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ABSTRACT

Motivation: Knowledge of the activation patterns of transcription
factors (TFs) is fundamental to elucidate the dynamics of
gene regulation in response to environmental conditions. Direct
experimental measurement of TFs’ activities is, however, challenging,
resulting in a need to develop statistical tools to infer TF activities
from mRNA expression levels of target genes. Current models,
however, neglect important features of transcriptional regulation;
in particular, the combinatorial nature of regulation, which is
fundamental for signal integration, is not accounted for.
Results: We present a novel method to infer combinatorial regulation
of gene expression by multiple transcription factors in large-
scale transcriptional regulatory networks. The method implements
a factorial hidden Markov model with a non-linear likelihood to
represent the interactions between the hidden transcription factors.
We explore our model’s performance on artificial datasets and
demonstrate the applicability of our method on genome-wide scale
for three expression datasets. The results obtained using our model
are biologically coherent and provide a tool to explore the concealed
nature of combinatorial transcriptional regulation.
Availability: http://homepages.inf.ed.ac.uk/gsanguin/software.html.
Contact: g.sanguinetti@ed.ac.uk
Supplementary information: Supplementary data are available at
Bioinformatics online.
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1 INTRODUCTION
Understanding the control of gene expression is one of the major
goals of systems biology. While gene expression is a complex
process with multiple control points, perhaps the most fundamental
is the control of mRNA transcription by DNA-binding proteins,
transcription factors (TFs). A fundamental difficulty in elucidating
this process from the experimental point of view is measuring active
TF concentrations: TFs are often expressed at low levels, and their
activity state is frequently determined by fast post-translational
modifications which are difficult to measure directly.

A possible solution to this impasse has arisen due to the
availability of experimental tools to determine the connectivity of
the transcriptional regulatory network, i.e. which TFs bind specific
target genes. In particular, the large-scale take-up of chromatin
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immunoprecipitation techniques (ChIP-on-chip) has meant that,
for model organisms such as yeast and Escherichia coli, this
connectivity is now available on a high-throughput scale (Lee
et al., 2002). As a result, several authors have recently proposed
to integrate connectivity and gene expression data in an inference-
based approach to modelling transcription, whereby TF activity is
treated as a latent variable to be reconstructed from observations of
target gene’s expression. Broadly speaking, inferential approaches
to TF activity reconstruction have used one of two strategies: one
approach is to use a very simplistic, typically log-linear model of
transcription to infer the activity of a very large number of TFs (Liao
et al., 2003; Sabatti and James, 2006; Sanguinetti et al., 2006; Asif
et al., 2010). This approach is relatively well established and has
already led to several novel insights in biological studies in a range of
situations (Davidge et al., 2009; Partridge et al., 2007); however, the
simplicity of the models, imposed by the computational constraints
of working with large datasets, has meant that important features of
transcriptional regulation have been neglected. More recently, other
authors have focused on inferring TF activities in small subnetworks
but employing more realistic models of transcription based on
differential equations (Barenco et al., 2006; Lawrence et al., 2006).
These approaches are computationally more expensive but allow
to model biologically more plausible effects such as saturation
(Rogers et al., 2007), rapid transitions (Sanguinetti et al., 2009) and
non-linear interactions between TFs (Opper and Sanguinetti, 2010).

In this article, we aim at retaining some of the desirable features
of small-scale inference approaches in a model capable of learning
TF activity on a genome-wide scale. We focus on the problem
of modelling interactions between multiple TFs; this is a crucial
mechanism that allows cells to integrate signals (Ptashne and Gann,
2002). We present what, to our knowledge, is the first statistical
method for reconstructing combinatorial interactions between TFs
from target genes’ expression levels. We achieve this by modelling
TF activity as binary switches (which naturally allow for saturation)
within a factorial Hidden Markov Model (FHMM) with a non-linear
emission model which models combinatorial interactions between
multiple TFs at a promoter.

We propose a fast structured variational approximation for
inference in large-scale systems. As our model includes non-linear
interaction, it is relatively more highly parametrized than simpler
models. We, therefore, extensively tested our model on simulated
data to check its identifiability. We then applied it to three real
time course datasets in Saccharomyces cerevisiae and E.coli, using
network architectures derived from ChIP-on-chip experiments or
curated databases of biological interactions. The key purpose of
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our analysis of real data is to investigate the extent to which non-
linear combinatorial effects are evident from the expression data.
Perhaps not surprisingly, we find that the length of the time series is a
critical factor in reducing the uncertainty of the model’s predictions,
and thus enabling the recovery of non-linear interactions. Despite
this, specific examples of biologically meaningful combinatorial
effects are recovered, showing that computational prediction of
combinatorial interactions is indeed possible from the analysis of
mRNA time series.

2 MODEL
Suppose that N genes are regulated by M TFs over T conditions/time
point. Throughout this article, we will assume TFs to be binary variables
who can either be on or off (Sanguinetti et al., 2009). This modelling
assumption corresponds to two biological assumptions: TFs switch fast from
active to inactive form and vice versa, and the number of TF molecules
per cell is sufficient to saturate the downstream transcriptional machinery.
Let gt

i be the mRNA expression level of gene i in condition t, and let
{Tj}i j∈Ji ∈{1,...,M} be the set of TFs binding gene i. Our model for
(log) gene expression is given by

gt
i = eT

t θ i + ε (1)

where θi is a set of expression parameters specific for gene i, et is composed
of the states of the transcription factors and their two-point interactions and
ε is measurement noise. In the simple case of two TFs, this would become

gt
i = A1

i T1
t +A2

i T2
t +A12

i T1
t T2

t +b + ε. (2)

Gene expression is, therefore, digitized with four expression levels
corresponding to the four possible joint states of the two regulators. This can
be viewed as a steady-state approximation to the combinatorial transcription
model of Opper and Sanguinetti (2010). The assumption of binary states
of the TFs is mainly due to the transient behaviour of these regulators that
makes it harder to measure experimentally at the sampling rate used in most
of the cases.

To cast the model (1) in a Bayesian framework, we need to specify prior
distributions over the various components. The prior for the parameters
θ i is assumed to be a zero mean Gaussian with variance encoded by a
hyperparameter α2,

θ i ∼N (0,α2).

The choice of prior over the TF activity is dictated by the experiment we are
modelling. If the experimental design consists of a number of independent
conditions, then a uniform prior over the TF states at each condition may
be justified. While this experimental design is indeed very widely used,
in this article we will focus on the time-course experimental design. The
derivations for independent conditions experimental design can be easily
worked out using a similar methodology. In the time-course experimental
design, the natural prior distribution for the TF activity is given by a
factorial HMM [FHMM, Ghahramani and Jordan (1997)]. Therefore, the
prior probability defines a series of a priori independent Markov chains
consisting of sequences of binary states, one for each TF,

p
(

Tj
1,...,T

j
T

)
=

T∏
t=1

p
(

Tj
t+1|Tj

t ,τj

)
.

Each of these Markov chains depends on a matrix of hyperparameters,
the transition probabilities, encoding the prior probability of the TF
switching from active to inactive form. As the TFs are assumed to be
binary, by normalization there are only two independent hyperparameters
in each transition matrix. Finally, the model is completely specified by the

assumption that the observation error in Equation (1) is zero mean Gaussian
and i.i.d., so that

p
(
G|T ,�

)=
N∏

i=1

T∏
t=1

N
(

gt
i |eT

t θ i,σ
2
)
.

Here G, T and � are collective names for all the observations, TF states and
gene specific parameters, respectively.

Before discussing how inference can be performed in this model, it is
important to observe that, as the parameters � and the TF states T only
appear in the model (1) through their product, a basic identifiability problem
exists for this model. To clarify the issue, if we take the simple case of a
gene regulated by two TFs, we see that Equation (2) is left invariant by the
transformation

T1
t →1−T1

t ∀t ∈{1,...,T}
b→−A1 +b, A1 →−A1

A2 →A2 −A12, A12 →−A12.

(3)

This ambiguity, which is common to all statistical models involving
multiplication of latent variables, cannot be resolved without prior
knowledge. This is occasionally available: for example, it may be known
that a given TF activates/ represses a specific target, or that the TF is on/ off
in a specific condition. Notice that knowledge about the sign of regulation
for a single target gene or for a single condition/ time point is sufficient to
remove the ambiguity for all other conditions/ targets of the same TF.Another
important observation is that the presence or absence of a combinatorial
interaction is not affected by the identifiability problem. Only the sign of the
combinatorial term A12 changes under the transformation (3).

3 INFERENCE
Our goal is to infer from observations of gene expression both the state of
TFs and the gene-specific expression parameters θ. Bayesian inference in
model (1) is analytically intractable. Stochastic inference approaches such
as Gibbs sampling are often employed in these cases; unfortunately, we
found that the computational costs of such an approach were too high (see
Supplementary Material). We, therefore, develop a fast structured mean-field
approximation which is capable of performing inference in very large-scale
problems.

Variational Bayesian inference is an optimization-based approximate
inference technique originally developed in statistical physics. The basic
idea is to approximate the posterior distribution over the latent variables
and parameters with a simpler distribution. Variational techniques convert
a complex problem into a simpler problem by decoupling the degrees of
freedom in the original problem (Jordan et al., 1999). This decoupling
is obtained by expanding the problem to include additional parameters
also know as variational parameters that are optimized according to the
problem under consideration. Compared with stochastic approximations
like Gibbs sampling, this optimization process is usually very efficient
computationally, and has the advantage of allowing an unambiguous
monitoring of convergence.

Variational inference relies on the following general lower bound on the
log likelihood:

log[p(G|φ)] ≥ 〈log p(G,�,T|φ)〉q(�,T) +H(q) (4)

which follows from Jensen’s inequality. Here 〈〉 shows the expectation of
the joint likelihood under the approximating distribution q, H denotes the
entropy of the distribution and φ collectively denote the hyperparameter α

and σ. It can be shown that the lower bound (4) is saturated if and only
if the approximating distribution q is equal to the posterior distribution
p(�,T|G,φ). In our case, the approximating distribution q is assumed to
be a structured mean-field approximation

q(�,T) = q(�)
∏

i

q(T i). (5)
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Fig. 1. Graphical representation of the model.

Therefore, we assume the approximating distribution to factor across
parameters and transcription factors, but not across time points. The joint
likelihood of the model is given by

p(G,�,T)=p(G|T,�) p(�|α2) p(T). (6)

We will use a variational EM algorithm to optimize iteratively the lower
bound w.r.t. � and each of the TFs T i; the reader is referred to Beal (2003)
for a more thorough discussion of variational EM algorithms in HMMs. The
lower bound (4) is guaranteed to increase after each step of this iterative
process, and the convergence of the algorithm can be monitored through
evaluation of the lower bound.

3.1 E-step
In the E-step, the approximate posterior distribution over the TF states is
calculated. Averaging out the parameters � in Equation (6), we readily
recognize the result as the joint likelihood for the observations and the
hidden states in a standard ( i.e. fixed parameters) FHMM. The posterior
distribution over each TF can be easily obtained using the standard forward
backward (FB) algorithm (Bishop, 2006) that provides the probabilities for
both states ( i.e. on or off) of TFs over all the time point of the gene
expression measurements. Further using the factorization across TFs given in
Equation (5), we use the FB algorithm independently for each hidden layer of
FHMM (Fig. 1) to provide the single time state marginals of the approximate
posterior distribution q(T). Further details, including pseudocode, are given
in the Supplementary Material.

3.2 M-step
Taking expectations of the log of the joint likelihood under T, one can see
that the approximate posterior distribution over the parameters of �i is given
by a multivariate normal

q(�)=
N∏

i=1

N (θi|mi,�i). (7)

The mean and covariance of this multivariate normal distribution are given by

�i
−1 = 1

σ2

T∑
t=1

Xi
〈
eteT

t

〉
q(T) Xi +α−2I

mi = 1

σ2

[
T∑

t=1

gt
i

〈
eT

t

〉
q(T) Xi

]
�i

−1

Here 〈〉q(T) denotes the expectation under q(T), and Xi denotes a diagonal
matrix with the i-th row of the connectivity matrix X along the diagonal. For

more details about the method and implementation, refer to Supplementary
Material.

As the length of the time series is usually very limited, we will not attempt
to infer hyperparameters of the model such as the transition matrices and
observation noise variance (even if point estimation of hyperparameters
by type II maximum likelihood is in principle straightforward). Rather,
these hyperparameters will be fixed heuristically: transition matrices will
be set to give a prior expectation of few transitions within the time under
consideration; and noise variance will be fixed after preliminary inspection
of the data. Experiments on synthetic data showed that the model predictions
to be fairly insensitive to the specific values of the transition matrices.

4 RESULTS
While our model is still relatively simple, the addition of non-linear
interaction terms means that more parameters need to be estimated.
On top of that, asymptotically exact inference is computationally
unfeasible in large-scale examples. Therefore, as a first analysis we
perform a thorough test of the proposed model using artificial data
to verify its identifiability in a realistic simulated situation. We then
use three real datasets; in all cases, the main purpose is to probe
the extent to which combinatorial regulations can be learned from
the expression data. These datasets are the classic and much studied
yeast cell cycle dataset (Spellman et al., 1998), the yeast metabolic
cycle dataset (Tu et al., 2005) and the E.coli micro-aerobic shift
dataset (Partridge et al., 2007). Finally, we compare our results with
those obtained with two different methods: a simplified version
of the method by Shi et al. (2009) and the TFInfer method by
Sanguinetti et al. (2006); Asif et al. (2010).

4.1 Synthetic results
As a first analysis, we performed a series of experiments on artificial
data generated with known parameters to benchmark and check the
consistency of the model. Specifically, two aspects of the inferential
problem need to be investigated:

(1) Is the model identifiable given realistic data, i.e. in a large-
scale example with relatively few time points?

(2) Does the efficient variational approximation developed in
Section 3 give an accurate representation of the posterior
uncertainty over the random variables?

We discuss here Issue 1; a discussion of Issue 2 is given in the
Supplementary Material where a comparison with a Gibbs sampling
approach is given. We generated an artificial dataset with 1000 genes,
50 transcription factors and 20 time points. We used the connectivity
information from yeast cell regulatory network (Lee et al., 2002)
with random initialization for the gene-specific parameters. We then
ran the variational EM algorithm to infer the posterior probabilities
over TF states and gene-specific parameters, and compared with the
true parameter values/ TF states. The results for parameter estimation
are given in Figure 2, displaying true parameter values with posterior
mean estimates. In most cases, it is clear that the parameters inferred
using the variational EM algorithm match closely with the true
values. In a few cases, the inferred parameters are anticorrelated with
the true parameter values; these correspond to TFs whose activity
was inferred to be the opposite of the true activity. As we noted
earlier, this ambiguity is unavoidable and cannot be resolved without
further knowledge.
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Fig. 2. Comparison of inferred parameters with true values of �.

While Figure 2 gives support to the identifiability of the mean
predictions of our model, the Bayesian nature of the model means
that estimates of the uncertainty of the predictions are also available.
These estimates can be precious to assess the statistical significance
of predicted interactions: for example, we could say that two TFs
regulate combinatorially a certain gene at 5% significance level if the
absolute value of the posterior mean of the predicted combinatorial
term in Equation (2) is greater than twice the predicted SD. We are
interested in quantifying what fraction of combinatorial interactions
can be recovered at a certain significance level as a function of
the length of the time series and the experimental noise. To do
this, we generated multiple artificial datasets with different numbers
of time points (Table 1, column 1) and varying corrupting noise
levels (σ2 =0.1,0.5,1.0). In all cases, the number of genes and
transcription factors, as well as the network architecture and true
parameter values, was kept fixed (N =200,M =50). Table 1 reports
the fraction of combinatorial regulatory interactions which were
recovered at 5% significance level for specific lengths of the time
series and different values of the Gaussian noise in gene expression.
Not surprisingly, this percentage increases monotonically with the
length of the time series and decreases when the additive observation
noise is increased. Also, it appears that the level of noise somehow
determines the proportion of combinatorial interactions that can be
recovered even for long time series. Empirically, it appears that,
with this network structure, more than 40 time points do not lead to
a significant change in the proportion of combinatorial interactions
recovered.

4.2 Micro-aerobic shift in E.coli
Partridge et al. (2007) studied the transcriptomic response of E.coli
to the withdrawal of oxygen in a chemostat culture under controlled
growth conditions. Escherichia coli is a metabolically versatile
bacterium and responds to changes from aerobic to micro-aerobic
conditions by activating TF proteins that act as oxygen sensors. The
probabilistic approach described in Sanguinetti et al. (2006) was
used to infer the states of six crucial regulators of oxygen sensing
and metabolism (FNR, MetE, MetJ,ArcA, CpxR and SigE) from the
mRNAexpression of 302 target genes. The analysis revealed insights
in the dynamics of the key regulators upon oxygen withdrawal, as

Table 1. Combinatorial interactions found using synthetic data with different
number of time points

T σ2 =0.1 σ2 =0.5 σ2 =1

Aij(%) Average Aij(%) Average Aij(%) Average
posterior SD posterior SD posterior SD

10 18 0.2273 5 0.4009 3 0.5027
20 28 0.1655 10 0.3016 6 0.3953
30 40 0.1342 25 0.2550 8 0.3364
40 54 0.1088 33 0.2248 18 0.2993
50 54 0.0996 33 0.2003 18 0.2710

Aij is the percentage of combinatorial interactions recovered from the data. σ2 stands
for the noise level in the synthetics data.

well as biologically interesting predictions about the timing of TF
activity. The dataset consists of four time points taken at 5, 10, 15 and
60 min and measured relative to a sample taken immediately before
the perturbation. Connectivity information about the regulatory
network was obtained from the ecocyc database (http://ecocyc.org/)
and is available for 6 TFs and 302 genes in the Supplementary
Material of Partridge et al. (2007). In this dataset, no combinatorial
interactions were predicted at a significance level of 5%. In the light
of the analysis on synthetic data, this is probably due to the very
short time series.

4.3 Yeast cell cycle data
Spellman et al. (1998) used microarray hybridization to measure
the expression profiles of most of the yeast genes over a complete
cell cycle. Three time-series experiments were conducted on three
different strains of yeast and these experiments were synchronized
by three independent methods; α factor-based synchronization, size-
based synchronization and cdc15-based synchronization. We use
the cdc15 synchronized data, consisting of 6181 gene expression
profiles over 24 time points. The connectivity information for the
yeast regulatory network was obtained in Lee et al. (2002) using
ChIP-on-chip for 113 TFs measuring their binding to 6270 genes.
These two datasets are relatively old but well studied and serve as
the standard benchmark for validating the model described here. We
preprocessed these two datasets such that all the genes are bound
by at least one TF and each TF is regulating at least one gene;
that gave us a network of 1975 genes and 104 TFs and expression
profiles of 1975 genes. The data were analysed using the variational
approximation, since the large size of this network rules out the
application of the Gibbs sampling algorithm.

Once again, the predictions in terms of TF activities matched
well the predictions of previous models [such as Liao et al. (2003);
Sanguinetti et al. (2006)], in particular recovering the periodic
pattern of key cell cycle regulators such as SWI5 and ACE2. An
analysis of the predicted interaction terms reveals that about 5%
of the combinatorial interactions [A12 in (2)] are significant at 5%
level as shown in Figure 3. This accounts for 186 combinatorial
interactions out of a total of 3886 possible pairwise interactions
allowed by the structure of the regulatory network.

A more detailed analysis of the results obtained (across
transcription factor profiles) using the Model 2 reveals that
some of the TFs in the yeast regulatory network have a much
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Fig. 3. Number of Aij ≥2 SD for 1975 genes of (Spellman et al., 1998).

Fig. 4. Percentage of combinatorial interactions for 104 TFs of yeast dataset
(Spellman et al., 1998).

higher proportion of significant combinatorial interactions than the
average. Figure 4 shows the percentage of significant combinatorial
regulation for all the TFs in this dataset. It can be seen from this
plot that a group of TFs (DAL82, Pho2, GTS1, HAP3, HIR1,
MAL13) have 15% or more significant combinatorial interactions
compared with the overall average of 5% significant combinatorial
interactions. Looking at the biological function of these highly
interacting proteins, we found that our results are often plausible
in terms of the underlying biology. The transcription factor Pho2
found to be actively involved in combinatorial regulation by our
model is known to behave in a combinatorial manner (Bhoite et al.,
2002). Pho2 is functionally active in many biological processes
such as histidine biosynthesis and phosphate utilization (Daignan-
Fornier and Fink, 1992). Similarly, HAP3 is a global regulator of
respiratory gene expression and contains sequence contributions
to both complex assembly and DNA binding (Xing et al., 1993),
(Hahn et al., 1988). The contributions of these transcription factors
to multiple biological processes indicates that plausibly these TFs
will need cofactors to achieve specificity in gene regulation.

Our model predicted that DAL82 regulatory activities contains a
higher percentage of significant combinatorial regulation. DAL82
is a positive regulator of allophanate-inducible genes and is one
of four transcription factors that are required for this process
(Scott et al., 2000). Experimental evidence in this case suggests
that DAL81 protein is required for DAL82-dependent transcription
activation. As shown in Figure 4, our model also predicted the
higher percentage of combinatorial activity for DAL81 (∼10%).
GTS1 is a transcriptional coactivator for the genes that exhibits
the metabolism of carbohydrates, requiring interactions with other
regulators to induce gene expression (Xu and Tsurugi, 2007).

Fig. 5. Number of Aij ≥2 SD for 3070 genes for yeast dataset (Tu et al.,
2005).

Fig. 6. Percentage of combinatorial interactions for 177 TFs for yeast dataset
(Tu et al., 2005).

4.4 Metabolic cycle data
Tu et al. (2005) studied the yeast metabolic cycle (YMC) that
governs the genome-wide transcription of genes in a periodic
manner. Budding yeast under nutrient-limited conditions goes
through robust cycles of respiratory bursts that in turn causes almost
half of the yeast genome to express periodically. In this experiment,
total RNA was prepared after every 25 min over a period of three
consecutive metabolic cycles. In order to use this dataset with
our model, we fused the network connectivity available from two
ChIP-chip experiments (Harbison et al., 2004; Lee et al., 2002)
and removed the genes that were not regulated by any TFs in the
connectivity information. The TFs not involved in regulating any
genes were also eliminated leaving a network of 3070 genes and
177 TFs. Our probabilistic approach can handle the false positive
that could arise from this dataset by assigning higher uncertainty to
the regulatory interactions that are not eminent from the data.

Once again, the predicted activity profiles of most regulators
showed a good agreement with previously reported results
Sanguinetti et al. (2006) using different inference models (data not
shown). In particular, our model confidently predicted a periodic
behaviour for many of the regulators, which is in agreement
with the experimental design. The details about the extent of the
combinatorial regulation in this dataset are shown in Figure 5
where ∼3% of the possible combinatorial interactions are found
to be statistically significant. Out of a total of 10 876 possible
combinatorial interactions in this dataset, only 322 were predicted
to have posterior mean greater than 2 SD.

Further analysis across the transcription factor profiles showed
that a small proportion of the TFs in this dataset have significantly
higher combinatorial interactions as shown in Figure 6. The most
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Table 2. Comparison of different techniques for inference of the states of transcription factors. The states inferred with different methods are compared using
the Hamming distance (HD) between the vectors of states

Method Dataset

Partridge et al. (2007) Spellman et al. (1998) Tu et al. (2005)

Run time: 6 s Run time: 4.7 h Run time: 5.5 h
FHMM (Shi et al., 2009) MSE: 0.0189 MSE: 0.1381 MSE: 0.4332

HD with cFHMM = 0.0667 HD with cFHMM = 0.2688 HD with cFHMM = 0.2502
HD with TFInfer = 0.0667 HD with TFInfer = 0.2015 HD with TFInfer = 0.2280

Run time: 22 s Run time: 42 h Run time: 335 h
cFHMM (combinatorial factorial HMM) MSE: 0.0423 MSE: 0.1391 MSE: 0.4125

HD with FHMM = 0.0677 HD with FHMM=0.2688 HD with FHMM = 0.2502
HD with TFInfer = 0.1333 HD with TFInfer=0.2708 HD with TFInfer = 0.3021

Run time: 45 seconds Run time: 10 h Run time: 115 h
TFInfer (Asif et al., 2010) MSE: 0.0399 MSE: 0.1156 MSE: 0.3811

HD with FHMM = 0.0667 HD with FHMM = 0.2015 HD with FHMM = 0.2280
HD with cFHMM = 0.1333 HD with cFHMM = 0.2708 HD with cFHMM = 0.3021

prominent of these highly interacting TFs are as follows: DAL82,
GAT1, GTS1, GZF3, MTH1, PUT3, STB2, THI2, UPC2, VMS1.
Some of these TFs appear to have consistently combinatorial
behaviour between the cell cycle and the metabolic cycle;
e.g. DAL82 and GTS1 could be interpreted as ‘housekeeping’
combinatorial TFs. GAT1, a positive regulator of nitrogen catabolite
repression (NCR), is an essential regulator of the NCR-sensitive
genes along with another transcription factor GLN3. The model
for regulatory circuit of GAT1–GLN3 combination is discussed in
Coffman et al. (1996). The majority of the other TFs predicted
to have high combinatorial behaviour are clearly associated with
the metabolic processes: GZF3 is a catabolite repressor, MTH1
regulates glucose sensing, THI2 regulates thiamine biosynthesis, and
UPC2 regulates sterol biosynthesis. This is perhaps not surprising,
as metabolic genes have higher expression changes within the
metabolic cycle, and hence presumably a lower level of noise.
However, this highlights an important feature of our model: even if
the absolute fraction of combinatorial interactions recovered is rather
low, predictions have higher confidence for the specific biological
processes investigated in the given experiment.

4.5 Comparison with other methods
To assess the relative merits of our method (which we denote
as combinatorial FHMM, cFHMM), we performed an extensive
comparative study with two recently published methods for
reconstructing TF profiles. Shi et al. (2009) used FHMMs with
inputs to simultaneously infer TF activities and post-transcriptional
regulation in TFs; in our case, we are interested only in the TF
inference part of the model, so that their model reduces to a
simplified form of our model without the non-linear interactions
of TFs. This method is denoted as FHMM. The other method we
compare to is the TFInfer model (Sanguinetti et al., 2006; Asif et al.,
2010). This is a log-linear models using a discrete time state space
model for the TF activities. To compare the binary TF states obtained
with the other two methods with the TFInfer results, we binarize the
inferred TF activities using the average of the inferred temporal
profile of each TF in the network (activity 0 if below average, 1
if above). We use three criteria to evaluate the performance of our

method with these methods; run-time, mean squared error (MSE) in
reconstructing gene expression profiles and the Hamming distance
between the inferred states of the TFs.

It should be stressed that the method proposed here models the
non-linear interactions of the transcription factors at the promoters,
something that neither of the competitor methods can do. The flipside
of this extra flexibility is that more time is required to execute the
algorithm.

As an initial benchmark, we conducted experiments on simulated
data (40 time points) with two different connectivities, the E.coli
connectivity data (302 genes, 6 TFs, average 60 targets per TF)
and the yeast connectivity with varying network sizes (25, 50
or 75 TFs). The data were generated from the cFHMM model;
however, we noted that both cFHMM and FHMM managed to
give good reconstructions of the TF profiles (obviously FHMM
could not capture the coefficients of the non-linear effects). This
is essentially due to the sparsity of the connectivity; in particular,
the connectivity matrix in the yeast data is sparser, so that FHMM
is a very good model for most genes. For the denser E.coli network,
the performance of cFHMM was significantly better, particularly in
terms of MSE (results shown in the Supplementary Material).

Table 2 presents the comparison of the results obtained using our
method with two other methods on the real datasets considered in
this study. In the E.coli dataset, the results of FHMM and cFHMM
are similar in terms of TF reconstruction (average Hamming
distance 0.067); this is probably due to fact that we did not find
any combinatorial interactions at 5% significance level. In the
other datasets, we obtained a relatively larger Hamming distances
between FHMM and both cFHMM and TFInfer (0.2688 and 0.2502,

respectively). These datasets contained many more time points,
which allowed the recovery of a small but non-negligible number
of combinatorial interactions, leading to the predictions of cFHMM
(which does take these interactions into account) to be significantly
different from the two linear methods.

5 CONCLUSION
We present a novel method to infer combinatorial interactions
between transcriptional regulators from expression data and network
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connectivity data. To our knowledge, this is the first statistical
method which simultaneously infers TF activities and their
combinatorial interactions in large-scale networks. We model TF
activities as latent binary variables with Markovian dynamics;
gene expression is determined by the latent TF activities through
a non-linear likelihood which allows for pairwise interactions
between TFs. According to our model, gene expression is digitized;
digitized levels of gene expression have recently been shown to
yield computational savings and more robust predictions (Tuna
and Niranjan, 2010). The principal novelty of our work in this
perspective is to connect the level of discretization with the state
of underlying regulators.

FHMMs have been previously used to model TF activities
(Shi et al., 2009); in that work, further dependencies were
included between TF mRNA expression levels and their predicted
activities, which enabled to predict possible post-transcriptional
modifications in TFs. Naturally, it should be possible to combine
both our approach and their approach to give a model capable of
simultaneously inferring TF activities, combinatorial interactions
and post-transcriptional regulations. This would also allow to
remove the assumption, hard-wired into our model as well as many
other related models, that TF activity is independent of their mRNA
expression levels. While in many cases this assumption is justified
by the fact that measurement of TF gene expression are often poor
proxies for their activity state, it is plausible that, at least in some
situations, mRNA expression levels of TF genes will bear some
influence on their activity.
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