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Abstract—The use of intelligent techniques in the manufac-
turing field has been growing the last decades due to the fact that
most manufacturing optimization problems are combinatorial
and NP hard. This paper examines recent developments in the
field of evolutionary computation for manufacturing optimiza-
tion. Significant papers in various areas are highlighted, and
comparisons of results are given wherever data are available. A
wide range of problems is covered, from job shop and flow shop
scheduling, to process planning and assembly line balancing.

Index Terms—Assembly lines, cellular manufacturing, design,
evolutionary computation, genetic algorithms, manufacturing op-
timization, process planning, scheduling.

I. INTRODUCTION

SINCE the 1950’s, some authors have been using concepts
based on Darwin’s evolution theory for the solution of op-

timization problems [1]–[3]. Numerous algorithms based on the
same concepts have been developed over the last 30 years. They
are usually described by the term “evolutionary computation
methods.” The most notable members of this group are simple
genetic algorithms (GA’s) [4], [5], evolution strategies [6], evo-
lutionary programming [7], classifier systems [8], and genetic
programming [9]. Bäcket al. [10] give an excellent review of
evolutionary computation methods, and highlight some recent
developments in the field. For the reader not familiar with evo-
lutionary computation concepts, additional information can be
found in [11] and [12].

A large number of combinatorial problems are associated
with manufacturing optimization. Most of them are NP com-
plete, i.e., there is no polynomial-time algorithm that can pos-
sibly solve them, unless it is proved that NP [13]. Heuristic
methods are normally employed for the solution of these prob-
lems. A growing number of researchers have adopted the use of
meta-heuristic techniques (“smart heuristics”) for large combi-
natorial problems. Evolutionary computation methods are meta
heuristics that are able to search large regions of the solution’s
space without being trapped in local optima. Some other well-
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known meta heuristics are simulated annealing (SA) [14] and
tabu search [15]–[17].

The aim of this paper is to illustrate recent developments in
the field of evolutionary computation for manufacturing opti-
mization. A wide range of optimization problems is considered,
from the classic job-shop and flow-shop scheduling problems,
to assembly line balancing and aggregate production planning.
We focus mainly on recent publications, but there are pointers
to significant earlier approaches. In this way, the reader who is
interested in a particular problem can use this paper as a starting
point. The term “evolutionary algorithms” (EA’s) is used inter-
changeably in this paper to describe different evolutionary com-
putation methods.

The rest of the paper is organized as follows. Section II ex-
amines recent evolutionary algorithms for the job-shop sched-
uling problem. The same procedure is followed in Section III
for the flow-shop scheduling problem, in Section IV for the dy-
namic scheduling problem, in Section V for the process plan-
ning problem, in Section VI for cellular manufacturing opti-
mization problems, in Section VII for assembly optimization
problems, and in Section VIII for design optimization problems.
Section IX overviews some recent developments in other man-
ufacturing optimization areas, and Section X draws the conclu-
sions of this paper.

II. THE JOB-SHOP SCHEDULING PROBLEM

A. Introduction and Historical Development

Considerable work in the field of evolutionary computation
has been devoted to the solution of the job-shop scheduling
problem (JSSP). Davis [18] made the first attempt to solve the
problem more than ten years ago using the concept of prefer-
ence lists, which will be explained later in this section. Yamada
and Nakano [20] later proposed a more natural representation
for the solution of the problem using the completion times of
operations. Since then, the number of relevant publications has
been growing rapidly, and so has the number of different ap-
proaches that have been proposed for solving the problem.

B. Formulation of the Problem

The job-shop scheduling problem consists of orderingjobs
to be processed in machines. Each job involves a number of
different machining operations. The following conditions hold
for the classic formulation of the JSSP:

• each machine can process only one job at a time
• the sequence of operations for each job is predefined
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• two operations of the same job cannot be processed at the
same time

• preemption is not allowed (an operation cannot be with-
drawn from a machine unless it is completed)

• processing times are known in advance
• transportation time between machines is zero.

The quality criterion most often used for the JSSP is the mini-
mization of makespan . Makespan is defined as the com-
pletion time of the final job to leave the system [38]. The JSSP
is also known as the [21] problem. Bierwirthet
al. [22] describe it as a “representative of constrained combina-
torial problems.” Gareyet al. [23] have illustrated that it is NP
hard in the strong sense (proof by transformation of the 3-PAR-
TITION problem to the associated JSSP decision problem). In
this section, we consider the static version of the problem, in
which unexpected events are not taken in account. The dynamic
version of the JSSP will be discussed in a following section. In
the special case of , the problem is described as the “gen-
eralized assignment problem.” An EA-based heuristic for the
solution of this problem has been proposed by Chu and Beasley
[24].

1) Variations from the Basic Form:Cao et al. [26] argue
that the classic formulation of the JSSP is unrealistic since it
does not take into account a number of elements which are
important in real-life scheduling, like setup times, due dates,
and machine off-line times. Academic research has been crit-
icized for considering scheduling problems that rarely appear
in practice [27], [28]. As a result, many researchers in the field
of evolutionary computation are now using a variety of criteria
for the evaluation of schedules. Minimization of makespan is
still used as an objective in many cases [22], [29]–[31], but
the general belief is that the objective of manufacturing opti-
mization should be the minimization of production cost. Ad-
dressing the overdominance of makespan-oriented work in the
field, Fanget al. [32] employed seven quality criteria for the
evaluation of good schedules: maximum tardiness, average tar-
diness, weighted flow time, weighted lateness, weighted tardi-
ness, weighted number of tardy jobs, and weighted earliness
plus weighted tardiness. The last criterion is in accordance with
the just-in-time (JIT) principle of having a product made exactly
when it is required. This minimizes storage costs (earliness) and
lateness fines (tardiness). Similar objectives are used in [33],
[19], [35]–[37]. Due dates and ready times of the products are
prespecified in these cases. An excellent overview of scheduling
objectives can be found in [21] and [38].

C. Encoding

The classic binary solution representation of the simple ge-
netic algorithm has rarely been used for the JSSP. Purpose-based
representations can be much more effective. In the following
paragraphs, we will attempt a classification of the most suc-
cessful representations.

1) Direct Representations:Perhaps the most natural rep-
resentation for the solution of the problem would be a data
structure that can be used as a schedule itself. No decoding is
needed to obtain the schedule; thus, this type of representation
is called direct. (Note that we use a different classification

method from Chenget al. [43].) A data structure comprising a
“direct” representation according to our classification needs no
transformation at all. Burns [39] was perhaps the first researcher
to employ an EA with direct representation for the solution of
a production scheduling problem. His representation explicitly
defined the process plan for each job, machine assignment for
each operation, and individual start–end times. A traditional
scheduling algorithm initialized the population with feasible
solutions, and purpose-based operators ensured that solutions
remained valid throughout the evolutionary procedure (a
discussion on variation operators will follow in the section on
flow-shop scheduling). An alternative approach is the use of an

-partitioned permutation (where is the total number of ma-
chines), with each partition representing the complete schedule
of an independent machine. This representation is especially
popular in sequencing problems, where the solution is not par-
titioned, so all well-known traveling salesman problem (TSP)
operators can be easily applied. Dagli and Sittisathancai [37],
[40] employed this type of direct representation for the solution
of the JSSP. They overcame feasibility problems by using
legal schedules to initialize the population and an order-based
crossover operator to preserve the precedence constraints of the
problem. They also used a back-propagation neural network for
the evaluation of schedules. Aizpuru and Usunariz [41] adopted
the same representation for their hybrid scheduling algorithm,
which was based on evolutionary algorithms and tabu search.
A knowledge-based system was employed to generate efficient
scheduling strategies. The hybrid algorithm helped the system
to induce knowledge about the scheduling procedure. Giffler
and Thompson’s (GT) [42] algorithm generated initial actives
schedules, and efficient operators maintained the precedence
relations of the jobs.

2) Indirect Representations:
a) Job-Based Representations:The common type of

indirect representation does not explicitly state the operation
number, but instead, only the owing job is defined. The chro-
mosome

indicates that the first operation of the first job should be
scheduled first, followed by the first operation of the second
job, the second operation of the first job, etc. It is obvious
that a schedule builder is needed to transform this solution
into a feasible schedule (for discussions about schedule
builders, see [43]–[45]). Bierwirthet al. [22] employed this
method in their discussion of permutation representations for
combinatorial problems. Their experimentation with various
crossover operators led to the conclusion that the preservation
of the absolute order of jobs and their associated operations
was quite significant for the JSSP. They introduced a new
operator called PPX (precedence preservation operator) that
featured this useful characteristic. Fanget al. [32] highlighted
the superiority of a job-based GA over dispatching rules and
stochastic hill climbing on a variety of scheduling criteria. Shi
[46], [47] built an EA scheduler that efficiently decoded the
strings into active schedules, and utilized operators optimized
for speed.
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b) Dispatching Rule Representations:The use of dis-
patching rules for scheduling is a common manufacturing
practice [49]–[51]. Blackstoneet al. [50] give the following
definition: “A dispatching rule is used to select the next job
to be processed from a set of jobs awaiting service.” In the
case of static scheduling, this selection is based on various job
characteristics, such as processing time, due date, etc.

Herrmannet al. [48] proposed an efficient EA representa-
tion, which was based on dispatching rules. The solution was
encoded in the following form:

EDD SPT FIFO

where EDD is the earliest due date rule, SPT is the shortest
processing time rule, and FIFO is first in, first out rule.

Each element represented a machine, and the value of the el-
ement defined the dispatching rule that this machine used for
the scheduling of waiting operations. This type of representa-
tion did not suffer from feasibility problems, and the application
of operators was straightforward. Fujimotoet al. [52], [53] em-
ployed the same representation for the scheduling of a flexible
manufacturing system (FMS, a computer-controlled grouping
of semi-independent workstations, linked by automated mate-
rial-handling systems). Each element corresponded to a deci-
sion-making point in the plant, and the value of the element
specified the dispatching rule that would be used at this point.
Kumar and Srinivasan [36] used a circular string of dispatching
rules as a scheduling policy, whenever a part was requested for
processing.

Dorndorf and Pesch [30] proposed an alternative use of the
same representation for the JSSP, where each rule determined
the next job to be scheduled among the conflict set of jobs
created by Giffler and Thompson’s algorithm. However, this
method performed poorly in comparison with another algorithm
presented in the same paper based on the shifting bottleneck
heuristic, a well-known method for the solution of the JSSP. An
EA controlled the selection of nodes in the enumeration tree cre-
ated by the heuristic.

Finally, Fanget al. [25] employed the dispatching rules rep-
resentation for the solution of an open-shop scheduling problem
(the case where the sequence of operations is not predefined).

c) Preference-List Representations:A popular way of en-
coding a solution of the JSSP is the preference-list representa-
tion. Preference lists are not actual schedules, but a preferable
sequence of operations on each machine. Operations are sched-
uled according to this sequence unless they violate a prece-
dence constraint. In that case, the next operation in the pref-
erence list is scheduled. Croceet al. [33] used the concept of
preference lists for the encoding of solutions, together with a
look-ahead evaluation method which generated nondelay sched-
ules (see Baker [57] for a discussion on schedule types). Caoet
al. [26] addressed a complex JSSP problem with multiple objec-
tives utilizing a hierarchical evaluation (HE) model instead of a
look-ahead evaluation. Their framework was able to generate
feasible schedules and perform local optimization at the same
time, resulting in slightly better performance than Croce’s algo-
rithm. Kobayashiet al. [58] and Onoet al. [59] encoded the so-
lution in the same preference-list form. They additionally intro-

duced two purpose-based crossover operators: the subsequent
exchange crossover (SSX) and job-order based crossover (JOX),
respectively. JOX used the traditional Giefler and Thompson
(GT) algorithm for the decoding of solutions into active sched-
ules. The result was a much better performance, both in terms of
optimal and average values for Fisher and Thompson’s bench-
mark problems (see later paragraph). Park and Park [60], [61]
reported their preference list-based GA with the introduction
of a crossover operator, called the active schedule constructive
crossover (ASCX), which was based on the active schedule gen-
eration algorithm [57].

d) Alternative Representations:Several other representa-
tion schemes have been reported. Perhaps the most successful
was proposed by Kim and Lee [62], [63]. Their schedule rep-
resentation was basically a priority list of operation–machine
assignment pairs, which corresponded to a certain priority rule.
Schedules (and consequently, the corresponding priority rules)
were refined evolutionarily with the help of a genetic reinforce-
ment learning (GRL) procedure. While no computational times
were reported, this method showed the best overall performance
on Muth and Thompson’s benchmark problems in comparison
with every other evolutionary method included in this survey.

Yamada and Nakano [64] employed a disjunctive-graph rep-
resentation for the solution of the JSSP. Following the trend
of enhancing the evolutionary process with local search tech-
niques, they introduced a crossover operator called multistep
crossover (MSX), which was, in effect, a local search operator.
Cho et al. [65] presented a method called the total operation
order method (TOOM) where a solution was given in the form
of a job operation matrix, which defined the absolute order of all
operations to be processed. Liang and Mannion [66] proposed a
sparse matrix solution’s representation with purpose-based op-
erators to ensure the feasibility of solutions. A dynamic data
structure called the “hierarchical linked list” was utilized by
Niemeyer and Shiroma [54] in order to accommodate variable
lengths of jobs and operations in a real manufacturing environ-
ment. Kim and Kim [55] tackled the problem of infeasibility
by using a random-keys [56] representation for the solutions.
Finally, Gohtohet al. [68] applied a special EA with neutral
mutations [69] to some standard benchmark problems. An ex-
cellent analytical review of the representations that have been
used for the solution of the JSSP can be found in [43].

D. Test Problems and Case Studies

Evolutionary computation methods have not been adopted
in standard manufacturing practice. For this reason, in recent
years, academic research has attempted to consider real-life
scheduling problems. Standard benchmark problems do not
attract the attention of people in industry since practical sched-
uling problems are far more complex than the famous Fisher
and Thompson’s [70] MT06, MT10, MT20, and Lawrence’s
[71] benchmark problems that are still used in most research.
Table I gives a summary of results that have been published
recently for the three Fisher and Thompson problems. The best
and average (wherever available) results of each method are
presented. Table II summarizes the results published for some
of Lawrence’s benchmark problems.
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TABLE I
PUBLISHED RESULTS ONFISHER AND THOMPSON’SBENCHMARK PROBLEMS; OPTIMAL VALUES: FT 6� 6: 55, FT 10� 10: 930, FT 20� 5: 1165

TABLE II
PUBLISHED RESULTS ONLAWRENCE’S BENCHMARK PROBLEMS; ( ) DENOTESOPTIMAL VALUE

However, a considerable number of recently published pa-
pers address real-life scheduling cases. Herrmannet al. [48]
described the development of a global scheduling system for
a semiconductor test area. Niemeyer and Shiroma [54] used
EA’s for the scheduling of factories of a multinational com-
pany. Teranoet al. [35] combined EA’s and SA for a sched-
uling problem in plastic injection moulding. Gilkinsonet al.
[34] tackled the scheduling problem of a company that pro-
duces laminated paper and foil products. Hamadaet al. [72]
approached a complex scheduling problem in a steel-making
company using a hybrid system based on EA’s and expert sys-
tems. Shaw and Fleming [44] and Kumar and Srinivasan [36]
proposed evolutionary computation methods for the solution
of scheduling problems in companies that produce ready-chill
meals and defense products, respectively. Finally, Sakawaet al.
[73] considered the scheduling problem of a machining center
using an evolutionary algorithm.

III. The Flow-Shop Scheduling Problem

A. Introduction

The permutation flow-shop scheduling problem, or the job-
sequencing problem as it is often called, is another manufac-
turing optimization problem that attracts particular research in-
terest. It is relatively easy to apply evolutionary computation
methods to this problem since it can be formulated as a classic
TSP with path representation. This latter problem has been a

subject of research from the early days of evolutionary computa-
tion. As a result, the efficient operators that have been developed
for the TSP are directly applicable to the flow-shop scheduling
problem.

B. Problem Formulation

The permutation flow-shop scheduling problem involves or-
dering jobs to be processed in machines. The difference
between the job-shop and the flow-shop scheduling problem is
that, in the latter case, each job undergoes the same machining
sequence, while the sequence of operations is the same on each
machine. This means that the solution of the problem can be
represented as a permutation of all jobs to be processed:

where is the total number of jobs. The conditions that were
introduced for the JSSP hold for the flow-shop scheduling
problem as well. The minimization of makespan is usually
employed as the objective of the scheduling algorithm. The
problem is also known as the problem [21].
In the special case of , the problem is described as
the one-machine scheduling problem. Gareyet al. [23] have
shown that the problem is NP hard in the strong sense (proof by
transformation of the 3-PARTITION problem to the associated
flow-shop decision problem).



DIMOPOULOS AND ZALZALA: DEVELOPMENTS IN EC FOR MANUFACTURING OPTIMIZATION 97

1) Variations from the Basic Form:The minimization of
makespan is used as the main objective in a number of papers
reviewed in this section [75]–[79]. However, in recent years,
more complicated formulations of the problem have been con-
sidered, with various alternative optimization criteria included.
Murataet al. [80] used a multiobjective GA (MOGA) approach
for a flow-shop scheduling problem, aiming to simultaneously
minimize makespan, total tardiness, and total flow time of the
production. Minimization of total tardiness was also employed
as an optimization criterion by Lamet al. [81]. Sikora [82]
attempted to minimize makespan, holding costs (earliness),
and overtime (tardiness) in a flow line with limited buffer
capacity. Sannomiya and Iima [83], [84] also tried to minimize
makespan, at the same time keeping the processing rate of
each product as constant as possible. Their formulation of the
problem considered the existence of a carrier that transferred
products between the machines. Lee and Choi [85], [86] as-
signed earliness and tardiness penalty weights to schedules for
a one-machine scheduling problem. Leeet al. [87] presented an
interesting formulation of the problem, introducing the concept
of a flexible flow line with variable lot sizes. In this case, jobs
consisted of splitable lots, and an efficient EA was used to
simultaneously optimize the ordering of jobs and the lot sizing.
Gonzalezet al. [88] considered the “no-wait” version of the
job-sequencing problem, where once the processing of a job
has started in the first machine of the production line, there
must be no time delay between the consequent operations of the
job in the following machines. An EA enhanced with heuristic
methods was used for the solution of the problem. Herrman and
Lee [89] described a class-one machine scheduling problem,
where jobs belonged to different classes, with each class having
sequence-dependent setup times. The evolutionary algorithm
that they presented generated different input conditions for a
minimum waste heuristic algorithm which accomplished the
task of producing legal schedules. Karabati and Kouvelis [90]
addressed the flow-shop scheduling problem with controllable
processing times, i.e., the problem where the processing time
of a part is not fixed, but can assume a number of different
values. An EA was employed for the solution of large-scale
problems of this type. Finally, Ishibuchiet al. [91] proposed
a fuzzy mathematical formulation of the problem, using the
concept of fuzzy due dates. The optimization criteria were
the maximization of the minimum satisfaction grade and the
maximization of the total satisfaction grade.

C. Encoding

The permutation representation is used in most of the pa-
pers surveyed in this section. A permutation is a natural rep-
resentation for the solution of the problem since there are many
well-tested operators to ensure the feasibility of solutions and to
enhance the evolutionary process.

There are, however, some exceptions to this rule. The most
notable is that of Lamet al. [81], who introduced a pi-
geon-hole coding scheme. In this representation, the value
of each gene corresponded to the index of the job selected
for scheduling, out of the list of unscheduled jobs. Each
time a job was scheduled, the list of unscheduled jobs was
reindexed, and the value of the next gene defined the job

selected out of the new set. Their representation allowed the
use of traditional crossover and mutation operators without
producing infeasible solutions. Some slight modifications in
the encoding of solutions were also present in [82] and [87],
in order to accommodate the simultaneous lot sizing that
was attempted by these algorithms. Lee and Choi [85], [86]
used parallel genetic algorithms (PGA’s) with binary rep-
resentation for one machine scheduling problems. Finally,
Kebbe et al. [92] adopted the vibrational-potential method
(VPM) for the solution of sequencing problems. VPM is an
evolutionary computation method based on the concept of
information propagation in nature, which employs different
representation schemes.

D. Operators

1) Crossover Operator:There is a long-running debate
about the suitability of particular crossover operators for
sequencing problems. Michalewicz [11] argued that the
flow-shop scheduling problem has certain characteristics
that distinguish it from the TSP; thus, the suitability of
a particular operator for the TSP is not necessarily valid
for all sequencing problems. Since most of the crossover
operators have been developed for the TSP, it is easy to
understand that the selection of a crossover operator for
flow-shop scheduling is not straightforward.

The preservations of order, position, and adjacency of
genes are the main characteristics of an operator for se-
quencing problems. One of the earliest crossover operators
is order crossover (OX) [93]. OX preserves the relative order
of jobs from the parents. Katohet al. [94] used OX for
the solution of a one-machine scheduling problem with un-
certain processing times. Davis also introduced the uniform
order-based crossover operator [95], which was adopted by
Drake and Choudry [78] and by Lee and Choi [85] in
their attempts to solve job-sequencing problems. Uniform
order-based crossover preserves the absolute position and
relative order of jobs from the parents. Researchers have
proposed many variations of OX for the flow-shop sched-
uling problem, like the one- and two-point crossover opera-
tors introduced by Murataet al. [77], [96]. Sannomiya and
Iima [83], [84] and Ficheraet al. [97] proposed versions
of OX. Another well-known TSP operator is the partially
mapped crossover operator (PMX) [98], which preserves el-
ements of the absolute order and relative position of jobs
from the parent chromosomes. Chenet al. [76], [99] used
PMX to solve a continuous flow-shop scheduling problem.
An interesting element of their approach is that it employed
three heuristics (job insertion method (JIB) [100], Camp-
bell, Dudec, and Smith’s (CDS) heuristic, and Dannenbring’s
heuristic) for the initialization of the population. Shridhar and
Rajendran [101], [102] also used the PMX operator together
with their own DELTA operator (which determines the se-
lection policy of the algorithm) in order to obtain optimal
schedules for a flow-line-based manufacturing cell. The same
operator was present in the algorithm proposed by Braglia
and Gentili [79], who enhanced the evolutionary process by
using a neighborhood search algorithm for fine local tuning.
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Ross and Tuson [103] directed the search of various sto-
chastic optimizers using an idle time heuristic, i.e., a heuristic
that considered the time a job is waiting on a machine be-
fore its processing. An EA with a modified PMX operator
was employed as a representative of evolutionary computa-
tion methods. However, directed search did not seem to have
any significant effect on the performance of the algorithm.

An increasing number of researchers adopt the edge-recom-
bination operator [104] and its enhanced version [105]. It was
originally deigned for the TSP, and its main characteristic is that
it preserves adjacency information from the parents. It has re-
cently been used by Sikora [82], Leeet al. [87], and Gonzalez
et al. [88] in job-sequencing problems.

Asveren and Molitor [106] proposed two new operators for
sequencing problems, namely, the neighborhood relationship
operator (NRX) and the meta-ordering operator (MOX). NRX
is, in fact, a neighborhood search algorithm, as the MSFX op-
erator proposed by Yamada and Reeves [107]. MSFX has also
been used for the solution of the JSSP, as we saw in the previous
section. Yaguira and Ibaraki [108] designed a hybrid system
based on EA’s and dynamic programming (DP) for the solu-
tion of one-machine scheduling problems. DP is employed in
the crossover phase of the algorithm, leading to an efficient and
fast optimization method.

The diversity of the operators used in all previous research pa-
pers is a result of the uncertainty that exists about the superiority
of a particular operator. The use of independent test problems by
each researcher makes the comparison very difficult, as we will
discuss in the next paragraph. Murataet al.[77], [96] compared
the performance of seven crossover operators, and their results
highlighted the superiority of two-point crossover operator. On
the other hand Leeet al.[87] compared the edge-recombination,
PMX, CX (cycle crossover) [109], and OX operators, and con-
cluded that the edge-recombination operator produces the best
quality solutions.

2) Mutation Operator: The mutation operator is often
given little importance in research papers; however, its
contribution to the best possible exploration of the so-
lutions’ search space is important for the evolutionary
process. The most well-known mutation operators for
sequencing problems are the “swap” operator, which simply
exchanges the position of two randomly selected genes in
the sequence, and the “shift” operator, which shifts the
position of a gene some places to the left or right. Murata
and Ishibuchi [96] investigated the performance of five
mutation operators on sequencing problems, and the best
results were given by the “shift” operator. Their research
also proved that the combined effect of the best crossover
and mutation operators is not necessarily positive. Their
experimentation showed that the best performance is given
by the combined effect of two midperformance operators.
This conclusion confirms the difficulty of selecting operators
for job-sequencing problems.

3) EA-Parameter Specification:The selection of EA param-
eters (population size, probability of crossover, probability of
mutation, etc.) plays a vital role in the performance of the algo-
rithm. Chenet al.[99] proposed the introduction of a meta-level
EA [110] which optimally controlled the values of parameters,

while the evolutionary process was in progress. Pakath and Za-
veri [111] also presented an algorithm for the on-line specifica-
tion of parameters in a GA scheduler.

E. Test Problems and Case Studies

It is extremely difficult to compare the performance of dif-
ferent evolutionary algorithms for flow-shop scheduling since
most researchers use their own instances of test problems, i.e.,
problems where the processing times and due dates of the jobs
are selected randomly out of a uniform distribution. Since these
instances are not published in detail, they are rarely used by
other researchers. A comparison of results taken from this type
of problems would not be valid.

Most of the papers referenced in this section use their own
problem instances or test problems not widely available. The
only exceptions are Reeves [75], Yamada and Reeves [107], and
Ross and Tuson [103], who presented results on standard bench-
mark problems taken from Tailard [112]. Leeet al. [87] and
Sikora [82] considered the scheduling of a manufacturing plant
producing printed circuit boards (PCB’s) as a case study.

IV. THE DYNAMIC SCHEDULING PROBLEM AND COMPARISONS

BETWEEN DIFFERENTSCHEDULING ALGORITHMS

A. Dynamic Scheduling

The cases that we have considered so far in job-shop and
flow-shop scheduling addressed static scheduling problems, i.e.,
problems where the dynamic nature of the scheduling decision
is not examined. However, in practical scheduling, a scheduler
often has to react to unexpected events. The main uncertainties
encountered in a real manufacturing system are the following:

• machine breakdowns including uncertain repair times;
• increased priority of jobs;
• change in due dates;
• order cancellations.

Whenever an unexpected event happens in a manufacturing
plant, a scheduling decision must be made in real time about
the possible reordering of jobs. This process is known as
“rescheduling.” The main objective of rescheduling is “to find
immediate solutions to problems resulting from disturbances in
the production system” [125].

Until recently, evolutionary computation methods have rarely
been used for dynamic scheduling, due to their inability to cope
with real-time decision making. They were developed and tested
on static scheduling problems that did not require real-time con-
trol. However, in the last few years, EA’s have been employed
as parts of hybrid dynamic scheduling systems, which exploit
their useful characteristics.

1) Machine Learning Methods:Machine learning is one
of the methods that have traditionally been used in manufac-
turing environments to face uncertainties. Chiu and Yih [113]
proposed such a learning-based methodology for dynamic
scheduling. They divided the scheduling process in a series
of ordered scheduling points. An evolutionary algorithm
examined which dispatching rules performed better for each
of these points, given a set of plant conditions (system status).
The chromosome was formed by a series of genes, each one
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representing a respective scheduling point and taking as a value
one of the available dispatching rules. The performance of
the algorithm was simulated under different plant conditions,
forming a knowledge base that described the scheduling rules
that were preferable in different cases. A binary decision tree
was used to describe the gained knowledge. This method had
the advantage of being able to modify its existing knowledge
(new system conditions), without having to reconstruct the
entire knowledge base. Aytuget al. [114] presented a different
machine learning approach for dynamic scheduling, based on
classifier systems [9]. In this case, an initial knowledge base
was given, and an EA modified it, using results taken from
the simulation of the production line. In that way, the system
learned to react to certain unexpected events. A hybrid system
based on neural networks, EA’s, and an inductive learning
algorithm called trace-driven knowledge acquisition (TDKA)
[115] was used by Joneset al. [116]–[118] to infer knowledge
about the scheduling process. A back-propagation neural
network selected a number of candidate dispatching rules out
of a larger set of available rules. The schedules formed by
these dispatching rules were used as the initial population of
an EA that evolved an optimal schedule. The results taken
from the simulation of the schedule helped TDKA to create a
set of rules that formed the knowledge base. Leeet al. [119]
proposed a hybrid scheduling framework which consisted of an
inductive learning system for job releasing in the plant, and an
EA-based system for the dispatching of jobs at the machines.
The genetics-based machine learning (GBML) method of
Goldberg [5] and an EA-based status selection method have
also been employed by Tamakiet al. [120] and Ikkaiet al.
[121], respectively, to induce scheduling knowledge from
manufacturing systems.

2) Alternative Methods:Fang and Xi [122] presented a dif-
ferent rescheduling strategy based on the rolling horizon op-
timization method. Scheduling was performed periodically on
a predefined number of jobs that formed the “job window.”
Rescheduling was initiated either by the elapse of a job window
or by the occurrence of an unexpected event. An EA evolved
an optimal schedule for each planning horizon, considering the
status of the system. The same concept of job windows was
adopted by Cartwright and Tuson [123], who employed an EA
to dynamically control the scheduling of a chemical flow-shop.
Bierwirth et al. [124] proposed a similar approach, aiming to
decompose a nondeterministic job-shop problem in a series of
deterministic smaller ones. Each subproblem was then solved
with the help of the static scheduling EA method that we de-
scribed in the JSSP section [19].

Finally, Jain and Elmaraghy [125] presented a steady-state
EA framework for the scheduling of an FMS system. Specially
designed algorithms dealt with unexpected events like machine
breakdowns and order cancellations. A series of test cases indi-
cated the validity of the method for scheduling and rescheduling
purposes.

B. Comparison of Different Heuristic Methods for Scheduling
Optimization

Evolutionary computation is not the only nonanalytical
optimization method that has been proposed for the solution

of scheduling problems. Iterative improvement techniques,
random search techniques, simulated annealing, tabu search,
and hybrid techniques are some well-known scheduling opti-
mization methods. Tsang [126] presented an overview of OR
(operations research) and AI (artificial intelligence) methods
that have been used for scheduling problems. Many researchers
have attempted to compare the performance of these optimiza-
tion methods, and results were recently published in a series of
papers.

Dorn et al. [127] compared the performance of iterative
deepening [128], random search, tabu search, and EA’s on the
scheduling of a steel manufacturing plant in Austria. Iterative
deepening and tabu search produced the best results for this
particular case study. The same techniques, with the addition
of a hybrid EA–local search method and simulated annealing,
were tested on a one-machine scheduling problem by Yaguira
and Ibaraki [129]. Their conclusion was that, while local
search techniques were computationally efficient and produced
moderate solutions, simulated annealing and genetic local
search performed much better, but introduced a significant
computational overhead. The one-machine scheduling problem
was also used for the comparison of local search, simulated
annealing, tabu search, and EA’s by McMahon and Hadinoto
[130]. Simulated annealing gave the best performance, both in
numerical and computational results.

In all previous comparisons, specific representations and
genetic operators were used by individual researchers; thus,
generalization of the conclusions would not be valid. On the
other hand, there are indications that the evolutionary process
is greatly enhanced when it is hybridized with local search
techniques. Additional evidence was given by Glass and Potts
[131], who compared the performance of multistart descent,
threshold accepting, simulated annealing, tabu search and EA’s
in a number of flow-shop scheduling problems. While the
performance of EA’s was poor initially, it was greatly improved
when the algorithm was hybridized with a local search method.
The same results were reported by Ishibuchiet al. [91] for their
fuzzy flow-shop scheduling problem discussed in the previous
section. They compared the performance of multistart descent,
simulated annealing, tabu search, and EA’s, and while tabu
search outperformed all other individual optimization methods,
a hybrid multistart descent–EA system performed equally well.

Up-to-date developments in evolutionary computation
approaches to scheduling and time-tabling can be found in
EVOSTIM (EVONET working group on scheduling and
time-tabling) dynamic report, available through WWW [74].

V. PROCESSPLANNING

A. Introduction

Process planning is one of the most complex manufacturing
phases. It comprises a series of tasks that are heavily depen-
dent on the type of product that is to be processed. Process
planning takes as input the design characteristics of a product
(CAD files), and gives as output its complete production plan.
This plan should determine the machining processes needed, the
tools to be used, and the sequencing of operations. If more than
one plan is available, then an optimal plan should be selected.
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Process planning can be more or less elaborate, according to
the processing requirements of a particular part. Horvathet al.
[132] illustrated some elements of the process that should be de-
termined by a process plan.

Process planning is the link between the design and manu-
facturing phase of a product. The design phase is highly auto-
mated nowadays with the introduction of state-of-the-art com-
puter-aided design (CAD) programs. However, computer-aided
process planning (CAPP) programs are not so highly developed,
and research interest in the field is growing. An excellent review
of CAPP methods can be found in [132].

B. Operation Sequencing

Operation sequencing is an important task of process plan-
ning. The planner must determine the machining sequence
of parts, taking into account all of the existing precedence
constraints for the machining of features. These constraints
are normally given in the form of a precedence graph. Usher
and Bowden [133] proposed an evolutionary computation
approach for the solution of this problem. The number of
genes in the solution was equal to the number of features that
must be machined. There was a special decoding procedure
based on the feature precedence graph, which transformed any
string into a feasible sequence of machining operations. This
representation was first introduced by Yip-Hoi and Dutta [134].
The total number of setups, the continuity of motion, and the
loose precedence determined the quality of solutions. Takatori
et al. [135] adopted a TSP representation for the solution of the
same problem, using a repair mechanism to cope with solutions
that violated the constraints. The objectives of their algorithm
were the minimization of the total change cost, the machining
cost, and the nonmachining cost.

Kamhawi et al. [136] developed an elaborate feature-se-
quencing system based on EA’s. The representation scheme was
the same as in [135], but the evaluation of solutions was based
on rules and constraints about safety, quality, and minimization
of tool changes and tool travel. The user assigned a weight to
each of these objectives, according to his preferences.

Norman and Bean [137] discussed the problem of operation
sequencing and tool allocation in parallel machine tools (PMT).
A PMT is a machine capable of processing more than one part at
a time since it contains multiple spindles. A random-keys coded
EA was proposed for the solution of the problem. The tool allo-
cation task was dealt with in the introduction of an integer part
to the value of the genes. This part defined the machining unit
(MU) which was responsible for a particular operation. The dec-
imal part of the value determined the sequence of operations.
The authors also proposed the enhancement of the algorithm
with a heuristic method, presenting results that justified their de-
cision. Yip-Hoi and Dutta [134] tackled the same problem using
an efficient solution representation based on feature precedence
graphs, as was discussed earlier. The objective of their algorithm
was the minimization of the part’s total processing time.

C. The Optimal Plan Selection Problem

The optimal plan selection problem is the task of selecting
an optimal process plan out of a population of alternative plans.
The problem is usually modeled with the help of flow networks,

i.e., a construction of arcs and nodes that determines alternative
sequences of machining for a given product; see Fig. 1. Each
stage of this graph represents a machining operation, and the
nodes denote the number of alternative machines that are ca-
pable of performing this operation. The weighted arcs define
the cost of following a particular machining sequence.

Awadhet al. [138] presented one of the first evolutionary al-
gorithms for the solution of the optimal plan selection problem.
Each stage of a process plan was represented by a binary-coded
matrix, where the occurrence of a bit with positive value denoted
the presence of a connection between the corresponding nodes
of the matrix. The authors warned that this representation could
sometimes lead to the existence of more than one processing
plan for a single chromosome solution. A decoding algorithm
called “path modifier” ensured that there was a “1-to-1” rela-
tionship between the genotype and the phenotype of each so-
lution. The objective of their approach was the minimization of
the overall cost. Zhou and Gen [139] noted that fast and efficient
algorithms, like the shortest path method and dynamic program-
ming, are capable of producing good solutions for single-objec-
tive process planning problems like the previous one. They ar-
gued that evolutionary computation methods are ideal for the
multiobjective version of the problem, which cannot be easily
expressed as a shortest path or dynamic programming problem.
The authors constructed an EA that used the same network flow
model, but had an efficient integer solution representation that
did not require the existence of additional operators like the
“path modifier.”

D. Advanced Process Planning Methodologies

Concurrent engineering has received much attention lately as
a modern approach to manufacturing optimization. It is a man-
ufacturing philosophy where the design and the related manu-
facturing processes of a product are integrated into one proce-
dure (the reader should refer to Singh [140] for an overview of
concurrent engineering). Process planning and scheduling are
two manufacturing processes that are closely related. One of
the aspects of concurrent engineering is the integrated process
planning (in terms of the optimal selection of a process plan)
and scheduling of a product. Husbands [141] and McIlhagaet
al. [142] proposed an EA-based method for the simultaneous
determination of planning and scheduling in a vehicle manu-
facturing company. They used a distributed genetic algorithm
(DGA) [143] approach with a diploid chromosome representa-
tion that defined both the sequencing of operations and the use
of alternative machines. A number of different optimization ob-
jectives were included, such as the minimization of makespan,
flow time, and tardiness.

Bowden and Bullington [144] created a hybrid system called
GUARDS, based on unsupervised machine learning and EA’s
in order to optimize the control of a manufacturing process. The
system learned to select the optimal process plan according to
the status of the plant. GUARDS was an extension of the well-
known SAMUEL system [145].

Horvathet al. [132] described a complete process planning
procedure, from the input of part specifications in the form of
CAD files, to the optimization of the constructed process plan.
They used an object-oriented approach in the form of “features.”
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Fig. 1. Representation of a process plan.

A “feature” was an object that defined specific operations and
contained all of the relative functional, geometrical, and techno-
logical data. Knowledge-based reasoning was used for the gen-
eration of plans, which were then optimized with the help of a
genetic algorithm. Zhanget al. [146] recently developed a sim-
ilar complete CAPP system for parts manufactured in job-shop
environments. They adopted a direct solution representation, as
was introduced by Burns [39]. Each chromosome defined the
sequencing of operations, machine-tool assignments, and tool
approach directions (TAD’s) for an individual process plan. In
this way, the procedures of operation sequencing and process
plan selection were integrated.

Hayashiet al. [147] introduced an interesting method for the
evaluation of future plans in a manufacturing plant with uncer-
tain parameter values. A binary-coded EA was employed for the
evaluation task. The solution was represented by a string of all
of the plant’s parameters, and the objective of the algorithm was
defined according to user’s preferences.

VI. OPTIMIZATION PROBLEMS IN CELLULAR MANUFACTURING

A. Introduction

Cellular manufacturing is the application of group tech-
nology (GT) in manufacturing systems. GT was first introduced
in the former USSR by Mitrofanov [148], and was popularized
in the West by Burbidge [149], who introduced production
flow analysis (PFA), the first scientific method for creating
manufacturing cells. Cellular manufacturing is a manufacturing
philosophy that attempts to convert a manufacturing system
into a number of cells. Each cell manufactures products with
similar processing characteristics. Ideally, all of the processing
operations of a part should be completed within a cell. How-
ever, in realistic cases, intercell movements of parts are always
present. Cellular manufacturing offers certain advantages to
midvariety, midvolume production lines like the reduction
of setup and transfer costs, the minimization of inventory,
improved quality, and significant savings in plant space.

A vast bibliography exists on the subject of cellular manu-
facturing. A good introduction is given by Burbidge [150], and
a critical review of up-to-date developments can be found in
[151]. A considerable number of industries have adopted the
concept of cellular manufacturing, as Wemmerlov and Hyer il-
lustrate in a series of papers [152]–[155].

There are three main phases in the design of a manufacturing
cell: 1) the grouping of machines into cells, better known as
the cell-formation problem, 2) the layout of cells in the plant,
and 3) the layout of machines within the cells. The implementa-
tion of each of these stages leads to difficult optimization prob-
lems, where traditional optimization methods are incapable of
finding optimal solutions in reasonable time. In the following
paragraphs, we will examine some evolutionary methods that

have been used recently to tackle optimization problems asso-
ciated with cellular manufacturing.

B. Formation of Manufacturing Cells

1) Historical Development:The formation of manufac-
turing cells is an optimization problem that has been extensively
researched over the last 20 years. A considerable number of
alternative methods have been proposed for the solution of the
problem. Singh [156], Offodileet al. [157], and Morad [158]
give comprehensive reviews of the problem, and attempt to
taxonomize all of these methods into certain categories. An
analytical review of the methods is beyond the scope of this
paper. However, it is important to reference the most significant
of them. As already mentioned, Burbidge [149], the pioneer re-
searcher in cellular manufacturing, introduced the first method
of designing manufacturing cells, namely, production flow
analysis. His method aimed to create manufacturing cells by a
series of manual manipulations on the rows and columns of the
machine-component matrix. Some other well-known methods,
like rank-order clustering (ROC) [159] and the direct clustering
algorithm (DCA) [160], are based on the same matrix. Another
well-known cell-formation method is single linkage cluster
analysis (SLCA), introduced by McAuley [161], which is
based on similarity coefficients between the machines. Coding
and classification methods [162], graph partitioning [163],
mathematical programming [164], neural networks [165],
and fuzzy logic [166] are some other methods that have been
proposed for the solution of the cell-formation problem.

2) Evolutionary Computation Methods:Unlike scheduling,
the cell-formation problem had not been a subject of evolu-
tionary computation research until very recently. Venugopal
and Narendran [167] were the first researchers to approach
the cell-formation problem using EA’s. Their objective was
the minimization of the intercell traffic and the balancing
of load in the cells. A different population of solutions was
employed for each of these objectives. The solution repre-
sentation was simple and efficient. Each machine in the plant
corresponded to a gene in the chromosome. The value of
the gene defined the owing cell of the respective machine.
The total number of cells in the plant was predetermined,
but the formulation of the problem considered the processing
time of parts, which was a serious improvement in compar-
ison to the traditional cell-formation methods. Guptaet al.
[168], [169] enhanced this formulation by considering the
intracell moves of the parts and the intracell layout. Special
care was also taken to ensure that no cell remained empty
during the evolutionary process. Billoet al. [170] adopted
a direct solution representation, based on a two-part chro-
mosome. The first part was a permutation of all parts to be
processed, while the second part denoted the cutoff points
of the first part. Each segment between cutoff points de-
noted a part family. The objective of their algorithm was
the maximization of machines’ similarity within the cells
and the minimization of the total number of cells. The ad-
vantage of this method was that the total number of cells
was not predefined, but the structure of the chromosomes
was quite complex and computationally expensive. However,
the algorithm performed well on a series of test problems,
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including some ill-structured machine-component matrices.
Joineset al. [171] introduced a new, efficient integer pro-
gramming formulation of the problem, which reduced the
search space significantly. An evolutionary algorithm was
employed for the solution of the problem, with the vari-
ables of the mathematical formulation coded into the chro-
mosome. Only the upper bound of the total number of cells
needed to be specified. The objective of the algorithm was
the minimization of exceptional elements and voids (zero’s
in the diagonal blocks) in the machine-component matrix.
The validity of the method was depicted by results on test
problems taken from the literature. Su and Hsu [172] used
the classic Venugopal solution representation, but their chro-
mosome also accommodated the existence of multiple ma-
chines of the same type. Morad and Zalzala [173] proposed
the simultaneous optimization of several objectives, using a
weighted-sum approach. Pierreval and Plaquin [174] adopted
the classic representation scheme, with binary-coded genes.
Suer [175] presented a preliminary discussion on the de-
sign of part families using evolutionary programming [7].
Dimopoulos and Zalzala [176] proposed an evolutionary al-
gorithm for the cell-formation problem of a pharmaceutical
company. Both the representation of the solution and the ge-
netic operators were purpose based. Different multiobjective
optimization methods were compared on the solution of the
problem.

3) Hybrid Methods: The cell-formation problem is a
difficult optimization problem; thus, various methods of en-
hancing the evolutionary process have been proposed. Paris and
Pierreval [177] utilized distributed evolutionary algorithms,
attempting to increase the speed of the process in comparison
with the methods used so far, which were, in their own words,
“notoriously slow.” Hwang and Sun [178] formulated the
problem using a generalized quadratic assignment mathemat-
ical model. The representation of solutions was a permutation
of all machines in the plant, each one uniquely identified by a
number. A greedy heuristic was employed for the assignment
of machines to cells. The authors used a number of comparative
measures to evaluate the performance of the method in various
test problems. Finally, Zhaoet al. [179] presented a fuzzy
clustering method for the solution of the problem, which
took into account the uncertainty and imprecision that usually
exist in the problem data. Fuzzy clustering was implemented
using an EA that employed fuzzy partitions as individual
chromosomes. This method was a typical example of hybrid
systems that exploit the positive characteristics of individual
algorithms and result in robust optimization methods.

C. Cell Layout and Machine Layout Optimization Methods

Once the configuration of cells has been determined, the
designer must define the layout of machines inside the cells,
and the layout of cells in the plant area. These optimization
problems belong to the general category of the facility layout
problem (FLP). The FLP is a well-known combinatorial
problem. It has been formulated as a quadratic set covering the
problem, linear integer programming problem, mixed-integer
programming problem, and graph-theoretic problem [180].

However, the quadratic assignment problem (QAP) formulation
is the most popular in the literature, and since QAP is known to
be NP complete (Sahni and Gonzalez [181] by transformation
from the Hamiltonian circuit problem) for most problem
instances, efficient algorithms must be used for the solution of
the problem.

1) Evolutionary Computation Methods for the Solution of the
Facility Layout Problem: Several researchers have used evo-
lutionary algorithms to tackle FLP problems in manufacturing.
Early approaches can be found in the survey given by Mavridou
and Pardalos [182]. Cohoonet al. [183] and Tam [184] were
the first researchers to approach the problem using evolutionary
computation methods. In both cases, the layout was represented
by a slicing tree structure (STS, originally introduced by Otten
[185]), which can be easily decoded into a layout. A slicing tree
is “a binary tree representing the recursive partitioning process
of a rectangular area, through cuts. A cut specifies the relative
position of departments through four distinguished branching
operators” [182]. Kadoet al.[186] investigated the combination
of STS’s with different clustering methods for the initialization
of the population, and different decoding methods for the cre-
ation of layout. Some of these combinations produced improved
results on previously published test problems. Garces-Perezet
al. [187] refined these results by putting the slicing tree struc-
tures into a much more natural genetic programming frame-
work, and by employing a variation of one of Kado’s most
successful decoding method. The STS representation was also
adopted by Chenget al. [188] in their GA framework. The au-
thors additionally addressed the issue of the uncertainty of ma-
terial flow between cells using a convex fuzzy number represen-
tation.

Tate and Smith [189] adopted the QAP formulation of the
problem, with the objective of minimizing the sum of products
of the total material flow and rectilinear distances between the
departments. They proposed a flexible-bay layout structure that
accommodated unequal sizes for the departments. The plant was
divided into a number of bays by end-to-end slices in one direc-
tion, and then the bays were split into departments by perpen-
dicular slices. A permutation representation of the solution was
used, which determined both the allocation of departments in
the layout and the place of bay divisions. Norman and Smith
[190] enhanced this representation by using a random-keys EA,
thus avoiding feasibility constraints, and by incorporating un-
certainty in the mathematical formulation of the problem. Ma-
terial-handling costs were expressed using expected values and
standard deviations for the product volume over time. Suresh
et al. [191] preferred the permutation representation, but used
a much simpler grid structure for the layout. Kazerooniet al.
[192] proposed an integrated approach for the design of man-
ufacturing cells, which incorporated steps for the simultaneous
determination of cell and machine layouts.

Banerjeeet al. [193] modeled the problem using a mixed-
integer programming formulation. They proposed a graph so-
lution representation based on nodes and edges. Nodes corre-
sponded to input–output cell stations, and edges corresponded
to material flows between the stations. The layout structure was
continuous, and thus much more flexible than the grid and bay
structures which restricted the shape of cells. Genetic search was
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employed as a part of the overall algorithm, aiming to transform
the problem into a series of iterative linear programming prob-
lems. The robustness of this method was illustrated in a number
of test cases taken from the literature, where it was shown to
outperform traditional methods.

Conway and Venkataramanan [194] considered an interesting
version of the FLP, the dynamic FLP. In this case, the facility
layout changes with time, and the algorithm must find the best
allocation of facilities over an entire planning horizon. The au-
thors introduced a multipart chromosome representation for the
layout, where each part corresponded to a planning period. The
position of a gene corresponded to a fixed place in the layout,
and the value of the gene denoted the facility that occupied this
place for a particular period. The objective of the algorithm was
the minimization of layout rearrangements costs and materials
flow costs over the entire planning horizon.

2) Special Cases for the Machine Layout Problem:The pa-
pers that we have reviewed so far in this section introduced
methods that normally apply to the cell layout problem. The ma-
chine layout problem is a special type of FLP, and it is usually
addressed individually since various assumptions that are made
for the FLP are not valid for this problem. Bazarganet al. [193]
discussed some of these assumptions, such as the equal-sized
areas and thea priori knowledge of facilities locations. How-
ever, elaborate continuous plane FLP methods like [175] can be
applied easily to the machine layout problem.

Manufacturing practice usually restricts the search for an
optimal intracell layout to a small number of fixed configu-
rations, like the single-row layout, the multirow layout, the
semicircled layout, and the loop layout. Braglia and Sternieri
[196] utilized an EA in order to find the machine layout
in a prefixed single-row structure. The objective of the al-
gorithm was the minimization of the distance traveled by
the material-handling device of the cell. The solution was
represented by a permutation of all machines in the row.
This method performed well in large problem instances in
comparison with heuristic approaches. In a similar approach,
Braglia and Zavonella [197] adopted the minimization of jobs
backtracking as the objective of the algorithm. Braglia [198]
also presented an interesting hybrid method, where an EA
was employed for the optimization of simulated annealing
parameters. Chenget al. [199] addressed the loop machine
layout problem using two different objectives: the minimiza-
tion of the total number of reloads for all products (minsum
problem), and the minimization of the maximum number
of reloads for all products (minmax problem). The layout
was considered to be unidirectional, and there was a single
loading–unloading station. The solution was once again rep-
resented by a permutation, and the PMX operator was used
for crossover purposes. Genet al. [200] introduced a hy-
brid fuzzy–GA approach for the solution of complex multi-
row machine layout problems. The objective of the algorithm
was the minimization of travel cost between the machines,
and the solution was represented by a multipart chromosome
that contained information about the total number of rows,
the permutation of machines in each row, and the clear-
ances between the machines. Fuzzy sets were used for the

representation of the uncertainty that exists in the value of
clearances.

Finally, we should note that Bolte and Thoneman [201] ad-
dressed the QAP using simulated annealing. The connection
of this paper to evolutionary computation is that genetic pro-
gramming was employed for the optimization of the annealing
schedule. The system found good solutions while maintaining
acceptable run times. This is one of the few examples where ge-
netic programming has been used for a problem related to man-
ufacturing optimization.

VII. OPTIMIZATION OF ASSEMBLY LINES

A. Introduction

Assembly lines are widespread in manufacturing plants. A
number of optimization problems are associated with assembly
lines, like the assembly sequence planning problem, the
sequencing of mixed-model assembly lines, and the assembly
line balancing problem. A variety of evolutionary computation
methods have recently been proposed for the solution of
assembly line optimization problems.

B. The Assembly Sequence Planning Problem

The assembly sequence planning problem (ASSP) has
been tackled by Sebaaly and Fujimoto in a number of papers
[202]–[205]. It is the problem of finding an optimal sequence
of assembling a product that consists ofparts, given its
design characteristics. An assembly sequence is feasible if it
does not violate the assembly rules and constraints, which are
defined by the designer. The authors proposed an evolutionary
approach for the solution of this problem, where an individual
chromosome is a randomly constructed sequence of parts.
An efficient mapping procedure transformed any random
assembly sequence into a feasible one. Gropetti and Muscia
[206] analyzed the assembly planning procedure, and used an
EA in order to obtain a clear contact relational graph.

C. Sequencing in Mixed-Model Assembly Lines

It is often the case that several products with similar charac-
teristics (models) are assembled in a single line (mixed-model
assembly lines). The sequencing of models in mixed-model as-
sembly lines is an important task, especially if we wish to apply
the JIT principle in the production line. There are a number of
objectives associated with this task [207], like the minimiza-
tion of the line’s length, the minimization of total utility work,
and the minimization of the variability of parts’ consumption
(vpc). This latter objective is critical in JIT systems. Leuet al.
[208] addressed the problem of sequencing a mixed-model as-
sembly line with the objective of minimizing vpc in a JIT pro-
duction system. An EA was used for the solution of the problem,
with each chromosome representing a sequence of models to be
assembled. The sequence was cyclic, and the number of indi-
vidual models in each sequence was fixed. This method per-
formed better on some test problems than the traditional Toyota
goal-chasing algorithm (GCA) [209], which is often used in JIT
production systems. Kimet al. [207] adopted the same repre-
sentation for the sequencing of a mixed model assembly line,
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where the objective was the minimization of the total length of
the line.

D. The Assembly Line Balancing Problem

Another well-known optimization problem of assembly lines
is the assembly line balancing problem. Givenworkstations
and parts to be assembled, the assignment of parts to work-
stations should be defined according to certain optimization cri-
teria. Two versions of the problem are usually considered. The
first version aims to minimize the total number of workstations
in the plant given a fixed cycle time, while the second version
aims to minimize the cycle time, given a fixed number of work-
stations. Secondary objectives like the minimization of balance
delay and the minimization of probability of line stoppage are
also considered. Sureshet al. [210] presented an excellent lit-
erature review on the assembly line balancing problem, and
proposed an evolutionary algorithm for the solution of a sim-
ilar problem, where the objective was mainly the minimiza-
tion of the smoothness index of balance delay. The solution
was represented by a list of sets with length equal to the total
number of workstations. Each set contained one or more jobs.
All of the initial solutions were feasible, and special operators
ensured the feasibility of solutions throughout the evolutionary
procedure. The authors also presented an alternative version of
the algorithm, where a number of infeasible solutions were al-
lowed in the population. This particular version worked well on
large problem instances. Rubinovitz and Levitin’s [211] repre-
sentation was a permutation of all parts, divided into a number
of sections equal to the total number of workstations. Initially,
random sequences were constructed, and then special mecha-
nisms were employed to reorder the sequences according to the
precedence constraints and to divide them into an appropriate
number of sections. Tsujimuraet al. [212] presented an inter-
esting EA–fuzzy logic method for solving the assembly line
balancing problem, aiming to minimize the balance delay. The
solution representation was a classic permutation that consid-
ered all precedence constraints. The processing time of each job
was not deterministic, but was defined by a fuzzy set. The allo-
cation of jobs to workstations was accomplished using the EA
sequence, the fuzzy sets, and a standard predefined maximum
completion time. Starting with the first job of the sequence, the
fuzzy sets of processing times were added, until the upper limit
of the sum of fuzzy sets became larger than the predefined max-
imum completion time. The set of jobs that comprised the sum
was assigned to the first workstation, and the procedure started
again from the next job after this set in the sequence. Special
mechanisms and operators ensured the feasibility of solutions.

E. Secondary Assembly Line Optimization Problems

A number of secondary optimization problems in assembly
lines have also been the subject of evolutionary computation
research. Among them are the optimization of buffer sizes be-
tween workstations in an assembly system [213], the scheduling
of multilevel assemblies [214], and the scheduling of flexible as-
sembly systems [215]. Finally, Watanabeet al. [216] have used
an EA in order to solve the generalized line balancing problem.

VIII. D ESIGN OPTIMIZATION PROBLEMS

A. Introduction

Design is a complicated and time-consuming phase in the
development of a product. Although design is most often not
directly addressed as a manufacturing optimization problem,
it constitutes one of its most critical aspects since it irretriev-
ably constrains the manufacturing process. Every design must
be faultless and properly optimized; otherwise, the result will
be huge redesign costs. Enormous effort has been devoted to the
development of efficient CAD systems in order to simplify and
speed up the design process. Evolutionary computation methods
have been applied successfully to complex design optimization
problems. In the following paragraphs, we will review some of
the recent papers in this field.

Traditionally, the design process starts with the creation of
a mathematical model for the product that is to be manufac-
tured. The model is then implemented as a computer program,
allowing the designer to explore the effects of altering the values
of the parameters. This optimization process is usually imple-
mented on a “trial-and-error” basis. The incorporation of EA’s
in the heart of the design process enhances and automates the
procedure of parameter optimization [217].

B. Parameter Optimization Problemss

Cao and Wu [218] adopted an evolutionary programming [7]
approach for the solution of a mechanical design optimization
problem. A number of design variables needed to be optimized,
subject to certain constraints. Continuous, binary, integer, and
discrete variables were included in the mathematical model, a
condition that made the optimization procedure even harder.
The solution was represented by a string of design variables
initialized within the constraints, while a special mutation
procedure was used for each type of variable. Two design
problems were used to illustrate the method: the design of a
gear train, and the design of a pressure vessel. The algorithm
performed equally well or better in comparison with other
optimization methods like the branch and bound algorithm
and simulated annealing. Rasheedet al. [219] proposed an EA
for the solution of a similar parameter optimization problem
which involved only continuous variables. The solution was a
string of all parameters that needed to be optimized, initialized
within their constraints. Feasibility problems were accommo-
dated using a penalty function. The evolutionary process was
enhanced with the introduction of two crossover operators,
namely, line crossover and guided crossover, which produced
an offspring on the line connecting the parent chromosomes,
considering the solutions’ search space. The algorithm was
tested on two complex design optimization problems: the
design of a supersonic transport aircraft, and the design of a
supersonic missile inlet. The method performed much better on
these problems than a classic binary-coded GA and a sequential
quadratic programming method. Coello and Christiansen
[220] gave a nice extension to the use of EA’s for parameter
optimization by incorporating the weighted-sum multiobjective
optimization method in the heart of the evolutionary process.
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It was a realistic extension since conflicting objectives always
exist during the design phase of a product. The method was
tested on the design of anbeam and a machine tool spindle,
considering multiple conflicting objectives.

C. Advanced Design Optimization Problems

It is often the case that design optimization problems are quite
complicated, involving a series of highly related tasks. In these
circumstances, the problem is normally divided into a series of
subproblems, each comprised of a certain number of tasks. The
optimal decomposition of multidisciplinary optimization prob-
lems and the optimal ordering of tasks within each subproblem
were considered by Altuset al. [221] using an evolutionary al-
gorithm. The objective was the minimization of the total length
of feedback lines between the tasks. The representation of the
solution was a permutation of all tasks involved, and a break
character was used to divide the string, and thus the problem,
into a series of subproblems. The system was called AGENDA
(a genetic algorithm for decomposition analysis), and it per-
formed well on some decomposition problems taken from the
literature.

Thornton and Johnson [222] developed an integrated soft-
ware tool called CADET (computer-aided design embodiment
tool) that supported the embodiment phase of the design
process, i.e., the creation of a geometrical model of the product,
according to the designer’s specifications. CADET took these
specifications as input, and found a geometrical model that
satisfied the constraints. EA’s were proposed as an option in
the constraint satisfaction part of the system.

Carlson [223] used a GA to optimally select components for
catalog design processes. In catalog design, a system is con-
structed from off-the-shelf components. The EA solution was a
string comprised of all types of components used in the design.
The value of a gene determined the component selected out of
all possible components available for this type. A penalty func-
tion handled the violation of constraints. The applicability of
the algorithm was demonstrated using the design of a hydraulic
system and the design of a thermal fluid system as case studies.

Finally, Iannuzzi and Sandgren [224] addressed the problem
of optimally allocating tolerances on product dimensions in
order to minimize the total production costs. The authors
tackled the problem using an EA-based method, which showed
satisfactory results on a series of test problems.

IX. M ANUFACTURING-RELATED OPTIMIZATION PROBLEMS

A. Introduction

In the previous sections, we reviewed recent papers in the
field of evolutionary computation for some standard manufac-
turing optimization problems. However, these are not the only
optimization problems associated with manufacturing. The pur-
pose of this section is to illustrate some recent evolutionary com-
putational developments in various manufacturing areas.

B. PID and Fuzzy Controllers

The efficient autotuning of PID controllers is a significant op-
timization problem in the field of process manufacturing. De-

spite the fact that the problem has been well researched by con-
trol engineers, the traditional Ziegler and Nichols tuning rules
[225] are still being used in practice. Evolutionary computa-
tion methods provide the means of efficient tuning since a solu-
tion representation based on PID parameters can be constructed
easily. This potential has been recognized by a considerable
number of researchers who have used evolutionary algorithms to
tune PID controllers. Jones and Oliveira [226] built an EA-based
system that initially identified the process model, and then used
this model to tune the parameters of the controller off line. The
same authors [227] proposed an evolutionary technique for the
design of robust SISO Smith predictor PID controllers. Jones
and Porter [228] tuned the parameters of a digital PID con-
troller using an evolutionary algorithm. A coevolutionary model
was proposed by Joneset al. [229] for the design of robust PID
controllers. Krohling [230] presented an EA which optimized
a PID controller for disturbance rejection. Vlachoset al. [231]
extended the concept of genetic tuning to PI controllers for mul-
tivariable processes. The parameters of all controllers were si-
multaneously coded in one solution representation. Salami and
Cain [232], [233] introduced a hardware-implemented GA (GA
processor) which tuned the parameter of a PID controller. The
authors also presented encouraging results taken from experi-
ments with multiple GA processors.

Qi and Chin [234] used an evolutionary algorithm to opti-
mally tune the parameters of a fuzzy logic controller (FLC)
which had been designed for high-order processes. Kim and
Ziegler [235] addressed the same problem using hierarchical
distributed GA’s (HDGA’s). HDGA’s are multilevel hierarchical
systems composed of local hybrid EA’s–expert system struc-
tures. These structures are organized in levels, and in each level,
the problem is solved on a different degree of abstraction. The
advantage of the system was its ability to dynamically change
its structure in order to explore promising regions of the search
space. Tarnget al. [236] employed a binary-coded GA for the
design of an optimal fuzzy logic controller which was used in
tuning operations.

C. Process Model Identification

The identification of process models is essential for the
optimal control of manufacturing systems. Polheim and Maren-
back [237] used genetic programming in order to identify the
model of a manufacturing process. Common control engi-
neering tools, like transfer function blocks, were used for the
creation of trees (programs). In this way, the algorithm provided
structured process models, giving the control engineer a useful
insight into a system’s internal configuration. Test problems
validated the performance of the method, and especially its
ability to generalize. McCayet al. [238] also employed genetic
programming for system identification, constructing the trees
with common mathematical functions. There are also a number
of researchers who addressed the problem of system identifica-
tion using EA’s. Among them, Reeveset al. [239] proposed an
interesting method where the solution was coded in terms of the
radii and angles of poles and zeros of the transfer function. The
values of these variables were constrained within the stability
regions; thus, the final solution was guaranteed to be stable.
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D. Machine Failure and Maintenance

The failure of machines in the plant is inevitable. Shop-floor
engineers aim to diagnose the failure of a machine as quickly as
possible. They normally use a number of symptom parameters
that are sensitive to changes of specific signals from the plant.
Chenet al. [240] described some of these parameters, and pro-
posed an evolutionary approach for the determination of an op-
timal sequence of symptom parameters. Their method resem-
bled genetic programming, in terms of the tree structures that
were used as individual chromosomes. Petrovic and Ivanovic
[241] presented a hybrid method for machine-noise diagnosis,
based on neural networks, expert systems, and EA’s. Guzman
and Kramer [242] developed a hybrid Bayesian network–EA
system that performed on-line monitoring and failure diagnosis
based on data taken from the plant.

Maintenance scheduling is another important operation in the
shop floor since the disruption of the production process must
be as small as possible, but at the same time, the machines must
work without failures for the longest time possible. Kimet al.
[243] proposed an interesting hybrid of EA’s and simulated an-
nealing for optimal maintenance scheduling. The acceptance
probability of simulated annealing was used for the survival of
the less fit offspring in the population.

E. Quality Control

Quality control is an important aspect of modern manufac-
turing. The optimal allocation of inspection stations in the plant
ensures that products are manufactured according to the quality
criteria set by the management team. Viswanadhamet al. [244]
addressed this problem in a multistage manufacturing system,
and employed an evolutionary algorithm to optimally locate in-
spection stations. The solution was binary coded, with each gene
representing a manufacturing stage. The presence of a station at
a particular stage was denoted by a positive value. Patro and
Kolarik [245] designed a system that performed statistical pro-
cessing control using neural networks and evolutionary compu-
tation. The neural network identified the process model, and the
evolutionary algorithm adjusted the control parameters in order
to obtain the desired quality performance. Luet al. [246] pre-
sented an EA-based system that optimized the motion of a co-
ordinate-measuring machine used in inspection systems. A per-
mutation representation was employed for the solution of the
problem, with each gene corresponding to a testing point that
the measuring machine must visit. The algorithm aimed to find
the optimal sequence of visiting points that minimized the total
length of the inspection path.

F. Advanced Manufacturing Optimization Problems

This section discusses some advanced manufacturing opti-
mization problems that have been the subject of evolutionary
computation research. Mak and Wong [247] considered the
problem of designing an optimal integrated production–inven-
tory–distribution system, aiming to minimize the overall costs,
including inventory holding costs, delivery costs, manufac-
turing costs, and shortage costs. An evolutionary algorithm was
employed for the solution of the problem. Integer programming
formulation was adopted, and the solution was represented

using the variables of the model. Disneyet al. [248] addressed
the problem of controlling a production and inventory system.
Transfer functions were used for the modeling of the problem,
illustrated in the form of block diagrams. The solution of
the problem was represented by the variables of the transfer
function, and a fitness measure was designed based on stock
reduction, production robustness, and inventory recovery.

A difficult decision that the marketing team often has to face
is the location of inventory centers for the accommodation of
department stores, and the allocation of an inventory center to
each of these stores. This location–allocation problem was for-
mulated as a nonlinear mixed-integer programming problem,
and was solved by Gonget al. [249] using an evolutionary ap-
proach for the location task and a Lagrangian relaxation method
for the allocation task.

Aggregate production planning is a high-level decision-
making procedure that takes product capacities and forecast
demands as input, and produces aggregate production plans.
Stockton and Quinn [250] addressed this problem using a
binary-coded GA. The algorithm determined the amount of
resources needed each month in order to meet the demand.
The resources were expressed in the form of overtime, sub-
contracts, and stock. Wang and Fang [251] formulated the
same problem using a fuzzy linear programming model. They
employed Zimmerman’s tolerance approach to transform the
problem into a linear programming model. The variables of
the model formed the chromosome of an evolutionary algo-
rithm that was used for the solution of the problem. Fenget
al. [252] addressed the problem of joint marketing/produc-
tion decision making aiming to maximize the net profit of a
company. The decision problem consisted of the promotion
problem for the marketing department and the production
problem for the manufacturing department. Each problem
was formulated mathematically, and a respective number of
EA’s were employed to find optimal solutions. The deci-
sion variables of the mathematical models were used for
the representation of solutions. Garavelliet al. [253] con-
sidered the production planning problem of a multinational
company that owns manufacturing plants all over the world.
Parameters like local market demands and independent ca-
pacities must be taken into account in the formulation of the
problem. An EA defined which plants would be activated
for production and the timing of activation.

The dynamic lot-sizing problem in a multistage, multi-item
production system was described by Jinxing [254]. He proposed
an evolutionary programming approach with binary representa-
tion for the solution of the problem. The objective was the min-
imization of setup, production, and inventory costs.

G. Various Applications

Xia and Macchietto [255] tackled the problem of optimal de-
sign and synthesis of chemical batch plants using a stochastic
optimizer called EASY, which was a combination of EA’s and
simulated annealing. The batch-scheduling problem was also
addressed by Morad and Zalzala [173] with the help of an evo-
lutionary algorithm.

All of the equipment in the plant is interconnected to various
kinds of pipes. The plant pipe-route optimization problem aims
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to find the minimum length of pipe interconnections in the plant
that satisfies all of the requirements. Kimet al. [256] employed
a GA with Steiner points representation for the solution of the
problem. Their method worked well on a series of test problems.

In a pull (JIT) production system, the demand must always
be satisfied without the help of excessive stocks. The total
number of kanbans in the plant and the corresponding pro-
duction trigger values should be optimally defined in order to
achieve this objective. Bowdenet al. [257] addressed this
problem using an evolutionary algorithm seeded with the
optimal solution of the Toyota equation [191]. Rao and Gu
[258] developed a new entropic measure which determined
the optimal timing for reconfiguration in a manufacturing
plant, and presented a genetic framework for the design of
manufacturing systems. Kubotaet al. [259] described an ap-
plication of their virus evolutionary GA (VEGA) approach to
the self-organization of a cellular manufacturing system. The
same problem was tackled by Kawauchiet al. [260] with the
help of a conventional evolutionary algorithm. Zhaoet al.
[261] addressed the problem of robot selection and work-
station assignment in a computer-integrated manufacturing
(CIM) system. A bin-packing formulation of the problem
was proposed, and an EA was employed for the solution
of the problem. A diploid chromosome that accommodated
both parts of the problem represented the solution. Recently,
McIlhaga [262] designed a framework for solving generic
scheduling problems, i.e., scheduling problems of a nonspe-
cific form. This framework was based on DGA’s, and was
able to solve problems of this kind more efficiently than
random search and dispatching rules. The parameters of the
problem were defined by the user through a scheduling de-
scription language (SDL).

Finally, evolutionary computation applications have been re-
ported for the problems of vehicle distribution scheduling [263],
warehouse scheduling [264], sequencing optimization in auto-
motive manufacturing industries [265], optimal control of spin-
ning processes [266], design of flexible electronic assembly sys-
tems [267], optimization of textile processes [268], and opti-
mization of area loss in flat glass cutting [269].

X. CONCLUSION

The use of evolutionary computation methods for manufac-
turing optimization is expanding. The number of papers pub-
lished is increasing rapidly, and research covers a wide range of
manufacturing problems. The amount of work itself indicates
that evolutionary computation methods have established them-
selves as a useful optimization technique in the manufacturing
field, despite the fact that their theoretical foundations are still
debated.

Evolutionary computation research has been criticized for the
consideration of artificial test problems that are much simpler
than real-life manufacturing cases. Our study shows that re-
searchers have reacted to this criticism by considering realistic
problems taken from manufacturing plants. This move has also
been triggered by the low response of evolutionary computa-
tion in manufacturing practice. It is encouraging to report re-
cent projects where companies have adopted evolutionary com-

putation methods in their plants. The gap between academic re-
search and manufacturing practice is not a problem restricted
to the field of evolutionary computation. However, in our case,
there are a number of additional reasons that make the approach
more difficult, and published results indicate that this is usually
the case.

• The terminology of evolutionary computation is vague
for the manufacturing engineer. Despite the fact that the
driving logic of evolutionary algorithms is amazingly
simple and efficient, the terminology inherited from
genetics predisposes manufacturing engineers to think
the opposite.

• Evolutionary computation is a relatively new technique,
evolving to deal with more complex real-life problems.
There are no universally accepted methods for the de-
termination of technical parameters like population size,
probability of applying operators, etc. There is also no
guarantee that an algorithm will converge to an optimal or
near-optimal solution, except under specific problem con-
ditions.

• There is no standard evolutionary computation toolkit that
can be used easily by manufacturing people who are not
familiar with evolutionary concepts.

On the other hand, evolutionary computation methods offer so-
lutions that combine computational efficiency and good perfor-
mance. This significant feature will certainly continue to attract
the interest of engineers.

The robustness of evolutionary algorithms is greatly en-
hanced when they are hybridized with other optimization
methods like local search techniques, simulated annealing, tabu
search, neural networks, and fuzzy systems. The number of
papers introducing hybrid systems is growing, indicating that
there is a trend toward this direction.

Evolutionary computation techniques are useful in a series of
manufacturing problems, and it is the authors’ hope that more
research in this area will lead to an increased implementation of
real-life manufacturing optimization systems.
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