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Abstract We present a new generic problem solving approach for over-constrained prob-

lems based on Max-SAT. We first define a Boolean clausal form formalism, called soft CNF
formulas, that deals with blocks of clauses instead of individual clauses, and that allows

one to declare each block either as hard (i.e., must be satisfied by any solution) or soft
(i.e., can be violated by some solution). We then present two Max-SAT solvers that find a

truth assignment that satisfies all the hard blocks of clauses and the maximum number of

soft blocks of clauses. Our solvers are branch and bound algorithms equipped with orig-

inal lazy data structures, powerful inference techniques, good quality lower bounds, and

original variable selection heuristics. Finally, we report an experimental investigation on a

representative sample of instances (random 2-SAT, Max-CSP, graph coloring, pigeon hole

and quasigroup completion) which provides experimental evidence that our approach is very

competitive compared with the state-of-the-art approaches developed in the CSP and SAT

communities.

Keywords Soft constraints . Max-SAT . Solvers

1. Introduction

The SAT-based problem solving approach presents some limitations when solving many

real-life problems due to the fact that it only provides a solution when the formula that

models the problem we are trying to solve is shown to be satisfiable. Nevertheless, in many
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combinatorial problems, some potential solutions could be acceptable even when they violate

some constraints. If these violated constraints are ignored, solutions of bad quality are found,

and if they are treated as mandatory, problems become unsolvable. This is our motivation to

extend the SAT formalism to solve over-constrained problems. In such problems, the goal is

to find the solution that best respects the constraints of the problem.

In this paper we consider that all the constraints are crisp; i.e., they can only be either

completely satisfied or completely violated. We do not consider fuzzy constraints; i.e., con-

straints that allow intermediate degrees of satisfaction. Nevertheless, crisp constraints are

classified either as hard (i.e., they must be satisfied by any solution) or as soft (i.e., they can

be violated by some solution). A solution best respects the constraints of the problem if it

satisfies all the hard constraints and the maximum number of soft constraints. We invite the

reader to consult (Meseguer et al., 2003) for a recent survey on different CSP approaches to

solving over-constrained problems.

Given a combinatorial problem which can be naturally defined by a set of constraints

over finite-domain variables, we have that each constraint is often encoded as a set (block)

of Boolean clauses in such a way that a constraint is satisfiable if all those clauses are

satisfied by some truth assignment and is violated if at least one of those clauses is not

satisfied by any truth assignment. Thus, in contrast to the usual approach, the concept

of satisfaction in SAT-encoded over-constrained problems refers to blocks of clauses in-

stead of individual clauses. This led in turn to design Max-SAT-like solvers that deal

with blocks of clauses instead of individual clauses, and exploit the new structure of the

encodings.

In this paper we present a new generic problem solving approach for over-constrained

problems based on Max-SAT. We first define a Boolean clausal form formalism that deals with

blocks of clauses instead of individual clauses, and that allows one to declare each block either

as hard (i.e., must be satisfied by any solution) or soft (i.e., can be violated by some solution).

We call soft CNF formulas to this new kind of formulas. We then present two Max-SAT solvers

that find a truth assignment that satisfies all the hard blocks of clauses and the maximum

number of soft blocks of clauses. Our solvers are branch and bound algorithms equipped

with original lazy data structures, powerful inference techniques, good quality lower bounds,

and original variable selection heuristics. Finally, we report an experimental investigation on

a representative sample of instances (random 2-SAT, Max-CSP, graph coloring, pigeon hole

and quasigroup completion) which provides experimental evidence that our approach is very

competitive compared with the state-of-the-art approaches developed in the CSP and SAT

communities.

Problem solving of over-constrained problems with Max-SAT local search algorithms

has been investigated before in Jiang et al. (1995); Cha et al. (1997). In that case, the

authors distinguish between hard and soft constraints at the clause level, but they do not

incorporate the notion of blocks of hard and soft clauses. The notion of blocks of clauses

provides a more natural way of encoding soft constraints. Besides, to the best of our knowl-

edge, the treatment of soft constraints with exact Max-SAT solvers has not been considered

before.

The paper is structured as follows. In Section 2 we introduce the formalism of soft CNF

formulas. In Section 3.2 we describe a solver for soft CNF formulas with static variable

selection heuristics. In Section 3.3 we describe a solver for soft CNF formulas with dynamic

variable selection heuristics. In Section 4 we report the experimental investigation we per-

formed to assess the performance of our formalism and solvers. Finally, we present some

concluding remarks.
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2. Soft CNF formulas

We define the syntax and semantics of soft CNF formulas, which are an extension of Boolean

clausal forms that we use to encode over-constrained problems.

Definition 1. A soft CNF formula is formed by a set of pairs (clause, label), where clause

is a Boolean clause and label is either hi or si for some i ∈ N. A hard block of a soft CNF

formula is formed by all the pairs (clause, label) with the same label hi , and a soft block is

formed by all the pairs (clause, label) with the same label si .

All the clauses with the same label hi (si ) model the same hard (soft) constraint.

Definition 2. A truth assignment satisfies a hard block of a soft CNF formula if it satisfies all

the clauses of the block. A truth assignment satisfies a soft CNF formula φ if it satisfies all

the hard blocks of φ. We say then that φ is satisfiable. A soft CNF formula φ is unsatisfiable

if there is no truth assignment that satisfies all the the hard blocks of φ. A truth assignment

satisfies a soft block if it satisfies all the clauses of the block. A truth assignment is a solution

to a soft CNF formula φ if it satisfies all the hard blocks of φ and the maximum number of

soft blocks.

Definition 3. The Soft-SAT problem is the problem of finding a solution to a Soft CNF

formula.

Example 1. We want to solve the problem of coloring a graph with two colors in such a

way that the minimum number of adjacent vertices are colored with the same color. If we

consider the graph with vertices {v1, v2, v3} and with edges {(v1, v2), (v1, v3), (v2, v3)}, that

problem is encoded as a Soft-SAT instance as follows: (i) the set of propositional variables is

{v1
1, v

2
1, v

1
2, v

2
2, v

1
3, v

2
3}; the intended meaning of variable v

j
i is that vertex vi is colored with

color j ; (ii) there is one hard block formed by the following at-least-one and at-most-one

clauses:

(v1
1 ∨ v2

1, h1), (¬v1
1 ∨ ¬v2

1, h1), (v1
2 ∨ v2

2, h1), (¬v1
2 ∨ ¬v2

2, h1), (v1
3 ∨ v2

3, h1), (¬v1
3 ∨ ¬v2

3, h1);

and (iii) there is a soft block for every edge:

(¬v1
1 ∨ ¬v1

2, s1), (¬v2
1 ∨ ¬v2

2, s1),

(¬v1
1 ∨ ¬v1

3, s2), (¬v2
1 ∨ ¬v2

3, s2),

(¬v1
2 ∨ ¬v1

3, s3), (¬v2
2 ∨ ¬v2

3, s3).

The use of blocks is relevant for two reasons. On the one hand, it provides to the user

information about constraint violations in a more natural way. On the other hand, it allows

us to get more propagation at certain nodes (this point is discussed in the next section), as

well as to define variable selection heuristics that exploit the fact that a variable occurs in a

hard or in a soft block.
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3. Soft-SAT solvers

In this section we start by describing how a basic Soft-SAT solver works. Based on that

description, we then introduce the two solvers we have designed and implemented: Soft-SAT-

S and Soft-SAT-D. Soft-SAT-S uses static variable selection heuristics while Soft-SAT-D uses

dynamic variable selection heuristics.

3.1. A basic Soft-SAT solver

The space of all possible assignments for a soft CNF formula φ can be represented as a search

tree, where internal nodes represent partial assignments and leaf nodes represent complete

assignments. A basic Soft-SAT solver explores that search tree in a depth-first manner. At

each node, the algorithm backtracks if the current partial assignment violates some clause of

the hard blocks, and applies the one-literal rule (Loveland, 1978) to the literals that occur in

unit clauses of hard blocks; i.e., given a literal ¬p (p), it deletes all the clauses containing the

literal ¬p (p) and removes all the occurrences of the literal p (¬p). Observe that this pruning

technique cannot be applied to exact Max-SAT solvers that deal with individual clauses; in

Max-SAT solvers each clause can be viewed as a soft block. If the current partial assignment

does not violate any clause of the hard blocks, the algorithm compares the number of soft

blocks unsatisfied by the best complete assignment found so far, called upper bound (ub),

with the number of soft blocks unsatisfied by the current partial assignment, called lower

bound (lb). Obviously, if ub ≤ lb, a better assignment cannot be found from this point in

search. In that case, the algorithm prunes the subtree below the current node and backtracks

to a higher level in the search tree. If ub > lb, it extends the current partial assignment by

instantiating one more variable, say p, which leads to the creation of two branches from the

current branch: the left branch corresponds to instantiating p to false, and the right branch

corresponds to instantiating p to true. In that case, the formula associated with the left (right)

branch is obtained from the formula of the current node by applying the one-literal rule

using the literal ¬p (p). The value that ub takes after exploring the entire search tree is the

minimum number of soft blocks that cannot be satisfied by a complete assignment.

3.2. Soft-SAT-S: A solver with static variable selection heuristics

Soft-SAT-S implements the basic Soft-SAT solver augmented with a number of improvements

that we describe below.

Upper bound and lower bound computation. In Soft-SAT-S, like in Alsinet et al. (2003);

Wallace and Freuder (1996), the initial upper bound is obtained with a GSAT-like (Selman

et al., 1992) local search algorithm. The search begins with a randomly generated complete

truth assignment and, at each step, the value of one variable is flipped taking into account

its score. The score of a variable is the sum of weights that we associate with unsatisfied

clauses; we associate a weight one to an unsatisfied clause of a soft block and a weight equal

to the number of clauses to an unsatisfied clause of a hard block. Local minima are avoided

by occasionally performing a random walk.

In branch and bound Max-SAT solvers, the lower bound is the sum of the number of

clauses unsatisfied by the current partial assignment plus an underestimation of the number

of clauses that will become unsatisfied if we extend the current partial assignment into a

complete assignment, which is calculated taking into account the inconsistency counts of the

variables not yet instantiated. Since we are dealing with blocks of clauses, the lower bound
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computation method of Max-SAT solvers like (Alsinet et al., 2003; Wallace and Freuder,

1996) cannot be applied to Soft CNF formulas because some inconsistent soft blocks could

be counted more than once.

For instances with CSP variables with domain size greater than two, we defined a lower

bound for soft CNF formulas that incorporates an underestimation of the number of soft

blocks that will become unsatisfied if we extend the current partial assignment into a com-

plete assignment. Each CSP variable with a domain of size k is represented by a set of k
Boolean variables x1, . . . , xk in a SAT encoding. The inconsistency count associated with

a Boolean variable xi (1 ≤ i ≤ k) is the number of soft blocks violated when xi is set to

true. The inconsistency count associated with a CSP variable X , which is encoded by the

Boolean variables x1, . . . , xk , is the minimum of the inconsistency counts of xi (1 ≤ i ≤ k).

As underestimation for the lower bound, we consider exactly one CSP variable for each soft

block and take the sum of the inconsistency counts of such variables.

Inference. When branching is done, algorithms for Max-SAT like (Alsinet et al., 2003;

Borchers and Furman, 1999; Wallace and Freuder, 1996; Xing and Zhang, 2005) apply

the one-literal rule (simplifying with the branching literal) instead of applying unit propaga-

tion (i.e., the repeated application of the one-literal rule until a saturation state is reached) as

in the Davis-Putnam-style (Davis et al., 1962) solvers for SAT. If unit propagation is applied

at each node, the algorithm can return a non-optimal solution. For example, if we apply unit

propagation to {p, ¬q, ¬p ∨ q, ¬p} using the unit clause ¬p, we derive one empty clause

while if we use the unit clause p, we derive two empty clauses. However, when the difference

between the lower bound and the upper bound is one, unit propagation can be safely applied,

because otherwise by fixing to false any literal of any unit clause we reach the upper bound.

Soft-SAT-S performs unit propagation in that case too.

Moreover, as pointed out in the description of the basic Soft-SAT solver, Soft-SAT-S

applies the one-literal rule when a clause of a hard block becomes unit. This propagation,

which leads to substantial performance improvements, cannot be safely applied in Max-SAT

solvers for Boolean CNF formulas, and is a key feature of our approach.

Data structures. Since Soft-SAT-S uses static variable selection heuristics, we were able to

implement extremely simple and efficient data structures for representing and manipulating

soft CNF formulas. Our data structures take into account the following fact: we are only

interested in knowing when a clause has become unit or empty. Thus, if we have a clause

with four variables, we do not perform any operation in that clause until three of the variables

appearing in the clause have been instantiated; i.e., we delay the evaluation of a clause with

k variables until k − 1 variables have been instantiated. In our case, as we instantiate the

variables using a static order, we do not have to evaluate a clause until the penultimate

variable of the clause in the static order has been instantiated.

The data structures are defined as follows: For each clause we have a pointer to the

penultimate variable of the clause in the static order, and the clauses of a soft CNF formula

are ordered by that pointer. We have also a pointer to the last variable of the clause. When

a variable p is fixed to true (false), only the clauses whose penultimate variable in the static

order is ¬p (p) are evaluated. This approach has two advantages: the cost of backtracking is

constant (we do not have to undo pointers like in adjacency lists) and, at each step, we evaluate

a minimum number of clauses. In contrast to the lazy data structures used in Chaff (Moskewicz

et al., 2001), where a dynamic variable selection heuristic is used, we do not have to deal

with watched literals. It is enough to have a pointer to the penultimate variable, and a clause

is not visited until that variable is instantiated.
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Variable selection heuristics. Our current version of Soft-SAT-S incorporates three static

variable selection heuristics:

– MO: We instantiate first the variables that appear Most Often (MO). Ties are broken using

the lexicographical order.

– MOH: We instantiate first the variables that appear most often, but we take into account if

the variable occurs in a hard block or in a soft block. The score assigned to each variable

is the number of occurrences in soft blocks plus five times the number of occurrences in

hard blocks. Ties are broken using the lexicographical order.

We give a bigger score to variables in hard blocks because Soft-SAT-S applies the one-

literal rule to unit clauses of hard blocks.

– csp: In SAT encodings that model CSP variables, each CSP variable with a domain of

size k is represented by a set of k Boolean variables x1, . . . , xk . We associate a weight

to each one of these sets: the sum of the total number of occurrences of each variable

of the set. We order the sets according to such a weight. Heuristic csp instantiates, first

and in lexicographical order, the Boolean variables of the set with the highest weight.

Then, it instantiates, in lexicographical order, the Boolean variables of the set with the

second highest weight, and so on. This heuristic is used, in the experimental investiga-

tion, to solve problems with finite-domain variables (Max-CSP, graph coloring, pigeon

hole and quasigroup completion). The idea behind this heuristic is to instantiate first the

CSP variables that occur most often. This way, we emulate an n-ary CSP branching by

means of a binary branching (i.e., we consider all the possible values of the CSP vari-

able under consideration before instantiating another CSP variable). As we will see in the

experiments, we get some performance improvements for the fact of dealing with n-ary

branchings.

3.3. Soft-SAT-D: A solver with dynamic variable selection heuristics

The second solver we have designed and implemented is Soft-SAT-D, which is like Soft-

SAT-S except for the fact that its variable selection heuristics are dynamic. This fact, in turn,

did not allow us to implement the data structures we have described in the previous section.

The data structures implemented in Soft-SAT-D are the two-watched literal data structures

of Chaff (Moskewicz et al., 2001). They are also lazy data structures, but are not so efficient

because here we need to maintain the watched literals.

Our current version of Soft-SAT-D incorporates two dynamic variable selection heuristics:

– MO: We instantiate first the variables that appears Most Often (MO) in the remaining

clauses. Ties are broken using the lexicographical order. Observe that we do not use the

variable that appears most often in minimum size clauses (heuristic MOMS) because it is

difficult to know the current size of a clause with the lazy data structures of Chaff. However,

most of the instances we used in the experimental investigation contain a big amount of

binary clauses.

– MO-csp: This is the dynamic version of heuristic csp of Soft-SAT-S. We associate a weight

to each set of free Boolean variables that encode a same CSP variable: the sum of the total

number of occurrences of each variable of the set that has not been yet instantiated. We

select the set with the highest weight and instantiate its variables in lexicographical order.

Like in heuristic csp, we emulate an n-ary branching.
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4. Experimental investigation

We next report the experimental investigation we conducted to evaluate the performance

of our problem solving approach. We used a representative sample of instances (random

2-SAT, Max-CSP, graph coloring, pigeon hole and quasigroup completion), and compared

our solvers with the best performing state-of-the-art solvers for over-constrained problems

developed in the CSP and SAT communities. All the experiments were performed on a 2GHz

Pentium IV with 512 Mb of RAM under Linux.

4.1. Solvers

The solvers used are the following ones:

– Soft-SAT-S with heuristics MO, MOH and csp.

– Soft-SAT-D with heuristics MO and MO-csp.

– WMax-SAT: It is a weighted Max-SAT solver that we have implemented. WMax-SAT

uses the code of Soft-SAT but does not take into account the notion of hard and soft block;

conceptually, WMax-SAT is like Soft-SAT but every clause is treated as a different soft

block. The lower bound of WMax-SAT is different from the lower bound of Soft-SAT; the

underestimation is calculated taking into account the inconsistency counts of the variables

not yet instantiated. WMax-SAT incorporates the following variable selection heuristic:

It instantiates the variables taking into account the number of occurrences in decreasing

order (MO).

– BF-improved: It is an improved version of the Borchers and Furman’s (BF) algo-

rithm (Borchers and Furman, 1999) for weighted Max-SAT described in Alsinet et al.

(2003). It uses the popular dynamic variable selection heuristics MOMS (most often in

minimum size clauses), and a lower bound of better quality than the original lower bound

of BF.

– Toolbar (de Givry et al., 2003; Larrosa and Schiex, 2003): It is a weighted Max-SAT solver

that uses Max-CSP techniques and encodings to solve Max-SAT problems. We used version

2.0.

– PFC-MPRDAC (Larrosa and Meseguer, 1999): This is a highly optimized solver from the

Constraint Programming community for solving binary Max-CSP problems.

– Toolbar-CSP (de Givry et al., 2003; Larrosa and Schiex, 2003): Toolbar version 2.0 has an

option in which it works as a weighted Max-CSP solver. It incorporates the best perform-

ing solution techniques for solving Max-CSP developed by the Constraint Programming

community. We refer to this option as Toolbar-CSP, while when we say Toolbar we refer

to the option in which the solver works as a weighted Max-SAT solver.

We have not considered pseudo-Boolean and integer programming solvers. Nevertheless,

it is shown in de Givry et al. (2003) that these solvers does not outperform Toolbar. It is

also interesting to notice that we have considered most of the exact weighted Max-SAT

solvers which are publicly available. In recent years, a considerable number of Max-SAT

solvers have been developed, but they do not allow to associate weights with clauses (see,

for example, (Alber et al., 1998; Li et al., 2005; Zhang et al., 2003)).

4.2. Benchmarks and encodings

The benchmarks and the encodings used in the experimental investigation are described in

detail below.
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Random 2-SAT instances. We generated random 2-SAT instances to which we then assigned,

randomly and uniformly, a label corresponding to a hard block or to a soft block. The generator

has as parameter the number of blocks: one block is declared to be hard and the rest of blocks

are declared to be soft.

Max-CSP instances. We used SAT-encoded random binary CSPs and solved the Max-CSP

problem. A constraint satisfaction problem (CSP) consists of a set of variables, each with a

domain of values, and a set of constraints. Each constraint is defined over some subset of

the original set of variables, and limits the combination of values that the variables in this

subset can take. A binary CSP has only binary constraints. Given a binary CSP P , a solution

of the binary Max-CSP problem for P is an assignment to the variables of P that satisfies

as many constraints as possible. We used Max-CSP instances because they have a natural

representation using the formalism of soft CNF formulas.

The instances were generated with a generator of uniform random binary CSPs1—

designed and implemented by Frost, Bessière, Dechter and Regin—that implements the

so-called model B (Smith and Dyer, 1996): in the class 〈n, d, p1, p2〉 with n variables of

domain size d, we choose a random subset of exactly p1n(n − 1)/2 constraints (rounded to

the nearest integer), each with exactly p2d2 conflicts (rounded to the nearest integer); p1 may

be thought of as the density of the problem and p2 as the tightness of constraints.

The instances were encoded using the support encoding (Kasif, 1990; Gent, 2002). The

idea behind the encoding is to encode into clauses the support for a value instead of encoding

conflicts. The support for a value j of a CSP variable Xi across a constraint is the set of

values of the other variable in the constraint which allow Xi = j . If v1, v2, . . . , vk are the

supporting values of variable Xl for Xi = j , we add the clause ¬xi j ∨ xlv1
∨ xlv2

∨ · · · ∨ xlvk

(called support clause). There is one support clause for each pair of variables Xi , Xl involved

in a constraint, and for each value in the domain of Xi . We need a similar clause in each

direction, one for the pair Xi , Xl and one for Xl , Xi . Besides, we need to add the at-least-one

and at-most-one clauses for each CSP variable to ensure that each CSP variable takes exactly

one value of its domain. All the at-least-one and at-most-one clauses were encoded as a hard

block, and each set of clauses that encodes a CSP constraint was encoded as a different soft

block.

Graph coloring instances. We used unsatisfiable graph coloring instances and the problem

we solved was to find a coloring that minimizes the number of adjacent vertices with the

same color. We used individual instances from the graph coloring symposium celebrated at

CP-2002, and randomly generated instances using the generator of Culberson (Culberson,

1995). We used the generator with option IID (independent random edge assignment). The

parameters of the generator are: number of vertices (n), optimum number of colors to get a

valid coloring (k), and number of colors we use to color the graph (c).

The set of clauses that encode that each vertex is colored with exactly one color forms a

hard block of the Soft-SAT instance. For every two adjacent vertices, the set of clauses that

encode that those vertices have different colors forms a soft block.

Pigeon hole instances. Given m + 1 pigeons and m holes, the problem we solved was to

determine the minimum number of holes with more than one pigeon taking into account that

there is at least one pigeon in each hole. The set of clauses that encode that each pigeon

1 http://www.lirmm.fr/ ˜bessiere/generator.html
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is assigned exactly to one hole together with the set of clauses that encode that there is at

least one pigeon in each hole form a hard block of the Soft-SAT instance. There is a soft

block for each set of clauses that encode that two different pigeons cannot be in the same

hole.

Quasigroup completion instances. We considered unsatisfiable instances of the quasigroup

(or Latin square) completion problem (QCP) that were generated as indicated in Gomes

and Selman (1997). Given n colors, a quasigroup, or Latin square, is defined by an n × n
table, where each entry has a color and where there are no repeated colors in any row or any

column; n is called the order of the quasigroup. The problem of whether a partially colored

quasigroup can be completed into a full quasigroup by assigning colors to the open entries of

the table is called the QCP. The problem we solved was to minimize the number of violated

row and column constraints in QCP instances. By a row (column) constraint we mean that

no color is repeated in the same row (column).

The set of clauses that encode that each entry is colored with exactly one color plus the set

of clauses that encode the colors preassigned form a hard block of the Soft-SAT instances.

For each row (column), the clauses that encode the row (column) constraints form a soft

block. Therefore, the total number of soft blocks is 2n.

4.3. Weighted Max-SAT and Max-CSP encodings

All the benchmarks encoded as Soft CNF formulas were also encoded as Boolean weighted

Max-SAT instances in order to compare our solvers with Boolean weighted Max-SAT

solvers. The encoding used is defined as follows: A soft block si formed by a set of clauses

{C1, . . . , Cm} is replaced with the set of clauses {(si ; 1), (C1 ∨ ¬si ; 2), . . . , (Cm ∨ ¬si ; 2)},
where si is a new Boolean variable and 1 and 2 are weights associated with the clauses.

Moreover, we associate a weight w + 1, where w is the sum of weights of the clauses that

encode soft blocks, with each clause belonging to a hard block. Any truth assignment where

the sum of unsatisfied clauses is less than w + 1 is a feasible solution. A solution of a soft

CNF formula corresponds to a feasible solution of its weighted Max-SAT encoding with the

minimum sum of weights of unsatisfied clauses. Actually, with our encoding, the minimum

sum of weights of unsatisfied clauses is identical to the minimum number of soft blocks that

can be unsatisfied by a truth assignment that satisfies all the hard blocks.

Example 2. Given the soft CNF formula of Example 1, we derive the following weighted

Max-SAT instance:

(v1
1 ∨ v2

1; 16), (¬v1
1 ∨ ¬v2

1; 16), (v1
2 ∨ v2

2; 16),

(¬v1
2 ∨ ¬v2

2; 16), (v1
3 ∨ v2

3; 16), (¬v1
3 ∨ ¬v2

3; 16),

(s1; 1), (¬v1
1 ∨ ¬v1

2 ∨ ¬s1; 2), (¬v2
1 ∨ ¬v2

2 ∨ ¬s1; 2),

(s2; 1), (¬v1
1 ∨ ¬v1

3 ∨ ¬s2; 2), (¬v2
1 ∨ ¬v2

3 ∨ ¬s2; 2),

(s3; 1), (¬v1
2 ∨ ¬v1

3 ∨ ¬s3; 2), (¬v2
2 ∨ ¬v2

3 ∨ ¬s3; 2).

The Max-CSP instances and the graph coloring instances were also encoded as binary

CSP using the format used by PFC-MPRDAC and Toolbar-CSP, which consists of defining a

constraint network by means of a list of nogoods. We believe that it is important to compare

our approach with the problem solving approach for over-constrained problems developed
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Fig. 1 Random 2-SAT instances with 50 variables, with a number of clauses ranging from 200 to 430, where
20 clauses are in the hard block and the rest of clauses are randomly distributed among 100 soft blocks. Mean
time (left plot) and median time (right plot) in seconds

in the constraint programming community because they have worked for a long time on this

topic and, in contrast to the SAT community, it is a very active research subject.

4.4. Experiments with random 2-SAT instances

We compared Soft-SAT-S with heuristic MO, Soft-SAT-S with heuristic MOH, Soft-SAT-D

with heuristic MO, Toolbar and WMax-SAT on random 2-SAT instances.2

Figure 1 shows the results for instances with 50 variables, with a number of clauses ranging

from 200 to 430, where 20 clauses are in the hard block and the rest of clauses are randomly

distributed among 100 soft blocks; Figure 2 shows the results for instances with a number of

variables ranging from 50 to 100 and with 300 clauses, where 50 clauses are in the hard block

and the rest of clauses are randomly distributed among 50 soft blocks; and Figure 3 shows

the results for instances with 60 variables and 300 clauses, where the number of clauses in

hard blocks ranges from 10 to 50 and the rest of clauses are randomly distributed among 50

soft blocks. In all the figures we give mean and median time, and each data point corresponds

to the time needed to solve a set of 100 instances.

In Figure 1 and Figure 3, we observe that the best performing solver is Soft-SAT-S with

heuristic MOH, while in Figure 2 is Soft-SAT-D with heuristic MO. It is worth mentioning the

good behaviour of heuristic MOH that takes into account the distinction between variables

appearing in hard blocks and in soft blocks.

4.5. Experiments with Max-CSP instances

In this section we describe a number of experiments we performed on random binary CSP.

In Table 1 we compare Soft-SAT-S without underestimation with Soft-SAT-S with un-

derestimation for sets of 100 instances of a representative sample of Max-CSP instances.

The first column shows the parameters given to the generator of random binary CSPs, and

the remaining columns show the experimental results obtained. For each set we give the

mean and median time needed to solve an instance of the set. The variable selection heuristic

used is csp. Table 2 shows the number of backtracks instead of the CPU time for the same

2 We tried also to solve the instances with BF-improved, but the results were not competitive. In Figure 3 we
do not display the results for WMax-SAT because they were not competitive too.
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Fig. 2 Random 2-SAT instances with a number of variables ranging from 50 to 100 and with 300 clauses,
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instances. In both cases we observe that the fact of adding a lower bound of better quality

leads to dramatic performance improvements. In the rest of the paper, all the results reported

take into account the above described underestimation.

In the second experiment we compared Soft-SAT-S with heuristic csp with a version of

Soft-SAT-S with heuristic csp in which we do not apply the one-literal rule to unit clauses that

appear in hard blocks. We generated sets of 100 instances of random binary CSPs with 14

variables, domain size 8, 91 constraints and a number of nogoods ranging from 10 to 63.

Figure 4 shows the experimental results obtained; we give mean time (left plot) and median

time (right plot). We see that applying this inference technique that exploits the fact of knowing

whether a variable belongs to a hard block leads to significant performance improvements.

The same behavior was observed for the rest of Soft-SAT heuristics and solvers that we have

developed.

In the third experiment we compared Soft-SAT-S with heuristic csp (it is the best perform-

ing Soft-SAT solver on Max-CSP instances), PFC-MPRDAC, Toolbar-CSP and WMax-SAT

on Max-CSP instances. The results obtained are shown in Table 3. We observe that solvers

Toolbar-CSP and PFC-MPRDAC (which are specialized on solving Max-CSP instances) are

faster than Soft-SAT-S, but the Weighted Max-SAT approach is much worse. We do not

display results with BF-improved and Toolbar because they are worse than the results of
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Table 1 Comparison of Soft-SAT-S without underestimation and Soft-SAT-S with
underestimation on Max-CSP instances. Time in seconds

Soft-SAT-S Soft-SAT-S

(with underestimation) (without underestimation)

〈n, d, p1, p2〉 Mean Median Mean Median

〈10, 15, 45/45, 190/225〉 12.25 10.31 605.03 547.52

〈12, 13, 60/66, 130/169〉 17.94 16.21 2256.91 2010.26

〈13, 8, 78/78, 50/64〉 12.51 11.28 1028.91 973.41

〈15, 10, 50/105, 75/100〉 1.63 1.39 77.54 57.97

〈17, 5, 110/136, 18/25〉 3.35 2.83 394.82 343.61

〈18, 5, 80/153, 18/25〉 0.86 0.76 53.64 46.52

〈20, 5, 90/190, 18/25〉 3.06 2.42 406.53 378.00

〈22, 6, 70/231, 28/36〉 7.10 4.13 910.97 493.15

〈23, 4, 150/253, 12/16〉 16.25 13.59 4615.67 3797.04

〈25, 3, 160/300, 7/9〉 2.66 2.09 142.80 112.51

Table 2 Comparison of Soft-SAT-S without underestimation and Soft-SAT-S with under-
estimation on Max-CSP instances. The variable selection heuristic used is csp. Mean and
median number of backtracks

Soft-SAT-S Soft-SAT-S

(with underestimation) (without underestimation)

〈n, d, p1, p2〉 Mean Median Mean Median

〈10, 15, 45/45, 190/225〉 2.619.160 2.257.644 807.841.884 735.579.551

〈12, 13, 60/66, 130/169〉 3.432.624 3.005.897 >2.000.000.000 >2.000.000.000

〈13, 8, 78/78, 50/64〉 2.450.851 2.129.608 1.093.257.769 1.168.573.259

〈15, 10, 50/105, 75/100〉 339.848 267.922 141.343.132 96.429.278

〈17, 5, 110/136, 18/25〉 611.488 521.378 564.618.781 520.298.372

〈18, 5, 80/153, 18/25〉 175.118 145.393 114.017.436 92.915.266

〈20, 5, 90/190, 18/25〉 681.346 516.087 601.459.493 631.196.627

〈22, 6, 70/231, 28/36〉 1.750.568 934.992 416.141.039 513.696.823

〈23, 4, 150/253, 12/16〉 2.513.565 2.075.907 >2.000.000.000 >2.000.000.000

〈25, 3, 160/300, 7/9〉 424.359 318.227 337.120.904 262.771.567

WMax-SAT. Even when our solver is not the best, the differences with Weighted Max-SAT

are substantial.

In the fourth experiment, whose results are shown in Table 4, we solved the same instances

of the previous experiment with Soft-SAT-D with heuristic MO-csp and with Soft-SAT-D

with heuristic MO in order to compare the n-ary branching with the binary branching. We

see that the fact of using an n-ary branching allows us to solve the instances up to 3 times

faster. Also observe that Soft-SAT-S (which also uses an n-ary branching) is about 2 times

faster than Soft-SAT-D with heuristic MO-csp, and up to 6 times faster than Soft-SAT-D

with heuristic MO. In contrast to the recent theoretical work by Hwang and Mitchel (Hwang

and Mitchell, 2005), where they identify a family of CSP instances that have search trees
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Table 3 Comparison of Soft-SAT-S, PFC-MPRDAC, Toolbar-CSP and WMax-SAT on Max-CSP
instances. Time in seconds

Soft-SAT-S PFC-MPRDAC Toolbar-CSP WMax-SAT

〈n, d, p1, p2〉 Mean Median Mean Median Mean Median Mean Median

〈10, 8, 45/45, 48/64〉 0.33 0.32 0.19 0.19 0.05 0.05 11.95 11.41

〈12, 6, 66/66, 27/36〉 0.48 0.47 0.23 0.23 0.06 0.06 45.50 45.48

〈14, 5, 91/91, 18/25〉 0.82 0.77 0.35 0.35 0.12 0.11 189 193

〈16, 4, 120/120, 12/16〉 0.37 0.32 0.22 0.22 0.10 0.9 275 276

〈18, 3, 153/153, 6/9〉 1.00 0.93 0.31 0.31 0.04 0.04 68.04 62.71

〈15, 6, 60/105, 27/36〉 0.25 0.24 0.20 0.20 0.03 0.03 778 539

〈18, 5, 80/153, 18/25〉 0.67 0.58 0.33 0.30 0.05 0.04 5383 3364

〈20, 5, 70/190, 18/25〉 0.54 0.44 0.33 0.31 0.03 0.03 4701 2715

〈14, 8, 91/91, 50/64〉 44.27 43.95 8.37 7.68 3.02 2.91 >7200 >7200

〈23, 4, 200/253, 12/16〉 102 79.61 8.91 7.80 1.71 1.54 >7200 >7200
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Fig. 4 Comparison of Soft-SAT-S with a version of Soft-SAT-S in which the one-literal rule is not applied to
unit clauses that appear in hard blocks. Mean time (left plot) and median time (right plot) in seconds

of exponential size for an n-ary branching and of polynomial size for a binary branching,

we provide evidence that random binary CSP’s are solved faster with a solver with an n-ary

branching. On the one hand, the instances considered are different. On the other hand, SAT

resolution cannot be applied in Max-SAT.

4.6. Experiments with graph coloring instances

Another benchmark of our empirical investigation was graph coloring. In this case, when

solving the weighted Max-SAT instances, we can either use the encoding provided by the

reduction of Soft-SAT to weighted Max-SAT that we have defined or we can use a simpler

encoding that does not use additional variables. In that encoding, the hard blocks are encoded

in the same way, and, in the soft blocks, the weight associated with each clause is one, and

the unit clauses containing the additional variable, as well as the occurrences of that variable

in the remaining clauses, are not included. The correctness of that encoding follows from

the fact that there is at most one violated clause in each soft block. We used this encoding

because leads to better performance profiles.
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Table 4 Comparison of Soft-SAT-D with heuristic MO-csp and Soft-SAT-D with heuris-
tic MO on Max-CSP instances. Time in seconds

Soft-SAT-D Soft-SAT-D

(MO-csp) (MO)

〈n, d, p1, p2〉 Mean Median Mean Median

〈10, 8, 45/45, 48/64〉 0.69 0.68 1.83 1.76

〈12, 6, 66/66, 27/36〉 1.20 1.11 2.92 2.66

〈14, 5, 91/91, 18/25〉 2.55 2.33 6.82 6.27

〈16, 4, 120/120, 12/16〉 2.69 2.54 5.44 5.11

〈18, 3, 153/153, 6/9〉 0.69 0.65 1.40 1.28

〈15, 6, 60/105, 27/36〉 1.16 1.01 2.21 1.92

〈18, 5, 80/153, 18/25〉 2.97 2.48 5.98 4.38

〈20, 5, 70/190, 18/25〉 1.85 1.52 3.80 2.82

Table 5 Comparison between Soft-SAT-S with heuristic csp, Soft-SAT-D with heuristic MO-
csp, Toolbar-CSP and PFC-MPRDAC on randomly generated graph coloring instances. Time in
seconds

Soft-SAT-S Soft-SAT-D Toolbar-CSP PFC-MPRDAC

〈n, k, c〉 Mean Median Mean Median Mean Median Mean Median

〈15, 15, 8〉 104 10.47 319 26.73 180 36.77 133 21.29

〈15, 15, 10〉 103 0.05 262 0.06 268 0.08 140 0.15

〈16, 14, 6〉 197 49.00 987 225 141 40.13 234 78.63

〈16, 14, 8〉 165 19.38 392 29.45 267 43.44 208 26.26

〈16, 16, 6〉 208 130 950 545 142 81.60 250 181

〈16, 16, 8〉 91.87 23.33 225 37.11 199 51.74 147 37.01

In the first experiment we considered 6 sets of randomly generated instances, where each

set had 100 instances. We solved the instances with Soft-SAT-S with heuristic csp, Soft-SAT-D

with heuristic MO-csp, Toolbar-CSP and PFC-MPRDAC.3 The results obtained are shown

in Table 5: the first column displays the parameters given to the generator, and the rest of

columns display the mean and median time needed to solve an instance of the set with each

one of the solvers used.

We repeated the previous experiments but using a representative sample of individual

instances from the graph coloring symposium celebrated in CP-2002. The results obtained

are shown in Table 6: the first column displays the name of the instance, the optimum number

of colors to get a valid coloring (k), and the number of colors we used to color the graph

(c); the second column displays the number of violated constraints; and the rest of columns

display the time needed to solve the instance with each one of the solvers used. We observe in

both experiments that Soft-SAT is very competitive with respect to Toolbar-CSP and superior

to PFC-MPRDAC.

3 We do not give results with Weighted Max-SAT solvers because they are not competitive with the solvers
used.
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Table 6 Comparison between Soft-SAT-S, Soft-SAT-D, Toolbar-CSP and PFC-MPRDAC on indi-
vidual graph coloring instances. Time in seconds

〈Instance, k, c〉 vc Soft-SAT-S Soft-SAT-D Toolbar-CSP PFC-MPRDAC

〈myciel5.col, 6, 3〉 16 11.04 46.39 0.66 12.11

〈myciel5.col, 6, 4〉 4 78.50 226.59 6.28 96.41

〈myciel5.col, 6, 5〉 1 3178 31.87 26.02 44.34

〈GEOM30a.col, 6, 3〉 11 9.31 27.22 0.87 14.33

〈GEOM30a.col, 6, 4〉 4 4.48 2.35 2.42 22.89

〈GEOM30a.col, 6, 5〉 1 0.49 0.15 0.17 0.18

〈GEOM40.col, 6, 2〉 22 3.89 20.58 0.08 4.42

〈GEOM40.col, 6, 3〉 7 10.83 30.63 25.20 770

〈GEOM40.col, 6, 4〉 3 95.18 14.67 1981 >7200.00

〈GEOM40.col, 6, 5〉 1 1.58 0.51 1186 1574

〈queen5 5.col, 5, 3〉 29 57.60 168 9.22 27.27

〈queen5 5.col, 5, 4〉 12 37.50 124 13.18 73.67

Table 7 Comparison between Soft-SAT-S with heuristic csp, Soft-SAT-D with
heuristic MO-csp, Toolbar, WMax-SAT and BF-improved on pigeon hole in-
stances. Time in seconds

N Soft-SAT-S Soft-SAT-D Toolbar WMax-SAT BF-improved

7 0.07 0.10 0.43 0.08 0.11

8 0.19 0.28 4.05 0.54 0.76

9 1.13 1.55 43 5.32 7.49

10 11 12 521 75 86

11 133 103 6741 705 1068

12 1784 990 >7200 >7200 >7200

4.7. Experiments with pigeon hole instances

We solved pigeon hole instances with a number of holes ranging from 7 to 12 in order to

study the scaling behaviour on Soft-SAT solvers (Soft-SAT-S with heuristic csp and Soft-

SAT-D with heuristic MO-csp) and weighted Max-SAT solvers (Toolbar, WMax-SAT and

BF-improved). The results obtained are shown in Table 7. We observe that the solver with

best scaling behaviour is Soft-SAT-D and then Soft-SAT-S. The weighted Max-SAT solvers

scale worse than Soft-SAT solvers.

4.8. Experiments with QCP instances

QCP instances were the last benchmark considered. We solved sets of 100 unsatisfiable

instances ranging from quasigroups of order 6 to quasigroups of order 10, and with 40%

of preassigned entries. The results obtained are shown in Table 8. We observe that the best

performing solver is Soft-SAT-D and then Soft-SAT-S. The weighted Max-SAT solvers scale

worse than the Soft-SAT solvers.
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Table 8 Comparison between Soft-SAT-D with heuristic MO-csp,
Soft-SAT-S with heuristic csp, Toolbar and WMax-SAT on QCP instances.
Time in seconds

order holes Soft-SAT-D Soft-SAT-S Toolbar WMax-SAT

6 21 0.35 0.33 34 1.26

7 29 0.97 1.11 17474 90

8 38 5.12 20 >20000 4806

9 48 137 2963 >20000 >20000

10 60 8050 >20000 >20000 >20000

5. Concluding remarks

We have presented a new generic problem solving approach for over-constrained problems

based on a formalism that deals with hard and soft blocks of clauses. The distinction between

hard and soft blocks allows us to model problems in a more natural way, and to design Max-

SAT-like solvers that traverse the search space of all possible truth assignments in a more

efficient way. In particular, we have provided experimental evidence that exploiting the fact

of knowing whether variables and clauses appear in hard blocks or soft blocks is relevant for

devising good performing variable selection heuristics and inference methods:

– Variable selection heuristics: we can define heuristics like MOH that take into account

whether a variable occurrence belongs to a hard block or a soft block.

– Inference methods: we get an extra level of propagation by applying the one-literal rule to

unit clauses that appear in hard blocks.

We have also exploited the structure hidden in the encoding to define a lower bound of

better quality and to use an n-ary branching instead of a binary branching. Moreover, we

have defined extremely efficient lazy data structures for the Soft-SAT-S solver.

We have shown that our approach is much better than reducing over-constrained problems

to weighted Max-SAT. On the one hand, Soft-SAT solvers have more powerful inference

techniques and variable selection heuristics than weighted Max-SAT solvers. On the other

hand, Soft-SAT solvers have novel data structures, branchings and lower bounds that could be

incorporated into existing weighted Max-SAT solvers. One problem of state-of-the-art Max-

SAT solvers is that they are biased to solve randomly generated 2-SAT and 3-SAT instances.

They are rarely evaluated with more structured instances and with instances that encode CSP

variables with domain size greater than two. We believe that the techniques introduced here

can contribute to develop weighted Max-SAT solvers with a better performance profile on

more realistic instances.

We have shown that our approach is very competitive compared with solving over-

constrained problems by reducing them to Max-CSP problems. Taking into account the

amount of efforts devoted in the constraint programming community on investigating meth-

ods for solving over-constrained problems, we believe that the results of this paper open an

interesting research avenue in the SAT community.

We would also like to comment the good results we obtained with Soft-SAT-S on some

instances of the empirical investigation. The extremely efficient data structures that we have

implemented are the key of its success. We believe that the incorporation of more sophisticated

variable selection heuristics into Soft-SAT-D will provide us with faster Soft-SAT-D solvers.
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It is worth mentioning that we have not found in the SAT literature any approach of solving

problems with hard and soft constraints using exact Max-SAT algorithms. All the papers we

have found refer to local search algorithms, and do not incorporate the notion of block of

clauses.

As future work, we plan to extend the language of soft CNF formulas to capture fuzzy

constraints, to define alternative notions of “the solution that best respects the constraints of

the problem”, to incorporate more advanced variable selection heuristics, and to investigate

how the techniques developed for dealing with soft constraints in the constraint programming

community could be adapted to our framework.

Finally, we would like to point out that we believe that it is worth exploring how the SAT

technology developed for decision problems can be applied to solve optimization problems.

This paper has tried to make a step forward in that direction.
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