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Abstract. We present a pattern-based approach for simulating the steer-
ing behavior of pedestrians, which aims to imitate the way that real
pedestrians perceive spatial-temporal information and make steering de-
cisions in daily-life situations. Novel representations of spatial-temporal
patterns are proposed that allow modelers to intuitively and naturally
specify some prototypical patterns for various steering behaviors. Based
on the spatial-temporal patterns, a hierarchical pattern matching pro-
cess has been developed, which simulates how pedestrians process spatial
temporal information and make steering decisions. Experimental results
show that this new approach is quite promising and capable of producing
human-like steering. We hope that the idea presented in this paper can
direct researchers in this area with a fresh perspective.
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1 Introduction

Simulation of pedestrian navigational behaviors has a wide range of applications
in crowd simulation, digital entertainment, and safety planning etc. Although
humans are able to move smoothly almost effortlessly even in crowded places,
it is still a challenging task for computer programs to imitate such behaviors
realistically.

From a computational modeling point of view, the complex navigational be-
haviors are typically generated from activities of an agent at two levels: path
planning and locomotion. Path planning can be considered as the higher-level
behavior that generates a global path directing the agent to the goal. This typ-
ically considers static aspects of the environment, such as walls and doorways.
Locomotion is considered as the lower-level behavior that actuates the agent’s
motion in order to avoid dynamic obstacles. This bi-level methodology is ef-
fective in some applications, but is lacking when it comes to the generation
of realistic human motion. Our work describes a level between the traditional
two, which uses higher-level cognitive information to adjust routes dynamically.
These adjustments essentially try to reduce the likelihood of collisions by adopt-
ing strategies. Our work focuses on this middle level by describing and modeling
strategic steering behaviors.



2 N. Hu et al

In real life, strategic steering behaviors are commonly observed during pedes-
trians’ navigation. Pedestrians will use the strategies to ensure their movement
is smooth and efficient in avoiding collisions. However, we argue that such phe-
nomenon does not necessarily reflect any smart mechanism to guarantee collision-
free movement. In fact, we believe that pedestrians do not need to make complex
decisions in most situations. Instead, they are adapted to relying on simple steer-
ing strategies corresponding to different situations that they are familiar with.
One characteristic of such strategic steering behaviors, which distinguishes it
from locomotive movement, is that proactive planning is involved. When com-
paring to path planning, the steering strategies generally consider sequences of
actions in relative short term of both space and time.

Most existing agent-based approaches rely on various mechanical or steering
rules to prevent agents from colliding with each other. There are two major
disadvantages of this approach: 1) rules are specific to different situations and
are hard to design, it is difficult to naturally relate these rules with human
behaviors; 2) the realism of the generated behaviors is largely determined by the
experience of the designer which needs significant effort in tuning the parameters
involved.

We adopt a different approach. Our work is motivated by some basic assump-
tions which are based on our observations and existing literature on pedestrian
behaviors. It seems that pedestrians achieve efficient steering behaviors relying
on certain implicit criteria to assist their decision. Such criteria need to reflect the
current situation comprehensively while in a sufficiently simple and aggregated
form such that it leads to fast decisions efficiently. We regard such implicit crite-
ria as the formed patterns in our work. We assume that experienced pedestrians
proactively match the perceived spatial-temporal patterns in the situation with
some prototypical cases in their experience to retrieve similar steering strategies
and apply them in an empirical way.

The major advantages of this pattern-based approach include: 1) Intuitive-
ness: it allows modelers to understand and specify patterns intuitively ac-cording
to their experience; 2) Efficiency : complex steering behaviors can be achieved
through proper scheduling among several simple steering strategies based on the
pattern-matching results; and 3) Human-like information processing : human are
efficient in processing information through grouping [1]. Consequently, they are
capable of handling more chunks of information at the same time in a parallel
manner. In our approach, spatial-temporal information is implicitly processed
in a parallel manner and represented in an aggregated form (3D array). The
patterns are capable of handling incomplete information through the proposed
hierarchical pattern matching process.

In our previous work [2], we have proposed a generic framework based on
this pattern-based approach. In this paper, we will focus on the design of the
spatial-temporal patterns based on the agents attention in 2-dimensional space
along a period of time. The pattern-matching process is hierarchical along both
spatial and temporal domains, with differing significance defined by the proposed
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attention model, which can better imitate the decision making process of human
beings.

The rest of the paper is organized as follows: Section 2 describes related work
on steering behavior modeling. The pattern-based framework will be reviewed in
Section 3. The design on the spatial-temporal patterns is detailed in Section 4.
Section 5 describes the hierarchical matching process and includes a concrete
example of the pattern-matching process. Simulation results that demonstrate
the unique features and capabilities of the approach are shown and discussed in
Section 6. Section 7 concludes the paper and outlines ideas for future work.

2 Related Work

There have been many attempts to simulate peoples steering behaviors ever
since Reynolds pioneering work on boids [3]. As one of the essential goals, col-
lision avoidance plays an important role in these works. As motion control and
motion planning [4–6] have been broadly studied, most previous work focuses
on generating optimal, collision-free motion for all entities in the simulation en-
vironment. One representative work is the Reciprocal Velocity Obstacle (RVO)
model [4] and its variants [7–9]. It generally provides a single optimal solution
for all cases. However, we argue that humans are non-optimal in their movement
behavior. For example, collisions do occur in some real world situations.

Another popular approach, rule-based models [10–15] achieve collision avoid-
ance based on pre-defined rules. Depending on the tightness of the rules, colli-
sions may occur and visually appealing simulation is achievable through careful
tuning of the rules. However, rules are likely tightly coupled to specific scenario
conditions, thus such models may not function well in general. It also poses a
challenge for the modelers to specify a complete set of rules capable of generating
realistic simulation results for many different situations.

Example-based approaches have been proposed and applied in steering be-
havior simulation recently [16, 17]. Real-life examples of the moving trajectories
of people are recorded, extracted and stored as the input to a simulation model.
Agents in the simulation analyze the simulation environment and compare it
with the stored examples. Certain stored moving trajectories in the example sit-
uations are applied. Although this work focused on replicating realistic steering
behaviors, the model realism is limited as paths for agents are explicitly syn-
thesized. Only external factors can be extracted from the image or video based
examples, unique traits of individual persons are difficult to incorporate with
this approach.

There is currently a trend to incorporate different cognitive components of
human into behavioural modeling aiming to achieve higher level of realism. [18–
21] focus on psychological factors, [22] integrates emotion in the Recognition-
Primed Decision-making (RPD) Model. In [23], prediction is taken into ac-
count and [24] uses egocentric affordance field for space-time planning in short
term. [25] follow a visual stimuli/motor response control flow by taking cap-
tured image from the real world as input to form the visual stimuli. These
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models demonstrate a good perspective in modeling pedestrian behaviors, that
is the realism of the model. These models aim to generate realistic human-like
behaviors based on a naturalistic decision-making mechanism [26].

3 Pattern-based Decision-Making Framework

In our previous work, we have proposed a pattern-based decision-making frame-
work based on assumptions that try to describe and explain how real pedestrians
navigate through crowds [2]. In this section, we review the previously described
framework and highlight those parts that have been re-designed or further de-
veloped. It is assumed that pedestrians proactively adopt a limited number of
steering strategies to minimize the chances of performing certain reactive or in-
stinctive reactions to resolve imminent collisions. The scheduling and execution
of these steering strategies result in various complex navigational behaviors of
individual pedestrians. Decisions on selection and execution of steering strategies
in a given situation, and at a specific moment in time are based on the matching
results between the currently perceived patterns and the prototypical cases in
their experience base. The overall cognitive process is modelled as a continuous
process following the perceive-decide-act paradigm as shown in Figure 1.
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Fig. 1. Overview of the pattern-based decision-making framework

In the framework, an agent first senses the current situation from its vision,
and the raw sensed data are further processed and filtered by the attention sys-
tem. Prediction is involved to generate comprehensive perception on the spatial
configuration of the current situation along a predicted period of time. The agent
then extracts useful spatial-temporal information from the perceptual data as
patterns to assist its understanding of the current situation. The agent then
matches these patterns against prototypical cases in its experience base. The
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commonly used steering strategy and empirical instructions for the execution
of the steering strategy are associated with the corresponding prototypical case
as a specific experience instance in the experience base. The experience base is
used to model the working memory of a pedestrian during his/her navigation,
where only a limited set of steering strategies commonly applicable to the cur-
rent situational context are retrieved from the long term memory through some
higher level cognitive process.

Different strategy sets should be retrieved for different contexts. However,
the retrieval of specific steering strategy sets corresponding to different contexts
is not the focus of this paper. We will demonstrate the pattern-matching process
based on a given steering strategy set for a restricted bi-directional passageway
context. For this context, our model currently includes three steering strategies:
follow, overtake and side-avoid. They are commonly observed in pedestrians
steering behaviors in daily life.

The scheduling of strategies from the steering strategy set is realized through
a series of strategy selections along a simulation period. The selection of specific
steering strategy at a given time instance is not only based on the pattern-
matching results as mentioned above. It is also influenced by certain internal
factors such as personal traits. Particularly in this work, we consider the com-
mitment levels to their strategic plan and their preferred speed for agents. For
example, agents with lower commitment level will start to execute a steering
strategy upon a relatively low degree of matching of the perceived pattern with
prototypical cases in experience. Consequently, they may change their strategy
more frequently to accommodate the dynamic crowd in the situation. On the
other hand, agents with higher commitment level are more considerate about
their strategic plan. They will not start to execute a steering strategy until they
gain enough confidence from a relatively high degree of pattern matching. As a
result, more smooth steering trajectories are emerged from these agents. Through
such factors, our model can be integrated with some higher-level cognitive model
to generate more complex behaviors.

In the abstract framework level, our current framework is highly consis-
tent with the well-known Recognition-Primed Decision (RPD) model, which is
a proper model to reflect naturalistic decision-making process of human [26].
Each experience instance consists of a pattern (cues in RPD terms) and a steer-
ing strategy. The steering strategy is characterized by the empirical instructions
on how to execute the steering strategy in a specific situation corresponding
to the prototypical pattern. Goals, expectations and actions in RPD terms are
included in the empirical instructions to represent different experience levels of
individual agents on how they behave in terms of steering behaviors. An agent
has two states, one in which a steering strategy is selected and one in which no
steering strategy is selected. When no steering strategy is matched, the patterns
(cues) will be used to select a matching strategy. Once a strategy is selected,
matching is no longer necessary. Instead, the selected steering strategy is exe-
cuted according to the empirical instructions until such time as the expectancies
are violated or the goals have been achieved. Iterations of sensing, perception,
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steering strategy selection (when necessary) and execution continue in the sim-
ulation. An important new feature of the current framework compared with the
previously designed one is the use of violation-check during the strategy execu-
tion process in our model as shown in Figure 1. Perception formation and the
pattern-matching process only occur when a new steering strategy needs to be
made due to the violation of the current strategy. We argue this may reflects the
naturalistic decision-making process of humans as assumed in the RPD model as
well. In real life, people are likely to choose a course of action (steering strategy)
and continue with that course until they find the current situation is no longer
consistent with what they expect. As a result, relative smooth trajectories for
individual pedestrians in their steering process are often observed.

4 Spatial-Temporal Patterns

4.1 Design Requirements

In our framework, patterns function as the implicit criteria to assist agents make
fast decisions during steering strategy selection and execution. To utilize such
functions, the design of patterns needs to meet two requirements:

1. The designed patterns need to reflect useful spatial and temporal information
that is used in the decision-making process comprehensively. More specifi-
cally, they should be comprehensive in a way that:

(a) Sufficient information is captured. For example, not only the spatial
information at the current moment needs to be captured, the change of
such information along a short period of time should also be considered
to imitate the prediction of human.

(b) Significance of information is considered at different positions along both
the spatial and temporal domains based on their impact on the decision-
making process. For example, information immediately in front of the
agent is assumed to be more influential than information gathered from
its visual peripherals.

(c) Information in the situation is processed in a bulk/parallel manner.
Pedestrians seem capable of forming situation assessment quickly with
just a glance at the environment. We believe this is because humans
naturally group information and process groups of information in a
bulk/parallel manner rather than to process each element in a sequential
manner.

2. The representation of the patterns should be sufficiently succinct such that
it is feasible to achieve fast and efficient decisions. The patterns also natu-
rally reflect some qualitative criteria that are commonly used by pedestrians
rather than precise computations to make steering choices. Thus, modelers
can design these patterns intuitively based on their experience. This is one
of the major advantages of our pattern-based approach compared with most
existing rule-based models.
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In summary, the designed pattern should be comprehensive in its content
and succinct in its representation. To achieve the goal of collision avoidance
in the steering behavioural level, information on the potential obstacles (static
objects or dynamic agents) in both spatial and temporal domains needs to be
captured. The spatial information is predominantly processed through visual
sensing and attention filtering; the temporal information is generally formed
through predicted change on the spatial information.
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In previous work [2], we proposed a novel array-based representation for the
situation awareness and defined spatial-temporal patterns in the form of a 2D
array (1D spatial + 1D temporal) as shown in Figure 2(a). The spatial infor-
mation in the previous work is represented by a 1D array with values 0, 1(-1)
representing available space, obstacles with same (or opposite) moving directions
respectively within the attention range of the agent on a relative visionary direc-
tion represented by a column. The model oversimplifies the perceived patterns in
1D space based on the single attention range value. Such 1D spatial patterns ob-
viously lose some useful information that may result in different decisions during
navigation.

4.2 Perception

To mimic the attention range realistically, we have made three assumptions in
the use of attention for human in real life:

1. People tend to pay more attention to the area immediately in front of them
within a relatively short visual range.

2. People tend to consider currently relevant information with higher signifi-
cance as opposed to any future predictions.
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3. People may pay more attention to some salient features such as size, colour
of certain objects in the situation.

Based on the assumed rules above, we have designed the patterns to reflect
information from the situation more comprehensively while trying to keep its
representation succinct. Specifically, we have the following implications from the
above rules in defining patterns:

1. Patterns are defined based on 2D spatial information with significance dif-
ference for different area in spatial and temporal domains.

2. The significance of an area is inversely proportional to its relative distance
to the agent, its relative deviation from the agents vision center, and how
further ahead it is predicted.

3. A scalar matrix to represent different visual impact based on the saliency
features of the situation can also be considered in the pattern recognition
process. Due to the length limit, we do not specify the details in the paper.

As a result, we have the spatial-temporal perception based on a multi-level
attention range designed as shown in Figure 3. A 2D array is generated to rep-
resent the spatial information at a particular simulation time t0 as shown in
Figure 2(b). A 3D array is aggregated from several such 2D arrays based on a
simple linear dead reckoning method to model the dynamic change of spatial
information along the predicted period of time t. For example, the positions of
all the other agents within the vision range (which is much larger than the at-
tention ranges) are measured based on their current relative velocities to the me
agent.

Each row in a 2D array represents the spatial information for the area within
a specific attention range at a specific point in time. In the demonstrated model,
we use 3 levels of attention range with the distance of the first range R0 from
Agent 0 set to a proper value such that one agent can just fully occupy one
visionary section at the boundary of R0 as demonstrated by the red agent in
Figure 2(b). R1 and R2 exponentially increase with regard to R0.

While continuous space is transformed into discrete form to make compu-
tation feasible, our approach is inspired by the realistic way human process
information through proper use of their attention as mentioned above. Spa-
tial information is captured with more precision and thus given more attention
weight within the immediate range R0 of the agent. Information perceived in
the current frame is assumed more important than information from predicted
frames, thus more attention weight is given to the current frame. For illustration
purpose, we demonstrate different attention weights with different darkness in
Figure 2(b). The darker the colour is, the higher the attention weight on that
area.

4.3 Pattern Specification

Spatial-temporal patterns are defined as certain subsets in the 3D array that
emphasize the area of interest addressed by the attention in different situations.
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Figure 3 demonstrates one example of a prototypical spatial-temporal pattern
used for the selection of the overtake steering strategy. The pattern is highlighted
as the subset within the 3D array; it reflects the agents perception on the current
situation that front center is blocked by some target agents with other oncoming
agents from the right in the near future. Thus, if the agents preferred speed is
high, it may choose to overtake the agents in front from their left-hand side.
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Fig. 3. An example of spatial-temporal pattern as a subset of the 3D array

In this case, a prototypical pattern to trigger the overtake steering strategy
can be seen from the first frame of the 3D array in Figure 3. We can describe the
pattern as front center is blocked with available space aside. It naturally follows
the way that people describe the spatial configuration of a situation during their
steering. Note that several prototypical patterns may trigger the same steering
strategy. The modelers can specify the association of a prototypical pattern
and its corresponding steering strategy to represent different experience base of
different people.

5 Hierarchical Pattern Matching

In the pattern-matching process, an agent needs to check for the presence of the
constituents of certain prototypical cases in the perceived spatial-temporal pat-
tern from the current situation. The spatial-temporal patterns are now defined
as subsets of the 3D array representation of the perceived situation as discussed
in the last section. We adopt a hierarchical approach to match between such 3D
patterns. Specifically, the 3D patterns are divided into slices of 2D spatial pat-
terns with each slice corresponding to a different time instance. The matching
result between two 3D patterns is aggregated from the matching results of these
2D patterns with different significance values. Since the attention weight varies
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along the spatial and temporal domains as discussed previously, such a hierar-
chical matching process naturally reflects the cognitive process of pedestrians
with different significance to different areas. Thus, we can define the significance
of similarity values between different 2D patterns accordingly.

More specifically, we start to search for the constituents of prototypical case in
the first 2D array at current time step t0. If a suitable match is found, the process
continues to the next predicted frame slice a t1. This process continues until such
time as the pattern fails or succeeds to match. Matching success relates to the
agent specific characteristic of commitment. The commitment parameter defines
the number of slices of the pattern that must be successfully matched in order to
consider the entire pattern matched. Those agents with high commitment require
many matches; this intends to represent people who will only select strategies
when they are confident of their success.

According to different steering strategies, the match between the 2D spatial
patterns is also determined by different temporal constraints. Some require cer-
tain spatial patterns to exist for a period of time T and some just require their
existence at a specific frame. In most cases, there is cohesion between subsequent
2D array matching processes. The temporal constraint T for the last matching
process is used to guide the matching process in certain way, as will be illus-
trated with the example later, for the subsequent phases. Besides, T can also
be used in empirical instruction to monitor the agents speed in locomotion. For
example, if the prototypical temporal constraint T is smaller than the number
of matched frames in the perceived 3D array, the speed of the agent is to be
increased accordingly to meet the temporal constraint as specified by T .

Consider the pattern-matching process for the overtake steering strategy as
an example shown in Figure 4. The execution of the overtake steering strategy
can be generally modelled in three phases as catch up, pass ahead and resume to
original courses. The prototypical pattern needs to represent the situations where
overtake is usually triggered. Specifically, to trigger the attempt to overtake, the
agents center front should be blocked by some target and there should be available
space that can accommodate the comfortable personal space beside the target so
that there is space for the agent to occupy during the catch-up phase. Such
condition can be represented by prototypical patterns [xxx10xx] or [xx01xxx] in
the first row of a 2D array as shown in Figure 4. The 2D arrays representing
prototypical spatial patterns along different temporal frames to characterize how
the overtake steering strategy is empirically executed in phases is shown on the
left side of Figure 4; while the perceived spatial-temporal information from the
current situation are represented in the 3D array on the right side of the figure.
In this example, the 1 in the first row of the first 2D array in the prototypical
pattern represents the group of target that has blocked me agents way, it should
be around the middle column index in the array. The 0 represents the available
space beside the target that is larger than me agents personal space. For example,
if the personal space factor is 2, which means the agent generally keeps a full
body size away from another agent, then the 0 in the prototypical pattern means
that there are two continuous 0s in the array.
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To match such prototypical patterns with the current situation, we need to
search for such patterns in the 3D array that formed to represent the situation.
For the example, such patterns exist in the 3D array in R0 at t0 as highlighted in
Figure4. Note that only the specific area of interest is considered in the pattern-
matching process. This ensures our approach is capable of handling a certain
degree of uncertainty in the situation. For example, in Figure 4 any area other
than that highlighted area in the 3D array is not important to the decision-
making process for overtake, thus values (represented as x in the prototypical
patterns) in these areas do not affect the decision-making results.

Along the temporal domain, such spatial patterns need to exist for certain
frames (e.g., larger than T) so that the agent could reach the observed available
space within the number of frames in the catch up phase. In Figure 4, spatial
patterns for catch up last for i + 1 frames (i.e. from t0 to ti), and the agent
starts from frame ti+1 to match the prototypical spatial patterns for pass ahead
in the second phase of overtaking as shown in the second 2D array on the left
side of Figure 4. The 0 in row R0 represents the available space for me agent
to pass ahead beside the target agent. Note that, the column index of the 0
changes to the middle column index from frame ti+1 onwards. This is because
in the predicted frames, the agent should consider its relative position with the
other agents. Since the patterns matched successfully for phase 1 in overtaking,
the agent is to occupy the space beside the target and its subsequent steering
behaviors in phase 2 should be based on the new position. In the decision-making
process, these changes need to be taken into account though the agent has not
started to execute the actions in practice.

As mentioned, matching success also relates to the agents specific charac-
teristic of commitment. With high commitment level, agents are cautious and
considerate in the situation; they will not start to overtake until a consider-
ably sufficient number of frames of 2D arrays are matched with the prototypical
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cases. In this example, such agents will only start to overtake if the available
space for all the 3 phases is perceived from the current situation. While agents
with lower commitment level will start to overtake as long as the first few frames
are matched for phase 1 in the overtaking process.

6 Simulation Results

We have implemented the newly improved pattern-based decision-making frame-
work using the MASON multi-agent Toolkit [27]. Under the framework, we have
designed a number of prototypical patterns in the model to mimic the experi-
ence of the agents as discussed in the previous sections. We test the pattern-
based decision-making mechanism by tracking the steering behaviors of individ-
ual agents in some typical test cases and analyzing their steering choices together
with their perceived spatial-temporal patterns. In particular, we investigate how
they organize the information to form perceived patterns during navigation and
how their steering choices are related with the patterns. The steering choices
are explained in terms of the scheduling and execution processes of the steering
strategies (e.g., follow, overtake and side-avoid).

To investigate individuals steering choices reflected by their velocity change
in locomotion, we demonstrate their steering trajectories in 2D as shown in
Figure 5(a). During the simulation, relevant attributes (including the position
and velocity) of all the agents for each simulation step are kept in a log file, then
the simulation can be replicated with the same steering behaviors in 3D with the
GameStudio A7 engine as shown in Figure 5(b). For clearer illustration purpose,
we demonstrate test cases in 2D in the following part.

(a) (b)

Fig. 5. 2D and 3D demonstrations of simulation cases

It is still a challenging topic to evaluate the realism of steering behaviors
from the simulation models up to date. Comparison is one of the most basic and
common way to measure the performance. However, comparing motion of two
different models is not a straight forward task; this is especially true when trying
to indicate which model is more human-like. In this paper we do not propose
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a measure of how human-like of the behaviors our model can generate. Our re-
sults and comparison are provided for the reader to compare the output of both
models and make their own assessment. Our analysis is based on our personal ob-
servations of human movement. The comparison does highlight that our model is
capable of producing different behaviors when compared to the more mechanical
motion planning systems. Specifically, , we compare the simulation results of our
model with the RVO model (based on the latest RVO2 library [28]) under the
same specific set of test cases. The RVO model is a representative motion control
approach for steering behavior simulation. It achieves highly efficient collision
free motion. The purpose of the comparison here is not to argue which is better
or more efficient in generating collision-free steering behaviors in general cases.
Instead, we want to demonstrate some scenarios where our approach is capable
of producing more human-like behaviors based on the proposed pattern-based
approach.

If we consider the situation shown in Figure 6, one agent is attempting to
avoid two oncoming agents. It is a commonly observed scenario in any passage-
way situation. The steering trajectories of the agents are shown in the figure by
a thicker line; the thinner line in front of an agent indicates its current moving
velocity.

(a) RVO 1 (b) RVO 2

(c) PBM 1 (d) PBM 2

Fig. 6. Avoiding oncoming collisions in RVO model and our model

Results from the RVO model are shown in Figure 6(a) and 6(b). The group
of two agents coming from the right side split (see Figure 6(a)) in order to avoid
collisions and the agent starting from the left decreases its speed significantly
until the other two agents have deviated to a collision free path. The agent
then continues moving towards its goal with its initial speed. The results from
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our model are shown in Figure 6(c) and 6(d), where the single agent coming
from the left will deviate its route proactively to avoid collision with the coming
group of two agents. The group of two agents coming from the right side also
change their velocities accordingly to avoid the collision. We examine the results
from the pattern-based approach we adopt in the model. Both the individual
and the group of two agents perceived the pattern that triggers the side-avoid
steering strategy at 6(c) and start to execute the side-avoid steering strategy
in the process as shown in 6(d). In real life, we usually observe that persons on
their own or in a smaller group are likely to give way to a bigger group. With the
simple test cases as shown in Figure 6, we want to demonstrate this behavior
with our model, which is lacking in the current RVO models. In another test
case shown in Figure 6, one agent is trying to overtake the other two agents in
front.

(a) RVO 1 (b) RVO 2 (c) RVO 3

(d) PBM 1 (e) PBM 2 (f) PBM 3

Fig. 7. Overtaking a group of two agents in RVO model and our model

Simulation results from the RVO models are shown in Figure 7(a), 7(b) and
7(c). The agent behind reduces its speed when approaching to the agents in
front, and the two agents in front will deviate to the side to give way to the
agent coming from the back (see Figure 7(a)). After the agent coming from the
back goes in front of them (see Figure 7(b)), the two agents steer back to their
original course and continue moving towards their goals (see Figure 8 7(c)). The
results from our model are shown in Figure 7(d), 7(e) and 7(f). The agent behind
deviates its route to avoid collision with the other two agents in front through
an overtaking behavior. It is shown clearly that there are three phases (catch
up, pass ahead and resume to original course) as discussed in previous sections.
In this case, the agent coming from behind perceives the two agents in front as
a blockage in the vision center with available space beside them in the pattern.
Thus, overtake steering strategy is triggered as shown in Figure 7(d) and the
steering strategy is executed in three phases as shown in Figure 7(d), 7(e) and
7(f). In real-life situations corresponding to the situation as shown in this case,
the group of two persons in front are less likely to proactively give way to the one
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behind due to two reasons: 1) they cannot see the person coming from behind;
2) they are in a group. On the other hand, the person behind is also likely to
overtake the group of people in front from their side rather than cutting through
them in-between due to the social norms. Though the test case is simple, it shows
the unique feature of our approach to address peoples complex decision-making
process during steering to certain extent through the comparison with the RVO
model.

There are also some other test cases. Due to page limit, we do not illustrate
them in the paper. While both models achieve collision avoidance through dif-
ferent steering choices, we have the following observations: Though RVO model
generally achieves more smooth steering behavior at locomotive level, it can
hardly reflect how pedestrians behave in similar situations as the test cases in
real life. On the contrary, our approach generates more realistic steering behav-
iors in these situations. We can describe such behaviors naturally in terms of
several steering strategies as follow, overtake or side-avoid. Besides, while RVO
is general for all the agents in all the situations, our pattern-based approach can
integrate with higher-level cognitive models through factors such as personal
traits. It allows more flexibility for the modelers to specify different patterns or
different association between patterns and steering strategies for different agents
intuitively to model different experience of people. The less smooth locomotive
movement generated by our model is partly because we mainly focus on the
steering choices at the strategic level as discussed previously, thus our model
currently has less control and fine-tuning directly at the locomotive level. This
may be improved by specifying more constraints on the velocities of agents at
locomotion based on the pattern-matching results in the future work. Though
more comprehensive tests and systematic evaluation of our approach are still in
progress, the current simulation results demonstrate some unique features of our
model as discussed above.

7 Conclusions and Future Work

We present a pattern-based approach that aims to imitate how real pedestrians
perceive and make steering decisions in daily-life situations. With the pattern-
based approach, the complex cognitive processes involved in steering decision
making are essentially transferred to pattern-matching processes between the
perceived spatial-temporal patterns and the prototypical cases in agents experi-
ence base.

3D arrays have been used to capture some important spatial-temporal infor-
mation. This representation allows modelers to intuitively specify various spatial-
temporal patterns and also facilitate efficient information processing for making
steering decisions. The hierarchal pattern matching mechanism aims to model
how real pedestrians make sense of spatial temporal information and make steer-
ing decisions.

The simulation results are quite promising and demonstrate some unique
features of this new approach. We plan to further refine the model under the
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pattern-matching mechanism and we are designing a comprehensive evaluation
method for our model.
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