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1.  Introduction

Nonequilibrium thermodynamics (NET) concerns with 
dynamic processes in systems that are not in global equilib-
rium, either in a transient or in a stationary state. Since only 
few systems can be viewed as really equilibrium, the subject 
has a fundamental importance for understanding various phe-
nomena in chemistry, physics and biology. It has a long history, 
starting with famous studies of Thomson on thermoelectricity 

[1]. The work of Onsager [2, 3] has laid the foundation of 
the field; it puts the earlier research by Thomson, Boltzmann, 
Nernst, Duhem, Jauman and Einstein into a systematic frame-
work. By following Onsager, a consistent NET of continuous 
systems was developed in the 1940s by Meixner [4, 5], and 
Prigogine [6]. Several key aspects of the Onsager’s theory 
were clarified by Casimir [7]. The most general description of 
NET, so far, is the well-known book by de Groot and Mazur 
from 1962 [8].
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The basic principles of thermodynamics asserts the exist-
ence of a special function of the macroscopic state of the 
system, which is called entropy S. This entropy satisfies the 
following balance equation4:

đ đ
= +

S

t

S

t

S

t

d

d d d
,e i

� (1)

in which đ /S tde  is the entropy supplied by the system’s 
environment, and đ /S tdi  is the always non-negative entropy 
production inside the system. The sign of S t/deđ , however, can 
be positive, zero or negative. For an isolated system that has 
no entropy exchange with its environment, S always increases 
until it attains the maximum. The system then reaches the 
equilibrium.

2. Theories of nonequilibrium thermodynamics

Equation (1) is a fundamental relation that describes the 
entropy production. It plays a key central role in NET. 
Macroscopic NET as presented in [8] treats various processes 
in the absence of fluctuations. This will be discussed shortly 
in section 2.1. As explained by Ortiz de Zárate and Sengers 
[9], it is possible to extend this macroscopic NET from top 
down to include hydrodynamic fluctuations using appropriate 
fluctuation-dissipation theorems. We will not go in this direc-
tion, but rather describe a novel, bottom-up mesoscopic NET 
with fluctuations in phase space in terms of time-dependent 
and stationary probability distributions. The main focus of this 
paper is to present a theoretical framework that will show how 
thermodynamic forces and fluxes in various realistic nonequi-
librium processes can all be represented in terms of a unified 
treatment at the mesoscopic level, in phase space.

2.1.  Macroscopic nonequilibrium thermodynamics

There are several theories for nonequilibrium systems that 
start with the entropy balance equation. de Groot and Mazur’s 
approach [8], followed by Kjelstrup and Bedeaux [10] for het-
erogeneous systems, obtained a spatially resolved version of 
equation (1). For a homogeneous fluid in terms of continuous 
densities it can be rewritten as

( ) ( )∫=S t s x t V, d ,
V

� (2)

∫= − ⋅
∂

S

t
x t SJ

d
, d ,e

V
s
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đ ( )∫ σ=
S

t
x t V

d
, d ,i

V
� (4)

where s(x, t) is the entropy density per unit volume, ( )x tJ ,s  is 
the spatial entropy flux, and ( )σ x t,  is the entropy production 
per unit volume, which is non-negative. The second integral is 
over the surface of the volume V, and Sd  has the direction of 

the outward normal. Applying Gauss’ theorem to equation (1) 
in an arbitrary sub-volume, one obtains

( ) ( ) ( )σ
∂
∂

= − +
s x t

t
x t x tJ

,
div , , .s� (5)

In order to calculate ( )/∂ ∂s x t t,  one follows the Gibbs equation,

∑ µ= +
=

u T s cd d d ,
j

n

j j
1

� (6)

where µu T c, , ,j j are the internal energy density, temperature 
and the chemical potentials and molar densities of component 
j, respectively. The use of relation (6) implies the assumption 
of local equilibrium in space and time, meaning that all ther-
modynamic relations remain valid at a coarse-grained scale 
that is macroscopically small but microscopically large.

The continuity balance equations  for the internal energy 
and the component densities are

∂
∂
= −

u

t
Jdiv ,u� (7)
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where Ju is the internal energy flux, c vj j are the spatial molar 
fluxes, �r  is the rate of the �th chemical reaction, and ν�j are the 
corresponding stoichiometric coefficients. The internal energy 
flux Ju and the velocities vj are in the laboratory frame of refer-
ence. We consider no external potentials and restrict ourselves 
to mechanical equilibrium. Furthermore we neglect viscous 
contributions to the pressure. Substituting equations  (7) and 
(8) into equation (6) results in
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where ν µ∆ ≡∑ =� �G j
n

j j1  is the Gibbs energy difference of the 
�th chemical reaction. Comparing with equation (5) yields the 
entropy flux and the entropy production:
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While de Groot and Mazur [8] always used fluxes in the 
barycentric (center-of-mass) frame of reference, we utilized 
here the fluxes in the laboratory frame of reference. The total 
entropy production has the important property of being invari-
ant under the transformation of one frame of reference to 
another. This may easily be verified by defining the heat flux 
= − uJ J vq u  and the diffusion fluxes ( )= −cJ v vj j j , where 

the velocity v can be chosen to be the barycentric velocity, the 
mean molar velocity, the mean volume velocity, the velocity 
of one of the components (the solvent), or the velocity of the 

4 In classical thermodynamics, a distinction between the total differential of 
a quantity Q, Qd , and an inexact differential đQ, which is path dependent, 
has to be explicitly made.
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surface of for instance an electrode. We refer to chapter 11 of 
[8] for a precise definition of these velocities and a detailed 
discussion. Regarding the use of a surface as the frame of ref-
erence we refer to Kjelstrup and Bedeaux [10]. Substituting 
these definitions into equation  (11), and with the Gibbs–
Duhem relation and mechanical equilibrium, it follows that
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µ

= ⋅ − ⋅ −
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The entropy production is a binary product of so-called 
conjugate thermodynamic fluxes and forces. For different 
choices of v, the heat flux and the diffusion fluxes are differ-
ent, and they can be chosen depending on the experimental 
setting. When one introduces alternative thermodynamic 
fluxes one should realize that the corresponding conjugate 
thermodynamic forces may also change. An example is the 
use of the measurable heat flux [11]:

∑≡ −′
=

hJ J J ,q q
j

n

j j
1

� (13)

in which hj is the enthalpic contribution to µj, µ = −h Tsj j j. 
When we substitute of this definition in equation (12) and use 
van’t Hoff’s equation  ( / )/ ( / )µ= ∂ ∂h T T1j j  [12, 13], the entropy 
production becomes
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The subscript T in the ( )µgrad j T means that the spatial differ-
entiation is calculated keeping the temperature constant. One 
can further show that the measurable heat flux is independent 
of the frame of reference [8, 10]. Therefore, this is the heat 
flux which is most convenient for the interpretation of experi-
ments. Using the conjugate fluxes and forces in, for instance, 
equation (14) one can express the vectorial fluxes ′J J,q j{ } lin-
early in the vectorial forces µ−− −T Tgrad , grad k T

1 1{ ( ) }. The 
proportionality matrix was shown to be symmetric by Onsager 
[2, 3] using microscopic reversibility. In a 3D isotropic system 
such as a fluid the vectorial fluxes do not couple to the sca-
lar forces driving the chemical reactions according to Curie’s 
principle. The net reaction fluxes are proportional to /−∆ �G T  
in the linear description. When one considers transport into 
and through surfaces [10] the fluxes normal to the surface are 
also scalars. As a consequence, a chemical potential differ-
ence across the surface may drive a chemical reaction at the 
surface (membrane).

The entropy production is non-negative according to the 
second law. Phenomena that are of different tensorial order do 
not couple, which is known as the Curie’s principle. Therefore, 
a group of phenomena with the same tensorial character must 
also have a positive contribution to the entropy production. 
Energy transduction occurs when a larger positive term over-
comes a smaller negative term [14].

The vectorial contributions are zero when a chemical sys-
tem is rapidly stirred. For multiple reactions the above 3D 
theory can then be reduced to Qian and Beard’s stoichiometric 
network theory, which has found a successful application in 

metabolic engineering [15]. See [16] for an extensive discus-
sion on nonequilibrium steady states with regenerating system 
and quasi-steady state with excess chemicals using buffers 
and chelators. At this level, the type of ensemble, and what are 
controlled thermodynamic variables, matters. This is a very 
important result that was first discussed by Hill [17].

2.2.  Stochastic Liouville dynamics

As a point of departure from the macroscopic NET theory 
presented above, mesoscopic NET is based on a conserva-
tion law in the phase space of any dynamics: the Chapman–
Kolmogorov equation  for the conservation of probability in 
equations of motions in the broadest sense5. Instead of being 
based on the entropy balance equation  (1), the mesoscopic 
NET derives a mesoscopic version of it with a dynamic 
foundation [19], together with an explicit expression for the 
probability flux, and proving the non-negativity of entropy 
production. As will be shown in section 3, the probability flux 
in phase space can be interpreted, based on a local equilibrium 
assumption, to the laboratory measurements of various realis-
tic fluxes, such as chemical reaction flux, heat, mass transport, 
electrical, etc.

Such a mesoscopic theory of NET, in terms of a stochastic 
description of dynamics in phase space, has been repeatedly 
alluded to by many scientists. An earlier reference is the theory 
of stochastic Liouville dynamics [20, 21]. We shall not pre-
sent this theory in detail. Instead, we discuss the logic relation 
of this work to the classical work of Boltzmann and others. 
The present work will then focus on overdamped stochastic 
dynamics, which is valid for studying NET of soft condensed 
matter, solution chemistry and biochemistry. The stochastic 
description gives a natural extension of NET to mesoscopic 
systems, which contains fluctuations.

Statistical or kinetic theories of nonequilibrium phenom-
ena such as the Boltzmann transport equation provide a more 
detailed mechanism for dynamic processes [8]. Such theories 
have, however, only been developed for special classes of phe-
nomena and use particular molecular models. One should also 
mention here several recent developments in the more gen-
eral theoretical framework for nonequilibrium dynamics, one 
of which is known as a general equation for nonequilibrium 
reversible-irreversible coupling (GENERIC) [23, 24].

There have been several theories of irreversible phenom-
ena using stochastic processes [25]. The Klein–Kramers 
equation  [26, 27] and the Langevin equation, together with 
fluctuation-dissipation relation, are a natural extension of clas-
sical conservative dynamics of a Hamiltonian system in con-
tact with a heat bath. Cox [28, 29] developed a Markov theory 
for irreversible processes that generalized Gibbs statistical 
mechanics to irreversible processes. Cox’s work was moti-
vated by the consideration that ‘In the theory of time-depend-
ent thermal phenomena, the method of Gibbs appears to have 
been rather neglected in comparison with that of Boltzmann’ 

5 For deterministic, Hamiltonian systems, the dynamics of probability is 
formulated in term of a measure-theoretical transfer operator, also known as 
Ruelle–Perron–Frobenius operator [18].
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[28]. Onsager and Machlup developed a comprehensive lin-
ear stochastic dynamical theory based on a Gaussian Markov 
description, e.g. Ornstein–Uhlenbeck processes [30, 31]. The 
Shannon entropy has been introduced naturally in these theo-
ries, as the dynamic counterpart of the entropy of Gibbsian 
statistical ensemble, an insight originated in Boltzmann’s 
kinetic theory and his H-function. None of these works, how-
ever, connected the stochastic dynamics with the entropy bal-
ance equation in equation (1).

By using a Liouville formulation of general conserva-
tive dynamics in phase space, together with a stochas-
tic kernel, Bergmann and Lebowitz [20, 21] assumed the 
entropy balance equation  (equation (1))6 and introduced 

( ) ( ) ( ) ⩾= − −S t t S t t T U td /d d /d d /d 0total
1  as the total entropy 

change, of the system and the heat bath together. They were 
able to show that the Helmholtz energy of a closed system, 
which was expressed in terms of the time-dependent probabil-
ity density function f (x, t) as

[ ] ( ) [ ( ) ( )]∫= − = +F f U TS f x t H x k T f x t x, ln , d ,
x

B� (15)

was monotonic and non-increasing. Here H is the Hamiltonian 
and kB is the Boltzmann’s constant. Furthermore, x is a 
point in the phase-space of the system. A fluctuation-dis-
sipation relation for a stochastic kernel with temper
ature T was also obtained for systems that approach to  

( ) [ ( )/ ]= −f x H x k Texpeq
B  . Finally, they proved that Liouville 

dynamics with multiple heat-baths at different temperatures 
yield a nonequilibrium steady state (NESS) of the closed sys-
tem, with a positive entropy production.

2.3.  Mesoscopic stochastic thermodynamics

While the stochastic Liouville dynamics discussed in sec-
tion 2.2, as a dynamic counterpart to the equilibrium statistical 
thermodynamics based on a microcanonical ensemble, has the 
virtue of being rooted in Newtonian mechanics, its applicabil-
ity to condensed matter chemistry, polymer systems, and bio-
chemistry, is limited. In chemistry it is the Gibbsian statistical 
thermodynamics based on a canonical ensemble that has wide 
and successful applications. Overdamped stochastic dynami-
cal theory of a polymer solution is an example of such success 
with many applications [33, 34].

This observation motivated a stochastic dynamics form
ulation of NET in phase space. The approach in section 2.1 
assumes the validity of local equilibrium, meaning that all 
thermodynamic relations are valid locally. A mesoscopic 
theory can be developed based on a Markovian probabilistic 
description. The state space can be discrete or continuous. The 
Chapman–Kolmogorov equation  for a Markov process can 
then be used to obtain a master equation. For a discrete-state 
space one has

( )
[ ( ) ( )] [ ( ) ( ) ]∑ ∑= − = −

p t

t
J t J t p t q p t q

d

d
,i

j
ji ij

j
j ji i ij� (16)

where pi(t) is the probability of the system being in state i at 
time t. Furthermore, ( ) ( )=J t p t qij i ij is the one-way flux from 
state i to state j at time t. For a continuous-state space the mas-
ter equation becomes

∫
∫

∂
∂

= −

= −

′ ′ ′

′ ′ ′ ′

f x t

t
x J x x t J x x t

x f x t q x x f x t q x x

,
d , ; , ;

d , , , , ,

( ) [ ( ) ( )]

[ ( ) ( ) ( ) ( )]
�

(17)

where f (x, t) is the density of the probability of the system 
being in state x at time t. Similarly, =′ ′J x x t f x t q x x, ; , ,( ) ( ) ( ) 
is the one-way flux density from state x to state ′x  at time t. If a 
system is not driven, then it reaches equilibrium as its station-
ary state. In equilibrium it follows from microscopic revers-
ibility that the system satisfies a detailed balance [8, 25]:

=p q p q ,j ji i ij
eq eq

� (18)

=′ ′ ′f x q x x f x q x x, , .eq eq( ) ( ) ( ) ( )� (19)

The superscript eq indicates the equilibrium probability dis-
tributions for discrete systems, or probability densities of con-
tinuous systems. When the system is not in equilibrium it does 
not satisfy detailed balance. Yet, dynamics whose stationary 
state possesses detailed balance has a stringent constraint on 
its rate coefficients; this is known as the Wegscheider condition 
in chemical kinetics [35] and Kolmogorov cycle criterion in 
the Markov-process theory. A system may also, of course, be 
driven by constant external force. As a consequence, a station-
ary state may develop which does not satisfy detailed balance.

One should emphasize here that the linear, probabilistic 
description of mesoscopic NET, that we present in this work, 
can give rise to macroscopic nonlinear mass-action law, which 
is also known as a Guldberg–Waage law of chemical kinetics. 
It is an important part of Markov probabilistic description—
see the work of Kurtz [22]. The precise relationship between 
our stochastic NET in phase space and recently developed non-
linear dynamic Guldberg–Waage approach [36–38] remains to 
be elucidated.

2.3.1.  Detailed balance.  At this point, it is important to 
clearly explain the term ‘detailed balance’ because of frequent 
confusions and wrong applications. As we just stated above, it 
follows from a microscopic reversibility that the probabilistic 
description of a thermodynamic equilibrium system satisfies 
the detailed balance. For proof we refer to [8, 25]. In nature, 
there are many systems that never come to equilibrium. In a 
living being, for instance, ions are continuously pumped by 
ATPases through membranes. Equilibrium is obtained only 
when the living being dies. It follows that the detailed bal-
ance, though exact in equilibrium, is not relevant for a descrip-
tion of homeostatic living biological systems. In general, any 
nonequilibrium state in such open systems is maintained, for 
instance, by constantly adding ATP or other reactants. In the 
description of the behavior of such systems, it is common to 

6 For a given dynamics and a definition of S, S td /d  can always be computed. 
The entropy production as in equation (1), however, has always been defined 
phenomenologically based on physical intuitions. This situation has changed 
since the emergence of a measure-theoretical definition(s) of entropy pro-
duction in the theory of Markov dynamics [32].
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introduce pseudo-first-order rate coefficients to replace the 
original coefficients. This is done by absorbing the concentra-
tions of buffered components, maintained at a constant non-
equilibrium value, in the rate constants. The product defines 
the new pseudo-first-order rate coefficient. The resulting 
description concerns then the behavior far from equilibrium, 
and the forward and backward rates are then evidently not 
balanced, even in a stationary state. In the buffered pseudo-
first-order rate coefficients the system does not have an equi-
librium state, and therefore never satisfies detailed balance.

Detailed balance is also a mathematical concept in the the-
ory of Markov process and Monte Carlo statistical simulations. 
The mathematical concept of detailed balance is applicable to 
Markov models of physical and chemical origin in closed sys-
tems. A Markov model for an open (buffered) nonequilibrium 
system using the above mentioned pseudo-first-order rate coef-
ficients does not satisfy detailed balance. We refer to [39, 40] 
for a detailed discussion. In the present work, we will also use 
the pseudo-first-order rate coefficients when this is convenient.

2.3.2.  Entropy balance equation  for continuous Markov 
dynamics.  We consider a transition probability ′q x x,( ) from 
state ′x  to state x, which is sharply peaked in the sense that 

( )′f x t,  varies slowly over the range of ( )′q x x, . One may then 
use a moment expansion of the transition probability to the 
second order:

( ) ( ) ( ) ( ) ( )
′

δ δ= ⋅
∂
∂

− +
∂
∂

−′ ′
′

′ ′ ′q x x q x
x

x x q x
x

x x,
1

2
.1 2

2

2
� (20)

Both q1 and ∂
∂ ′x

 are vectors in phase-space, the period ⋅ indi-

cates a contraction, and ≡ ⋅
′
∂
∂

∂
∂

∂
∂′ ′x x x

2

2 . A possible zeroth order  

contribution does not contribute to /∂ ∂f t. In the moment 
expansion we assumed that q2 is scalar. The jump moments 
are given by

( )  ( )  ( )∫= −′ ′ ′q x x x x q x xd ,1� (21)

( )   ( )∫= −′ ′ ′q x x x x q x xd , .2
2� (22)

Substitution of equation (20) into equation (17) gives the 
Fokker–Planck equation7
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It is now convenient to rename
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∂
∂
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x

q x
1

2
and

1

2
.2 1 2� (24)

where the diffusion coefficient D is a matrix and the velocity V 
a vector in phase space. The Fokker–Planck equation can then 
be written in the form

( ) ( )∂
∂

= −
∂
∂
⋅

f x t

t x
J x t

,
,� (25)

with

= −
∂
∂

J x t V x f x t D x
x

f x t, , , ,( ) ( ) ( ) ( ) ( )� (26)

in which J (x, t) is a probabilistic flux. Equations (16) and (26) 
give expressions for the flux in terms of the probability den-
sity f (x, t). The positive definite nature of the entropy produc-
tion can be proven within the theory [42–45]:
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where ∮ Ω
∂Ω
� d  indicates an integral over the surface. The 

surface element dΩ has the outward direction normal to the 
surface. The system is now open, with
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B
1

� (28)

∫

= ⋅ Ω

− ⋅

∂Ω

Ω

−

S

t
k f x t J x t

k J x t D x V x x

d

d
ln , , d

, d .

e
B

B
1

∮ ( ) ( )

( ) ( ) ( )
�

(29)

The reason for the choices of S

t

d

d
i  and S

t

d

d
e , is that S

t

d

d
i  being 

consistent with Onsager’s idea of ‘force  ×  flux’, and it 
is non-negative. This assures validity of the Second law of 
Thermodynamics, and it establishes a link to NET. A com-
plete parallel can be developed for the discrete description, 
equation (16) [46]. The Markov theory, which is formulated 
in a phase space, has fluxes which are described by the single 
entity J(x, t), the flux of probability density.

The current stochastic thermodynamics begins with the 
notion of entropy production in stochastic processes, used 
already in Hill’s stochastic cycle kinetics [14, 46, 48] and in 
Qians’ work on irreversible Markov processes [42, 49–52]. 
Another origin are the fluctuation theorems and the Jarzynski–
Crooks equality. See [53–56] for comprehensive reviews on 
the subject.

3.  Nonequilibrium thermodynamics of driven cycles

Stochastic thermodynamics is a mesoscopic theory in terms 
of probability. One of the fundamental insights from the Hill’s 
nonequilibrium thermodynamic theory [14] is the central 
role of kinetic cycles, both in steady state and in finite time. 
Actually, by realizing that entropy production is a fundamen-
tal property of each and every kinetic cycle, and that cycles 
are completed one by one stochastically in time [48], Hill and 
Chen indeed have implicitly conceived the notion of entropy 
production at the finite time [50, 51]. It can be mathematically 
shown that the entropy production for a stationary Markov 
jump process with transition rates qij, e.g. systems following 
equation (16), has a cycle representation [32]:

7 Alternative names are the Smoluchowski equation or the second  
Kolmogorov equation.
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∑= −
>

⎛

⎝
⎜

⎞

⎠
⎟S

t
k J J

J

J

d

d
ln ,i

i j
ij ji

ij

ji
B ( )� (30)

∑= −
Γ
Γ
+

Γ
− Γ

+

Γ
−

⎛

⎝
⎜

⎞

⎠
⎟k J J

J

J
ln ,B

all cycle

( )
 

� (31)

=Γ
+

Γ
−

−

−

�

�

⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

J

J

q q q q

q q q q
ln ln ,i i i i i i i i

i i i i i i i i

n n n

n n n

0 1 1 2 1 0

0 1 2 1 1 0

� (32)

in which Γ-cycle { }= �i i i i, , , ,n0 1 0 , where all ik are distinct. 
Since a Markov process completes cycles stochastically, 
one can compute a finite-time entropy production along a 
stochastic trajectory by following the cycles. For a Markov 
process in equilibrium the detailed balance, =J Jij ji, is valid. 
The entropy production for every cycle is then zero. The 
entropy production is the sum of the entropy productions 
of the separate cycles. The entropy production per cycle is 

( )Γ
+
Γ
−k J Jln /B ; the rate by which a particular cycle is being com-

pleted is ( )−Γ
+

Γ
−J J ; thus the entropy production rate per cycle 

is ( ) ( )−Γ
+

Γ
−

Γ
+
Γ
−k J J J Jln /B  [32]. While computing all the rates 

is challenging, it is amazing to observe that the entropy pro-
duction per cycle ( / )Γ

+
Γ
−k J JlnB , is completely determined by 

the ratio of transition probability rates. This observation led 
Hill to suggest that kinetic cycles, not states, are fundamental 
units of NET. Indeed, the notion of ‘cycle completion’, which 
is amply emphasized in Hill’s theory [48], nicely corresponds 
to Landauer and Bennett’s principle of computational irre-
versibility being associated with memory erasing [57, 58].

Cyclic processes, which were extensively investigated by 
Carnot, Clausius, Kelvin, and many others in the 19th century, 
can be described as thermodynamic processes in phase space. 
The beauty of the stochastic description is that the physical 
processes are all characterized by probabilities. In applica-
tions, however, the various flux terms can and should be inter-
preted as temperature driven, chemical-potential driven, or 
mechanically driven, etc. We will now illustrate this by con-
sidering simple examples.

Let us restrict the analysis to the systems with discrete 
states. Following Esposito [59], we consider a mesoscopic 
system in state i with internal energy Ui, entropy Si, and num-
ber of particles Ni. If the mesoscopic system is completely 
isolated from its environment, then it will remain in the i state 
indefinitely with conserved U S N, ,i i i. It has an equation of state 
=V V U S N, ,i i i i( ) where V is the volume of the system. Now if 

the system is in contact with a heat bath with temperature T, 
and a material reservoir with chemical potential μ, then the 
state has a grand potential, also called Landau potential:

( )ϕ µ µ= − −T U TS N, .i i i i� (33)

Transition to a state j can occur due to the coupling to the heat 
and particle bath, with transition rates qij and qji which satisfy 
the detailed balance [14]:

ϕ ϕ
= =

− +⎛
⎝
⎜

⎞
⎠
⎟

q

q

p

p k T
exp .

ij

ji

j

i

j i
eq

eq
B

� (34)

Here we used the fact that in equilibrium the probability distri-
bution is ( / )ϕ∝ −p k Texpi i,eq B . Detailed balance implies that 
the forward and backward rates cannot be chosen indepen-
dently if the potentials of the reservoirs are given. If one uses 
different heat and material reservoirs for the different states 
of the system, a stationary state may develop and obviously 

≠p q p qi ij j ji
ss ss  in that stationary state.

3.1.  Chemical cycle kinetics

Consider a cycle as shown in figure 1(A), in which all three 
mesoscopic states A, B, and C are in contact with the same 
heat bath with temperature T. Then,

ϕ ϕ ϕ ϕ ϕ ϕ
=

− + − + − +
=

⎛
⎝
⎜

⎞
⎠
⎟

⎛
⎝
⎜

⎞
⎠
⎟

⎛
⎝
⎜

⎞
⎠
⎟

q q q

q q q k T k T k T
exp exp exp 1.AB BC CA

BA CB AC

B A C B A C

B B B

�

(35)
This is the detailed balance for the cycle.
If we consider a cycle in the open system with material 

reservoirs having chemical potentials µA, µB and µC (see  
figure 1(B)), then potentials ϕi can be replaced by the corresp
onding chemical potentials µi as the reaction only changes Ni 
in equation (33). Now, at constant T, if the first transition in the 
cycle is a part of the chemical reaction + �A X B, as shown 
in figure 1(B), and similarly the second transition is a part of 

+�B C Y , and the third transition involves +�C A Z, then 
one has the entropy production per cycle, or cycle affinity

µ µ µ µ µ µ µ µ µ

µ µ µ

=

=
+ −

+
− −

+
− −

=
− −

⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝
⎜

⎞

⎠
⎟

A k
q q q

q q q

T T T

T

ln

.

C B
AB BC CA

BA CB AC

A
X

B B C
Y

C A
Z

X Y Z

( ) ( ) ( )

( ) ( ) ( )

�

(36)

Figure 1.  (A) Three-state cycle kinetics in a closed system. (B) 
Three-state cycle kinetics in an open chemical system with material 
reservoirs of X, Y , and Z, with chemical potential ( )µ X , ( )µ Y , and 

( )µ Z . (C) Three-state cycle kinetics in an open chemical system 
with 1D spatial component x (material reservoirs are not shown to 
avoid cluttering). A complete cycle kinetics accompanies a spatial 
displacement of ∆�. Such a system has a ‘ tight’ coupling between 
the cycle and the translocation. If there were nonzero transitions 
between C(xC) and A(xA), then the system would be loosely  
coupled [64].
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Here the numerator is the chemical potential difference asso-
ciated with the reaction of ‘external chemical potential res-
ervoirs’ +�X Y Z. This is an open chemical system with a 
chemical-potential driven cycle. The difference between state 
B and state A is one X, between states B and C is one Y, and 
between states C and A is one Z. The corresponding steady-
state cycle flux is [14]

⎧
⎨
⎩

⎫
⎬
⎭

=
−

+ + +
+ + + + +

J
q q q q q q

q q q q q q q q
q q q q q q q q q q

.C
AB BC CA AC CB BA

BC CA CB BA BA CA CA AB

AC CB CB AB AB BC BA AC AC BC
� (37)
It is clear that ⩾×J A 0C C  [39]. This is the entropy production 
in equation (31), for one cycle. It is zero if and only if equa-
tion (35) holds true, i.e. if the chemical system is closed. It is 
zero for an open system if ( ( ) ( )µ µ µ µ∆ = − − = 0X Y Z , i.e. 
when the system is coupled to several chemical baths that are 
themselves at equilibrium.

In chemistry, it is often conveniently to write

µ µ µ
=

+ −
=

⎛

⎝
⎜

⎞

⎠
⎟

q

q k T

q a

q
exp ,AB

BA

A
X

B AB
o

X

BAB

( )

� (38)

in which qAB
o  is a second-order rate constant, and 

( / )( )µ=a k TexpX
X

B  is the activity of species X. It follows that 
qAB

o  and qBA satisfy the detailed balance,

µ µ
=

−⎛
⎝
⎜

⎞
⎠
⎟

q

q k T
exp .AB

o

BA

A B

B
� (39)

Recalling discussion in section 2.3.1, we see that qAB
o  and qBA 

are the original rate coefficients, which satisfy detailed bal-
ance, while qAB and qBA are the pseudo first-order rate coef-
ficients, which do not.

3.2.  Chemomechanical cycle and a molecular motor

Now if the mesoscopic system has a 1D position x that expe-
riences a constant external mechanical resistant force ξ (or a 
rotational angle with a constant external torque) and under-
goes cyclic motion, as shown in figure 1(C) [41, 60–62] then 
equation (33) modifies into

( )ϕ µ µ ξ= − − −T x U TS N x, ; ,i i i� (40)

in which the term ξx should be compared with the pV term 
in macroscopic thermodynamics. The entropy production per 
cycle, or cycle affinity, in equation (36) becomes [63]

( ) ( ) ( )µ µ µ ξ
=

− − − ∆�
A

T
.C

X Y Z

� (41)

The significance of this result is that it establishes, mathemati-
cally, a mesoscopic free-energy balance between input Gibbs 
energy ( ) ( ) ( )µ µ µ µ∆ ≡ − −X Y Z , which becomes the work 
against the external force ξ∆�, and dissipation AC, both per unit 
of flux. The efficiency of the chemomechanical energy transduc-
tion of the cycle immediately follows: η ξ µ= ∆ ∆�/chemomechanic  
[63]. One can also see that when the external force is given by 

/ξ µ= ∆ ∆�, known as a stalling force, the efficiency is 1; but 

at the same time the output mechanical power, e.g. the work 
per unit time, is zero. This is a pathological consequence of 
assuming a single cycle that tightly couples the mechanical and 
chemical steps [64]. If this is not the case, e.g. the chemical step 
and the mechanical step can ‘slip’, then there will be at least one 
additional cycle in which the chemical energy dissipates.

If the force ξ is negative, it can push a negative µ∆ . Such 
a kinetic cycle will have mechanical force driven chemical 
pumping ⟶+Y Z X, as in enzyme F0F1-ATP synthase [65].

3.3. Temperature-driven kinetic cycle and thermomechanical 
efficiency

Let us again consider the cycle kinetics presented figure 1(A). 
This time, the three mesoscopic states A, B, and C are in a 
contact with different temperature baths. Let us assume that 

   A B C, ,  have the temperatures TA, TB and TC. We further 
assume all chemical potentials are equal. Then, one has the 
cycle affinity given by [66, 67]

=
⎛

⎝
⎜

⎞

⎠
⎟A k

q q q

q q q
lnC

AB BC CA

BA CB AC
B� (42)

ϕ ϕ ϕ ϕ ϕ ϕ

ξ

ξ

=
−

+
−

+
−

=
−

+
−

+
− − ∆

= − + − + − −
∆

�

�

⎛
⎝
⎜

⎞
⎠
⎟

⎛
⎝
⎜

⎞
⎠
⎟

⎛
⎝
⎜

⎞
⎠
⎟

⎛
⎝
⎜

⎞
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⎛
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⎜
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⎟

⎛
⎝
⎜

⎞
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⎟

T T T

U U

T

U U

T

U U

T

U
T T

U
T T

U
T T T

1 1 1 1 1 1
,

A B
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A B

A

B C

B

C A

C

A
B C

B
B A

C
C B C

� (43)
in which the force ξ is a property of the external environment 
[41, 61]. In the special case when =T TB C, one obtains

( )  ⩾
⎛
⎝
⎜

⎞
⎠
⎟

ξ

ξ

=
−

+
− − ∆

= − − −
∆

�

�

A
U U

T

U U

T

U U
T T T

1 1
0,

C
A B

A

B A

B

A B
A B B

�
(44)

Note, when ξ∆� is positive, −T TA B( ) and ( )≡ −Q U UA B  always 
have opposite signs; thus the product − −− −U U T TA B A B

1 1( ) ( )  
is always positive. Without loss of generality, we let >T TA B.  
Then, the thermomechanical (first-law) efficiency can be 
defined as

⩽
⎛
⎝
⎜

⎞
⎠
⎟η

ξ
=
∆
| |

= + − −
�
Q Q

T
A

T

T

T

T
1 1 .B

C
B

A

B

A
thermomechanic� (45)

The maximal first-law efficiency8 is the Carnot limit [66]. 
The second-law efficiency is then equal to [68]:

8 The term first-law efficiency is used to distinguish it from the second-law 
efficiency (also known as a rational efficiency and exergy efficiency) which 
computes the efficiency of a process taking the second law of thermody-
namics into account in practical engineering. The exergy of a system is the 
maximum useful work possible during a process that brings the system into 
equilibrium with a heat bath. Note that in chemomechanical energy trans-
duction, taking the second law into account does not reduce the upper limit 
of efficiency ηchemomechanical, when the power is zero.
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( )η
ξ

ξ
ξ

=
∆

∆ +
=

∆

| | −

�
�

�

QT A 1
.

B C T

T

exergy
B

A

� (46)

The entropy production is the product of JC, given in 
equation (37), and AC. With given high and low temperature 
baths TA and TB, one could ask a different question. Allowing 
temperature TC to be between TA and TB, what is the condition 
for the maximum power for a given entropy production? The 
answer is that this situation is realized when

= =
q

q

q

q

q

q
,AB

BA

BC

CB

CA

AC
� (47)

Equation (47) is known as the ‘principle of constant force’ in 
the field of molecular motors [65, 69]. It also corresponds to 
equal chemical potential drops in the metabolic engineering 
[70]. In this case, one can write

= =
⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝
⎜

⎞

⎠
⎟k

q

q
k

q

q
k

q

q
ln ln ln ,AB

BA

BC

CB

CA

AC
B B B� (48)

which is a principle of constant entropy production. 
Equation  (47) is called the principle of constant thermody-
namic force in nonequilibrium thermodynamics. It is interest-
ing to note that the same result has been found to characterize 
stationary-state operation of process units at minimum entropy 
production [71].

3.4.  Non-isothermal enzyme kinetic cycle

Section 3.3 illustrated the thermomechanical energy transduc-
tion and obtained the Carnot efficiency. Nonequilibrium chem-
ical or biochemical cycles can also be induced by temperature 
difference, and vice versa; thermochemical coupling can occur 
in an enzyme that operates under non-isothermal environment. 
Indeed, intracellular enzyme mediated biochemical reactions  
in situ are usually chemical-potential driven NESS cycles  
[72, 73]. Michaelis–Menten–Briggs–Haldane kinetics of an 
individual enzyme, with a single substrate and a single prod-
uct, can be best understood as a steady state flux = −+ −J J JC C C 
[14, 74, 77] of the kinetic cycle in figure  1(B) without the 
Y, with a single temperature T. The one-way cycle fluxes ±JC 
are probability weighted inverse of the mean first-passage 
time ([72, 75, 77]). We will identify X and Z as the substrate S  
and the product P of the enzyme, with =q q aAB AB

o
S and 

=q q aAC AC
o

P where

ϕ ϕ
µ µ=

−
≡ +

⎛
⎝
⎜

⎞
⎠
⎟

q

q k T
k T aexp , ln ,AB

o

BA

B A
S S

o
S

B
B � (49)

ϕ ϕ
µ µ=

−
≡ +

⎛
⎝
⎜

⎞
⎠
⎟

q

q k T
k T aexp , ln ,CA

AC
o

C A
P P

o
P

B
B � (50)

where ϕ ϕ ϕ, ,A B C are Landau potentials, given in equation (33), 
at temperature T, and aS and aP are the dimensionless chemi-
cal activities of the substrate and the product. For sufficiently 
dilute solution, they are the same as the molecular concentra-
tions cS and cP, divided by the standard concentration, c0  =  1 
mole L−1. To be consistent with the notions in the biochemical 

literature, we will assume that the solution is always ideal. 
Then equation (37) becomes

=
−

+ +
J

c c

1
,C

V

K S
V

K
P

c

K

c

K

f

f

b

b

S
f

P
b

max

M

max

M

M M

( ) ( )
� (51)

in which Michaelis constants and maximal velocities of the 
forward and backward reactions, with corresponding +JC and 
−JC, are equal to

=
+ +
+ +

K
q q q q q q

q q q q q q
,f BC CA CB BA BA CA

CA AB
o

CB AB
o

AB
o

BC
M� (52)

=
+ +

V
q q q

q q q q q q
,f AB

o
BC CA

CA AB
o

CB AB
o

AB
o

BC
max� (53)

=
+ +
+ +

K
q q q q q q

q q q q q q
,b BC CA CB BA BA CA

AC
o

CB BA AC
o

AC
o

BC
M� (54)

=
+ +

V
q q q

q q q q q q
.b AC

o
CB BA

AC
o

CB BA AC
o

AC
o

BC
max� (55)

One can find these complicated expressions in standard 
enzyme kinetics texts, e.g. [76]. When →B C is a rate-limiting 
step and qBC and qCB are much smaller than the others, one has 

/=K q qf
BA AB

o
M , which is the original Michaelis constant.
These equations can be viewed also a statement about the 

cycle affinity in equation (36) [75]

( )
( )

( )( ) ( )
= = µ µ−

⎛
⎝
⎜

⎞
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exp e .

V
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C k T
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/

f

f

b

b

S P

max

M

max

M

B� (56)

The NESS entropy production then is ×J AC C: the number of 
cycles completed per unit time  ×  the entropy production per 
cycle.

We now consider a non-isothermal situation as in [74]: the 
enzyme is assumed to reside in a membrane with a temper
ature T (1). It separates two bulk solutions with a temperature 

( ) ( )≠T T2 1 . We can then generalize the enzyme kinetics to 
non-isothermal condition with BC transitions under T (1) and the 
other two under T (2). Such an enzyme kinetic cycle is simply 
a thermochemical system, a special case of the mesoscopic 
thermochemomechanical machine. Then we have the cycle 
affinity given by

µ µ

µ µ

=
+ −

+
−

+
− −

= − − +
−

= − +
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1 1

1 1
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2 1 2
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substrate turnover
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( )

( ) ( )

( )

( )

( ) ( )

( ) ( )

( )

(   )
( ) ( )

(   )

�

(57)

The function (   )Q measurable heat  is different from the total heat 
which should contain the part of energetic change in ( ) ( )µ µ−S P  
[11]. At the same time, since the transitions between B and 
C are under T (1) and the other transitions are under T (2), the 
NESS cycle flux JC in equation (51) can be expressed as
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+ +�EY X EX Y .� (61)

It is important to note that both KX and KY are determined by 
the molecular structures and interactions between the enzyme 
and the ligands, which depend on the temperature, pH and 
solvents.

A fundamental role in biology is played by the concept of 
kinetic proofreading. It is a mechanism for altered selectivity, 
which uses driven biochemical reactions with fluxes to regu-
late enzymatic specificity, breaking the conventional wisdom 
that enzymatic specificity is defined solely by the equilibrium 
affinity. More specifically, it places the reaction in equa-
tion  (61) inside a driven kinetic cycle such that the ratio of 
concentrations is given by

( )
( )

[ ][ ]
[ ][ ]

[ ]
[ ][ ]

[ ]
[ ][ ]

θ≡ =
EX Y

EY X
.

EX

E X

EY

E Y�

(62)

In a driven NESS θ can be significantly different from its equi-
librium value /K KX Y.

To understand the kinetic proofreading let us consider  
figure 2 that shows a kinetic scheme in which the association-
dissociation reaction is coupled to a reaction �T D. Then, 
when T and D are not in their chemical equilibrium, there 
will be two kinetic cycles: one couples the + �E X EX with 
�T D, and the second one couples + �E Y EY  with �T D. 

The ratio of NESS concentrations can be computed, leading to
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in which γ µ= ∆k T ln TDB  
[ ]
[ ]

=
q q q T

q q q D

o o

o o
12 23 31

21 32 13

 is the nonequilibrium 

thermodynamic force. The superscript o denotes second-order 
rate constants as indicated in figure 2.

When T and D have their equilibrium value, the detailed 
balance is satisfied and we have

/( ) ([ ]/[ ]) /( )= =q q q q q q D T q q q q q q .o o o o o o o o
12 23 31 21 32 13

eq
14 45 51 41 54 15

� (64)

The last term in the curly brackets is a correction term for 
Michaelis–Menten kinetics due to non-isothermal condition. 
In the linear regime, the temperature difference-driven cata-
lytic flux is equal to
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and the chemical potential difference-driven heat flux is

( ) ( )

( )

⎜ ⎟
⎡

⎣

⎢
⎢
⎢
⎢

⎛
⎝

⎞
⎠

⎤

⎦

⎥
⎥
⎥
⎥

⎧
⎨
⎩

⎫
⎬
⎭

µ µ
+ +

−
c

k T1
.

V

K
S

c

K

c

K

S P

eq

B
2

f

f

S
f

P
b

max

M

M M

� (60)

They have the same coefficient [ ]� eq, the one-way flux in 
equilibrium, as expected from the Hill’s theory.

3.5.  Chemical-potential driven enzyme selectivity amplification

There is a very interesting example for the application of 
mesoscopic NET. It concerns with regulations of intracel-
lular communication signals in terms of enzyme activities. 
Enzymes found in the living organisms has specific interac-
tion with its cognate substrate molecules. The notion of bio-
chemical specificity between an enzyme and its substrate has 
been quantified, traditionally, in terms of their equilibrium 
association constant. Therefore, an enzyme E interacting with 
two different substrates, one cognate X and another noncog-
nate Y, via the following chemical reactions

+ +� �E X EX E Y EY, ,

with respective equilibrium association constants KX and 
KY, is expected to have the selectivity for X over Y given by 
the ratio /K KX Y. Recall that [ ] ([ ] [ ] )= −K EX E XX

eq eq eq 1 and 
[ ] ([ ] [ ] )= −K EY E YY

eq eq eq 1. The function /K KX Y, thus, is equal 
to the ratio between the equilibrium concentrations [EX] and 
[EY], when there is an equal amount of X and Y. However, 
it has been discovered that in living cells, the selectivity of 
an enzyme toward its cognate substrate can be much greater 
than the /K KX Y. This phenomenon has been termed selectivity 
amplification. These deviations in selectivity are clearly con-
nected to the nonequilibrium nature of biological processes in 
living cells.

One can also recognize the ratio /K KX Y as the equilibrium 
constant for the ligand exchange reaction [78]
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Then

= =EX Y EY X EX E X E Y EY K K/ / / / .X Y
eq eq eq([ ][ ] [ ][ ]) ([ ] [ ][ ]) ([ ][ ] [ ])

� (65)
But for the deviations from equilibrium one obtains
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In a well designed NESS biochemical network, 
([ ][ ]/[ ][ ])EX Y EY X NESS can be as high as ( / )γ K KX Y  and as low 
as ( / )γ− K KX Y

1  [40].
Now if the enzyme has
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Figure 2.  Cycle kinetics driven by the chemical potential difference 
between T and D, µ∆ TD. There are two kinetic cycles going through 
states → → →∗E E X EX E, on the left, and → → →∗E E Y EY E, on 
the right.
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types of transport processes [2, 3, 8, 10]. Onsager’s pioneer-
ing work elucidated a symmetry among the coupling coef-
ficients in the force-flux relations when a system is near its 
equilibrium, which necessarily has a time-reversal symmetry 
[2, 3]. In the context of mesoscopic chemical kinetics it was 
shown by Hill [81, 82], that the Onsager coefficients can be 
expressed in terms of all equilibrium one-way cycle fluxes 
that couple any two processes. The beauty of stochastic ther-
modynamics is that the notion of ‘coupling’ can be formulated 
in phase space in terms of probabilistic fluxes irrespective of 
the microscopic details of underlying physical and chemical 
processes.

4.1.  Cycles and the Onsager coefficients

Hill’s theory of the Onsager’s reciprocal relation is based 
on kinetic cycles in discrete-state space, and it employs a 
graph-theoretical treatment. Specifically, consider a irre-
ducible Markov process with qij  =  0 with all individual 
transition being reversible. Let the Markov network has N 
non-zero reversible transitions, �e e e, , , ,N1 2  where e stands 
for ‘edge’, and κ reversible cycles κ�c c c, , , ,1 2  where c stands 
for ‘cycle’. We give every transition and cycle a defined 
direction, and denote a set { }= �E e e e, , , N1 2  be the set of 
all transitions with nonzero net flux in NESS. Similarly, 

{ }= κ�C c c c, , ,1 2  is the set of all the cycles with nonzero net 

cycle flux. Combinatorial calculations show that 
−

N m

m

!

2! 2 !
⩽

( )
 

and ⩽
( )

κ ∑ = −� � �
N N

N3
!

!
.

Now we can introduce an κ×N  edge-to-cycle incidence 
matrix:

and furthermore one assumes that the corresponding rate con-
stants in the two kinetic cycles for X and Y are essentially the 
same except / / /= =q q q q K KX Y41 21 51 31 , Hopfield and Ninio 
discovered the mechanism of the high-fidelity protein biosyn-
thesis [79, 80]. In this case,
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Obviously, the enzyme selectivity can be very different from 
the equilibrium estimates, and this is the essence of the kinetic 
proofreading mechanism.

4.  Coupling between nonequilibrium processes  
via kinetic cycles

One of the most important new features that arise in nonequi-
librium thermodynamics is the coupling terms between two 
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(69)

For the same graph, there is also a ×m N matrix Ξ , represent-
ing the signed incidence between node (state) to directed-edge 
(reversible transition). Then each column of Θ, a cycle, cor-
responds to a vector in the right null space of Ξ.

We can show that
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where ( )µ∆ ν
�e

 is the chemical potential difference of transition 

∈�e E with the temperature ( )νT , +Jck
 and −Jck

 are the two oppo-
site one-way cycle fluxes of the cycle ∈c Cj  [14, 32, 50].

When ( ) ( )µ|∆ |ν ν�
�
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,eq
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and equation (70) becomes
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The term inside the square bracket is a symmetric matrix 
=� �M Mi i. Onsager’s reciprocal relation is immediately 

observed. Hill called equation (71) the statistical mechanics of 
Onsager’s principle [81]. Every kinetic cycle that links trans
itions ei and �e  contributes to their coupling [47]. One can in 
fact introduce a coupling efficiency as /� ��M M Mi ii .

For a single cycle with N transitions, Θ is ×N 1 with all 
elements 1,

∑
µ

= +
∆ ν
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+ −
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2
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e

B 1
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( )� (72)

4.2.  Kinematics and NET of Markov processes

In nonequilibrium thermodynamics, a passive transport typi-
cally involves a constituent following its chemical potential 
difference. Active transport, on the other hand, typically 
involves the motion of a constituent against its chemical 
potential. This cannot occur by itself. It needs the help of 
another process [11]. This is known as ‘pumping’ in classical 
mechanics and in biophysics. One of the most famous such 
examples is Mitchell’s chemiosmotic mechanism of ATP syn-
thesis in mitochondria of living cells [83].

In stochastic thermodynamics, in the passive process a 
system will move from a state of low probability to a state 
of higher probability. Being able to include the temperature 
differences as driving forces for transport is a particular chal-
lenge for stochastic thermodynamics, which is based on the 
description of Markov dynamics. The result in section  3.3 
suggests that Hill’s cycle kinetic approach is not merely a 
kinetic theory, but also a thermodynamic one [14]. In clas-
sical chemical thermodynamics, ( / )q qln ij ji  is an equilibrium 
thermodynamic quantity. It is now quite clear from the cycle 
representation of the steady-state entropy production, given 
in equation  (31), that the term ( )−Γ

+
Γ
−J J  is the kinematics 

of a Markov process, while the term ( / )Γ
+
Γ
−J Jln  contains the 

essential information of nonequilibrium thermodynamics of 
an individual cycle.

5.  Discussion and future directions

The entropy balance equation (1) is valid for a large number of 
nonequilibrium systems with phenomenological laws describ-
ing irreversible, transport processes in the form of proportion-
alities, e.g. Fourier’s law between heat flow and temperature 
gradient, Fick’s law between flow of a component in a mix-
ture and its concentration gradient, Ohm’s law between elec-
trical current and potential gradient, Newton’s law between 
shearing force and velocity gradient, the law of mass action 
between reaction rate and chemical potentials [8]. Each of 
these phenomena involves a ‘flux’ that characterizes transport 
of certain entities, like mass, charge or energy, in response to 
a thermodynamic force [2, 3].

Starting with Boltzmann’s notion of entropy of a classi-
cal mechanical system with conserved mechanical energy U, 
fixed volume V, and number of particles {Nk}, the entropy 

( { })S U V N, , k  can be calculated using the microcanonical 

ensemble given the Hamiltonian. The Gibbs equation can be 
written in the form
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�
(73)

It is clear from the work of Boltzmann and Gibbs that a 
probability measure is needed to define the entropy. As was 
also clearly known to Boltzmann, there is simply no entropy 
production in a purely deterministic treatment of classical, 
smooth motions [84]. The Gibbs equation  can be used to 
find both the flux and the production of entropy in a transport 
phenomenon [8].

5.1. The nature of stochastic dynamics

The notion of entropic force is sometimes considered to be dif-
ficult. As observed by de Groot and Mazur: ‘[E]ntropic forces 
have nothing to do with forces in the Newtonian sense’, and 
‘[P]erhaps the name affinity would have been preferable’ [8].

In the theory of stochastic processes there is a universal 
equation  of motion with probability fluxes in phase space. 
The present paper shows that starting from such a meso-
scopic description, a complete NET, with fluctuations, can be 
developed.

There is a need for a conceptual clarification on the math-
ematical method of stochastic processes in the theory of 
mesoscopic NET. Kolmogorov’s mathematical theory of sto-
chastic processes [25] articulates a logic separation between 
the abstract probability of ‘random events’ in a probability 
space, and random variables defined on the space9 as physi-
cal observables. Markov dynamics described by a probability 
function f (x, t) follows a linear master equation. A theory of 
entropy and entropy production, according to current stochas-
tic thermodynamics, can be formulated at this abstract level in 
terms of probabilistic flux that devoids the specific nature of 
the underlying dynamic phenomena.

With this new found perspective, it becomes clear that the 
local equilibrium assumption has to be made only when apply-
ing stochastic thermodynamics to a system with observables, 
as was illustrated in section 3.

5.2. The nature of nonequilibrium processes

Classical thermodynamics is a theory about the emergent 
behavior of a macroscopic system. It is insensitive to the 
details of the equations  of motions of individual particles 
within the system. In terms of the mesoscopic description of 
a system, nonequilibrium thermodynamics is a theory about 
emergent probabilistic behavior, and it is expected to be insen-
sitive to the details of stochastic Markov dynamics.

The term ‘nonequilibrium’ deserves a clarification. To 
some authors, the notion of ‘equilibrium’ is a mechanical con-
cept. Thus, according to this usage, an oscillatory Hamiltonian 

9 According to Kolmogorov, a probability space is a measure space, and 
random variables are measurable functions defined on the measure space.
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dynamics is non-equilibrium. To others, however, equilibrium 
is a statistical thermodynamic concept. There are fluctuations 
in an equilibrium system. In the present work, we have used the 
term nonequilibrium in the statistical thermodynamic sense, 
as it most frequently utilized in chemistry. Nonequilibrium 
processes lead to ‘irreversible’ and ‘dissipative’ behavior. It 
can be quantified by a positive definite entropy production.

Nonequilibrium thermodynamics (NET), therefore, 
describes dynamic processes with dissipation. In a meso-
scopic perspective in probabilistic terms, stationary transport 
phenomena concern with the cycle kinetics, cycle affinities, 
and cycle fluxes. The cycle affinity as a physical quantity is 
actually easy to compute. The complexities of NET are in 
the decomposition of a system into cycles and the computa-
tion of the cycle fluxes. A cycle flux, however, is ‘driven’ 
by thermodynamic forces. The detailed mesoscopic cycles, 
each with its own probability, and their coupling to outside 
sources, yield the reciprocal relation first formulated by  
Onsager [2, 3].

A mesoscopic description, consistent with experimental 
observations, can also be obtained by expanding the variable 
space by so-called internal variables [85]. One then assumes 
local equilibrium for any mesoscopic state, and writes linear 
flux-force relations following standard procedure [32]. The 
approach is similar to the stochastic approach given here, but 
note that in our master equation formalism the flux-force rela-
tion is generally not linear. The law-of-mass action [47] or the 
Butler–Volmer equation can easily be obtained in this manner 
[86]. Another general nonequilibrium dynamic approach has 
been proposed by Zhu and coworkers [87], but this theory is a 
macroscopic one, while our method is mesoscopic.

It will be important to apply and to extend the presented 
here stochastic mesoscopic framework of NET for different 
chemical, physical and biological processes. This will help to 
clarify mechanisms of various complex phenomena from fun-
damental point of views.
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