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Abstract

The complexity of a secret sharing scheme is defined as the ratio between the maximum
length of the shares and the length of the secret. This paper deals with the open prob-
lem of optimizing this parameter for secret sharing schemes with general access structures.
Specifically, our objective is to determine the optimal complexity of the access structures
with exactly four minimal qualified subsets. Lower bounds on the optimal complexity are
obtained by using the known polymatroid technique in combination with linear program-
ming. Upper bounds are derived from decomposition constructions of linear secret sharing
schemes. In this way, the exact value of the optimal complexity is determined for several
access structures in that family. For the other ones, we present the best known lower and
upper bounds.

Key words: Secret sharing, Optimization of secret sharing schemes for general access
structures.

1 Introduction

A secret sharing scheme is a method to distribute a secret value into shares among a set of
participants in such a way that only some qualified subsets of participants can recover the secret
value from their shares. Secret sharing was introduced independently in 1979 by Blakley [5]
and Shamir [35], and it is a very important cryptographic primitive that is used as a building
block in many different cryptographic protocols. In this work we consider only unconditionally
secure perfect secret sharing schemes, that is, the shares of the participants in a non-qualified
subset must not provide any information at all about the secret.

The qualified subsets form the access structure of the secret sharing scheme, which is a
monotone increasing family of subsets of participants. That is, any superset of a qualified
subset is also qualified. Then an access structure is determined by the collection of its minimal
qualified subsets.

Ito, Saito and Nishizeki [24] proved, in a constructive way, that every access structure admits
a secret sharing scheme. Another general construction was given by Benaloh and Leichter [4].
In those schemes, the shares are much larger than the secret value. Actually, the length of the
shares grows exponentially with the number of participants. This is not desirable because the
security and efficiency of a system depends on the amount of information that must be kept
secret.
∗This work was partially supported by the Spanish Ministry of Education and Science under projects TIC

2003-00866 and TSI2006-02731.
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The complexity σ(Σ) of a secret sharing scheme Σ is defined as the ratio between the
maximum length of the shares and the length of the secret. Optimizing this parameter for
every given access structure is one of the main open problems in secret sharing. The optimal
complexity σ(Γ) of an access structure Γ is defined as the infimum of the complexities of all
secret sharing schemes for Γ. Very little is known about the values of σ(Γ), and there is a huge
gap between the best known general lower and upper bounds. Its asymptotic behavior with
respect to the number of participants is also unknown.

In a secret sharing scheme, the length of every share is at least the length of the secret [27].
The secret sharing schemes such that all shares have the same length as the secret are said to
be ideal , and their access structures are called ideal as well. The characterization of ideal access
structures is another important open problem in secret sharing.

Due to the difficulty of finding general results, both open problems have been studied for
several families of access structures as, for instance, access structures with at most five partici-
pants [26, 36], the ones defined by graphs [6, 7, 8, 10, 11, 12, 38], bipartite [32] and tripartite [20]
access structures, access structures with intersection number equal to one [29], weighted thresh-
old access structures [2], and hierarchical access structures [22]. The ideal access structures in
these families have been completely characterized and, for some of them, bounds on the optimal
complexity have been given. For instance, the optimal complexity have been determined for
all access structures on four participants [36] and for most of the ones on five participants [26].
In addition, the optimal complexity has been determined as well for most of the access struc-
tures on six participants defined by graphs [17, 19]. Finally, a great achievement has been
obtained recently by Csirmaz and Tardos [16] by determining the optimal complexity of all
access structures defined by trees.

Most of the known lower bounds on the optimal complexity have been found by implicitly
or explicitly using a combinatorial method based on polymatroids. The parameter κ(Γ) was
introduced in [30] to denote the best lower bound on σ(Γ) that can be obtained by this method.
Most of the upper bounds are derived from constructions of linear secret sharing schemes, and
hence they are upper bounds on λ(Γ), that is, the optimal complexity of the linear secret sharing
schemes for Γ. More information about the known results on the parameters κ, σ, and λ can
be found in [30].

In this work, we try to optimize the complexity of secret sharing schemes for the access
structures that have exactly four minimal qualified subsets. The characterization of the ideal
access structures in that family was given in [28]. By introducing a reduced form for the access
structures, we prove in Section 3 that it is enough to consider sets of at most 2k−2 participants
when trying to determine the optimal complexity of the access structures with at most k minimal
qualified subsets. Because of that, in this work we study access structures with four minimal
qualified subsets on sets with at most 14 participants. We summarize in Section 4.1 the main
results from [28] about those access structures. Some constructions of linear secret sharing
schemes providing upper bounds on λ(Γ) for the access with four minimal qualified subsets are
presented in Section 4.2. We present in Section 4.3 a linear programming approach to compute
κ(Γ) that has been used as well in other works [14, 15, 21, 34]. By using it, we have been
able to determine the value of this parameter for all such access structures on at most nine
participants. We implemented a computer program that explored all non-isomorphic reduced
access structures with four minimal qualified subsets and found the best lower and upper bounds
on σ(Γ) that can be derived from those results. For several such access structures, the exact
value of σ(Γ) has been determined in this way. For the other ones, upper and lower bounds
have been found. The obtained results are summarized in Section 5, where several tables with
these values are presented.
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2 Preliminaries

2.1 The Complexity of Secret Sharing Schemes

An access structure Γ on a set P of participants is a monotone increasing family of subsets
of P . The subsets in Γ are said to be qualified . An access structure is determined by the family
min Γ of its minimal qualified subsets. The redundant participants in an access structure are
those that are not in any minimal qualified subset. An access structure is said to be connected
if all participants are non-redundant. From now on, all access structures are assumed to be
non-trivial , that is, to have at least a non-redundant participant.

Let Q be a finite set with a distinguished element p0 ∈ Q called dealer , and let P = Q−{p0}
be the set of participants. Consider a finite set E with a probability distribution on it. For every
p ∈ Q, consider a finite set Ep and a surjective mapping πp : E → Ep. We notate E0 = Ep0

and π0 = πp0 . Those mappings induce random variables on the sets Ep. Let H(Ep) denote the
Shannon entropy of one of these random variables. For a subset A = {p1, . . . , pr} ⊆ Q, we write
H(EA) for the joint entropy H(Ep1 . . . Epr), and a similar convention is used for conditional
entropies as, for instance, in H(Ep|EA) = H(Ep|Ep1 . . . Epr).

The mappings πi define a secret sharing scheme Σ with access structure Γ on the set P of
participants if H(E0|EA) = 0 if A ∈ Γ while H(E0|EA) = H(E0) if A /∈ Γ. In this situation,
every random choice of an element x ∈ E, according to the given probability distribution, results
in a distribution of shares ((sp)p∈P , s0), where sp = πp(x) ∈ Ep is the share of the participant
p ∈ P and s0 = π0(x) ∈ E0 is the shared secret value.

Since the security of a system decreases with the amount of information that must be kept
secret, the length of the shares is an important parameter in secret sharing, whose optimization
is the main object of this work. We define the complexity of a secret sharing scheme Σ as
σ(Σ) = maxp∈P H(Ep)/H(E0), that is, the maximum length of the shares in relation to the
length of the secret. The value ρ(Σ) = 1/σ(Σ) is called the information rate of the scheme. The
optimal complexity σ(Γ) of an access structure Γ is defined as the infimum of the complexities
σ(Σ) of the secret sharing schemes Σ for Γ. It is not difficult to check that H(Ep) ≥ H(E0)
for every non-redundant participant p ∈ P , and hence σ(Σ) ≥ 1. Secret sharing schemes with
σ(Σ) = 1 are said to be ideal and their access structures are called ideal as well.

For a finite field K , a secret sharing scheme Σ is said to be K -linear if the sets E and Ep

are vector spaces over K , the mappings πp are K -linear mappings, and the uniform probability
distribution is considered in E. By using basic linear algebra, one can check that

⋂
p∈A kerπp ⊆

kerπ0 for every qualified subset A ∈ Γ, while kerπ0 +
⋂

p∈A kerπp = E if A /∈ Γ.
Since all random variables involved in linear secret sharing schemes are uniformly distributed,

H(Ep) = dim(Ep) log |K| for every p ∈ Q. Therefore, the complexity of a linear secret sharing
scheme Σ is σ(Σ) = maxp∈P dimEp/dimE0. As a consequence of the general construction
in [24], every access structure admits a linear secret sharing scheme. For an access structure Γ,
we notate λ(Γ) for the infimum of the complexities of the linear secret sharing schemes for Γ.
Obviously, σ(Γ) ≤ λ(Γ).

2.2 Combinatorial Lower Bounds on the Optimal Complexity

Csirmaz [13] pointed out that the lower bounds on the optimal complexity that are derived
from the basic properties of Shannon entropy, as the ones in [7, 6, 26] and other works, can
be obtained by using polymatroids. This is a consequence of the results by Fujishige [23],
who proved that the joint entropies of a family of random variables define a polymatroid. In
particular, for a secret sharing scheme Σ on a set P of participants, the mapping h : P(Q)→ R
defined by h(A) = H(EA)/H(E0) satisfies the following properties.
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1. h(∅) = 0.

2. h is monotone increasing : if A ⊆ B ⊆ Q, then h(A) ≤ h(B).

3. h is submodular : h(A ∪B) + h(A ∩B) ≤ h(A) + h(B) for every A,B ⊆ Q.

4. For every A ⊆ Q, either h(A ∪ {p0}) = h(A) or h(A ∪ {p0}) = h(A) + 1.

The first three properties imply that the pair S(Σ) = (Q, h) is a polymatroid with ground set Q
and rank function h. The fourth property implies that the dealer p0 is an atomic point of S.
For a polymatroid S = (Q, h) with an atomic point p0 ∈ Q, we define on the set P = Q− {p0}
the access structure

Γ = Γp0(S) = {A ⊆ P : h(A ∪ {p0}) = h(A)}.
In this situation, we say that S is a Γ-polymatroid. The access structure Γ of a secret sharing
scheme Σ is determined by the associated polymatroid S = S(Σ) because Γ = Γp0(S). We define
as well σp0(S) = max{h({x}) : x ∈ P}. Observe that σp0(S) = σ(Σ) if S is the polymatroid
associated to the secret sharing scheme Σ. For every access structure Γ, we consider the value

κ(Γ) = inf{σp0(S) : S is a Γ-polymatroid with Γ = Γp0(S)}.

This parameter was introduced in [30]. Observe that σ(Σ) = σp0(S(Σ)) ≥ κ(Γ) for every secret
sharing scheme Σ with access structure Γ, and hence κ(Γ) ≤ σ(Γ). Every lower bound on the
optimal complexity σ(Γ) that can be obtained by using the so-called Shannon inequalities on
the entropy function is in fact a lower bound on κ(Γ).

2.3 Constructive Upper Bounds on the Optimal Complexity

Upper bounds on the optimal complexity σ(Γ) are obtained by presenting explicit constructions
of secret sharing schemes for Γ. Several decomposition methods to combine some given secret
sharing schemes into a new one have been presented in [11, 19, 26, 33, 37, 38]. The most efficient
schemes that are obtained by these methods are in most cases linear. Therefore, upper bounds
on λ(Γ) are obtained.

The constructions that are used in this paper to find upper bounds on σ(Γ) are obtained
by using the decomposition method presented by Stinson in [38], which is described in the
following. Let Γ be an access structure on a set P of participants. A collection (Γ1, . . . ,Γs) of
(not necessarily different) access structures on P is an `-decomposition of Γ if Γ =

⋃s
i=1 Γi and

` = min
A∈min Γ

|{i : A ∈ min Γi}| .

For every i = 1, . . . , s, consider a K-linear secret sharing scheme Σi with access structure Γi

and set of secrets Ei,0 = Kri . Let Si = S(Σi) = (Q, hi) be the polymatroid associated to the
secret sharing scheme Σi. We assume that hi({p}) = 0 if p is a redundant participant of Γi. As
a consequence of [38, Theorem 2.1], there exists a K-linear secret sharing scheme Σ with access
structure Γ, set of secrets E0 = K`r, where r = lcm{r1, . . . , rs}, and complexity

σ(Σ) =
1
`

max
p∈P

(
s∑

i=1

hi({p})

)
.

Nevertheless, these decompositions method do not provide in general optimal linear secret
sharing schemes, that is, with complexity equal to λ(Γ). There exists the possibility that some
of the upper bounds that we present here could be improved by using the algorithm to construct
linear secret sharing schemes proposed by van Dijk [18], but this has not been explored in this
work.
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3 Reduced Access Structures

We present in this section a reduction procedure that can be applied to any given access struc-
ture. The parameters κ, σ, and λ that are studied here are invariant under this reduction, and
hence it is enough to study them on reduced access structures. Several general properties about
duality and minors of access structures, and also about different kinds of special participants,
are needed to prove the results in this section.

Let Γ be an access structure on a set P . The access structure Γ∗ = {A ⊆ P : P − A /∈ Γ}
is called the dual access structure of Γ. If Σ is a K-linear secret sharing scheme with access
structure Γ, then there exists a K-linear scheme Σ∗ with access structure Γ∗ and complexity
σ(Σ∗) = σ(Σ) [25]. This implies that λ(Γ∗) = λ(Γ). Actually, Σ can be seen as a linear code,
and the linear scheme Σ∗ is the one constructed from the dual code. In addition, it was proved
in [30] that κ(Γ∗) = κ(Γ). On the other hand, no relation between the values of σ(Γ) and σ(Γ∗)
is known.

For an access structure Γ on a set P and a subset Z ⊆ P , we define the access structures Γ\Z
and Γ/Z on the set P−Z by Γ\Z = {A ⊆ P−Z : A ∈ Γ} and Γ/Z = {A ⊆ P−Z : A∪Z ∈ Γ}.
Every access structure that can be obtained from Γ by repeatedly applying the operations \
and / is called a minor of the access structure Γ. If Z1 and Z2 are disjoint subsets then
(Γ \ Z1)/Z2 = (Γ/Z2) \ Z1, and (Γ \ Z1) \ Z2 = Γ \ (Z1 ∪ Z2), and (Γ/Z1)/Z2 = Γ/(Z1 ∪ Z2).
Therefore, every minor of Γ is of the form (Γ \ Z1)/Z2 for some disjoint subsets Z1, Z2 ⊆ P . In
addition, (Γ \ Z)∗ = Γ∗/Z and (Γ/Z)∗ = Γ∗ \ Z.

Proposition 3.1 ([30]). The minors of an ideal access structure are ideal as well. In addition,
if Γ′ is a minor of Γ, then λ(Γ′) ≤ λ(Γ), and σ(Γ′) ≤ σ(Γ), and κ(Γ′) ≤ κ(Γ).

A privileged participant for the access structure Γ is a participant p ∈ P with {p} ∈ Γ. The
co-privileged participants are those that are privileged for the dual access structure. Clearly, a
participant p ∈ P is co-privileged if and only if p ∈ A for every A ∈ min Γ. Two participants
p, q ∈ P are said to be equivalent for the access structure Γ if {p, q} 6⊆ A for every A ∈ min Γ,
and A ∪ {p} ∈ min Γ if and only if A ∪ {q} ∈ min Γ for every A ⊆ P − {p, q}. Two participants
are co-equivalent for Γ if they are equivalent for the dual access structure Γ∗. It is not difficult to
check that p, q ∈ P are co-equivalent for Γ if and only if, for every A ∈ min Γ, either {p, q} ⊆ A
or {p, q} ∩ A = ∅, that is, if and only if the minimal qualified sets containing p coincide with
those containing q.

Proposition 3.2. Let Γ be an access structure on a set P and let p ∈ P be a privileged
participant for Γ. Then σ(Γ \ {p}) = σ(Γ) and σ(Γ∗/{p}) = σ(Γ∗). The same equalities apply
for the parameters κ and λ.

Proof. By Proposition 3.1, σ(Γ \ {p}) ≤ σ(Γ) and σ(Γ∗/{p}) ≤ σ(Γ∗), and the same applies
for the parameters κ and λ. In a (linear) secret sharing scheme for Γ, the participant p can
receive the secret value as its share. Therefore, σ(Γ \ {p}) = σ(Γ) and λ(Γ \ {p}) = λ(Γ).
Given a (linear) secret sharing scheme Σ′ for Γ∗/{p}, a (linear) secret sharing scheme Σ for
Γ∗ is constructed as follows. We can suppose that E0 is a commutative group. To share a
secret value s ∈ E0, a random value s1 ∈ E0 is distributed into shares among the participants
in P − {p} according to Σ′ and the participant p receives s2 = s − s1 ∈ E0 as its share. This
implies that σ(Γ∗/{p}) = σ(Γ∗) and λ(Γ∗/{p}) = λ(Γ∗).

Consider a special participant p0 /∈ P (the dealer) and Q = P ∪{p0}. Let S ′ = (Q−{p}, h′)
be a (Γ \ {p})-polymatroid. Consider the polymatroid S = (Q, h) defined by h(A) = h′(A)
and h(A ∪ {p}) = h′(A ∪ {p0}) for every A ⊆ Q − {p}. Clearly, S is a Γ-polymatroid, and
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hence κ(Γ \ {p}) = κ(Γ). Finally, by the duality properties of this parameter, κ(Γ∗/{p}) =
κ((Γ \ {p})∗) = κ(Γ \ {p}) = κ(Γ) = κ(Γ∗).

Lemma 3.3. Let Γ be an access structure on a set P . Consider a participant p ∈ P and let
Z ⊆ P − {p} be the set of the participants different from p that are co-equivalent to p for Γ.
Then σ(Γ/Z) = σ(Γ).

Proof. By Proposition 3.1, σ(Γ/Z) ≤ σ(Γ). Let Σ′ be a secret sharing scheme for Γ/Z. A secret
sharing scheme Σ for Γ can be constructed from Σ′ as follows. First, a collection of shares for
the secret value according to Σ′ is obtained. Every participant in P − {p} receives the same
share in Σ as in Σ′, while the share corresponding to p according to Σ′ is distributed among the
participants in Z ∪ {p} by using an (m,m)-threshold scheme, where m = |Z|+ 1. Specifically,
we can assume that the set Ep is a commutative group and the share sp for p according to Σ′ is
split by taking random values uq ∈ Ep with sp =

∑
q∈Z∪{p} uq. Clearly, σ(Σ) = σ(Σ′) and this

implies that σ(Γ) = σ(Γ/Z).

Proposition 3.4. Let Γ be an access structure on a set P and let p, q ∈ P be two equivalent
participants for Γ. Then σ(Γ \ {q}) = σ(Γ) and σ(Γ∗/{q}) = σ(Γ∗). The same equalities apply
for the parameters κ and λ.

Proof. By Proposition 3.1, σ(Γ \ {q}) ≤ σ(Γ) and σ(Γ∗/{q}) ≤ σ(Γ∗), and the same applies for
the parameters κ and λ. If Σ′ is a secret sharing scheme for Γ\{q}, a secret sharing scheme Σ for
Γ with σ(Σ) = σ(Σ′) is obtained by giving to q the same share as the one received by p. Clearly,
Σ is linear if Σ′ is so. Therefore, σ(Γ\{q}) = σ(Γ) and λ(Γ\{q}) = λ(Γ). Let S ′ = (Q−{q}, h′)
be a (Γ \ {q})-polymatroid, and consider the polymatroid S = (Q, h) such that h(A) = h′(A)
and h(A ∪ {q}) = h′(A ∪ {p}) for every A ⊆ Q − {q}. Clearly, S is a Γ-polymatroid, and this
implies that κ(Γ \ {q}) = κ(Γ). By duality, λ(Γ∗/{q}) = λ(Γ∗) and κ(Γ∗/{q}) = κ(Γ∗). The
corresponding equality for the parameter σ is a direct consequence of Lemma 3.3.

At this point, we proceed to introduce the reduction procedure for access structures (Defini-
tion 3.5) and to prove that the parameters κ, σ, and λ are invariant under it (Proposition 3.6).
Some notation is needed.

For every positive integer k, consider the set

Uk = {bk−1 . . . b1b0 : bi ∈ {0, 1}} − {0 . . . 0, 1 . . . 1},

which has 2k − 2 elements, and, for i = 0, . . . , k − 1, consider

U i
k = {bk−1 . . . b1b0 ∈ Uk : bi = 1} ⊆ Uk.

For a subset U ⊆ Uk, we define the access structure Γk(U) on U by

Γk(U) = {A ⊆ U : U ∩ U i
k ⊆ A for some i = 0, . . . , k − 1}.

Every minimal qualified subset of Γk(U) is of the form U ∩ U i
k for some i = 0, . . . , k − 1.

Therefore, the number of minimal qualified subsets of Γk(U) is at most k, and in some cases
it is less than k. For instance, the access structure Γk(U i

k) has exactly k − 1 minimal qualified
subsets.

In order to illustrate the use of this notation, we analyze in more detail the case k = 4, which
is actually the one that is mainly considered in this paper. For a more compact presentation, we
identify the elements in U4 with the integers that have the corresponding binary representations,
and we write them in the hexadecimal system. That is,

U4 = {00012, . . . , 11102} = {1, 2, 3, 4, 5, 6, 7, 8, 9,A,B,C,D,E}.

Then the subsets U i
4 can be written as
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• U0
4 = {1, 3, 5, 7, 9,B,D},

• U1
4 = {2, 3, 6, 7,A,B,E},

• U2
4 = {4, 5, 6, 7,C,D,E}, and

• U3
4 = {8, 9,A,B,C,D,E}.

For instance, for U = {3, 5, 6, 9,A,C} ⊆ U4, the minimal qualified subsets of the access structure
Γ4(U) are U ∩ U0

4 = {3, 5, 9}, U ∩ U1
4 = {3, 6,A}, U ∩ U2

4 = {5, 6,C}, and U ∩ U3
4 = {9,A,C}.

Let Γ be an access structure on a set P with exactly k minimal qualified subsets min Γ =
{A0, A1, . . . , Ak−1}. The incidence vector of a participant p ∈ P is the bit sequence χ(p,Γ) =
bk−1 . . . b1b0, where bi = 1 if p ∈ Ai and bi = 0 otherwise. The weight w(p) of the participant
p ∈ P in Γ is defined as the Hamming weight of its incidence vector. Observe that a participant
with χ(p,Γ) = 1 . . . 1 is co-privileged for Γ, and that two participants are co-equivalent for Γ
if they have the same incidence vector. In addition, every participant with χ(p,Γ) = 0 . . . 0 is
redundant. Therefore, if Γ has neither co-privileged nor redundant participants and every two
different participants are not co-equivalent, we can identify every participant to its incidence
vector, and hence the set of participants can be identified to a subset of Uk. This leads us to
the following definition.

Definition 3.5. Let Γ be an access structure on a set P of participants with exactly k minimal
qualified subsets min Γ = {A0, A1, . . . , Ak−1}. Consider the set

χ(P,Γ) = {χ(p,Γ) : p ∈ P} − {0 . . . 00, 1 . . . 11} ⊆ Uk.

Then the access structure Γk(χ(P,Γ)) on the set χ(P,Γ) is called the reduced form of Γ. We
say that Γ is a reduced access structure if Γk(χ(P,Γ)) is isomorphic to Γ.

Observe that a reduced access structure has neither co-privileged nor redundant participants
and every two different participants are not co-equivalent.

Proposition 3.6. Let Γ be an access structure on a set P with exactly k minimal qualified
subsets and let Γ′ = Γk(χ(P,Γ)) be its reduced form. Then σ(Γ) = σ(Γ′) and the same applies
to the parameters κ and λ.

Proof. A direct consequence of Propositions 3.2 and 3.4.

Therefore, in order to determine the values of the parameters κ, σ, and λ for the access
structures with k minimal qualified subsets, it is enough to consider the access structures of
the form Γk(P ) with P ⊆ Uk. That is, we have to consider only access structures on at most
2k − 2 participants. For a set P ⊆ Uk, we notate σ(P ) = σ(Γk(P )). We have then a mapping
σ : P(Uk)→ R. The same notation is used for the parameters κ and λ.

Proposition 3.7. The mapping σ : P(Uk) → R is monotone increasing, and the same applies
to the mappings defined by the parameters κ and λ.

Proof. If P1 ⊆ P2 ⊆ Uk, then Γk(P1) is a minor of Γk(P2). Specifically, Γk(P1) = Γk(P2)/Z,
where Z = P2 − P1. Therefore, σ(P1) ≤ σ(P2).

Finally, observe that every permutation τ on the set of indices {0, 1, . . . , k − 1} induces a
permutation (that we also denote by τ) on Uk. Clearly, the access structures Γk(P ) and Γk(τP )
are isomorphic for every P ⊆ Uk. For instance, if k = 4, the permutation τ = 3210 transforms
P1 = {3, 7, 8,D,E} ⊆ U4 into P2 = {1, 7,B,C,E} ⊆ U4, and hence Γ4(P1) ∼= Γ4(P2).
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4 Access Structures with at Most Four Minimal Qualified Sub-
sets

Our objective is to find out as much as possible about the values of the optimal complexities of
the access structures with at most four minimal qualified subsets. To this end, we are interested
also on the values of the parameters κ and λ for those access structures. As we saw in Section 3,
it is enough to determine the values of these parameters for the reduced access structures of the
form Γ4(P ) with P ⊆ U4, that is, to determine κ(P ), σ(P ), and λ(P ) for P ⊆ U4.

4.1 Known Results

The ideal access structures with at most four minimal qualified subsets were characterized
in [28]. In particular, as a consequence of the results in [28], an access structure Γ4(P ) is ideal
that if and only if λ(P ) = κ(P ) = 1 and, in addition, κ(P ) ≥ 3/2 if Γ4(P ) is not ideal. The
results in [28] are described in more detail in the following by using the representation for such
access structures that has been introduced in Section 3. This makes it possible to present the
results in [28] in a more compact way.

Every access structure with at most two minimal qualified subsets, admits an ideal K-linear
secret sharing scheme for every finite field K. The next proposition is a characterization of the
ideal access structures with three minimal qualified subsets.

Proposition 4.1 ([28]). Consider P1 = {3, 5, 6} ⊆ U3 and P2 = {1, 2, 3, 4} ⊆ U3. Then Γ3(P1)
and Γ3(P2) admit ideal K-linear secret sharing schemes for every finite field with |K| ≥ 3. In
addition, an access structure with three minimal qualified subsets is ideal if and only if its reduced
form is isomorphic to an access structure of the form Γ3(P ) with P ⊆ Pi for some i = 1, 2.

The optimal complexities of all access structure with three minimal qualified subsets were
determined in [28]. Actually, such an access structure Γ is either ideal with κ(Γ) = σ(Γ) =
λ(Γ) = 1 or it satisfies κ(Γ) = σ(Γ) = λ(Γ) = 3/2.

Proposition 4.2 ([28]). Let Γ be a non-ideal access structure with three minimal qualified
subsets. Then κ(Γ) = σ(Γ) = λ(Γ) = 3/2. Moreover, for every finite field K, there exists a
K-linear secret sharing scheme Σ for Γ with set of secrets E0 = K2 such that, if h is the rank
function of the polymatroid S(Σ) defined by Σ, then h({p}) = 1 if the participant p has weight
w(p) = 1 or w(p) = 3, while h({p}) = 3/2 whenever w(p) = 2.

We present in the following the characterization of the ideal access structures with four
minimal qualified subsets.

Proposition 4.3 ([28]). Consider the following subsets Pi ⊆ U4: P1 = {1, 2, 3, 4, 8,C}, P2 =
{1, 6,A,C,E}, P3 = {1, 2, 3, 4, 7, 8}, P4 = {3, 5, 6, 9,A,C}, and P5 = {7,B,D,E}. Then Γ4(Pi)
admits an ideal K-linear secret sharing scheme for every i = 1, 2, 3, 4 and for every finite field
with |K| ≥ 4. Moreover, an access structure with at most four minimal qualified subsets is
ideal if and only if its reduced form is isomorphic to an access structure of the form Γ4(P ) with
P ⊆ Pi for some i = 1, 2, 3, 4.

The next proposition contains the only result about the optimal complexity of the non-ideal
access structures with four minimal qualified subsets that can be derived from the results in [28].
The main objective of this work is to find better bounds on σ(Γ) for the access structures in
that family.

Proposition 4.4 ([28]). Let Γ be a non-ideal access structure with four minimal qualified sub-
sets. Then 3/2 ≤ κ(Γ) ≤ σ(Γ) ≤ λ(Γ) ≤ 2.
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4.2 Upper Bounds on the Optimal Complexity

By using the decomposition method by Stinson [38] that is described in Section 2.3, we present
in this section some upper bounds on λ(Γ), and hence on σ(Γ), for access structures Γ with four
minimal qualified subsets.

Unless otherwise is stated, we consider from now on only subsets P ⊆ U4 such that Γ4(P ) has
exactly four minimal qualified subsets, that is, min Γ4(P ) = {B0, B1, B2, B3}, where Bi = P∩U i

4.
The substructures Λi,j(P ) and Φi(P ) of Γ4(P ) are defined by min Λi,j(P ) = {Bi, Bj} and
min Φi(P ) = min Γ4(P )− {Bi}.

Our first result is an improvement of the general upper bound given in [28] (Proposition 4.4).

Proposition 4.5. σ(U4) ≤ λ(U4) ≤ 11/6.

Proof. The four substructures Φi = Φi(U4) form a 3-decomposition of Γ = Γ4(U4) because every
Bj ∈ min Γ is in the three substructures Φi with i 6= j. By Proposition 4.2, there exists a linear
secret sharing scheme Σi for the structure Φi such that, if Si = (Q, hi) is the polymatroid
associated to Σi, then

• hi({p}) = 0 if p has weight 0 in Φi, that is, if p is redundant for Φi,

• hi({p}) = 1 if the weight of p in Φi is 1 or 3, and

• hi({p}) = 3/2 if p has weight 2 in Φ.

Then, by using the results described in Section 2.3, there exists a linear secret sharing scheme Σ
for Γ with complexity σ(Σ) = maxp∈U4

(∑3
i=0 hi({p})

)
/3. Consider the participant 00012 = 1.

Clearly, h0({1}) = 0 while hi({1}) = 1 if i = 1, 2, 3. Therefore,
∑3

i=0 hi({1}) = 3. By symmetry,∑3
i=0 hi({p}) = 3 for every participant p with weight 1 in Γ. For a participant with weight 2

like for instance the participant 00112 = 3, we have h0({3}) = h1({3}) = 1 and h2({3}) =
h3({3}) = 3/2. Hence,

∑3
i=0 hi({3}) = 5. Finally h3({7}) = 1 while hi({7}) = 3/2 if i = 0, 1, 2,

and hence
∑3

i=0 hi({7}) = 11/2. Therefore, σ(Σ) = maxp∈U4

(∑3
i=0 hi({p})

)
/3 = 11/6.

The next two propositions provide upper bounds on λ(P ) depending on the number of
substructures Φi(P ) that are ideal.

Proposition 4.6. If P ⊆ U4 is such that at least one of the substructures Φi(P ) is ideal, then
σ(P ) ≤ λ(P ) ≤ 5/3.

Proof. Assume that Φ0 = Φ0(P ) is an ideal access structure. Then (Φ0,Φ0,Λ0,1,Λ0,2,Λ0,3) is a
3-decomposition of Γ = Γ4(P ) formed by access structures that admit ideal linear secret sharing
schemes over every large enough finite field. Then a linear secret sharing scheme Σ for Γ with
complexity σ(Σ) = 5/3 is obtained from this decomposition.

Proposition 4.7. If P ⊆ U4 is such that at least two of the substructures Φi(P ) are ideal, then
σ(P ) ≤ λ(P ) ≤ 3/2.

Proof. Assume that the substructures Φ0 and Φ1 of Γ = Γ4(P ) are ideal. Then (Φ0,Φ1,Λ0,1) is
a 2-decomposition of Γ consisting of three vector space access structures. From this decompo-
sition, a secret sharing scheme Σ for Γ with complexity σ(Σ) = 3/2 can be constructed.

The upper bound in the following proposition depends on the configuration of the parti-
cipants with weights 2 and 3 in the structure. Of course, the bound applies as well to the
structures that satisfy the condition after permuting the indices of the minimal qualified subsets.
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Proposition 4.8. If P ∩ {5, 7,A,B,D,E} = ∅, then σ(P ) ≤ λ(P ) ≤ 3/2.

Proof. Observe that (Λ0,1,Λ1,2,Λ2,3,Λ0,3) is a 2-decomposition of Γ = Γ4(P ). We assert that
every p ∈ P is redundant in at least one of the substructures in the decomposition. Clearly
this is the case for the participants with weight 1 in Γ. The participants 11002 = C, 10012 = 9,
00112 = 3, and 01102 = 6 are redundant, respectively, in the structures Λ0,1, Λ1,2, Λ2,3, and
Λ0,3. This proves our assertion. Therefore, the given decomposition provides a secret sharing
scheme Σ for Γ with complexity σ(Σ) = 3/2.

Finally, the last two propositions in this section present upper bounds on λ(P ) depending
on the number of participants with weight 3.

Proposition 4.9. If |P ∩ {7,B,D,E}| ≤ 1, then σ(P ) ≤ λ(P ) ≤ 5/3.

Proof. By symmetry, we can suppose that P ∩ {B,D,E} = ∅. Consider the 3-decomposition
of Γ = Γ4(P ) given by (Γ1, . . . ,Γ5) = (Φ3,Φ3,Λ0,3,Λ1,3,Λ2,3). For i = 1, . . . , 5, there exists a
linear secret sharing Σi for Γi such that Σi is ideal if i = 3, 4, 5 and σ(Σi) = 3/2 if i = 1, 2. In
addition, if Si = (Q, hi) is the polymatroid associated to Σi, then the following properties are
satisfied.

• If p has weight 1 in Γ, then
∑5

i=1 hi({p}) ≤ 5.

• If p has weight 2 in Γ and p ∈ B3, then h1({p}) = h2({p}) = 1 because p has weight 1 in
Φ3, and hence

∑5
i=1 hi({p}) = 5.

• If p has weight 2 in Γ and p /∈ B3, then h1({p}) = h2({p}) = 3/2 and hi({p}) = 0 for
some i = 3, 4, 5. Then

∑5
i=1 hi({p}) = 2(3/2) + 2 = 5.

• If p = 01112 = 7, then p has weight 3 in Φ3, and hence h1({p}) = h2({p}) = 1. This
implies that

∑5
i=1 hi({p}) = 5.

Therefore, there exists a linear secret sharing scheme Σ for Γ with complexity σ(Σ) = 5/3.

Proposition 4.10. If |P ∩ {7,B,D,E}| = 2, then σ(P ) ≤ λ(P ) ≤ 7/4.

Proof. Assume that P ∩{7,E} = ∅ and consider the 2-decomposition (Φ1,Φ2,Λ1,2) of Γ = Γ4(P )
and the corresponding linear secret sharing schemes Σi for i = 1, 2, 3. If p has weight 3 in Γ,
then p = 10112 = B or p = 11012 = D. Observe that h1({B}) = 3/2 and h2({B}) = 1, while
h1({D}) = 1 and h2({D}) = 3/2. Therefore,

∑3
i=1 hi({p}) = 3/2 + 1 + 1 = 7/2 if w(p) = 3.

If p = 10012 = 9, then h1({p}) = h2({p}) = 3/2 and h3({p}) = 0. If p = 01102 = 6, then
hi({p}) = 1 for every i = 1, 2, 3. If p is any other participant with weight 2, then p has weight
1 in Φ1 or in Φ2, and hence

∑3
i=1 hi({p}) = 3/2 + 1 + 1 = 7/2. Finally, hi({p}) ≤ 1 for every

i = 1, 2, 3 if p has weight 1 in Γ.

4.3 Lower Bounds on the Optimal Complexity

For every given access structure Γ, the value κ(Γ) is the solution to a linear programming
problem. Nevertheless, the number of variables and constraints is exponential on the number
of participants, and hence it is only possible to determine κ(Γ) by using linear programming if
the number of participants is not too large. Actually, we have been able to determine in this
way the value of κ(Γ) for every access structure Γ with four minimal qualified sets on at most
nine participants. In this section, we discuss this linear programming approach.
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By ordering in some way the elements in P(Q), the rank function of a polymatroid S = (Q, h)
can be seen as a vector h = (h(A))A⊆Q ∈ Rm, where m = 2|Q|. The axioms of polymatroids
impose a number of linear constraints on the vector h. If, in addition, we assume that S is a
Γ-polymatroid for some access structure on P = Q − {p0}, then other linear constraints on h
appear. We obtain in this way the feasible region Ω(Γ) ⊆ Rm+1 of our linear programming
problem. Namely, a vector (h, κ) ∈ Rm+1 is in Ω(Γ) if and only if h is the rank function of
a Γ-polymatroid and h({i}) ≤ κ for every i ∈ P . Since every access structure Γ admits a
Γ-polymatroid, Ω(Γ) 6= ∅. Obviously κ(Γ) is the solution to the problem:

Minimize κ
subject to (h, κ) ∈ Ω(Γ).

The number of constraints to define the feasible region can be reduced by using the following
characterization of polymatroids given by Matúš [31]. Namely, h : P(Q) → R is the rank
function of a polymatroid S = (Q, h) if and only if

1. h(∅) = 0,

2. h(Q− {i}) ≤ h(Q) for every i ∈ Q, and

3. h(A∪ {i}) + h(A∪ {j}) ≥ h(A∪ {i, j}) + h(A) for every i, j ∈ Q with i 6= j and for every
A ⊆ Q− {i, j}.

Moreover, we can further reduce the number of constraints by taking into account that a poly-
matroid S = (Q, h) is a Γ-polymatroid if and only if

1. h({p0}) = 1,

2. h(A ∪ {p0}) = h(A) if A ⊆ P is a minimal qualified subset of Γ, and

3. h(B ∪ {p0}) = h(B) + 1 if B ⊆ P is a maximal unqualified subset of Γ.

5 Determining the Optimal Complexity of the Access Struc-
tures with Four Minimal Qualified Subsets

In this section we present our results about the values of the considered parameters for access
structures with exactly four minimal qualified subsets. As we explained in Section 4.1, these
values are known for access structures with less that four minimal qualified subsets. Specifically,
we present in this section all the information that we have been able to determine about the
values of κ(P ), σ(P ), and λ(P ) for the subsets P ⊆ U4 such that the access structure Γ4(P )
has exactly four minimal qualified subsets. In order to simplify the notation, we represent the
subsets of U4 by the increasingly ordered sequence of their elements. For instance, we write
136ABE for the subset {1, 3, 6,A,B,E}.

A computer program has been used to explore all non-isomorphic access structures Γ4(P )
with P ⊆ U4 that have four minimal qualified subsets. First, the sequences representing subsets
of U4 that define access structures with less than four minimal qualified subsets are discarded.
Next, the remaining sequences are ordered, first by their length then lexicographically. Finally,
a single representant of every isomorphism class is selected in the following way: at every
step, the first non-selected subset is picked and all other subsets that can be obtained from it
by permuting the indices of the minimal qualified subsets are removed from the list. In this
way, we obtain an ordered list of all non-isomorphic reduced access structures with four minimal
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subsets. In addition, for every isomorphism class, we have selected the lexicographically smallest
representant. By following this procedure, a list of subsets P ⊆ U4 defining all non-isomorphic
reduced access structures with four minimal qualified subsets is obtained, and we find out that
there are 606 such access structures.

By using the linear programming approach presented in Section 4.3, we have been able to
determine the values of κ(P ) for all such subsets with |P | ≤ 9. We observe that, for every
one of these subsets, κ(P ) ∈ {1, 3/2, 5/3, 7/4}. By using these values in combination with
Propositions 3.7, 4.3, and 4.4, the upper bounds in Section 4.2, and the results by Stinson [36]
and Jackson and Martin [26] about access structures on four and five participants, we can
determine the value of σ(P ) for a number of subsets P ⊆ U4 in the aforementioned list, and
lower and upper bounds on this parameter for the other subsets. All these values and bounds
are presented in nine tables. The subsets for which we determined the exact value of σ(P ) are
listed in the first three tables. Namely, the subsets defining ideal access structures are listed
in Table 1. The subsets in Table 2 are such that κ(P ) = σ(P ) = λ(P ) = 3/2, while the ones
in Table 3 satisfy κ(P ) = σ(P ) = λ(P ) = 5/3. We were not able to determine the exact
value of σ(P ) for the subsets in the remaining five tables, and only lower and upper bounds
are given. In all these tables, the value of κ(P ) attains the lower bound whenever |P | ≤ 9. In
addition, one of the anonymous referees computed the exact values of κ(P ) for some subsets
with |P | = 10, 11. For these subsets, which are marked in the tables with an asterisk (∗), the
value of κ(P ) coincides as well with the lower bound. In particular, this implies that the value
of κ(P ) has been determined for all subsets appearing in Tables 4, 5 and 6.

In the following, we describe in more detail how the bounds in those tables have been ob-
tained. Table 1 is derived from the characterization of the ideal access structures with at most
four minimal subsets from [28], which is presented here in Proposition 4.3. The optimal com-
plexities of all access structures on four participants and of most of the ones on five participants
were determined, respectively, by Stinson [36] and by Jackson and Martin [26]. In particular,
the optimal complexities of all reduced access structures with four minimal qualified subsets
that are defined from sets with |P | ≤ 5 can be found in those works. For all such subsets,
κ(P ) = σ(P ) = λ(P ). For some subsets with 6 ≤ |P | ≤ 9, the value of κ(P ) that has been
obtained by using linear programming matches one of the upper bounds on λ(P ) given in Sec-
tion 4.2. Clearly, κ(P ) = σ(P ) = λ(P ) and the value of σ(P ) is determined for those subsets. In
addition, in some cases in which the value of κ(P ) was not found by using linear programming,
the lower bound on κ(P ) coincides with the upper bound on λ(P ), and hence the exact value of
σ(P ) is obtained. These sets appear in Table 3. Consider, for instance, the set P = 123456789A.
By Proposition 3.7, we know that κ(P ) ≥ 5/3 because it contains the set P ′ = 1234579A, which
has κ(P ′) = 5/3. On the other hand, λ(P ) ≤ 5/3 by Proposition 4.9. Of course, similar
methods have been applied to find the lower and upper bounds for the subsets appearing in
Tables 4 to 9. For example, take P = 123456789B. By Proposition 4.10, λ(P ) ≤ 7/4. The
permutation τ = 2013 on the indices of the minimal qualified subsets transforms P ′ = 13249E
into τP ′ = 24568B ⊆ P , and hence κ(P ) ≥ κ(τP ′) = κ(P ′) = 5/3 by Proposition 3.7.

6 Open Problems

The problem of determining the optimal complexity of all access structures with four minimal
qualified subsets remains unsolved. The main question at this point is whether it is possible
to find all values of σ(P ) with P ⊆ U4 by using the tools in this paper or new techniques are
needed. This question can be rephrased actually in terms of the parameters that have been
studied in this paper. If κ(P ) = σ(P ) = λ(P ) for every P ⊆ U4, then the techniques deployed
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|P | = 4 |P | = 5 |P | = 6
1248
16AC
35AC
7BDE

12348
12478
16ACE
3569A

123478
12348C
3569AC

Table 1: κ(P ) = σ(P ) = λ(P ) = 1

|P | = 4 |P | = 5 |P | = 6 |P | = 7 |P | = 8
16AD
359E

1249A
1249E
1259C
125AC
127BC
135AC
136AC
167AC
167AD
16ADE
16BDE
17BDE
3569E
3579E
357AC
35ADE
35BDE
37BDE

123458
12348D
12349A
12349C
1234BC
1235AC
1237BC
12478B
12479E
1249AB
1249AD
12569A
1259CD
167ACE

1234568
1234578
123458A
123458B
12345AC
123478B
123478C
12347BC
12348DE
12349AB

12345678
123458AC
123478BC

Table 2: κ(P ) = σ(P ) = λ(P ) = 3/2

in this paper would be enough to determine all values of σ(P ). Only that they should be used
in a more powerful way, and maybe new methods to construct linear secret sharing schemes, as
for instance the one proposed in [18], are required. On the other hand, if there existed subsets
P ⊆ U4 such that κ(P ) < σ(P ) or σ(P ) < λ(P ), then new techniques would be necessary.
In the first case, non-Shannon information inequalities would be needed to find tight lower
bounds on σ(P ). In the second case, constructions of non-linear secret sharing schemes would
be required to find tight upper bounds on σ(P ). Actually there exist in the literature examples
of access structures such that κ(Γ) < σ(Γ) [1] or σ(Γ) < λ(Γ) [3]. Examples of graph-based
access structures with κ(Γ) < λ(Γ) have been presented in [14].
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|P | = 5, 6 |P | = 7 |P | = 8 |P | = 9, 10, 11

1259E
125BC
1359E
136AD
136BC

12349E
12359E
1235BC
12479A
1249BE
12569E
1256BC
12579C
12579E
1257AC
1257BC
1259CE
1259DE
125BCD
125BCE
13569E
1356AD
13579E
1357AC
135ACE
1367AC
1367AD
1367BC
136ACD
136ADE
136BCD
136BCE

123458E
123459E
12345AD
123478D
123479A
123479C
123479E
12349AD
12349BE
12349CE
12349DE
123569E
12356BC
123579C
123579E
12357AC
12357BC
12359CE
12359DE
1235ACD
12479AB
12479AC
12479AD
1249ABD
125679C
125679E
12567BC
12569AD
12569BC
12569CE
12579CD
1257ACD
1259CDE
135679E
13567AC
13567AD
13569AD
13569AE
1356ABC
1356ACE
136ACDE

1234568B
1234569E
1234578B
1234578E
1234579A
1234579E
123457AC
123457AD
1234589E
123458AD
123458BE
123459AD
123459AE
123459BE
12345ABC
12345ACE
123479AB
123479AC
123479BC
12349ABD
12349ACD
12349CDE
1235679C
1235679E
123567BC
123569AD
123569BC
123569CD
123569CE
12359CDE
12479ABC
125679AC
12569ACD
12569BCD
135679AC
13569ACE

12345678B
12345679A
12345679E
12345689B
12345689E
1234569AB
1234569AD
12345789E
1234578AC
1234578AD
1234579AC
123459ABC
123459ABE
123459ACE
123479ABC
1235679AC
123569ACD

123456789A
123456789E
12345679AC
12345689AD
1234569ABC

123456789AC

Table 3: κ(P ) = σ(P ) = λ(P ) = 5/3
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|P | = 6 |P | = 7 |P | = 8 |P | = 9, 10

12359C
1249AC
12569C
125ACD
13569A
1356AC
135ABC
136ACE
167ABC
167ABD
167ADE
167BDE
35679A
35679E
3569AD
356BDE
357BDE

1234589
123459A
12349AC
12349BC
12349CD
123569A
123569C
12359CD
1249ABC
125679A
12569AC
12569CD
135679A
13569AC
167ABCD
167ABCE
167ABDE
35679AC
3567BDE

12345689
1234569A
12345789
1234578A
123459AB
123459AC
12349ABC
1235679A
123569AC
167ABCDE

123456789
12345689A
1234569AC

12345689AC∗

Table 4: 3/2 = κ(P ) ≤ σ(P ) ≤ λ(P ) ≤ 5/3

|P | = 6 |P | = 7 |P | = 8 |P | = 9

3569BE
357ABC
357ACE

135ABCD
35679AB
35679AD
3569ADE

125679AB
135679AB
35679ABC

1235679AB

Table 5: 3/2 = κ(P ) ≤ σ(P ) ≤ λ(P ) ≤ 7/4

|P | = 6 |P | = 7 |P | = 8 |P | = 9, 10

3579BE
357ADE
37BCDE

35679BE
3569BDE
3579BDE
357ABCD
357ABDE

35679ABD
35679ADE
35679BDE
357ABCDE

35679ABCD
35679ABDE

35679ABCDE∗

Table 6: 3/2 = κ(P ) ≤ σ(P ) ≤ λ(P ) ≤ 11/6
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|P | = 6, 7 |P | = 8 |P | = 9 |P | = 10, 11, 12

125ADE
135ADE

1234BCD
1235ADE
1235BCD
1235BCE
1249ADE
12569BE
12569DE
1256BCD
12579BC
12579CE
1257ABC
1257ACE
125ACDE
13569BE
1356ABD
1356ADE
1357ABC
1357ACE
135ABCE
1367ABC
1367ACD
1367ACE

123458BD
12345ABD
12345ADE
123478CD
123479AD
123479CD
123479CE
12349ADE
12349BCD
12349BCE
123569BE
123569DE
12356BCD
123579BC
123579CD
123579CE
12357ABC
12357ACD
12357ACE
1235ACDE
1249ABCD
125679AD
125679BC
125679CD
125679CE
12569ADE
12569BCE
12569CDE
135679AD
135679AE
13567ABC
13567ACE
13569ADE
1356ABCD
1356ABCE

1234568BD
1234569BE
12345789B
1234578AB
1234578AE
1234579AB
1234579AD
1234579AE
123457ABC
123457ACE
123458ADE
123459ABD
123459ADE
12345ABCD
12345ABCE
123479ACD
12349ABCD
12349ACDE
1235679AD
1235679BC
1235679CD
1235679CE
123569ADE
123569BCD
123569BCE
123569CDE
125679ABC
125679ACD
12569ACDE
135679ABC
135679ACE

123456789B
12345679AB∗

12345679AD
12345689BD∗

12345689BE
1234569ABD
1234569ADE
1234578ABC
1234578ACE∗

1234579ABC∗

1234579ACE
123459ABCD∗

123459ABCE∗

1235679ABC∗

1235679ACD∗

123569ACDE∗

123456789AB∗

123456789AD
12345679ABC
12345689ADE
1234569ABCD

123456789ABC

Table 7: 5/3 ≤ κ(P ) ≤ σ(P ) ≤ λ(P ) ≤ 7/4
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|P | = 6 |P | = 7 |P | = 8 |P | = 9, 10

127BCD
137BCE

1237BCD
1257BCD
1367ABD
1367BCD
1367BCE

12357BCD
12579BCD
13567ABD
1357ABCD
1367ABCD
1367ABCE

123579BCD
135679ABD
13567ABCD

135679ABCD

Table 8: 5/3 ≤ κ(P ) ≤ σ(P ) ≤ λ(P ) ≤ 11/6

|P | = 6, 7 |P | = 8 |P | = 9 |P | = 10 |P | = 11, 12, 13, 14

124BDE
125BDE
127BDE
135BDE
136BDE
137BDE

1234BDE
1235BDE
1237BDE
12478BD
12479BE
1247BDE
1249BDE
1256BDE
12579BE
12579DE
1257ADE
1257BCE
1257BDE
125BCDE
127BCDE
1356BDE
13579BE
1357ADE
1357BDE
135ABDE
1367ADE
1367BDE
136BCDE
137BCDE

12345BDE
123478BD
123478DE
123479BE
123479DE
12347BCD
12347BDE
12349BDE
1234BCDE
12356BDE
123579BE
123579DE
12357ADE
12357BCE
12357BDE
1235BCDE
1237BCDE
12478BDE
12479ABD
12479ADE
12479BDE
1249ABDE
125679BE
125679DE
12567BCD
12567BDE
12569BDE
1256BCDE
12579BCE
12579BDE
12579CDE
1257ABCD
1257ABDE
1257ACDE
1257BCDE
135679BE
13567ADE
13567BDE
13569BDE
1356ABDE
13579BDE
1357ABCE
1357ABDE
135ABCDE
1367ABDE
1367ACDE
1367BCDE

123456BDE
1234578BD
1234578BE
1234579BE
123457ABD
123457ADE
123457BDE
123458BDE
123459BDE
12345ABDE
123478BCD
123478BDE
123479ABD
123479ADE
123479BCD
123479BCE
123479BDE
123479CDE
12347BCDE
12349ABDE
12349BCDE
1235679BE
1235679DE
123567BCD
123567BDE
123569BDE
12356BCDE
123579BCE
123579BDE
123579CDE
12357ABCD
12357ABDE
12357ACDE
12357BCDE
12479ABCD
12479ABDE
1249ABCDE
125679ABD
125679ADE
125679BCD
125679BCE
125679BDE
125679CDE
12567BCDE
12569BCDE
12579BCDE
1257ABCDE
135679ABE
135679ADE
135679BDE
13567ABCE
13567ABDE
1356ABCDE
1357ABCDE
1367ABCDE

12345678BD
12345679BE
1234567BDE
1234568BDE
1234569BDE
12345789BD
12345789BE
1234578ABD
1234578ADE
1234578BDE
1234579ABD
1234579ABE
1234579ADE
1234579BDE
123457ABCD
123457ABCE
123457ABDE
123459ABDE
12345ABCDE
123478BCDE
123479ABCD
123479ABDE
123479ACDE
123479BCDE
12349ABCDE
1235679ABD
1235679ADE
1235679BCD
1235679BCE
1235679BDE
1235679CDE
123567BCDE
123569BCDE
123579BCDE
12357ABCDE
12479ABCDE
125679ABCD
125679ABDE
125679ACDE
125679BCDE
135679ABCE
135679ABDE
13567ABCDE

123456789BD
123456789BE
12345678BDE
12345679ABD
12345679ADE
12345679BDE
12345689BDE
1234569ABDE
12345789BDE
1234578ABCD
1234578ABDE
1234579ABCD
1234579ABCE
1234579ABDE
123457ABCDE
123459ABCDE
123479ABCDE
1235679ABCD
1235679ABDE
1235679ACDE
1235679BCDE
125679ABCDE
135679ABCDE

123456789ABD
123456789ADE
123456789BDE
12345679ABCD
12345679ABDE
1234569ABCDE
1234578ABCDE
1234579ABCDE
1235679ABCDE

123456789ABCD
123456789ABDE
12345679ABCDE

123456789ABCDE

Table 9: 7/4 ≤ κ(P ) ≤ σ(P ) ≤ λ(P ) ≤ 11/6
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