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efficiency, effectiveness, and scope. In this article, a brief in-
troduction into rs-fMRI processing methods is followed by a 
detailed discussion on the role rs-fMRI plays in presurgical 
planning.  © 2016 S. Karger AG, Basel 

 Introduction 

 An ongoing challenge in the surgical resection of glio-
mas is balancing the extent of resection with the preserva-
tion of eloquent function. This is especially notable in tu-
mors that are in close proximity to the cortex and white 
matter connections associated with speech and motor 
function. In these situations, maximal resection around a 
tumor generally improves clinical outcomes with regard 
to survival  [1–5] . The benefits of a larger resection, how-
ever, must be weighed against the cost of deficits incurred 
in areas of eloquent cortex, particularly in motor and lan-
guage areas  [5] . Because there is a high degree of indi-
vidual variability in these areas, presurgical localization 
and intraoperative cortical mapping are often required to 
optimize this balance for the best clinical outcome. 

  In these specific clinical scenarios, functional magnetic 
resonance imaging (fMRI) has historically provided a sup-
portive role in the preoperative assessment of these pa-
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 Abstract 

 Currently, functional magnetic resonance imaging (fMRI)
facilitates a preoperative awareness of an association of an 
eloquent region with a tumor. This information gives the 
neurosurgeon helpful information that can aid in creating a 
surgical strategy. Typically, task-based fMRI has been em-
ployed to preoperatively localize speech and motor func-
tion. Task-based fMRI depends on the patient’s ability to 
comply with the task paradigm, which often is impaired in 
the setting of a brain tumor. This problem is overcome by 
using resting-state fMRI (rs-fMRI) to localize function. rs-fMRI 
measures spontaneous fluctuations in the blood oxygen lev-
el-dependent (BOLD) signal, representing the brain’s func-
tional organization. In a neurosurgical context, it allows non-
invasive simultaneous assessment of multiple large-scale 
distributed networks. Compared with task-related fMRI, rs-
fMRI provides more comprehensive information on the func-
tional architecture of the brain and is applicable in settings 
where task-related fMRI may provide inadequate informa-
tion or could not be performed. Taken together, rs-fMRI sub-
stantially expands the preoperative mapping capability in 
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tients. fMRI measures neuronal activity using the ratio of 
oxyhemoglobin to deoxyhemoglobin as a contrast mecha-
nism (known as blood oxygen level-dependent, or BOLD, 
fMRI). In a typical block design application, the subject 
alternates between a passive resting state and performing 
a task. Clinical applications of task-based fMRI have com-
monly focused on identifying areas of activation associated 
with language and motor function for presurgical plan-
ning  [6] . In comparative studies, these anatomic areas lo-
calized with task-based fMRI have been shown to approx-
imate the functional sites identified with intraoperative 
electrophysiology  [7] , Wada testing  [8] , and prediction of 
loss of function postoperatively  [9] . Despite its utility, task-
based fMRI has several disadvantages that limit its applica-
tion for preoperative functional localization. First, the re-
sults depend on the patient’s ability to perform the pro-
scribed task. In the setting of a brain tumor, claustrophobia, 
or baseline cognitive impairment, cooperation and effec-
tive participation may be limited due to neurological defi-
cits, inability to hold still, or confusion  [10] . Second, be-
cause the patient must be awake during the imaging pro-
cedure, sedation cannot be used. This often limits effective 
imaging in pediatric populations for whom conscious se-
dation or general anesthesia is frequently necessary. Final-
ly, in the setting where multiple functional regions need to 
be identified, this can require lengthy imaging sessions, 
further making their acquisition more difficult.

  An alternative to task-based fMRI is resting-state fMRI 
(rs-fMRI). This is an alternative imaging methodology 
for localizing critical sites independent of patient partici-
pation  [11] . This approach uses the endogenous brain 
 activity detectable with BOLD to identify areas that are 
interacting at rest. Spontaneous BOLD fluctuations are 
low-frequency (<0.1 Hz) oscillations in metabolic activity 
that are anatomically correlated within distinct function-
al networks  [12] . First reported by Biswal et al.  [13] , there 
is strong and reproducible coherence between the left and 
right somatomotor cortices  [13, 14] , between language 
areas  [15, 16] , and between numerous other functional 
regions in the absence of task performance. Using spon-
taneous activity, one can generate resting-state correla-
tion maps that are similar to the functional maps obtained 
from task activations  [17] . This approach has a number 
of advantages. Most importantly, patient participation is 
not required. An additional advantage is that these meth-
ods are robust; spontaneous fluctuations have been shown 
to persist under conditions of sleep  [16, 17]  and anesthe-
sia  [18–20] , as well as in the presence of tumors  [11] . Thus 
resting state could potentially be widely applied irrespec-
tive of age and cognitive status.

  In this review, we evaluate the use of rs-fMRI in the 
context of presurgical mapping. Data collected for this 
review were approved by the human research protection 
office at the Washington University School of Medicine, 
and informed written consent was obtained from each 
participant. Specifically, the items discussed will include 
the fundamental networks commonly identified and their 
functional associations, the analytic methods used to de-
fine functional topographies, and the clinical consider-
ations of using these methodological approaches. 

  Resting-State Networks 

 The topographies of functionally connected regions 
across the brain are known as resting-state networks 
(RSNs; equivalently, intrinsic connectivity networks  [21] ). 
rs-fMRI scans are generally acquired while the subject is 
in a state of quiet wakefulness  [12] . The importance of 
RSNs lies in the fact that their topography closely corre-
sponds to responses elicited by a wide variety of sensory, 
motor, and cognitive tasks  [17] . Intrinsic RSNs persist 
during sleep  [22, 23]  or even under sedation and general 
anesthesia  [24] . The robustness of the spontaneous fluc-
tuations during states of reduced consciousness and phar-
macological suppression suggests that this intrinsic neu-
ronal activity is fundamental in the maintenance of the 
brain’s functional integrity  [25] . Spontaneous BOLD ac-
tivity has been detected in all mammalian species investi-
gated thus far  [26–28] , further supporting the importance 
of this physiological phenomenon. Despite the ubiquitous 
presence of RSNs, the precise function of these endoge-
nous RSNs remains incompletely understood. 

  Perhaps the most fundamental RSN is the default 
mode network (DMN;  fig. 1 a), first identified by a meta-
analysis of task-based functional neuroimaging experi-
ments performed with positron emission tomography 
 [29, 30] . The defining property of the DMN is that it is 
more active at rest than during performance of goal-di-
rected tasks. The DMN was first identified using rs-fMRI 
by Greicius et al.  [31] , a finding that has since been repli-
cated many times using a variety of analysis methods  [17, 
32–38] . Some investigators have hypothesized that there 
are two large anticorrelated systems in the brain  [39, 40] , 
one anchored by the DMN and the other comprised of 
systems controlling executive and attentional mecha-
nisms. This dichotomy has been variously referred to as 
‘task positive’ versus ‘task negative’  [34, 38, 39, 41, 42]  and 
‘intrinsic’ versus ‘extrinsic’  [40, 43] . Although the no-
menclature associated with the DMN remains controver-
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sial  [44, 45] , the topography of the DMN is remarkably 
consistent across diverse analysis strategies.

  Primary sensory and motor RSNs include the somato-
motor network (SMN), first identified by Biswal et al. 
 [13] , which encompasses primary and higher-order mo-
tor and sensory areas ( fig. 1 b). The visual network (VIS) 
spans much of the occipital cortex ( fig. 1 c)  [17, 32–35] . 
The auditory network includes Heschl’s gyrus, the supe-
rior temporal gyrus, and the posterior insula  [17] . The 
language network includes Broca’s and Wernicke’s areas 
but also extends to prefrontal, temporal, parietal, and 
subcortical regions ( fig. 1 d)  [46–48] .

  RSNs involved in attentional and cognitive control in-
clude the dorsal attention network (DAN) and the ventral 
attention network (VAN)  [21, 34, 35, 49, 50] . The DAN 
( fig. 1 e) includes the intraparietal sulcus and the frontal 
eye field, and is recruited by tasks requiring control of 
spatial attention. The VAN ( fig. 1 f), which includes the 
temporoparietal junction and ventral-frontal cortex, is 
involved in the detection of environmentally salient 
events  [49–51] . The frontoparietal control network 
( fig. 1 g), which includes the lateral prefrontal cortex and 
the inferior parietal lobule, is associated with working 
memory and control of goal-directed behavior  [52, 53] . 
Finally, the cingulo-opercular network, also known as the 
salience network  [21]  or the core control network  [54] , 
includes the medial superior frontal cortex, anterior in-

sula, and anterior prefrontal cortex. The cingulo-opercu-
lar network is thought to enable the performance of tasks 
requiring executive control  [34, 54, 55] .

  Overview of Processing Methods 

 From a neurosurgical perspective, it is important to 
have an understanding of the methods used in identifying 
RSNs because they can impact on the interpretation of 
cortical localization and also impact on the ease of imple-
mentation of this imagining in a given clinical environ-
ment. The approaches are generally categorized as  super-
vised  or  unsupervised  classification methods. Below, we 
present results obtained by two unsupervised methods: 
spatial independent component analysis (sICA) and c-
means clustering, and two supervised methods: conven-
tional seed-based correlation mapping and RSN mapping 
using a trained multilayer perceptron (MLP) classifier. 

  Seed-Based Correlation Mapping 
 Seed-based correlation mapping is one of the most 

widely adopted techniques for studying cofluctuations in 
intrinsic neuronal activity or functional connectivity  [15, 
56] . The high adoption rate of the seed-based approach is 
partly attributable to its simplicity of implementation, 
and to the ease with which the results can be interpreted. 
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  Fig. 1.  Surface plots of RSNs as derived 
from a fuzzy c-means algorithm  [38] . 
 a  DMN.  b  SMN.  c  Visual network.  d  Lan-
guage network.  e  DAN.  f  VAN.  g  Fronto-
parietal control network. 
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Biswal et al.  [13]  used this method to first demonstrate the 
feasibility of using fMRI in detecting spatially distributed 
networks.

  Pearson’s product-moment correlation is the most 
widely used measure of functional connectivity  [13, 15, 31, 
39, 57, 58] . Seed-based analysis requires prior knowledge 
of the locations for regions of interest. They can be ob-
tained from previously determined brain atlas coordi-
nates or from task-based fMRI data. For instance, a simple 
behavioral motor paradigm may be used to generate data 
involving the motor network. A subject is asked to move 
their extremity and the BOLD data are analyzed. The MRI 
voxel with the strongest activation is used as a ‘seed’ region 
to then study the resting-state data. Once the seed region 
voxel coordinates have been identified, rs-BOLD mea-
surements (over time) between the seed region and the 
rest of the brain are compared to generate a correlation 
map. An example of multiple RSNs derived using the 
seed-based approach is presented in  figure 2   [59] .

  While holding substantial promise, these advanced 
techniques have not yet entered routine clinical practice 
due to the high level of technical support necessary to cre-
ate these resting-state maps. The use of a seed-based ap-

proach can be biased by the selection of seed regions and 
is technically labor intensive. Often multiple regions are 
tested until the optimal network is identified. While this 
process is often successful in normal brains using stan-
dard atlas coordinates, it becomes more challenging in 
brains that are distorted due to disease (i.e. brain tumors).

  Independent Component Analysis 
 Unsupervised data-driven approaches are of interest to 

researchers looking to analyze resting-state data without 
a priori assumptions. sICA is the most widely used data-
driven approach to analyze resting-state data  [60–63] . 
sICA decomposes rs-fMRI data (time × space) into spatial 
components that are maximally independent. Each spatial 
component is associated with a particular time course. 
The components are useful for differentiating noise data 
from physiological data, as well as identifying statistically 
independent systems. Comparison studies between seed-
based correlation maps and spatial patterns determined 
by sICA have found similar spatial patterns  [32, 64] .

  Although the sICA approach eliminates the need for a 
priori seed identification, the user is required to choose 
the initial number of components as well as to select 
which components represent noise and which represent 
functional networks. While some studies have aimed to 
automate this process and use sICA as a method for iden-
tifying and eliminated noise within the BOLD signal  [65–
67] , there remains a substantial need for technical exper-
tise in the deployment and the assignment of networks for 
them then to be used clinically.

  Clustering Algorithms 
 Another method used to analyze rs-fMRI data makes 

use of clustering algorithms. Clustering algorithms at-
tempt to group items that are alike on the basis of a set of 
relevant characteristics to the problem of interest. Voxels 
can be grouped on the basis of similarity of their BOLD 
time courses by using some distance metric, such as Pear-
son’s correlation. One example of a clustering algorithm 
is hierarchical clustering  [68, 69] , which builds a dendro-
gram (a treelike structure) of all members. Other exam-
ples of clustering algorithms are the k-means  [40]  and 
fuzzy c-means  [38]  clustering algorithms. In these algo-
rithms, all voxels are assigned membership to 1 or more 
of several clusters on the basis of their distances from the 
cluster centers, which, in turn, are calculated from an av-
erage of their members. Clustering algorithms iteratively 
update memberships and cluster centers until conver-
gence is achieved ( fig. 1 )  [38] . Other variations in cluster-
ing algorithms include spectral-based clustering  [70]  and 
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  Fig. 2.  Examples of multiple RSNs generated using a seed-based 
approach (blue dots in the figure)  [59] . Six of the major networks 
are illustrated: visual, sensorimotor, auditory, default mode, dorsal 
attention, and frontoparietal executive control. The scale num-
bered 0–7 indicates the relative correlation strength. 
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graph-based clustering  [37] . While automated, the clus-
tering algorithm, because it is an unsupervised classifier, 
suffers from similar constraints as sICA, in that after the 
clusters are generated they must then be assigned to a 
 particular network by an expert. 

  Trained MLP 
 We recently described a technique for mapping the to-

pography of known RSNs in individuals using MLP  [48] . 
Perceptrons are machine learning algorithms that can be 
trained to associate arbitrary input patterns with discrete 
output labels  [71] . Here, an MLP was trained to associate 
seed-based correlation maps with particular RSNs. Run-
ning the trained MLP on correlation maps corresponding 
to all voxels in the brain generates voxel-wise RSN mem-
bership estimates. Thus, RSN mapping using a trained 
MLP exemplifies supervised classification. An example of 

the RSN produced by the MLP algorithm in 3 subjects is 
presented in  figure 3 . It is critical to note that our MLP as-
signs RSN membership to rs-fMRI correlation maps. This 
is a critical difference from unsupervised methods where 
the components or clusters must subsequently be assigned 
as a network by an expert. Here, the assignment of RSN 
(e.g. somatomotor/language) is automatic and thus does 
not require expert input through the analytic process.

  It is also important to note that while unsupervised 
methods have good utility in performed segregation of 
RSNs across data across subjects, they perform more 
poorly on individual subject data. MLP methods, how-
ever, perform very robustly in individual subjects.  Figure 
4  demonstrates the degree to which the MLP captures in-
dividual variability, by showing that, in each normal sub-
ject, the location of the central sulcus in the cortical sur-
face segmented using FreeSurfer  [72]  is highly correlated 

Individual sujects - performance by RSN
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  Fig. 3.  Single-subject voxel estimation of RSNs using the trained MLP in 3 subjects. The results are from the best, 
median, and worst performers as determined by root-mean-square error (RMSE) for the DAN, VAN, SMN, VIS, 
frontoparietal control network (FPC), language network (LAN), and DMN. MLP output was converted to a per-
centile scale and sampled onto each subject’s cortical surface  [48] .  
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with the location of the SMN centroid calculated by the 
MLP. Detailed quantitative evaluation of the MLP perfor-
mance has been specified previously  [48] . MLP perfor-
mance was also compared to alternative RSN estimation 
schemes such as dual regression and linear discriminant 
analysis, and was found to provide improved area under 
the curve estimation, with better orthogonal estimates of 
RSN membership.

  In summary, MLP is the leading approach from an an-
alytic standpoint for clinical application. MLP accurately 
generates RSN topography estimates in individuals con-
sistent with previous studies, even in brain regions not 
represented in the training data, and can be used for gen-
erating individual patient RSN maps. These findings are 
important to future applications because they demon-
strate that this approach can reliably and effectively map 
multiple RSNs across individual subjects. At the Wash-
ington University School of Medicine, this methodology 
has been deployed as a clinical radiology imaging option 
at the Barnes Jewish Hospital, and has been rapidly ad-
opted and widely used by neurosurgeons ( fig. 5 ).

  Application of rs-fMRI to Presurgical Planning 

 Currently, fMRI enables a ‘preoperative anatomic 
awareness’ of the proximity of an eloquent region to a giv-
en tumor. This information gives the neurosurgeon help-
ful, but nondefinitive, information that can facilitate a sur-

gical strategy (e.g. regions to avoid or areas that will re-
quire intraoperative cortical mapping, should surgery be 
done awake). The most common types of eloquent cortex 
that utilize preoperative mapping are the cortical regions 
subserving motor and language function. With task-based 
MRI, localization requires that the patient be conscious, 
attentive, and capable of participating in the given cogni-
tive paradigm. In the setting of a brain tumor, effective 
participation may be impaired due to a neurological defi-
cit or confusion. Additionally, because the patient must be 
awake during the imaging procedure, sedation cannot be 
used, thus eliminating pediatric or claustrophobic pa-
tients. Because RSNs are task independent and have been 
shown to be present despite the level of consciousness (i.e. 
sleep or anesthesia), the limitations of task-based fMRI do 
not apply and thus makes this approach substantially 
more widely applicable. Several authors report rs-fMRI 
mapping in patients with brain tumors ( table 1 ). In this 
section, we review some of the previously published works 
demonstrating the feasibility and provide some examples 
of unique capabilities of rs-fMRI. 

  Preoperative Sensorimotor Mapping in Brain Tumor 

Patients Using Seed-Based Methods 

 Zhang et al.  [11]  described their initial experience in 
using rs-fMRI brain mapping for presurgical planning of 
tumor resections in 4 tumor patients ( table 1 ). The tu-
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  Fig. 4.  MLP SMN validation results. The figures are of 5 individuals selected to represent the correspondence 
between SMN variability and anatomic variability in the central sulcus. The plot shows the correlation between 
the Talairach y-coordinate of the centroid of the MLP SMN and the y-coordinate centroid of the central sulcus 
traced over the anatomy (as determined by the FreeSurfer program) in a large validation data set  [48] . 
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mors in all 4 patients were adjacent to the motor and sen-
sory cortices, thus necessitating accurate localization pri-
or to surgery to minimize postoperative deficits. Each of 
the patients was scanned using rs-fMRI and again using 
task-based fMRI while performing a block design finger-
tapping task. fMRI in each patient included four 7-min 
runs (28 min in total). rs-fMRI data previously acquired 
from a group of normal controls (n = 17) were also used 
for comparison. Standard processing of the BOLD fMRI 
data was used for both the resting-state and task-induced 
data  [73] . Electro-cortical stimulation (ECS) mapping 
was performed on 3 of 4 tumor patients, and these data, 
in addition to the task-based fMRI, were used for com-
parisons with the resting-state data.

  The 17 control brains were mapped using the seed re-
gion in the left sensorimotor cortex. The correlations of 
resting-state activity to the seed region were recorded for 
each of the other voxels in the brain. The group average 
was used as a control to show the distribution of the sen-
sorimotor network in a healthy brain. To confirm the re-
producibility of this method in individual subjects, the 
full rs-fMRI data set in each subject (28 min) was divided 
into four separate scans (7 min), and a separate analysis 
was performed on each segment. The somatomotor cor-

tex was consistently seen in the same region over the four 
scans in all control subjects. The four tumor patients were 
also mapped individually following the placement of the 
seed regions on the contralateral side of the brain.

  An exemplar is taken from this series. A 64-year-old 
man developed focal motor seizures secondary to mass in 
the left hemisphere ( fig. 6 a). Finger-tapping fMRI showed 
atypical response topography including activation in the 
right parietal cortex in addition to the expected activation 
of the somatomotor area ( fig.  6 b). Seed-based ( fig.  6 c) 
correlation mapping rs-fMRI showed the somatomotor 
RSN without parietal involvement. Correlation mapping 
with a seed in the right parietal cortex matched the topog-
raphy of the DAN ( fig. 6 d). The interpretation of these 
findings are that during the task fMRI, the patient had to 
strongly focus his attention in order to complete the task, 
which accounts for the activation in the attentional net-
work. This case illustrates the potential increased speci-
ficity of the rs-fMRI method. Also of note, the motor 
 localization of the rs-fMRI was consistent with the intra-
operative ECS.

  The findings illustrated by Zhang et al.  [73]  have been 
corroborated by other studies evaluating the efficacy of 
seed-based rs-fMRI network mapping in brain tumor pa-
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  Fig. 5.  Example of clinical utilization and 
adoption curve at the Washington Univer-
sity School of Medicine.  a–c  Language RSN 
map using MLP analysis in an expressively 
aphasic patient with recurrent high-grade 
glioma (green arrowhead). The red arrow-
head highlights the clinically relevant rest-
ing-state speech site.  d  Clinical utilization 
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tients. Quigley et al.  [74]  found 40% concurrence between 
tasked-based fMRI and rs-fMRI in 11 patients with cere-
bral tumors, cysts, and malformations. Liu et al.  [20]  
found that rs-fMRI mapping shows selectivity for hand 
and tongue motor regions, and similar to task-based 
fMRI and ECS. Otten et al.  [75]  showed that rs-fMRI ab-
normalities present in brain tumor patients correlate with 
predicted weakness. These seed-based fMRI methods 
parallel similar findings using ICA methods  [76] . Togeth-
er these studies support a role for the rs-fMRI method to 
localize cortical networks in brain tumor patients. 

  Neurological deficits correlate with resting-state mo-
tor network connectivity in patients with brain tumors. 
Otten et al.  [75]  used rs-fMRI methods to measure motor 
networks in patients with brain tumors, and they showed 

reduced connectivity in patients with pre- and postop-
erative motor deficits. They found that postoperative def-
icits correlated with preoperative RSN networks. Fur-
thermore, clinical recovery of motor function was accom-
panied by reconstitution of the RSN motor network. 
Future studies evaluating the role of RSNs in the predic-
tion of postoperative deficits will be necessary.

  Comprehensive Network Mapping of the Functional 

Cortex Using MLP 

 Mitchell et al.  [77]  reported application of MLP-based 
RSN mapping to presurgical planning in 6 patients with 
intractable epilepsy and 7 patients with brain tumors. Epi-

 Table 1.  Preoperative mapping for brain tumor patients using rs-fMRI: literature review

Authors [Ref.] Year Tumor 
patients

Controls Tumor locations rs-fMRI Other mapping 
methods

Results

Quigley et al. 
[74]

2001 11a 1 Near eloquent 
cortices; details not 
reported

Seed-based Task-based 
fMRI

40% concurrence between rs-fMRI 
and task-based fMRI

Zhang et al. 
[11]

2009 4 17 Pre-/postcentral gyri Seed-based Task-based 
fMRI
ECS

SMN locations determined by 
rs-MRI were mapped to expected 
locations in normal subjects; 
rs-fMRI accurately mapped SMN 
as confirmed by other mapping 
methods

Kokkonen et al. 
[76]

2009 8 10 F (3), P (1), T (3), 
O (1)

ICA Task-based
fMRI

Correlation between rs-fMRI 
mapping and task-based fMRI is 
similar for normal controls and 
brain tumor patients

Liu et al. [20] 2009 6b None Near motor cortex; 
details not reported

Seed-based Task-based 
fMRI
ECS

rs-fMRI, task-based fMRI, and 
ECS mapping are similar to one 
another; rs-fMRI mapping shows 
selectivity for hand and tongue 
motor regions

Otten et al. [75] 2012 22 22 F (7), T (9), FT (1), 
FP (1), O (2), C (1), 
CC (1)

Seed-based None SMN abnormalities are present 
in brain tumor patients and can 
predict weakness

Mitchell et al. 
[77]

2013 7 6c F (2), P (1), T (1), 
FP (2), FT (1)

MLP ECS MLP identified all RSNs in tumor 
and seizure groups; high degree 
of overlap between MLP and ECS; 
MLP can be used to identify 
‘no-cut’ regions of cortex

 F = Frontal; P = parietal; T = temporal; O = occipital; FT = frontotemporal; FP = frontoparietal; C = cerebellum; CC = corpus cal-
losum. a Cerebral tumors, cysts, or vascular malformations. b Tumors or epileptic foci. c Epilepsy.
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lepsy patients underwent electrocorticographic monitor-
ing to localize the epileptogenic zone of seizure onset and 
to perform functional mapping with ECS mapping. Pa-
tients with tumors underwent intraoperative ECS map-
ping prior to resection of the tumor mass. Lesions were 
manually segmented using T1- and T2-weighted images. 
The MLP was trained and applied de novo in each tumor 
patient, omitting tumor voxels. Additionally, for the pa-
tients with implanted grid electrodes, the electrodes were 
coregistered via CT scan with the anatomic and functional 
MRI for statistical comparison of stimulation-positive and 
-negative sites. Motor regions were defined by the presence 
of induced involuntary motor movements. Language sites 
were defined by speech arrest during the stimulation. 

  An electrode was classified as positive or negative in 
the MLP results according the probability of its belonging 
to the appropriate RSN (motor or language). These prob-
abilities were then plotted against the ECS results to 
 generate receiver operating characteristic (ROC) curves. 
These ROC curves were averaged, and the area under the 
averaged curve (AUC) was used as a measure of the agree-
ment between the MLP and the ECS method.

  Across all patients, MLP demonstrated a robust ability 
to identify all seven canonical functional networks. This 
was true for both structurally normal (i.e. epilepsy) brains 
and anatomically distorted brains (i.e. tumors;  fig. 7 ). For 
networks in which no direct clinical comparison was pos-
sible, the acquired maps were in good agreement with 
published results. These included the VIS  [32, 36] , DAN 
and VAN  [21, 50] , frontoparietal control network  [34, 52, 
78] , and DMN  [31, 79] . For the motor and language net-
works, which were compared to the clinical findings us-
ing ECS, there was a high degree of qualitative overlap 
between the two methods. Quantitative comparisons 
were performed with an ROC analysis. Findings yielded 
an average AUC of 0.89 for the motor network and an 
average AUC of 0.76 for the language network. 

  Loci in MLP maps outside the appropriate RSN but 
eloquent as determined by ECS were defined as MLP false 
negatives. Minimization of MLP false negatives is critical 
to reduce surgical morbidity, since resection of a false-
negative area could lead to a clinical deficit. An assess-
ment of the anatomic limits of MLP false negatives dem-
onstrated that the probability of an MLP false negative 
could be reduced to less than 2% by expanding the ‘no-
cut’ zone by 15 mm around the contour corresponding to 
85% likelihood of belonging to the motor RSN.

  In summary, MLP-based RSN mapping robustly iden-
tified all networks in all patients, including those with dis-
torted anatomy attributable to a mass effect, and showed 
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  Fig. 6.  MRI of a 64-year-old man who presented with focal motor 
seizures (case 2).  a  Structural MRI revealed a tumor in the left pa-
rietal cortex that invades the territory near the central sulcus (neu-
rologic convention). The green dot represents the location of ipsi-
lateral hand response to cortical stimulation.  b  Task-related activ-
ity was seen bilaterally in the frontal lobe. In addition, a large band 
of activity appeared in the right parietal cortex, not consistent with 
the pattern of activity from the sensorimotor network.  c  Resting-
state correlation mapping using a seed in the right (unaffected) 
hemisphere (blue dot) showed ipsilateral correlations anterior to 
the tumor as well as a region of activity in the midline parietal cor-
tex. Note the absence in the correlation mapping results of parietal 
activity seen in the task-related map.  d  Parietal activation seen dur-
ing task-evoked imaging is revealed to be a separate RSN, the 
DAN, which is normally dissociated from the sensorimotor net-
work (seed: blue dot). All images are displayed left on left (neuro-
logic convention)  [11] . 
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  Fig. 7.  RSN maps produced by MLP for 7 
tumor patients. The seven networks lan-
guage (LAN), SMN, VIS, DAN, VAN, 
frontoparietal control (FPC), and DMN 
were mapped in the area of the tumor using 
the winner-take-all format          [77] . PT = Pa-
tient; T = tumor. 
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a strong correlation with stimulation. These findings 
demonstrate that the MLP-defined RSNs are able to 
 identify eloquent cortex. 

  Future Applications 

 Mapping beyond Motor and Speech 
 In addition to broadening the patient population that 

can be preoperatively mapped, the use of rs-FMRI for the 
identification of multiple cortical networks also broadens 
the capability of what cognitive operations can be as-
sessed, and can potentially redefine what regions are con-
sidered ‘eloquent’. The previously reported correlations 
between stimulation mapping and the somatomotor and 
speech RSNs supports that the other cortical networks 
identified are also functionally relevant. Other cognitive 
operations of attention, executive control, and sensory 
perception are challenging if not impossible to screen 
pre- and intraoperatively in a comprehensive fashion. Ei-
ther the number of tasks needed to identify all these func-
tionally relevant regions would simply be too long to test 
in an MRI, or there are no ways of eliciting or interrupting 
these complex cognitive operations in the operating room 
in a reliable way. Although the current standard for care 
is that a surgeon does his or her utmost to preserve a pa-
tient’s ability to move and speak after surgery, these other 
cognitive operations and their associated networks may 
also play a role in long-term clinical outcomes which are 
harder to test. The use of automated methods, such as 
MLP, to rapidly identify all these networks with a single 
brief scan may provide an important tool to enable a more 
subtle appreciation for how these patients will cognitive-
ly perform clinically beyond simple motor and speech 
tasks. As an example, insights into the location of the at-
tentional networks may aid in preventing a neglect or 
avoiding the frontoparietal control network in a high-
functioning professional to avoid compromise of his/her 
decision making would both be highly clinically relevant. 

  Integration with Stereotactic Imaging 
 By providing real-time  anatomic  information to the 

neurosurgeon, stereotactic neuronavigation has been 
shown to improve the extent of tumor resection  [80]  and, 
as a result, to improve survival statistics  [4] . That said, it 
is  not  routine during resections to make use of similar 
neuronavigation displays that reflect the  functional  orga-
nization of the brain. Hence, the neurosurgeon often has 
very little insight into what cognitive functions may be 
compromised by the operative procedure. Task-based 

fMRI has been employed as a means of preoperatively lo-
calizing function  [81] , but it is not routinely integrated 
with standard neuronavigation. Because, rs-fMRI pro-
vides a much more complete functional map of the brain 
and does so in a much more reliable and highly time-
efficient manner, this could become a natural adjunct to 
preoperative stereotactic imaging. Thus, every patient 
would both have their anatomy and their functionally rel-
evant data available for every surgical case. While the im-
pact of surgery on these various networks needs to be ex-
plicitly tested before any clinical recommendations can 
be made, this combined approach would at least provide 
the necessary tools to address such important questions.

  Conclusion 

 The mapping of RSNs defined by rs-fMRI offers a new 
method for preoperative planning. These techniques not 
only localize motor and speech regions classically under-
stood to be eloquent, but also enable the identification of 
all the canonical functional networks. Taken together, be-
cause this approach is task independent and can identify 
a multitude of networks simultaneously, these findings 
stand to fundamentally alter preoperative imaging by 
substantially expanding the patients that can be mapped 
and by better interrogating all regions of function in the 
human brain.
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