraints of the
that the classic formulation of the JSSP is unrealistic sinceRfoPlem. They also used a back-propagation neural network for
does not take into account a number of elements which dhe evaluation of schedules. Aizpuru and Usunariz [41] adopted
important in real-life scheduling, like setup times, due datel'e same representation for their hybrid scheduling algorithm,
and machine off-line times. Academic research has been c¥fdich was based on evolutionary algorithms and tabu search.
icized for considering scheduling problems that rarely appedknowledge-based system was employed to generate efficient
in practice [27], [28]. As a result, many researchers in the fieRFheduling strategies. The hybrid algorithm helped the system
of evolutionary computation are now using a variety of criteri® induce knowledge about the scheduling procedure. Giffler
for the evaluation of schedules. Minimization of makespan &d Thompson's (GT) [42] algorithm generated initial actives
still used as an objective in many cases [22], [29]-[31], béphgdules, and_efﬂuent operators maintained the precedence
the general belief is that the objective of manufacturing opfielations of the jobs. .
mization should be the minimization of production cost. Ad- 2) Indirect Representations:
dressing the overdominance of makespan-oriented work in the @) Job-Based Representation$he common type of
field, Fanget al. [32] employed seven quality criteria for theindirect reprgsentatlon does not .explllcnl.y stat_e the operation
evaluation of good schedules: maximum tardiness, average f4#mboer, but instead, only the owing job is defined. The chro-
diness, weighted flow time, weighted lateness, weighted tarff0some
ness, weighted number of tardy jobs, and weighted earliness
plus weighted tardiness. The last criterion is in accordance with [J1, Jo, o, Js, doy Ty, -]
the just-in-time (JIT) principle of having a product made exactly
when itis required. This minimizes storage costs (earliness) dndicates that the first operation of the first job should be
lateness fines (tardiness). Similar objectives are used in [38¢heduled first, followed by the first operation of the second
[19], [35]-[37]. Due dates and ready times of the products aj@p, the second operation of the first job, etc. It is obvious
prespecified in these cases. An excellent overview of scheduliiigt a schedule builder is needed to transform this solution
objectives can be found in [21] and [38]. into a feasible schedule (for discussions about schedule
builders, see [43]-[45]). Bierwirtlet al. [22] employed this
method in their discussion of permutation representations for
combinatorial problems. Their experimentation with various

The classic binary solution representation of the simple gerossover operators led to the conclusion that the preservation
netic algorithm has rarely been used for the JSSP. Purpose-ba¥etthe absolute order of jobs and their associated operations
representations can be much more effective. In the followingas quite significant for the JSSP. They introduced a new
paragraphs, we will attempt a classification of the most sucperator called PPX (precedence preservation operator) that
cessful representations. featured this useful characteristic. Fagtgal. [32] highlighted

1) Direct RepresentationsPerhaps the most natural repthe superiority of a job-based GA over dispatching rules and
resentation for the solution of the problem would be a dastochastic hill climbing on a variety of scheduling criteria. Shi
structure that can be used as a schedule itself. No decodingg®], [47] built an EA scheduler that efficiently decoded the
needed to obtain the schedule; thus, this type of representatitnngs into active schedules, and utilized operators optimized
is called direct. (Note that we use a different classificatidior speed.

C. Encoding
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b) Dispatching Rule Representationhe use of dis- duced two purpose-based crossover operators: the subsequent
patching rules for scheduling is a common manufacturirexchange crossover (SSX) and job-order based crossover (JOX),
practice [49]-[51]. Blackstonet al. [50] give the following respectively. JOX used the traditional Giefler and Thompson
definition: “A dispatching rule is used to select the next joBGT) algorithm for the decoding of solutions into active sched-
to be processed from a set of jobs awaiting service.” In thaes. The result was a much better performance, both in terms of
case of static scheduling, this selection is based on various mitimal and average values for Fisher and Thompson’s bench-
characteristics, such as processing time, due date, etc. mark problems (see later paragraph). Park and Park [60], [61]

Herrmannet al. [48] proposed an efficient EA representareported their preference list-based GA with the introduction
tion, which was based on dispatching rules. The solution wafa crossover operator, called the active schedule constructive

encoded in the following form: crossover (ASCX), which was based on the active schedule gen-
eration algorithm [57].
[EDD, SPT, FIFO, - -] d) Alternative RepresentationsSeveral other representa-

tion schemes have been reported. Perhaps the most successful

where EDD is the earliest due date rule, SPT is the short&#s proposed by Kim and Lee [62], [63]. Their schedule rep-
processing time rule, and FIFO is first in, first out rule. resentation was basically a priority list of operation—machine

Each element represented a machine, and the value of thedgfignment pairs, which corresponded to a certain priority rule.
ement defined the dispatching rule that this machine used ffhedules (and consequently, the corresponding priority rules)
the scheduling of waiting operations. This type of representdere refined evolutionarily with the help of a genetic reinforce-
tion did not suffer from feasibility problems, and the applicatioment learning (GRL) procedure. While no computational times
of operators was straightforward. Fujimabal.[52], [53] em- Were reported, this method showed the best overall performance
ployed the same representation for the scheduling of a flexitle Muth and Thompson’s benchmark problems in comparison
manufacturing system (FMS, a computer-controlled groupinjth every other evolutionary method included in this survey.
of semi-independent workstations, linked by automated mate-Yamada and Nakano [64] employed a disjunctive-graph rep-
rial-handling systems). Each element corresponded to a ddesentation for the solution of the JSSP. Following the trend
sion-making point in the plant, and the value of the elemefif enhancing the evolutionary process with local search tech-
specified the dispatching rule that would be used at this poifigues, they introduced a crossover operator called multistep
Kumar and Srinivasan [36] used a circular string of dispatchirgossover (MSX), which was, in effect, a local search operator.
rules as a scheduling policy, whenever a part was requested@o et al. [65] presented a method called the total operation
processing. order method (TOOM) where a solution was given in the form

Dorndorf and Pesch [30] proposed an alternative use of tgka job operation matrix, which defined the absolute order of all
same representation for the JSSP, where each rule determiiegrations to be processed. Liang and Mannion [66] proposed a
the next job to be scheduled among the conflict set of josarse matrix solution’s representation with purpose-based op-
created by Giffler and Thompson’s algorithm. However, thigrators to ensure the feasibility of solutions. A dynamic data
method performed p00r|yin Comparison with another a|gorithﬁ‘tructure called the “hierarchical linked list” was utilized by
presented in the same paper based on the shifting bottlenbégmeyer and Shiroma [54] in order to accommodate variable
heuristic, a well-known method for the solution of the JSSP. Agngths of jobs and operations in a real manufacturing environ-
EA controlled the selection of nodes in the enumeration tree cfgent. Kim and Kim [55] tackled the problem of infeasibility
ated by the heuristic. by using a random-keys [56] representation for the solutions.

Finally, Fanget al.[25] employed the dispatching rules repFinally, Gohtohet al. [68] applied a special EA with neutral
resentation for the solution of an open-shop scheduling probléhyitations [69] to some standard benchmark problems. An ex-
(the case where the sequence of operations is not predefine@gllent analytical review of the representations that have been

C) Preference-List Representationg; popu|ar way of en- used for the solution of the JSSP can be found in [43]

coding a solution of the JSSP is the preference-list representa-
tion. Preference Iist's are not actual sc'hedules, bgt a preferg§letast Problems and Case Studies
sequence of operations on each machine. Operations are sched-
uled according to this sequence unless they violate a preceEvolutionary computation methods have not been adopted
dence constraint. In that case, the next operation in the prief-standard manufacturing practice. For this reason, in recent
erence list is scheduled. Croeeal. [33] used the concept of years, academic research has attempted to consider real-life
preference lists for the encoding of solutions, together withsgheduling problems. Standard benchmark problems do not
look-ahead evaluation method which generated nondelay schaettract the attention of people in industry since practical sched-
ules (see Baker [57] for a discussion on schedule types)eCaaling problems are far more complex than the famous Fisher
al. [26] addressed a complex JSSP problem with multiple objeerd Thompson’s [70] MT06, MT10, MT20, and Lawrence’s
tives utilizing a hierarchical evaluation (HE) model instead of @1] benchmark problems that are still used in most research.
look-ahead evaluation. Their framework was able to generdiable | gives a summary of results that have been published
feasible schedules and perform local optimization at the sameeently for the three Fisher and Thompson problems. The best
time, resulting in slightly better performance than Croce’s algand average (wherever available) results of each method are
rithm. Kobayashet al.[58] and Oncet al.[59] encoded the so- presented. Table 1l summarizes the results published for some
lution in the same preference-list form. They additionally introsf Lawrence’s benchmark problems.
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TABLE |
PUBLISHED RESULTS ONFISHER AND THOMPSON'SBENCHMARK PROBLEMS, OPTIMAL VALUES: FT 6 x 6: 55, FT 10x 10: 930, FT 20x 5: 1165

FT 6X6 FT 10X10 FT 20X5
PAPERS Best Aver. Best Aver. Best. Aver.
Aizpuru et al.[41] - - 930 951 - -
Cao et al.[26] - - 945 953:5 1176 1198.3
Cho et al.[65] 55 - 943 - - -
Croce et al.[33] 55 55 946 965.2 1178 1199
Dorndorf et al.[30] 95 - 938 - 1178 -
Gen et al.[29] 55 - 962 - 1175 -
Gohtoh et al.[68] - - 930 935.36 1165 1180.34
Kim et al.(1995)[62] - - 930 931.57 1165 1165.97
Kim et al.(1996)[63] - - 930 930 1165 1165.27
Kobayashi et al.[58] - - 930 934.3 1165 1217.4
Ono et al.[59] - - 930 931.1 1165 1176.5
Park et al.[61] - - 936 949 1178 1185
Shi et al.[46] - - 930 946.2 1165 -
Yamada et al.[64] - - 930 934.5 1165 1177.3
TABLE I

PUBLISHED RESULTS ONLAWRENCE’'S BENCHMARK PROBLEMS; (*) DENOTESOPTIMAL VALUE

Aizpuru etal. | Cao etal. [26] | Kim et al. [62] |Croce et al. [33]| Park et al. [61]
[41]
TEST Best | Aver. | Best | Aver. | Best | Aver. | Best | Aver. | Best | Aver.
NO.
LAO1 666 666 666" 666 666 666
LAO6 926 926 926 926 926 926
LAll 1220° 1222 12297 1222 1222 1222
LAL6 956 980 945° 9454 979 989
LA21 1056 1061 1083.6 | 1055 1055.8 | 1097 1113.6
LA22 935 935.47 935 949
LA26 1227 112312 | 1218° 1218 1231 1248
LA27 1255 1255 1264.9
LA31 1784° 1784 1784" 1784 1784 1784
LA36 1337 1348 1305 1330.4

However, a considerable number of recently published psubject of research from the early days of evolutionary computa-
pers address real-life scheduling cases. Herrnetnal. [48] tion. As aresult, the efficient operators that have been developed
described the development of a global scheduling system for the TSP are directly applicable to the flow-shop scheduling
a semiconductor test area. Niemeyer and Shiroma [54] ugadblem.

EA's for the scheduling of factories of a multinational com-
pany. Terancet al. [35] combined EA's and SA for a sched-B. Problem Formulation
uling problem in plastic injection moulding. Gilkinscet al.

[34] tackled the scheduling problem of a company that pr%éringn jobs to be processed im machines. The difference

duces laminated paper and foil products. Hamadal. [72] between the job-shop and the flow-shop scheduling problem is

approached_a comple_x scheduling problem |,n a steel-mak|{1 t, in the latter case, each job undergoes the same machining
company using a hybrid system based on EA's and expert sys- . : :
guence, while the sequence of operations is the same on each

tems. Shaw and Fleming [44] and Kumar and Srinivasan [3 achine. This means that the solution of the problem can be

proposed evolutionary computation methods for the solutign . . i
. . : r(ﬁpresented as a permutation of all jobs to be processed:

of scheduling problems in companies that produce ready-chi

meals and defense products, respectively. Finally, Sakhak

[73] considered the scheduling problem of a machining center [J1, J2, Jss o5 ]

using an evolutionary algorithm.

The permutation flow-shop scheduling problem involves or-

wheren is the total number of jobs. The conditions that were

ll. The Flow-Shop Scheduling Problem introduced for the JSSP hold for the flow-shop scheduling
problem as well. The minimization of makespan is usually
employed as the objective of the scheduling algorithm. The

The permutation flow-shop scheduling problem, or the jolproblem is also known as the/m/P/Cy., problem [21].
sequencing problem as it is often called, is another manufao-the special case of» = 1, the problem is described as
turing optimization problem that attracts particular research ithe one-machine scheduling problem. Gaegyal. [23] have
terest. It is relatively easy to apply evolutionary computatioshown that the problem is NP hard in the strong sense (proof by
methods to this problem since it can be formulated as a classansformation of the 3-PARTITION problem to the associated
TSP with path representation. This latter problem has beeffl@v-shop decision problem).

A. Introduction



DIMOPOULOS AND ZALZALA: DEVELOPMENTS IN EC FOR MANUFACTURING OPTIMIZATION 97

1) Variations from the Basic FormThe minimization of selected out of the new set. Their representation allowed the
makespan is used as the main objective in a number of papese of traditional crossover and mutation operators without
reviewed in this section [75]-[79]. However, in recent yeargroducing infeasible solutions. Some slight modifications in
more complicated formulations of the problem have been cafre encoding of solutions were also present in [82] and [87],
sidered, with various alternative optimization criteria includedn order to accommodate the simultaneous lot sizing that
Murataet al.[80] used a multiobjective GA (MOGA) approachwas attempted by these algorithms. Lee and Choi [85], [86]
for a flow-shop scheduling problem, aiming to simultaneouslysed parallel genetic algorithms (PGA's) with binary rep-
minimize makespan, total tardiness, and total flow time of thesentation for one machine scheduling problems. Finally,
production. Minimization of total tardiness was also employeifebbe et al. [92] adopted the vibrational-potential method
as an optimization criterion by Larat al. [81]. Sikora [82] (VPM) for the solution of sequencing problems. VPM is an
attempted to minimize makespan, holding costs (earlinessyplutionary computation method based on the concept of
and overtime (tardiness) in a flow line with limited bufferinformation propagation in nature, which employs different
capacity. Sannomiya and lima [83], [84] also tried to minimizespresentation schemes.
makespan, at the same time keeping the processing rate of
each product as constant as possible. Their formulation of the
problem considered the existence of a carrier that transferfed

products between the machines. Lee and Choi [85], [86] as-1) Crossover Operator:There is a long-running debate
signed earliness and tardiness penalty weights to schedulesgi§$ut the suitability of particular crossover operators for
a one-machine scheduling problem. leg@l.[87] presented an sequencing problems. Michalewicz [11] argued that the
interesting formulation of the problem, introducing the concefibw-shop scheduling problem has certain characteristics
of a flexible flow line with variable lot sizes. In this case, jobshat distinguish it from the TSP; thus, the suitability of
consisted of splitable lots, and an efficient EA was used 0 particular operator for the TSP is not necessarily valid
Simultaneously optimize the ordering ijObS and the lot sizinq;r all Sequencing prob|ems_ Since most of the crossover
Gonzalezet al. [88] considered the “no-wait” version of theoperators have been deve|0ped for the TSP, it is easy to
job-sequencing problem, where once the processing of a jgiderstand that the selection of a crossover operator for
has started in the first machine of the production line, thefew-shop scheduling is not straightforward.
must be no time delay between the Consequentoperations Ofth'ﬂqe preservations of order, position, and adjacency of
job in the following machines. An EA enhanced with heuristigenes are the main characteristics of an operator for se-
methods was used for the solution of the problem. Herrman adj@encing prob|em5_ One of the earliest crossover Operators
Lee [89] described a class-one machine scheduling problegiorder crossover (OX) [93]. OX preserves the relative order
where jobs belonged to different classes, with each class haviigjobs from the parents. Katokt al. [94] used OX for
sequence-dependent setup times. The evolutionary algorittia solution of a one-machine scheduling problem with un-
that they presented generated different input conditions forcgrtain processing times. Davis also introduced the uniform
minimum waste heuristic algorithm which accomplished ﬂ’@’der-baged crossover Operator [95], which was adopted by
task of producing legal schedules. Karabati and Kouvelis [98}ake and Choudry [78] and by Lee and Choi [85] in
addressed the flow-shop scheduling problem with controllablgeir attempts to solve job-sequencing problems. Uniform
processing times, i.e., the problem where the processing tig\@ler-based crossover preserves the absolute position and
of a part is not fixed, but can assume a number of differepdlative order of jobs from the parents. Researchers have
values. An EA was employed for the solution of |arge-Scatﬁ’oposed many variations of OX for the ﬂOW-ShOp sched-
problems of this type. Finally, Ishibuclet al. [91] proposed yling problem, like the one- and two-point crossover opera-
a fuzzy mathematical formulation of the problem, using th@rs introduced by Muratat al. [77], [96]. Sannomiya and
concept of fuzzy due dates. The optimization criteria Welfma [83], [84] and Ficheraet al. [97] proposed versions
the maximization of the minimum satisfaction grade and th§ OX. Another well-known TSP operator is the partially
maximization of the total satisfaction grade. mapped crossover operator (PMX) [98], which preserves el-
ements of the absolute order and relative position of jobs
from the parent chromosomes. Chen al. [76], [99] used
The permutation representation is used in most of the gaMX to solve a continuous flow-shop scheduling problem.
pers surveyed in this section. A permutation is a natural refin interesting element of their approach is that it employed
resentation for the solution of the problem since there are mahyee heuristics (job insertion method (JIB) [100], Camp-
well-tested operators to ensure the feasibility of solutions andtell, Dudec, and Smith’s (CDS) heuristic, and Dannenbring’s
enhance the evolutionary process. heuristic) for the initialization of the population. Shridhar and
There are, however, some exceptions to this rule. The m&sjendran [101], [102] also used the PMX operator together
notable is that of Lamet al. [81], who introduced a pi- with their own DELTA operator (which determines the se-
geon-hole coding scheme. In this representation, the valeetion policy of the algorithm) in order to obtain optimal
of each gene corresponded to the index of the job selecthedules for a flow-line-based manufacturing cell. The same
for scheduling, out of the list of unscheduled jobs. Eadbperator was present in the algorithm proposed by Braglia
time a job was scheduled, the list of unscheduled jobs wasd Gentili [79], who enhanced the evolutionary process by
reindexed, and the value of the next gene defined the jabing a neighborhood search algorithm for fine local tuning.

Operators

C. Encoding
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Ross and Tuson [103] directed the search of various stghile the evolutionary process was in progress. Pakath and Za-
chastic optimizers using an idle time heuristic, i.e., a heuristveri [111] also presented an algorithm for the on-line specifica-
that considered the time a job is waiting on a machine bten of parameters in a GA scheduler.
fore its processing. An EA with a modified PMX operator
was employed as a representative of evolutionary compufa- Test Problems and Case Studies
tion methods. However, directed search did not seem to haveft is extremely diffi .

y difficult to compare the performance of dif-

any significant effect on the performance of the allgorlthn?érent evolutionary algorithms for flow-shop scheduling since

An increasing number of researchers adopt the edge-recon- . . .

L : . most researchers use their own instances of test problems, i.e.,

bination operator [104] and its enhanced version [105]. It was S .
- . . : Co oblems where the processing times and due dates of the jobs

originally deigned for the TSP, and its main characteristic is th . S .

. . ; : are selected randomly out of a uniform distribution. Since these

it preserves adjacency information from the parents. It has re-

cently been used by Sikora [82], Leeal. [87], and Gonzalez instances are not publ|shed'|n detail, they are rarely u;ed by
e ) other researchers. A comparison of results taken from this type
et al.[88] in job-sequencing problems.

. of problems would not be valid.
Asveren and Molitor [106] proposed two new operators for Most of the papers referenced in this section use their own

sequencing problems, namely, the neighborhood relationshi

: R blem instances or test problems not widely available. The
operator (NRX) and the meta-ordering operator (MOX). NRgnly exceptions are Reeves [75], Yamada and Reeves [107], and

s, In fact, a neighborhood search algorithm, as the MSFX o oss and Tuson [103], who presented results on standard bench-
erator proposed by Yaf"ada and Reeves [107]. M.SFX has :.irlﬁgrk problems taken from Tailard [112]. Le al. [87] and
beer_l used for.the solution of _the JSSP, aswe sawin the Previdora [82] considered the scheduling of a manufacturing plant
section. Yaguira and Ibaraki [108] designed a hybrid SyStegFoducing printed circuit boards (PCB's) as a case study
based on EA's and dynamic programming (DP) for the solu- ’
tion of one-machine scheduling problems. DP is employed in
the crossover phase of the algorithm, leading to an efficient ahd THE DYNAMIC SCHEDULING PROBLEM AND COMPARISONS
fast optimization method. BETWEEN DIFFERENT SCHEDULING ALGORITHMS

The diversity of the operators used in all previous research p- pynamic Scheduling
pers is a result of the uncertainty that exists about the superiority. ) o
of a particular operator. The use of independent test problems byl e cases that we have considered so far in job-shop and
each researcher makes the comparison very difficult, as we Wifi"V-Shop scheduling addressed static scheduling problems, i.e.,
discuss in the next paragraph. Muratal. [77], [96] compared problems where the dynamic nature of the scheduling decision

the performance of seven crossover operators, and their res0t €xamined. However, in practical scheduling, a scheduler

highlighted the superiority of two-point crossover operator. en has to react to unexpected events. The main uncertainties

the other hand Leet al.[87] compared the edge-recombination,encountered in a real manufacturing system are the following:

PMX, CX (cycle crossover) [109], and OX operators, and con- * machine breakdowns including uncertain repair times;
cluded that the edge-recombination operator produces the best increased priority of jobs;
quality solutions. « change in due dates;

2) Mutation Operator: The mutation operator is often * order cancellations.
given little importance in research papers; however, iWhenever an unexpected event happens in a manufacturing
contribution to the best possible exploration of the sglant, a scheduling decision must be made in real time about
lutions’ search space is important for the evolutionahe possible reordering of jobs. This process is known as
process. The most well-known mutation operators fdrescheduling.” The main objective of rescheduling is “to find
sequencing problems are the “swap” operator, which simpilymediate solutions to problems resulting from disturbances in
exchanges the position of two randomly selected genestire production system” [125].
the sequence, and the “shift” operator, which shifts the Until recently, evolutionary computation methods have rarely
position of a gene some places to the left or right. Muratzeen used for dynamic scheduling, due to their inability to cope
and Ishibuchi [96] investigated the performance of fivevith real-time decision making. They were developed and tested
mutation operators on sequencing problems, and the beststatic scheduling problems that did not require real-time con-
results were given by the “shift” operator. Their researdnol. However, in the last few years, EA's have been employed
also proved that the combined effect of the best crossows parts of hybrid dynamic scheduling systems, which exploit
and mutation operators is not necessarily positive. Theifreir useful characteristics.
experimentation showed that the best performance is givenl) Machine Learning MethodsMachine learning is one
by the combined effect of two midperformance operatoref the methods that have traditionally been used in manufac-
This conclusion confirms the difficulty of selecting operatorturing environments to face uncertainties. Chiu and Yih [113]
for job-sequencing problems. proposed such a learning-based methodology for dynamic

3) EA-Parameter SpecificationThe selection of EA param- scheduling. They divided the scheduling process in a series
eters (population size, probability of crossover, probability aff ordered scheduling points. An evolutionary algorithm
mutation, etc.) plays a vital role in the performance of the algexamined which dispatching rules performed better for each
rithm. Cheret al.[99] proposed the introduction of a meta-levebf these points, given a set of plant conditions (system status).
EA [110] which optimally controlled the values of parametersThe chromosome was formed by a series of genes, each one
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representing a respective scheduling point and taking as a vabfiescheduling problems. lIterative improvement techniques,
one of the available dispatching rules. The performance @ndom search techniques, simulated annealing, tabu search,
the algorithm was simulated under different plant conditionand hybrid techniques are some well-known scheduling opti-
forming a knowledge base that described the scheduling rufeization methods. Tsang [126] presented an overview of OR
that were preferable in different cases. A binary decision tréeperations research) and Al (artificial intelligence) methods
was used to describe the gained knowledge. This method liadt have been used for scheduling problems. Many researchers
the advantage of being able to modify its existing knowleddeave attempted to compare the performance of these optimiza-
(new system conditions), without having to reconstruct thén methods, and results were recently published in a series of
entire knowledge base. Aytwgg al. [114] presented a different papers.
machine learning approach for dynamic scheduling, based orDorn et al. [127] compared the performance of iterative
classifier systems [9]. In this case, an initial knowledge baskeepening [128], random search, tabu search, and EA's on the
was given, and an EA modified it, using results taken fromcheduling of a steel manufacturing plant in Austria. Iterative
the simulation of the production line. In that way, the systeheepening and tabu search produced the best results for this
learned to react to certain unexpected events. A hybrid systparticular case study. The same techniques, with the addition
based on neural networks, EA's, and an inductive learnimg a hybrid EA—local search method and simulated annealing,
algorithm called trace-driven knowledge acquisition (TDKAyvere tested on a one-machine scheduling problem by Yaguira
[115] was used by Jones al.[116]-[118] to infer knowledge and lIbaraki [129]. Their conclusion was that, while local
about the scheduling process. A back-propagation neusalarch techniques were computationally efficient and produced
network selected a number of candidate dispatching rules oubderate solutions, simulated annealing and genetic local
of a larger set of available rules. The schedules formed bgarch performed much better, but introduced a significant
these dispatching rules were used as the initial population @fmputational overhead. The one-machine scheduling problem
an EA that evolved an optimal schedule. The results takems also used for the comparison of local search, simulated
from the simulation of the schedule helped TDKA to create annealing, tabu search, and EA's by McMahon and Hadinoto
set of rules that formed the knowledge base. keal.[119] [130]. Simulated annealing gave the best performance, both in
proposed a hybrid scheduling framework which consisted of anmerical and computational results.
inductive learning system for job releasing in the plant, and anin all previous comparisons, specific representations and
EA-based system for the dispatching of jobs at the machinggnetic operators were used by individual researchers; thus,
The genetics-based machine learning (GBML) method g&neralization of the conclusions would not be valid. On the
Goldberg [5] and an EA-based status selection method hadtéer hand, there are indications that the evolutionary process
also been employed by Tamaét al. [120] and Ikkaiet al. is greatly enhanced when it is hybridized with local search
[121], respectively, to induce scheduling knowledge frorechniques. Additional evidence was given by Glass and Potts
manufacturing systems. [131], who compared the performance of multistart descent,

2) Alternative Methods:Fang and Xi [122] presented a dif-threshold accepting, simulated annealing, tabu search and EA's
ferent rescheduling strategy based on the rolling horizon ap- a number of flow-shop scheduling problems. While the
timization method. Scheduling was performed periodically gmerformance of EA's was poor initially, it was greatly improved
a predefined number of jobs that formed the “job window.vhen the algorithm was hybridized with a local search method.
Rescheduling was initiated either by the elapse of a job windolhe same results were reported by Ishibwathal. [91] for their
or by the occurrence of an unexpected event. An EA evolvéazzy flow-shop scheduling problem discussed in the previous
an optimal schedule for each planning horizon, considering thection. They compared the performance of multistart descent,
status of the system. The same concept of job windows wsimulated annealing, tabu search, and EA's, and while tabu
adopted by Cartwright and Tuson [123], who employed an Egearch outperformed all other individual optimization methods,
to dynamically control the scheduling of a chemical flow-shog hybrid multistart descent—EA system performed equally well.
Bierwirth et al. [124] proposed a similar approach, aiming to Up-to-date developments in evolutionary computation
decompose a nondeterministic job-shop problem in a seriesapproaches to scheduling and time-tabling can be found in
deterministic smaller ones. Each subproblem was then soNedOSTIM (EVONET working group on scheduling and
with the help of the static scheduling EA method that we déime-tabling) dynamic report, available through WWW [74].
scribed in the JSSP section [19].

Finally, Jain and Elmaraghy [125] presented a steady-state
EA framework for the scheduling of an FMS system. Specially
designed algorithms dealt with unexpected events like machifie Introduction
breakdowns and order cancellations. A series of test cases indiProcess p|anning is one of the most Comp|ex manufacturing

cated the validity of the method for scheduling and reschedulip@iases. It comprises a series of tasks that are heavily depen-
purposes. dent on the type of product that is to be processed. Process
) ) o . planning takes as input the design characteristics of a product
B. Qo_mpgrlson of Different Heuristic Methods for SchedullnqCAD files), and gives as output its complete production plan.
Optimization This plan should determine the machining processes needed, the
Evolutionary computation is not the only nonanalyticaiools to be used, and the sequencing of operations. If more than
optimization method that has been proposed for the solutione plan is available, then an optimal plan should be selected.

V. PROCESSPLANNING
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Process planning can be more or less elaborate, according.eq a construction of arcs and nodes that determines alternative
the processing requirements of a particular part. Horeatll. sequences of machining for a given product; see Fig. 1. Each
[132] illustrated some elements of the process that should be dt&age of this graph represents a machining operation, and the
termined by a process plan. nodes denote the number of alternative machines that are ca-
Process planning is the link between the design and mamable of performing this operation. The weighted arcs define
facturing phase of a product. The design phase is highly autbe cost of following a particular machining sequence.
mated nowadays with the introduction of state-of-the-art com- Awadhet al.[138] presented one of the first evolutionary al-
puter-aided design (CAD) programs. However, computer-aidgdrithms for the solution of the optimal plan selection problem.
process planning (CAPP) programs are not so highly develop&ach stage of a process plan was represented by a binary-coded
and research interest in the field is growing. An excellent reviemvatrix, where the occurrence of a bit with positive value denoted

of CAPP methods can be found in [132]. the presence of a connection between the corresponding nodes
) ] of the matrix. The authors warned that this representation could
B. Operation Sequencing sometimes lead to the existence of more than one processing

Operation sequencing is an important task of process plgnan for a single chromosome solution. A decoding algorithm
ning. The planner must determine the machining sequerzalled “path modifier” ensured that there was a “1-to-1" rela-
of parts, taking into account all of the existing precedend®nship between the genotype and the phenotype of each so-
constraints for the machining of features. These constraifiggion. The objective of their approach was the minimization of
are normally given in the form of a precedence graph. Ushée overall cost. Zhou and Gen [139] noted that fast and efficient
and Bowden [133] proposed an evolutionary computatigrgorithms, like the shortest path method and dynamic program-
approach for the solution of this problem. The number dhing, are capable of producing good solutions for single-objec-
genes in the solution was equal to the number of features thige process planning problems like the previous one. They ar-
must be machined. There was a special decoding procedaued that evolutionary computation methods are ideal for the
based on the feature precedence graph, which transformed amftiobjective version of the problem, which cannot be easily
string into a feasible sequence of machining operations. Tlgispressed as a shortest path or dynamic programming problem.
representation was first introduced by Yip-Hoi and Dutta [134].he authors constructed an EA that used the same network flow
The total number of setups, the continuity of motion, and thgodel, but had an efficient integer solution representation that
loose precedence determined the quality of solutions. Takatdid not require the existence of additional operators like the
et al.[135] adopted a TSP representation for the solution of tfipath modifier.”
same problem, using a repair mechanism to cope with solutions ) ]
that violated the constraints. The objectives of their algorith- Advanced Process Planning Methodologies
were the minimization of the total change cost, the machining Concurrent engineering has received much attention lately as
cost, and the nonmachining cost. a modern approach to manufacturing optimization. It is a man-

Kamhawi et al. [136] developed an elaborate feature-saifacturing philosophy where the design and the related manu-
guencing system based on EA's. The representation scheme fsigturing processes of a product are integrated into one proce-
the same as in [135], but the evaluation of solutions was basfte (the reader should refer to Singh [140] for an overview of
on rules and constraints about safety, quality, and minimizatigdbncurrent engineering). Process planning and scheduling are
of tool changes and tool travel. The user assigned a weightiii manufacturing processes that are closely related. One of
each of these objectives, according to his preferences. the aspects of concurrent engineering is the integrated process

Norman and Bean [137] discussed the problem of operatipranning (in terms of the optimal selection of a process plan)
sequencing and tool allocation in parallel machine tools (PMTand scheduling of a product. Husbands [141] and Mcllhetga
A PMT is a machine capable of processing more than one part#it[142] proposed an EA-based method for the simultaneous
atime since it contains multiple spindles. A random-keys code@termination of planning and scheduling in a vehicle manu-
EA was proposed for the solution of the problem. The tool alldacturing company. They used a distributed genetic algorithm
cation task was dealt with in the introduction of an integer pafbGA) [143] approach with a diploid chromosome representa-
to the value of the genes. This part defined the machining utitn that defined both the sequencing of operations and the use
(MU) which was responsible for a particular operation. The deof alternative machines. A number of different optimization ob-
imal part of the value determined the sequence of operatiofistives were included, such as the minimization of makespan,
The authors also proposed the enhancement of the algoritfiooy time, and tardiness.
with a heuristic method, presenting results that justified their de-Bowden and Bullington [144] created a hybrid system called
cision. Yip-Hoi and Dutta [134] tackled the same problem usinGUARDS, based on unsupervised machine learning and EA's
an efficient solution representation based on feature precedeircgrder to optimize the control of a manufacturing process. The
graphs, as was discussed earlier. The objective of their algoritegstem learned to select the optimal process plan according to
was the minimization of the part’s total processing time. the status of the plant. GUARDS was an extension of the well-
known SAMUEL system [145].

Horvathet al. [132] described a complete process planning

The optimal plan selection problem is the task of selectiqgocedure, from the input of part specifications in the form of
an optimal process plan out of a population of alternative plarGAD files, to the optimization of the constructed process plan.
The problem is usually modeled with the help of flow networks hey used an object-oriented approach in the form of “features.”

C. The Optimal Plan Selection Problem
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have been used recently to tackle optimization problems asso-
ciated with cellular manufacturing.

B. Formation of Manufacturing Cells

1) Historical Development:The formation of manufac-
Fig. 1. Representation of a process plan. turing cells is an optimization problem that has been extensively
researched over the last 20 years. A considerable number of

A “feature” was an object that defined specific operations ar@iternative methods have been proposed for the solution of the
contained all of the relative functional, geometrical, and technBtoblem. Singh [156], Offodilet al. [157], and Morad [158]
logical data. Knowledge-based reasoning was used for the géiye comprehensive reviews of the problem, and attempt to
eration of plans, which were then optimized with the help of @xonomize all of these methods into certain categories. An
genetic algorithm. Zhanet al. [146] recently developed a sim-analytical review of the methods is beyond the scope of this
ilar complete CAPP system for parts manufactured in job-sh@gpPer. However, it is important to reference the most significant
environments. They adopted a direct solution representation C4ghem. As already mentioned, Burbidge [149], the pioneer re-
was introduced by Burns [39]. Each chromosome defined tfearcher in cellular manufacturing, introduced the first method
sequencing of operations, machine-tool assignments, and tbidesigning manufacturing cells, namely, production flow
approach directions (TAD’s) for an individual process plan. Ianalysis. His method aimed to create manufacturing cells by a
this way, the procedures of operation sequencing and procégges of manual manipulations on the rows and columns of the
plan selection were integrated. machine-component matrix. Some other well-known methods,
Hayashiet al.[147] introduced an interesting method for thdike rank-order clustering (ROC) [159] and the direct clustering
evaluation of future plans in a manufacturing plant with unceflgorithm (DCA) [160], are based on the same matrix. Another
tain parameter values. A binary-coded EA was employed for théll-known cell-formation method is single linkage cluster
evaluation task. The solution was represented by a string of @nalysis (SLCA), introduced by McAuley [161], which is
of the plant's parameters, and the objective of the algorithm w@gsed on similarity coefficients between the machines. Coding
defined according to user’s preferences_ and classification methods [162], graph partitioning [163],
mathematical programming [164], neural networks [165],
VI. OPTIMIZATION PROBLEMS IN CELLULAR MANUFACTURING ~ @nd fuzzy logic [166] are some other methods that have been
proposed for the solution of the cell-formation problem.
2) Evolutionary Computation MethoddJnlike scheduling,
Cellular manufacturing is the application of group techthe cell-formation problem had not been a subject of evolu-
nology (GT) in manufacturing systems. GT was first introduceiibnary computation research until very recently. Venugopal
in the former USSR by Mitrofanov [148], and was popularizednd Narendran [167] were the first researchers to approach
in the West by Burbidge [149], who introduced productiothe cell-formation problem using EA's. Their objective was
flow analysis (PFA), the first scientific method for creatinghe minimization of the intercell traffic and the balancing
manufacturing cells. Cellular manufacturing is a manufacturirgf load in the cells. A different population of solutions was
philosophy that attempts to convert a manufacturing systemployed for each of these objectives. The solution repre-
into a number of cells. Each cell manufactures products wiientation was simple and efficient. Each machine in the plant
similar processing characteristics. Ideally, all of the processingrresponded to a gene in the chromosome. The value of
operations of a part should be completed within a cell. Howthe gene defined the owing cell of the respective machine.
ever, in realistic cases, intercell movements of parts are alwayse total number of cells in the plant was predetermined,
present. Cellular manufacturing offers certain advantagesibot the formulation of the problem considered the processing
midvariety, midvolume production lines like the reductiotime of parts, which was a serious improvement in compar-
of setup and transfer costs, the minimization of inventorison to the traditional cell-formation methods. Gumaal.
improved quality, and significant savings in plant space. [168], [169] enhanced this formulation by considering the
A vast bibliography exists on the subject of cellular manuntracell moves of the parts and the intracell layout. Special
facturing. A good introduction is given by Burbidge [150], and¢are was also taken to ensure that no cell remained empty
a critical review of up-to-date developments can be found @uring the evolutionary process. Billet al. [170] adopted
[151]. A considerable number of industries have adopted thedirect solution representation, based on a two-part chro-
concept of cellular manufacturing, as Wemmerlov and Hyer ilnosome. The first part was a permutation of all parts to be
lustrate in a series of papers [152]-[155]. processed, while the second part denoted the cutoff points
There are three main phases in the design of a manufacturaigthe first part. Each segment between cutoff points de-
cell: 1) the grouping of machines into cells, better known asted a part family. The objective of their algorithm was
the cell-formation problem, 2) the layout of cells in the planthe maximization of machines’ similarity within the cells
and 3) the layout of machines within the cells. The implementand the minimization of the total number of cells. The ad-
tion of each of these stages leads to difficult optimization probantage of this method was that the total number of cells
lems, where traditional optimization methods are incapable whs not predefined, but the structure of the chromosomes
finding optimal solutions in reasonable time. In the followingvas quite complex and computationally expensive. However,
paragraphs, we will examine some evolutionary methods thhe algorithm performed well on a series of test problems,

A. Introduction
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including some ill-structured machine-component matriceldowever, the quadratic assignment problem (QAP) formulation
Joineset al. [171] introduced a new, efficient integer pro-is the most popular in the literature, and since QAP is known to
gramming formulation of the problem, which reduced thbe NP complete (Sahni and Gonzalez [181] by transformation
search space significantly. An evolutionary algorithm wasom the Hamiltonian circuit problem) for most problem
employed for the solution of the problem, with the variinstances, efficient algorithms must be used for the solution of
ables of the mathematical formulation coded into the chrthe problem.
mosome. Only the upper bound of the total number of cells1) Evolutionary Computation Methods for the Solution of the
needed to be specified. The objective of the algorithm wé&scility Layout Problem: Several researchers have used evo-
the minimization of exceptional elements and voids (zerolationary algorithms to tackle FLP problems in manufacturing.
in the diagonal blocks) in the machine-component matri€arly approaches can be found in the survey given by Mavridou
The validity of the method was depicted by results on teanhd Pardalos [182]. Cohoaet al. [183] and Tam [184] were
problems taken from the literature. Su and Hsu [172] useide first researchers to approach the problem using evolutionary
the classic Venugopal solution representation, but their chmemputation methods. In both cases, the layout was represented
mosome also accommodated the existence of multiple ni®ra slicing tree structure (STS, originally introduced by Otten
chines of the same type. Morad and Zalzala [173] proposg85]), which can be easily decoded into a layout. A slicing tree
the simultaneous optimization of several objectives, usingisa“a binary tree representing the recursive partitioning process
weighted-sum approach. Pierreval and Plaquin [174] adoptaida rectangular area, through cuts. A cut specifies the relative
the classic representation scheme, with binary-coded genmssition of departments through four distinguished branching
Suer [175] presented a preliminary discussion on the deperators”[182]. Kadet al.[186] investigated the combination
sign of part families using evolutionary programming [7]of STS’s with different clustering methods for the initialization
Dimopoulos and Zalzala [176] proposed an evolutionary abf the population, and different decoding methods for the cre-
gorithm for the cell-formation problem of a pharmaceutication of layout. Some of these combinations produced improved
company. Both the representation of the solution and the gesults on previously published test problems. Garces-Rarez
netic operators were purpose based. Different multiobjectiaé [187] refined these results by putting the slicing tree struc-
optimization methods were compared on the solution of theres into a much more natural genetic programming frame-
problem. work, and by employing a variation of one of Kado’s most
3) Hybrid Methods: The cell-formation problem is a successful decoding method. The STS representation was also
difficult optimization problem; thus, various methods of enadopted by Chengt al.[188] in their GA framework. The au-
hancing the evolutionary process have been proposed. Paristiods additionally addressed the issue of the uncertainty of ma-
Pierreval [177] utilized distributed evolutionary algorithmsterial flow between cells using a convex fuzzy number represen-
attempting to increase the speed of the process in comparisation.
with the methods used so far, which were, in their own words, Tate and Smith [189] adopted the QAP formulation of the
“notoriously slow.” Hwang and Sun [178] formulated thgyroblem, with the objective of minimizing the sum of products
problem using a generalized quadratic assignment mathenadtthe total material flow and rectilinear distances between the
ical model. The representation of solutions was a permutatidapartments. They proposed a flexible-bay layout structure that
of all machines in the plant, each one uniquely identified byaccommodated unequal sizes for the departments. The plant was
number. A greedy heuristic was employed for the assignmaetitided into a number of bays by end-to-end slices in one direc-
of machines to cells. The authors used a number of comparatiie, and then the bays were split into departments by perpen-
measures to evaluate the performance of the method in variditular slices. A permutation representation of the solution was
test problems. Finally, Zhaet al. [179] presented a fuzzy used, which determined both the allocation of departments in
clustering method for the solution of the problem, whickhe layout and the place of bay divisions. Norman and Smith
took into account the uncertainty and imprecision that usuall¥90] enhanced this representation by using a random-keys EA,
exist in the problem data. Fuzzy clustering was implement#uus avoiding feasibility constraints, and by incorporating un-
using an EA that employed fuzzy partitions as individual certainty in the mathematical formulation of the problem. Ma-
chromosomes. This method was a typical example of hybiierial-handling costs were expressed using expected values and
systems that exploit the positive characteristics of individuatandard deviations for the product volume over time. Suresh
algorithms and result in robust optimization methods. et al. [191] preferred the permutation representation, but used
a much simpler grid structure for the layout. Kazeroenal.
[192] proposed an integrated approach for the design of man-
ufacturing cells, which incorporated steps for the simultaneous
Once the configuration of cells has been determined, thetermination of cell and machine layouts.
designer must define the layout of machines inside the cellsBanerjeeet al. [193] modeled the problem using a mixed-
and the layout of cells in the plant area. These optimizatianteger programming formulation. They proposed a graph so-
problems belong to the general category of the facility layouition representation based on nodes and edges. Nodes corre-
problem (FLP). The FLP is a well-known combinatoriasponded to input—output cell stations, and edges corresponded
problem. It has been formulated as a quadratic set covering thenaterial flows between the stations. The layout structure was
problem, linear integer programming problem, mixed-integeontinuous, and thus much more flexible than the grid and bay
programming problem, and graph-theoretic problem [18Qtructureswhich restricted the shape of cells. Genetic search was

C. Cell Layout and Machine Layout Optimization Methods
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employed as a part of the overall algorithm, aiming to transforrepresentation of the uncertainty that exists in the value of
the problem into a series of iterative linear programming probtearances.
lems. The robustness of this method was illustrated in a numbefFinally, we should note that Bolte and Thoneman [201] ad-
of test cases taken from the literature, where it was showndeessed the QAP using simulated annealing. The connection
outperform traditional methods. of this paper to evolutionary computation is that genetic pro-
Conway and Venkataramanan [194] considered an interestgmgmming was employed for the optimization of the annealing
version of the FLP, the dynamic FLP. In this case, the facilitychedule. The system found good solutions while maintaining
layout changes with time, and the algorithm must find the bestceptable run times. This is one of the few examples where ge-
allocation of facilities over an entire planning horizon. The auretic programming has been used for a problem related to man-
thors introduced a multipart chromosome representation for thacturing optimization.
layout, where each part corresponded to a planning period. The
position of a gene corresponded to a fixed place in the layout, VII. OPTIMIZATION OF ASSEMBLY LINES
and the value of the gene denoted the facility that occupied tt&is
place for a particular period. The objective of the algorithm was
the minimization of layout rearrangements costs and materialg*ssembly lines are widespread in manufacturing plants. A
flow costs over the entire planning horizon. number of optimization problems are associated with assembly
2) Special Cases for the Machine Layout Probleffhe pa- lines, like the assembly sequence planning problem, the
pers that we have reviewed so far in this section introduc&gduencing of mixed-model assembly lines, and the assembly
methods that normally apply to the cell layout problem. The mi0e balancing problem. A variety of evolutionary computation
chine layout problem is a special type of FLP, and it is usualfjfethods have recently been proposed for the solution of
addressed individually since various assumptions that are maggembly line optimization problems.
for the FLP are not valid for this problem. Bazargsral.[193]
discussed some of these assumptions, such as the equal
areas and tha priori knowledge of facilities locations. How- The assembly sequence planning problem (ASSP) has
ever, elaborate continuous plane FLP methods like [175] canlbren tackled by Sebaaly and Fujimoto in a number of papers
applied easily to the machine layout problem. [202]-[205]. It is the problem of finding an optimal sequence
Manufacturing practice usually restricts the search for @f assembling a product that consists rofparts, given its
optimal intracell layout to a small number of fixed configudesign characteristics. An assembly sequence is feasible if it
rations, like the single-row layout, the multirow layout, thgloes not violate the assembly rules and constraints, which are
semicircled layout, and the loop layout. Braglia and Sterniedefined by the designer. The authors proposed an evolutionary
[196] utilized an EA in order to find the machine layou@pproach for the solution of this problem, where an individual
in a prefixed single-row structure. The objective of the aFhromosome is a randomly constructed sequence of parts.
gorithm was the minimization of the distance traveled bfn efficient mapping procedure transformed any random
the material-handling device of the cell. The solution wagssembly sequence into a feasible one. Gropetti and Muscia
represented by a permutation of all machines in the rof206] analyzed the assembly planning procedure, and used an
This method performed well in large problem instances A in order to obtain a clear contact relational graph.
comparison with heuristic approaches. In a similar approach, L ,
Braglia and Zavonella [197] adopted the minimization of jobS- Seduencing in Mixed-Model Assembly Lines
backtracking as the objective of the algorithm. Braglia [198] It is often the case that several products with similar charac-
also presented an interesting hybrid method, where an Egistics (models) are assembled in a single line (mixed-model
was employed for the optimization of simulated annealingssembly lines). The sequencing of models in mixed-model as-
parameters. Chengt al. [199] addressed the loop machinesembly lines is an important task, especially if we wish to apply
layout problem using two different objectives: the minimizathe JIT principle in the production line. There are a number of
tion of the total number of reloads for all products (minsurobjectives associated with this task [207], like the minimiza-
problem), and the minimization of the maximum numbetion of the line’s length, the minimization of total utility work,
of reloads for all products (minmax problem). The layouand the minimization of the variability of parts’ consumption
was considered to be unidirectional, and there was a sing¥pc). This latter objective is critical in JIT systems. Letal.
loading—unloading station. The solution was once again rgjg08] addressed the problem of sequencing a mixed-model as-
resented by a permutation, and the PMX operator was ussinbly line with the objective of minimizing vpc in a JIT pro-
for crossover purposes. Gest al. [200] introduced a hy- duction system. An EA was used for the solution of the problem,
brid fuzzy—GA approach for the solution of complex multiwith each chromosome representing a sequence of models to be
row machine layout problems. The objective of the algorithmssembled. The sequence was cyclic, and the number of indi-
was the minimization of travel cost between the machinegdual models in each sequence was fixed. This method per-
and the solution was represented by a multipart chromosofoemed better on some test problems than the traditional Toyota
that contained information about the total number of rowgoal-chasing algorithm (GCA) [209], which is often used in JIT
the permutation of machines in each row, and the clegroduction systems. Kiret al. [207] adopted the same repre-
ances between the machines. Fuzzy sets were used for gbstation for the sequencing of a mixed model assembly line,

Introduction

—sj?’ZeEhe Assembly Sequence Planning Problem



104 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 4, NO. 2, JULY 2000

where the objective was the minimization of the total length of VIII. D ESIGN OPTIMIZATION PROBLEMS
the line.

A. Introduction

D. The Assembly Line Balancing Problem Design is a complicated and time-consuming phase in the

Another well-known optimization problem of assembly lineg€velopment of a product. Although design is most often not
is the assembly line balancing problem. Givemvorkstations directly addressed as a manufacturing optimization problem,
andm parts to be assembled, the assignment of parts to wotkconstitutes one of its most critical aspects since it irretriev-
stations should be defined according to certain optimization cfibly constrains the manufacturing process. Every design must
teria. Two versions of the problem are usually considered. TRE faultiess and properly optimized; otherwise, the result will
first version aims to minimize the total number of workstation@e huge redesign costs. Enormous effort has been devoted to the
in the plant given a fixed cycle time, while the second versidigvelopment of efficient CAD systems in order to simplify and
aims to minimize the cycle time, given a fixed number of worksPeed up the design process. Evolutionary computation methods
stations. Secondary objectives like the minimization of balanféve been applied successfully to complex design optimization
delay and the minimization of probability of line stoppage argroblems. In the following paragraphs, we will review some of
also considered. Sures al. [210] presented an excellent lit-the recent papers in this field.
erature review on the assembly line balancing problem, andTraditionally, the design process starts with the creation of
proposed an evolutionary algorithm for the solution of a sin@ Mmathematical model for the product that is to be manufac-
ilar problem, where the objective was mainly the minimizared. The model is then implemented as a computer program,
tion of the smoothness index of balance delay. The soluti@owing the designer to explore the effects of altering the values
was represented by a list of sets with length equal to the tofd|the parameters. This optimization process is usually imple-
number of workstations. Each set contained one or more jofnted on a “trial-and-error” basis. The incorporation of EA's
Al of the initial solutions were feasible, and special operatof8 the heart of the design process enhances and automates the
ensured the feasibility of solutions throughout the evolutionaBfocedure of parameter optimization [217].
procedure. The authors also presented an alternative version of
the algorithm, wherg a number of infeasiblc_a solutions were - pyrameter Optimization Problemss
lowed in the population. This particular version worked well on
large problem instances. Rubinovitz and Levitin’s [211] repre- Cao and Wu [218] adopted an evolutionary programming [7]
sentation was a permutation of all parts, divided into a numbspproach for the solution of a mechanical design optimization
of sections equal to the total number of workstations. Initiallproblem. A number of design variables needed to be optimized,
random sequences were constructed, and then special meghsject to certain constraints. Continuous, binary, integer, and
nisms were employed to reorder the sequences according todherete variables were included in the mathematical model, a
precedence constraints and to divide them into an appropriatghdition that made the optimization procedure even harder.
number of sections. Tsujimuet al. [212] presented an inter- The solution was represented by a string of design variables
esting EA-fuzzy logic method for solving the assembly lin@itialized within the constraints, while a special mutation
balancing problem, aiming to minimize the balance delay. Tlgocedure was used for each type of variable. Two design
solution representation was a classic permutation that congileblems were used to illustrate the method: the design of a
ered all precedence constraints. The processing time of eachgelar train, and the design of a pressure vessel. The algorithm
was not deterministic, but was defined by a fuzzy set. The allperformed equally well or better in comparison with other
cation of jobs to workstations was accomplished using the Egptimization methods like the branch and bound algorithm
sequence, the fuzzy sets, and a standard predefined maxinae simulated annealing. Rashesal. [219] proposed an EA
completion time. Starting with the first job of the sequence, tifer the solution of a similar parameter optimization problem
fuzzy sets of processing times were added, until the upper limihich involved only continuous variables. The solution was a
of the sum of fuzzy sets became larger than the predefined maifing of all parameters that needed to be optimized, initialized
imum completion time. The set of jobs that comprised the suwithin their constraints. Feasibility problems were accommo-
was assigned to the first workstation, and the procedure started using a penalty function. The evolutionary process was
again from the next job after this set in the sequence. Specaiahanced with the introduction of two crossover operators,
mechanisms and operators ensured the feasibility of solutionsamely, line crossover and guided crossover, which produced
an offspring on the line connecting the parent chromosomes,
considering the solutions’ search space. The algorithm was
tested on two complex design optimization problems: the

A number of secondary optimization problems in assembtiesign of a supersonic transport aircraft, and the design of a
lines have also been the subject of evolutionary computatisnpersonic missile inlet. The method performed much better on
research. Among them are the optimization of buffer sizes bixese problems than a classic binary-coded GA and a sequential
tween workstations in an assembly system [213], the schedulipgadratic programming method. Coello and Christiansen
of multilevel assemblies [214], and the scheduling of flexible af220] gave a nice extension to the use of EA's for parameter
sembly systems [215]. Finally, Watanadteal. [216] have used optimization by incorporating the weighted-sum multiobjective
an EA in order to solve the generalized line balancing problemptimization method in the heart of the evolutionary process.

E. Secondary Assembly Line Optimization Problems
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It was a realistic extension since conflicting objectives alwaypite the fact that the problem has been well researched by con-
exist during the design phase of a product. The method wasl engineers, the traditional Ziegler and Nichols tuning rules
tested on the design of ahbeam and a machine tool spindle[225] are still being used in practice. Evolutionary computa-

considering multiple conflicting objectives. tion methods provide the means of efficient tuning since a solu-
tion representation based on PID parameters can be constructed
C. Advanced Design Optimization Problems easily. This potential has been recognized by a considerable

qgmber of researchers who have used evolutionary algorithms to

Itis then th_e case that des_lgn opt|_m|zat|on problems are qu{une PID controllers. Jones and Oliveira [226] built an EA-based
complicated, involving a series of highly related tasks. In the%ﬁestem that initially identified the process model, and then used

circumstances, the problem is normally divided into a series of. .
. ; is model to tune the parameters of the controller off line. The
subproblems, each comprised of a certain number of tasks. Thé i .
same authors [227] proposed an evolutionary technique for the

optimal decompqsﬂmn of rr.1ult|d|SC|pI|nar.y thlmlzatlon prOb_design of robust SISO Smith predictor PID controllers. Jones
lems and the optimal ordering of tasks within each subproblem -
were considered by Altust al.[221] using an evolutionary al- and Port_er [228] tun_ed the pargmeters of a d|g|tal PID con-
gorithm. The objective was the minimization of the total IengthrOIler using an evolutionary algorithm. A coevolutionary model

. . as proposed by Jonesal.[229] for the design of robust PID
of feedback lines between the tasks. The representation of :{:Y]%trollers. Krohling [230] presented an EA which optimized

solution was a permutation of all tasks involved, and a bre% ID controller for disturbance rejection. Viacl | [231]

character was used to divide the string, and thus the prObIemtended the concept of genetic tuning to Pl controllers for mul-

into a series of subproblems. The system was called AGEN . .

; : ” . . Ivariable processes. The parameters of all controllers were si-
(a genetic algorithm for decomposition analysis), and it per- . . . :
formed well on some decomposition problems taken from tmultaneously coded in one solution representation. Salami and
literature IE?ain [232], [233] introduced a hardware-implemented GA (GA

Thornton and Johnson [222] developed an integrated Sd?{_ocessor) which tuned the parameter of a PID controller. The

ware tool called CADET (computer-aided design embodimeﬁ?etzgivifomﬂﬁsé née: err:)cczusrsagrl;g results taken from experi-
tool) that supported the embodiment phase of the design b P '

. . ; Qi and Chin [234] used an evolutionary algorithm to opti-

process, i.e., the creation of a geometrical model of the product :
. . ; . mally tune the parameters of a fuzzy logic controller (FLC)
according to the designer’s specifications. CADET took these . . . \
which had been designed for high-order processes. Kim and

specifications as input, and found a geometrical model trﬁegler [235] addressed the same problem using hierarchical

satisfied th? cons_tramt.s. EA's were proposed as an Optlondpstributed GA's (HDGA's). HDGA's are multilevel hierarchical
the constraint satisfaction part of the system.

. systems composed of local hybrid EA's—expert system struc-
Carlson [223] used a GA to optimally select components f?lﬁ/res. These structures are organized in levels, and in each level,

catalog design processes. In catalog design, a system Is Ct%re]'problem is solved on a different degree of abstraction. The
structed from off-the-shelf components. The EA solution was a . . i
advantage of the system was its ability to dynamically change

string comprised of all types of components used in the desi%n

. S structure in order to explore promising regions of the search
The value of a gene determined the component selected 0“38§ce. Tamet al. [236] employed a binary-coded GA for the

all possible components available for this type. A penalty fung* . . : . :
. o . o %ieagn of an optimal fuzzy logic controller which was used in
tion handled the violation of constraints. The applicability O \nina operations
the algorithm was demonstrated using the design of a hydrauHc gop '
system and the design of a thermal fluid system as case studies.

Finally, lannuzzi and Sandgren [224] addressed the probléin Process Model Identification
of optimally allocating tolerances on product dimensions in . o . )
order to minimize the total production costs. The authors 'N€ identification of process models is essential for the

tackled the problem using an EA-based method, which showgfimal control of manufacturing systems. Polheim and Maren-
satisfactory results on a series of test problems. back [237] used genetic programming in order to identify the
model of a manufacturing process. Common control engi-

neering tools, like transfer function blocks, were used for the
IX. MANUFACTURING-RELATED OPTIMIZATION PROBLEMS  ¢raation of trees (programs). In this way, the algorithm provided
A. Introduction structured process models, giving the control engineer a useful

In the previous sections, we reviewed recent papers in tw&ght into a system’s internal configuration. Test problems

field of evolutionary computation for some standard manufa}:/‘:’“dated the performance of the method, and especially its

turing optimization problems. However, these are not the on‘rflb”'ty to g_enerahze. McCa}gt aI:[_23$] also employ_ed genetic
ogramming for system identification, constructing the trees

optimization problems associated with manufacturing. The p With common mathematical functions. There are also a number
pose of this section is toillustrate some recent evolutionary COME asearchers who addressed the préblem of system identifica-
putational developments in various manufacturing areas. tion using EA's. Among them, Reeves al. [239] proposed an
interesting method where the solution was coded in terms of the
B. PID and Fuzzy Controllers radii and angles of poles and zeros of the transfer function. The
The efficient autotuning of PID controllers is a significant opvalues of these variables were constrained within the stability

timization problem in the field of process manufacturing. Deregions; thus, the final solution was guaranteed to be stable.
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D. Machine Failure and Maintenance using the variables of the model. Disnetyal. [248] addressed

The failure of machines in the plant is inevitable. Shop-flodf'® Problem of controlling a production and inventory system.
engineers aim to diagnose the failure of a machine as quickly H&nsfer functions were used for the modeling of the problem,
possible. They normally use a number of symptom parametcﬂPéStrated in the form of block diagrams. The solution of

that are sensitive to changes of specific signals from the plafite Problem was represented by the variables of the transfer

Chenet al. [240] described some of these parameters, and pfglction, and a fitness measure was designed based on stock

posed an evolutionary approach for the determination of an dgduction, production robustness, and inventory recovery.

timal sequence of symptom parameters. Their method resem?* difficult decision that the marketing team often has to face

bled genetic programming, in terms of the tree structures tHihe location of inventory centers for the accommodation of
were used as individual chromosomes. Petrovic and Ivano@gPartment stores, and the allocation of an inventory center to

[241] presented a hybrid method for machine-noise diagnos‘??,Ch of these stores. This location—allocation problem was for-
lated as a nonlinear mixed-integer programming problem,

based on neural networks, expert systems, and EA's. Guzni3h

and Kramer [242] developed a hybrid Bayesian network—EA1d was solved by Goref al. [249] using an evolutionary ap-

system that performed on-line monitoring and failure diagnos‘?éoaCh for the_location task and a Lagrangian relaxation method
based on data taken from the plant. for the allocation task: L . -
Maintenance scheduling is another important operation in the”*99regate production planning is a high-level decision-
shop floor since the disruption of the production process mUBgking procedure that takes product capacities and forecast
be as small as possible, but at the same time, the machines rig&tands as input, and produces aggregate production plans.
work without failures for the longest time possible. Kehal, >tockton and Quinn [250] addressed this problem using a

[243] proposed an interesting hybrid of EA's and simulated afiinary-coded GA. The algorithm determined the amount of

nealing for optimal maintenance scheduling. The acceptar&soUrces needed each month in order to meet the demand.

probability of simulated annealing was used for the survival df'€ resources were expressed in the form of overtime, sub-
the less fit offspring in the population. contracts, and stock. Wang and Fang [251] formulated the

same problem using a fuzzy linear programming model. They
E. Quality Control employeq Zimmgrman’s toIerange approach to tran§form the
problem into a linear programming model. The variables of
Quality control is an important aspect of modern manufaghe model formed the chromosome of an evolutionary algo-
turing. The optimal allocation of inspection stations in the plapnm that was used for the solution of the problem. Feng
ensures that products are manufactured according to the quaéi’gy[zsz] addressed the problem of joint marketing/produc-
criteria set by the management team. Viswanadagah. [244]  tion decision making aiming to maximize the net profit of a
addressed this problem in a multistage manufacturing Syst&dBmpany. The decision problem consisted of the promotion
and employed an evolutionary algorithm to optimally locate irbroblem for the marketing department and the production
spection stations. The solution was binary coded, with each 9§§iBblem for the manufacturing department. Each problem
representing a manufacturing stage. The presence of a statiogg formulated mathematically, and a respective number of
a particular stage was denoted by a positive value. Patro ghgls \were employed to find optimal solutions. The deci-
Kolarik [245] designed a system that performed statistical prgjg, variables of the mathematical models were used for
cessing control using neural networks and evolutionary compie representation of solutions. Garavedli al. [253] con-
tation. The neural network identified the process model, and thgiered the production planning problem of a multinational
evolutionary algorithm adjusted the control parameters in ord@(gmpany that owns manufacturing plants all over the world.
to obtain the desired quality performance. éal. [246] pre- parameters like local market demands and independent ca-
sented an EA-based system that optimized the motion of a ¢fycities must be taken into account in the formulation of the
ordinate-measuring machine used in inspection systems.Ap&romem_ An EA defined which plants would be activated
mutation representation was employed for the solution of tigg, production and the timing of activation.
problem, with each gene corresponding to a testing point thatrpe dynamic lot-sizing problem in a multistage, multi-item
the measuring machine must visit. The algorithm aimed to ﬁ’]ﬁoduction system was described by Jinxing [254]. He proposed
the optimal sequence of visiting points that minimized the totg|, evolutionary programming approach with binary representa-
length of the inspection path. tion for the solution of the problem. The objective was the min-
imization of setup, production, and inventory costs.
F. Advanced Manufacturing Optimization Problems

This section discusses some advanced manufacturing offti- Various Applications

mization problems that have been the subject of evolutionaryXia and Macchietto [255] tackled the problem of optimal de-
computation research. Mak and Wong [247] considered tBgn and synthesis of chemical batch plants using a stochastic
problem of designing an optimal integrated production—inveonptimizer called EASY, which was a combination of EA's and
tory—distribution system, aiming to minimize the overall costsimulated annealing. The batch-scheduling problem was also
including inventory holding costs, delivery costs, manufa@ddressed by Morad and Zalzala [173] with the help of an evo-
turing costs, and shortage costs. An evolutionary algorithm wiagionary algorithm.

employed for the solution of the problem. Integer programming All of the equipment in the plant is interconnected to various
formulation was adopted, and the solution was representadds of pipes. The plant pipe-route optimization problem aims
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to find the minimum length of pipe interconnections in the plargutation methods in their plants. The gap between academic re-
that satisfies all of the requirements. Kehal.[256] employed search and manufacturing practice is not a problem restricted
a GA with Steiner points representation for the solution of the the field of evolutionary computation. However, in our case,
problem. Their method worked well on a series of test problenthere are a number of additional reasons that make the approach

In a pull (JIT) production system, the demand must alwaysore difficult, and published results indicate that this is usually
be satisfied without the help of excessive stocks. The tothle case.

number of kanbans in the plant and the corresponding pro- « The terminology of evolutionary computation is vague
duction trigger values should be optimally defined in order to  for the manufacturing engineer. Despite the fact that the
achieve this ObjeCtive. Bowdeat al. [257] addressed this driving IOgiC of evo|utionary a|gorithms is amazing|y
problem using an evolutionary algorithm seeded with the  gimple and efficient, the terminology inherited from
optimal solution of the Toyota equation [191]. Rao and Gu  genetics predisposes manufacturing engineers to think
[258] developed a new entropic measure which determined {he opposite.

the optimal timing for reconfiguration in a manufacturing . Eyolutionary computation is a relatively new technique,
plant, and presented a genetic framework for the design of eyolving to deal with more complex real-life problems.
manufacturing systems. Kuboéd al. [259] described an ap- There are no universally accepted methods for the de
plication of their virus evolutionary GA (VEGA) approach o termination of technical parameters like population size,
the self-organization of a cellular manufacturing system. The probability of applying operators, etc. There is also no
same problem was tackled by Kawauetial. [260] with the guarantee that an algorithm will converge to an optimal or
help of a conventional evolutionary algorithm. Zhao al. near-optimal solution, except under specific problem con-
[261] addressed the problem of robot selection and work-  ditions.

station assignment in a computer-integrated manufacturing . There is no standard evolutionary computation toolkit that

(CIM) system. A bin-packing formulation of the problem  can pe used easily by manufacturing people who are not
was proposed, and an EA was employed for the solution  famijliar with evolutionary concepts.

of the problem. A diploid chromosome that acpommodat n the other hand, evolutionary computation methods offer so-
both parts of the problem represented the solution. Recen}

Mcllhaga [262] designed a framework for solving generi ons that combine computational efficiency and good perfor-

: . . fhance. This significant feature will certainly continue to attract
scheduling problems, i.e., scheduling problems of a NONSRES iterest of engineers

cific form. This framework was based on DGAs, and was . . .
able to solve problems of this kind more efficiently than The robustness of evolutionary algorithms is greatly en

random search and dispatching rules. The parameters of hﬁ’;\nced when they are hybridized with other optimization
1d- disp Ing rules. P ] &thods like local search techniques, simulated annealing, tabu
problem were defined by the user through a scheduling de

fintion lan SDL search, neural networks, and fuzzy systems. The number of
scription language ( ): %apers introducing hybrid systems is growing, indicating that

Finally, evolutionary computation applications have beenre- = " R
ported for the problems of vehicle distribution scheduling [263], ere is a trend toward this direction,

warehouse scheduling [264], sequencing optimization in auto_Evolutionary computation techniques are useful in a series of
motive manufacturin g:ndustr,ies ?265] ogtirT?aI control of s inr_nanufacturing problems, and it is the authors' hope that more
9 »Op PNresearch in this area will lead to an increased implementation of

ning processes [266], design of flexible electronic assembly sys- " . ! S
tems [267], optimization of textile processes [268], and opzéfgaI life manufacturing optimization systems.
mization of area loss in flat glass cutting [269].
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