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Abstract: The aeroservoelastic modeling of flexible structures leads in general to large
dimensional linear parameter varying (LPV) models. These models are intractable by the most
analysis and control synthesis algorithms. Therefore, efficient model order reduction methods
are needed. This paper investigates two approaches. Both are based on decoupling the large-
scale model into smaller dynamical components, that are easier to reduce by balanced reduction
techniques. While the first approach exploits the a-priori known, specific structure of the model,
the second method algorithmically generates the low-level subsystems by performing a modal
transformation and clustering the modes of similar dynamical behavior. The properties of the
methods are analyzed via the reduction of the large-scale aeroelastic model of the BAH jet
transport wing.
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1. INTRODUCTION

The future trends in aircraft design are oriented to build
more economical aircrafts, i.e. to increase fuel efficiency
and decrease the operating costs. To achieve these goals
the decrease of the structural mass and the use of more
flexible components is a possible way to go. Since in a more
flexible aircraft the adverse aeroelastic effects (e.g. flutter)
can occur even during normal operation, active control
methods are needed to ensure the required flight envelope.
To cope with this challenging task several research projects
have been launched in the last few years, in both EU and
US, e.g. (FLEXOP, 2015-2018) and (PAAW, 2014-2019).

In order to design a controller suppressing the aeroelastic
effects, a suitable dynamic model is needed. Aeroservoe-
lastic models can be constructed based on a subsystem
approach: first a linear structural model is generated by
finite element (FE) method, then it is interconnected with
a linear aerodynamic model generated by Double Lattice
Method (DLM) (Albano and Rodden, 1969). Due to the
linear structure, the model is obtained in linear-parameter
varying (LPV) form. In order to capture the relevant
aeroelastic effects an accurate model is needed, which
requires the use of a suitably dense structural grid and
large number of lag states in the aerodynamic model. This
results in a high-dimensional dynamical system (even with
more than a hundred states), which is intractable by the
most analysis and control synthesis algorithms based on
semidefinite optimization and linear matrix inequalities
(LMI) (Balas et al., 2015). This makes it necessary to
develop an appropriate model order reduction method,
which finds a lower dimensional representation for the
same dynamical behavior.

This paper proposes two approaches for reducing the LPV
model of aeroelastic structures. Both are based on the
balanced reduction presented in (Wood, 1995). As the
reduction algorithm involves a convex optimization prob-
lem with linear matrix inequalities (LMI) constraints, it
has significant computational burdens. Therefore, to apply

� The research leading to these results is part of the FLEXOP
project. This project has received funding from the European Unions
Horizon 2020 research and innovation programme under grant agree-
ment No 636307.

this method the initial model has to be decoupled into
lower dimensional subsystems that can be independently
reduced. The first is a generic procedure, which does not
assume any special structural property of the initial model.
It constructs an approximate modal decomposition and
clusters the modes of similar dynamic behavior in order to
generate independent subsystems that can be efficiently
reduced. The algorithm is described in detail in (Gőzse
et al., 2016; Luspay et al., 2016), where its main properties
are also analyzed. The second method exploits the special
structure of the aeroelastic model, which makes it possible
to highly simplify the reduction procedure. The properties
of the two approaches are analyzed and demonstrated
on the reduction of the large scale LPV model of the
BAH jet transport wing. This wing was first considered in
(Bisplinghoff et al., 1955) and adapted as a demonstration
problem in (Rodden et al., 1979). The aeroservoelastic
model of the wing is available in the Nastran Aeroelasticity
software package (Rodden and Johnson, 1994), where it is
implemented as a benchmark example.

The paper is organized as follows. The introduction is
followed by a short summary on balanced reduction.
In Section 3 the aeroservoelastic modeling framework is
outlined. Sections 5 and 4 are devoted to the two model
reduction methods. The detailed comparison of the two
approaches can be found in Section 6, where the numerical
results obtained on the BAH wing model are analyzed. At
the end of the paper the main results are collected and the
most important conclusions are drawn.

2. PRELIMINARY RESULTS ON BALANCED
MODEL REDUCTION

Consider a linear parameter varying (LPV) system in the
usual state-space form as follows

ẋ = A(ρ(t))x(t) +B(ρ(t))u(t)

y = C(ρ(t))x(t) +D(ρ(t))u(t)
(1)

where x(t) ∈ Rnx , u(t) ∈ Rnu , y(t) ∈ Rny are the state,
input and output, respectively. In the paper we consider
LPV models, where the scheduling variable ρ(t) is scalar
valued and both ρ and ρ̇ are defined over closed intervals
Γ and Ω, respectively. We assume, on the other hand,
that the dimension of x is large, which makes the model
intractable by most of the LPV analysis and synthesis
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ẋ = A(ρ(t))x(t) +B(ρ(t))u(t)

y = C(ρ(t))x(t) +D(ρ(t))u(t)
(1)

where x(t) ∈ Rnx , u(t) ∈ Rnu , y(t) ∈ Rny are the state,
input and output, respectively. In the paper we consider
LPV models, where the scheduling variable ρ(t) is scalar
valued and both ρ and ρ̇ are defined over closed intervals
Γ and Ω, respectively. We assume, on the other hand,
that the dimension of x is large, which makes the model
intractable by most of the LPV analysis and synthesis

Proceedings of the 20th World Congress
The International Federation of Automatic Control
Toulouse, France, July 9-14, 2017

Copyright © 2017 IFAC 6533

LPV model reduction methods for
aeroelastic structures �

Gy. Lipták ∗ T. Luspay ∗ T. Péni ∗ B. Takarics ∗ B. Vanek ∗
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ẋ = A(ρ(t))x(t) +B(ρ(t))u(t)

y = C(ρ(t))x(t) +D(ρ(t))u(t)
(1)

where x(t) ∈ Rnx , u(t) ∈ Rnu , y(t) ∈ Rny are the state,
input and output, respectively. In the paper we consider
LPV models, where the scheduling variable ρ(t) is scalar
valued and both ρ and ρ̇ are defined over closed intervals
Γ and Ω, respectively. We assume, on the other hand,
that the dimension of x is large, which makes the model
intractable by most of the LPV analysis and synthesis

Proceedings of the 20th World Congress
The International Federation of Automatic Control
Toulouse, France, July 9-14, 2017

Copyright © 2017 IFAC 6533

LPV model reduction methods for
aeroelastic structures �

Gy. Lipták ∗ T. Luspay ∗ T. Péni ∗ B. Takarics ∗ B. Vanek ∗
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ẋ = A(ρ(t))x(t) +B(ρ(t))u(t)

y = C(ρ(t))x(t) +D(ρ(t))u(t)
(1)

where x(t) ∈ Rnx , u(t) ∈ Rnu , y(t) ∈ Rny are the state,
input and output, respectively. In the paper we consider
LPV models, where the scheduling variable ρ(t) is scalar
valued and both ρ and ρ̇ are defined over closed intervals
Γ and Ω, respectively. We assume, on the other hand,
that the dimension of x is large, which makes the model
intractable by most of the LPV analysis and synthesis

Proceedings of the 20th World Congress
The International Federation of Automatic Control
Toulouse, France, July 9-14, 2017

Copyright © 2017 IFAC 6533

algorithms based on semidefinite optimization and linear
matrix inequalities (LMI) (Balas et al., 2015). Therefore,
it is necessary to reduce the model, i.e. to find a lower
dimensional representation for the input/output behavior
of (1).

Balanced reduction is one possible method to reduce a
large-scale dynamical system. The approach is very effi-
cient for LTI systems (Moore, 1981) and it has a theo-
retically sound extension to the parameter-varying case as
well (Wood, 1995). The method is based on constructing
a special, balancing state transformation that renders the
observability and controllability Gramians equal and diag-
onal. Each diagonal entry, as being a generalization of the
LTI Hankel singular values, provides quantitative measure
for the observability and controllability of the associated
state. Based on this information the less controllable and
less observable states can be identified and eliminated
(truncated or residualized).

The balancing transformation is constructed from the
Gramians of (1). For an LTI system the Gramians are
the unique, positive semidefinite solutions of the following
two Lyapunov equations:

AXc +XcA
T +BBT = 0

ATXo +XoA+ CTC = 0
(2)

Using Xo and Xc the Hankel singular values are computed
as σi =

√
λi(XoXc), i = 1 . . . nx, while the balancing

transformation is constructed by the algorithm described
in detail in (Antoulas, 2005).

If in (2) the equality is replaced by negative semidefinite-
ness, the solutions Xo � 0 and Xc � 0 are the so called
generalized Gramians, from which the generalized Hankel
singular values can be computed. These are upper bounds
for the Hankel singular values.

In LPV case only generalized Gramians exist, which could
be parameter dependent. They can be computed by solving
the following semidefinite optimization problem (Wood,
1995):

min trace(Xo(ρ)Xc(ρ)), w.r.t.

Xo(ρ) � 0, Xc(ρ) � 0

−
d

dt
Xc(ρ) +A(ρ)Xc(ρ) +Xc(ρ)A(ρ)T +B(ρ)B(ρ)T � 0 (3a)

d

dt
Xo(ρ) +A(ρ)TXo(ρ) +Xo(ρ)A(ρ) + C(ρ)TC(ρ) � 0 (3b)

The minimization of the singular values is necessary to
get better controllability and observability measure for
the states. In practice this nonlinear objective function
is minimized by alternately solving (3) for Xo(ρ) and
Xc(ρ). The infinite number of inequalities are relaxed to
a finite set by evaluating (3b) and (3a) over a suitable
dense grid ρ = ρ1 < ρ2 < . . . < ρK = ρ. The details
of the numerical algorithm as well as the construction of
the parameter dependent balancing transformation can
be found in (Wood, 1995). Since the transformation is
parameter dependent, the transformed system and thus
the reduced order model depends on ρ̇ as well.

It is important to emphasize that the algorithm above
works only if the system is stable. For marginally or
unstable systems the method can still be applicable if a
stable/unstable decomposition or a coprime factorization
are performed on the initial model beforehand (Wood,
1995).

As algorithm (3) is based on semidefinite optimization, it is
computationally demanding for large-scale systems. Since
we intend to reduce aeroelastic models of more than a

hundred state, (3) is not directly applicable. Therefore, the
initial model is first decoupled into independent subsys-
tems, which are then separately reduced. The first model
reduction technique presented in Sec. 4 finds a possible
decoupling by using a modal transformation and cluster-
ing, while the second (Sec. 5) follows the special model
structure originated from the applied modeling framework.

3. AEROSERVOELASTIC MODELING

The aim of the current section is to present the basic
concept and steps of aeroservoelastic modeling of the BAH
wing. The BAH wing is a half wing with b = 12.7m half
wingspan, c̄ = 4.1275m reference chord and S = 52.42m2

wing area per side. It is fixed at the root and placed
in an airflow of varying speed. The model is developed
to describe the dynamic behavior of the wing around
the flutter onset speed. The flutter onset speed is the
lowest speed of the airflow at which structural damping is
insufficient to compensate the increasing vibration caused
by the aerodynamic forces and thus the structure goes
unstable. The aim of the modeling presented in this section
is to generate a precise dynamical model that can serve as
a basis for a flutter suppression controller.

The aeroservoelastic model is developed based on a subsys-
tem approach (Kier and Looye, 2009). The aerodynamics
and the structural dynamics are developed separately and
the interconnection forms the aeroservoelastic model (see
Fig. 1).
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Fig. 1. Aeroelastic model

The structural model is obtained from a Finite Element
(FE) approach (Rodden, 1967). A common element in
such applications is the Euler-Bernoulli-beam with added
torsional effects. The mass distribution of the wing is
assumed to be replaced by a concentrated mass system
based on physical considerations. The 10 structural grid
points are placed forward and after along the concentrated
masses as seen in Fig. 2 (Rodden and Johnson, 1994;
Bisplinghoff et al., 1955). The 10 structural grid points
have 1 degree of freedom, heaving in z direction. Grid
point 11 in Fig. 2 is fixed while grid point 12 represents
the control surface deflection and can rotate along the y
axis. The structural model can be written as

Mη̈ + Cη̇ +Kη = Fextmodal
(4)

where M , C and K are the modal mass, damping and
stiffness matrices respectively and Fextmodal

is the external
excitation in modal coordinates. For the BAH wing model

Fextmodal
= Fpanelmodal

+ Fcsmodal
(5)

where Fpanelmodal
and Fcsmodal

are the external forces in
modal coordinates resulting form the aerodynamic panel
deformation and control surface deflection respectively.
The elastic deformation of the ith structural grid point
can be written in terms of modal coordinates η and mode
shapes Φ as δi =

∑n
j Φijηj . In the present case the mode

shapes relate the modal coordinates to the structural grid
points heaving motion in z direction. The mode shapes,
mass and stiffness matrices with the rest of the parameter
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values of the BAH wing can be found in (Rodden and
Johnson, 1994). Note that the damping matrix of the BAH
wing structural model is zero.

The unsteady aerodynamics is modeled with the subsonic
DLM (Albano and Rodden, 1969). The model is divided
into aerodynamic panels as shown in Fig. 2.
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Fig. 2. BAH wing platform and aerodynamic strip ideal-
ization

A short summary of the generalized aerodynamic model
for the aerodynamic panels is given based on (Rodden and
Johnson, 1994; Kotikalpudi et al., 2015). The DLM results
in the AIC (Aerodynamic Influence Coefficient) matrices
that relate the normalwash vector w̄ to the normalized
pressure difference vector p̄ about the panels as

p̄panel = [AICpanel(ω, V )] w̄ (6)

where ω is the oscillating frequency and V is the air speed.
These two parameters are in general transformed into a
single dimensionless parameter, the reduced frequency k =
ωc̄
2V , where c̄ is the reference chord length. In order to relate
the modal displacements to the normalwash vector w̄ and
to transform the aerodynamic force to modal coordinates
the so called generalized aerodynamic matrix (GAM) is
defined as (see (Rodden and Johnson, 1994; Kotikalpudi
et al., 2015) for more details)

Qpanel(k)=ΦTTT
asS [AICpanel(k)] (D1 + ikD2)TasΦ (7)

where D1 and D2 are the differentiation matrices, S
is the integration matrix and Tas is the interpolation
matrix that projects the structural grid deformation on to
the aerodynamic panels in form of their pitch and heave
deformation (Kier and Looye, 2009). The GAM maps the
modal deformation η to the aerodynamic force distribution
in modal coordinates Fpanelmodal

as

Fpanelmodal
= q̄ [Qpanel(k)] η (8)

where q̄ is the free stream dynamic pressure. Since the
GAMmatrices are frequency dependent the resulting aero-
dynamic model is dynamic. Note that the GAM matrices
are obtained only over a discrete reduced frequency grid.
However, time domain aeroelastic simulations require a
continuous model. There are several methods to obtain
such models (Roger, 1977). Roger’s rational function ap-
proximation (RFA) method (Roger, 1977) was applied
applied for the BAH wing. The resulting aerodynamic
model is obtained in the form

Qpanel(k) =Qpanel0 +Qpanel1ik +Qpanel2(ik)
2+

np∑
l=1

Qpanell+2

ik

ik + bl

(9)

where Qpanel0 , Qpanel1 and Qpanel2 stand for the quasi-
steady, velocity and acceleration terms of the aerodynamic
model. The Qpanell+2

terms take the lag behavior of the
aerodynamic model into account. The poles of the lag
states are given by bl. np number of poles are selected

for each modal coordinate a priori. This implies that the
resulting aerodynamic model in general is of much higher
dimension than the structural model. Note that RFA
form of the GAM matrix given as (9) requires the modal
coordinates η and its the first and second time derivatives
as input parameters.

In a similar fashion, the GAM matrices for the control
surface deflection δa can be defined as

Fcsmodal
= q̄ [Qcs(k)] δa (10)

where Qcs(k) is the control surface GAM matrix. The
actuator is defined based on (Brenner, 1996) as a 2nd order
linear model

Gact(s) =
752

s2 + 2(0.59)(75)s+ 752
(11)

The RFA approximation of the control surface GAM
matrix Qcs(k) requires the control surface deflection δa
and its first and second time derivatives. Therefore, these
signals are pulled out from the actuator dynamics.

Four signals are defined as the output of the BAH wing
model. Two accelerometers are placed on the forward
and aft structural grid points at the tip of the wing.
Two angular rate sensors are placed at the same cross-
section of the wing measuring the local pitch and roll rates

respectively. Therefore, y = [az,1 az,2 q p]
T
.

The structural dynamics of the BAH wing contains the
first 10 structural modes and their time derivatives. This
gives a 20 state model in the form of (4). The aerodynamic
model is constructed by selecting np = 8 poles for each
structural coordinate. Therefore, the aerodynamic model
consists of 80 lag states with an additional 8 lag states for
the aileron input. The aeroelastic model of the BAH wing
including the actuator dynamics has therefore 110 states.
The structural and the actuator models are linear while the
aerodynamic model varies with the air speed. The resulting
model is thus LPV and can be given in the form (1).
The scheduling parameter ρ is the airspeed defined in the
interval Γ := [121.92 640.08] m/s. The time derivative of
the scheduling parameter is assumed to take values from
the interval Ω = [−5, 5] m/s2. The LPV model is given as a
set of LTI systems obtained by evaluating the LPV model
at 205 equidistant grid points defined over Γ. The flutter
onset speed is at 343,11 m/s where the first bending and
first torsion modes get coupled.

4. MODEL REDUCTION BASED ON MODAL
DECOMPOSITION

This section describes the generic model reduction algo-
rithm developed recently for LPV systems. It is assumed,
that the dynamics are given in a standard grid-based
representation, i.e.: aK number of LTI models obtained by
evaluating (1) at finite set of scheduling parameter values.
The methodology is based on a consistent modal form of
the underlying dynamics, which requires the A(ρ) to be
diagonalizable. The obtained LPV modal decomposition
is then used for clustering system modes with dynamical
similarity. Subsequently, smaller dimensional subsystems
are reduced by using standard balancing transformations.
Hereunder we give a brief overview of the algorithm, while
the details can be found in (Gőzse et al., 2016; Luspay
et al., 2016).

LTI modal form. Given a linear time invariant (LTI)
system in state space form as ẋ = Ax + Bu. Assume
A is diagonalizable and let its eigenvalues and eigenvec-
tors be denoted by λi and vi, respectively. Then T̂ =
[R (v1) I (v1) . . . R (vm) I (vm)] defines a state transfor-

mation such that Â := T̂AT̂−1 =block-diag(Â1, . . . Âm),
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values of the BAH wing can be found in (Rodden and
Johnson, 1994). Note that the damping matrix of the BAH
wing structural model is zero.

The unsteady aerodynamics is modeled with the subsonic
DLM (Albano and Rodden, 1969). The model is divided
into aerodynamic panels as shown in Fig. 2.
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Fig. 2. BAH wing platform and aerodynamic strip ideal-
ization

A short summary of the generalized aerodynamic model
for the aerodynamic panels is given based on (Rodden and
Johnson, 1994; Kotikalpudi et al., 2015). The DLM results
in the AIC (Aerodynamic Influence Coefficient) matrices
that relate the normalwash vector w̄ to the normalized
pressure difference vector p̄ about the panels as

p̄panel = [AICpanel(ω, V )] w̄ (6)

where ω is the oscillating frequency and V is the air speed.
These two parameters are in general transformed into a
single dimensionless parameter, the reduced frequency k =
ωc̄
2V , where c̄ is the reference chord length. In order to relate
the modal displacements to the normalwash vector w̄ and
to transform the aerodynamic force to modal coordinates
the so called generalized aerodynamic matrix (GAM) is
defined as (see (Rodden and Johnson, 1994; Kotikalpudi
et al., 2015) for more details)

Qpanel(k)=ΦTTT
asS [AICpanel(k)] (D1 + ikD2)TasΦ (7)

where D1 and D2 are the differentiation matrices, S
is the integration matrix and Tas is the interpolation
matrix that projects the structural grid deformation on to
the aerodynamic panels in form of their pitch and heave
deformation (Kier and Looye, 2009). The GAM maps the
modal deformation η to the aerodynamic force distribution
in modal coordinates Fpanelmodal

as

Fpanelmodal
= q̄ [Qpanel(k)] η (8)

where q̄ is the free stream dynamic pressure. Since the
GAMmatrices are frequency dependent the resulting aero-
dynamic model is dynamic. Note that the GAM matrices
are obtained only over a discrete reduced frequency grid.
However, time domain aeroelastic simulations require a
continuous model. There are several methods to obtain
such models (Roger, 1977). Roger’s rational function ap-
proximation (RFA) method (Roger, 1977) was applied
applied for the BAH wing. The resulting aerodynamic
model is obtained in the form

Qpanel(k) =Qpanel0 +Qpanel1ik +Qpanel2(ik)
2+

np∑
l=1

Qpanell+2

ik

ik + bl

(9)

where Qpanel0 , Qpanel1 and Qpanel2 stand for the quasi-
steady, velocity and acceleration terms of the aerodynamic
model. The Qpanell+2

terms take the lag behavior of the
aerodynamic model into account. The poles of the lag
states are given by bl. np number of poles are selected

for each modal coordinate a priori. This implies that the
resulting aerodynamic model in general is of much higher
dimension than the structural model. Note that RFA
form of the GAM matrix given as (9) requires the modal
coordinates η and its the first and second time derivatives
as input parameters.

In a similar fashion, the GAM matrices for the control
surface deflection δa can be defined as

Fcsmodal
= q̄ [Qcs(k)] δa (10)

where Qcs(k) is the control surface GAM matrix. The
actuator is defined based on (Brenner, 1996) as a 2nd order
linear model

Gact(s) =
752

s2 + 2(0.59)(75)s+ 752
(11)

The RFA approximation of the control surface GAM
matrix Qcs(k) requires the control surface deflection δa
and its first and second time derivatives. Therefore, these
signals are pulled out from the actuator dynamics.

Four signals are defined as the output of the BAH wing
model. Two accelerometers are placed on the forward
and aft structural grid points at the tip of the wing.
Two angular rate sensors are placed at the same cross-
section of the wing measuring the local pitch and roll rates

respectively. Therefore, y = [az,1 az,2 q p]
T
.

The structural dynamics of the BAH wing contains the
first 10 structural modes and their time derivatives. This
gives a 20 state model in the form of (4). The aerodynamic
model is constructed by selecting np = 8 poles for each
structural coordinate. Therefore, the aerodynamic model
consists of 80 lag states with an additional 8 lag states for
the aileron input. The aeroelastic model of the BAH wing
including the actuator dynamics has therefore 110 states.
The structural and the actuator models are linear while the
aerodynamic model varies with the air speed. The resulting
model is thus LPV and can be given in the form (1).
The scheduling parameter ρ is the airspeed defined in the
interval Γ := [121.92 640.08] m/s. The time derivative of
the scheduling parameter is assumed to take values from
the interval Ω = [−5, 5] m/s2. The LPV model is given as a
set of LTI systems obtained by evaluating the LPV model
at 205 equidistant grid points defined over Γ. The flutter
onset speed is at 343,11 m/s where the first bending and
first torsion modes get coupled.

4. MODEL REDUCTION BASED ON MODAL
DECOMPOSITION

This section describes the generic model reduction algo-
rithm developed recently for LPV systems. It is assumed,
that the dynamics are given in a standard grid-based
representation, i.e.: aK number of LTI models obtained by
evaluating (1) at finite set of scheduling parameter values.
The methodology is based on a consistent modal form of
the underlying dynamics, which requires the A(ρ) to be
diagonalizable. The obtained LPV modal decomposition
is then used for clustering system modes with dynamical
similarity. Subsequently, smaller dimensional subsystems
are reduced by using standard balancing transformations.
Hereunder we give a brief overview of the algorithm, while
the details can be found in (Gőzse et al., 2016; Luspay
et al., 2016).

LTI modal form. Given a linear time invariant (LTI)
system in state space form as ẋ = Ax + Bu. Assume
A is diagonalizable and let its eigenvalues and eigenvec-
tors be denoted by λi and vi, respectively. Then T̂ =
[R (v1) I (v1) . . . R (vm) I (vm)] defines a state transfor-

mation such that Â := T̂AT̂−1 =block-diag(Â1, . . . Âm),
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where each block corresponds to one dynamic mode, i.e.:

Âi =
[

R(λi) I(λi)
−I(λi) R(λi)

]
for complex conjugate eigenvalues

and Âi = λi for real eigenvalues. The modal form is very
powerful tool for model analysis and reduction, but its ex-
tension to linear parameter-varying systems is challenging,
as discussed in the next sequel.

LPV modal form. Two main challenges are known in the
literature regarding the construction of the modal form
for LPV systems (Adegas et al., 2013). Firstly, one has to
ensure the correct ordering of the modal blocks over the
entire parameter domain. Secondly, the eigenspace (and
hence the modal transformation) is parameter varying,
where abrupt sign changes can appear, hindering the
smooth interpolation of the transformed LTI systems. The
following remedies are offered for these issues.

First of all, a scaling transformation is recommended
for the grid-wise representation in order to improve the
numerical conditioning of the eigenvalue and eigenvector
computations. It is evident, that a constant T transfor-
mation can be applied for every grid point, without af-
fecting the IO behavior of the systems. After the scaling,
the eigenvalue decomposition of the matrix sequence Ak,
k = 1, . . . ,K is carried out, resulting in a series of eigen-
values λk and eigenvectors vk over the parameter domain.
In order to assure the correct ordering of the eigenvalues,
a metric is necessary to measure their distance. For this
purpose, the pseudo-hyperbolic metric is adopted, which
characterizes the dynamical similarity between two sys-
tems generated by the corresponding eigenvalues as poles
(Gőzse et al., 2016). Computing pair-wise distances be-
tween eigenvalues of neighboring grid points, a minimal
cost perfect matching problem can be formulated, for
which effective numerical solutions are readily available.
Consequently, eigenvalue trajectories are restored over the
entire parameter domain and consistent order of the modal
blocks are obtained. The details can be found in (Luspay
et al., 2016).

The next step is the smoothing of the eigenspace, in or-
der to facilitate smooth interpolation between each trans-
formed LTI system. For this step, a complex Procrustes
problem is formulated and solved for the corresponding
sets of eigenvectors. Formally,

Qk+1 = arg min
Qk+1

‖Vk − Vk+1Qk+1‖F , (12)

where Vk and Vk+1 denote the eigenvectors at grid point k
and k+1 respectively. The Qk+1 solution of the Procrustes
problem rotates neighboring eigenvectors close to each
other, while preserving their eigen properties. Accordingly,
abrupt sign changes and large variations in the eigenspace
are eliminated and smoothed out.

Consequently, the parameter-varying modal transforma-
tion T̂ (ρ) can be constructed on the analogy of the LTI

case. Applying the state transformation (ξ = T̂ (ρ)x), the
following LPV model is obtained:

ξ̇=

(
T̂ (ρ)A(ρ)T̂−1(ρ) +

∂T̂ (ρ)

∂ρ
T̂−1(ρ)ρ̇

)
ξ + T̂ (ρ)B(ρ)u,

y = C(ρ)T̂−1(ρ)ξ +D(ρ)u. (13)

Notice, that due to the parameter-dependence of the trans-
formation T̂ (ρ), the resulting system depends also on ρ̇
in (13). At the same time, this dependence generally can
be neglected in most of the cases, because the Procrustes

smoothing minimizes the ∂T̂ (ρ)
∂ρ gradient of the modal

transformation. Consequently, a quasi-modal form is ob-
tained, which is used for model order reduction.

Hierarchical clustering. The parameter-varying quasi-
modal form is very attractive and useful, since various
information can be easily extracted from this represen-
tation. Firstly, a stable-unstable decomposition can be
performed, where unstable modes can be separated (and
exactly preserved) from the stable parts. Secondly, modes
which are outside of the frequency range of interest can
be removed as well. This is a rather useful aspect of the
methodology in the context of reduced-order controller
design. Hence, only stable modes within the frequency
range are kept and reduced.

In order to obtain a numerically solvable problem for
model reduction, the system is broken apart for several
subsystems. The key idea is to create small dimensional
subsystems representing similar dynamical behavior of the
full-order model. Accordingly, system modes are grouped
together by using hierarchical clustering (Hastie et al.,
2009). Dynamic similarity of parameter-varying modes are
measured through the extension of the pseudo-hyperbolic
metric, then, the successive evaluation of the distances
are performed. In each step those clusters are merged
together for which the smallest pseudo-hyperbolic distance
is obtained, repeated until a single cluster is obtained. The
merging is usually illustrated on a tree diagram (called
dendrogram), where the user can determine the level of
similarity for the final cluster structure (Hastie et al.,
2009). Accordingly, the system can be decomposed into
several smaller dimensional subsystems, each collecting
similar dynamical behaviors together.

Balanced reduction. The balanced reduction of each
subsystem is performed next. Parameter-varying observ-
ability and controllability Gramians are computed first,
followed by the corresponding balancing transformations.
The parameter-varying singular values provide informa-
tion about the number of states that can be eliminated
without effecting the corresponding dynamical behavior.
Therefore, each subsystem is reduced individually. It is
then possible to merge the reduced subsystems into a
single model, where a second balanced reduction can be
performed. The idea behind this step is twofold. First,
the dimension of the corresponding system does not hin-
der the numerical computations any more. Second, the
additional balancing can reveal further information on
eliminating states irrelevant of the overall input-output
behavior. Upon performing the second reduction, unsta-
ble modes can be reinstated to conclude the parameter-
varying reduction.

5. STRUCTURED MODEL REDUCTION

The model reduction method presented in this section
starts from the model structure in Fig 1 and considers the
subsystems independently. The actuator model is typically
a simple LTI system, so it cannot be further reduced. The
structural dynamics are also LTI, though it is marginally
stable if - as in the BAH wing model - the damping
matrix is 0. This makes it necessary to use model reduc-
tion algorithms extended to unstable/marginally stable
systems. The only parameter-varying block in Fig 1 is the
aerodynamics. In the sequel we focus on the reduction of
this block. It will be shown that the special structure of its
parameter dependence makes it possible to apply balanced
reduction without solving the semidefinite optimization
(3).

Consider the aerodynamic model in LPV form as follows
ẋae = ρA1︸︷︷︸

Aae(ρ)

xae + B0︸︷︷︸
Bae(ρ)

uae

yae = ρ2C2︸ ︷︷ ︸
Cae(ρ)

xae + (D0 + ρD1 + ρ2D2)︸ ︷︷ ︸
Dae(ρ)

uae
(14)
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where the matrices A1, B0, C2, Di are all constant. The
vector xae ∈ Rnae is the state vector of the aerodynamics.
The input vector uae contains the modal coordinates, the
control input and their first and second derivatives. The
output vector yae collects the generalized forces which are
in the modal coordinate system.

To construct the Gramians, consider first inequality (3a).
By substituting the LPV model (14) it takes the form

ρA1Xc(ρ) +Xc(ρ)(ρA1)
T +B0B

T
0 − Ẋc(ρ) � 0 (15)

Let Xc(ρ) =
1
ρXc and thus Ẋc(ρ) = − ρ̇

ρ2Xc, where Xc is

a constant matrix. Then the LMI above can be written as

(A1 +
ρ̇

2ρ2
I)Xc +Xc(A1 +

ρ̇

2ρ2
I)T +B0B

T
0 � 0 (16)

Since both ρ̇ and ρ are bounded, the term ρ̇
2ρ2 has a

maximum over Γ × Ω. Let this maximum be denoted by
α. We can now consider the following Lyapunov equality
instead of the inequality above:

(A1 + αI)Xc +Xc(A1 + αI)T +B0B
T
0 = 0 (17)

Note that, this equation has a unique positive semidefinite
solution Xc if (A1+αI) is a Hurwitz matrix. Furthermore,
if Xc � 0 is a solution then Xc(ρ) = 1

ρXc satisfies

inequality (15) for all ρ ∈ Γ and ρ̇ ∈ Ω. Thus Xc(ρ)
is a controllability Gramian for (14) and it has been
constructed by solving only a set of linear equations
instead of performing the computationally demanding
semidefinite optimization (3).

As for the observability Gramian Xo(ρ), a similar proce-
dure can be applied. For this we start from the LMI

(ρA1)
TXo(ρ) +Xo(ρ)ρA1 + (ρ2C2)

T ρ2C2 + Ẋo(ρ) � 0
(18)

If Xo(ρ) = ρ3Xo and thus Ẋo(ρ) = 3ρ2ρ̇Xo then the LMI
above takes the following simpler form:

(A1 +
3ρ̇

2ρ2
I)TXo +Xo(A1 +

3ρ̇

2ρ2
I) + CT

2 C2 � 0 (19)

Let β = max 3ρ̇
2ρ2 and consider the Lyapunov equality

(A1 + βI)TXo +Xo(A1 + βI) + CT
2 C2 = 0 (20)

Again, this equation has a unique positive definite solution
Xo if (A1 + βI) is Hurwitz and if Xo � 0 solves (17) then
Xo(ρ) = ρ3Xo satisfies (18).

From Xo(ρ) and Xc(ρ) we can now construct the bal-
ancing state transformation T (ρ). Instead of performing
the standard procedure described in (Wood, 1995), we
use now a different approach resulting in a parameter
independent state transformation T that also transforms
the system in a form in which the less observable and
less controllable states can be identified but as it being
constant, the reduced order model will not depend on ρ̇.

For this, consider the generalized Hankel singular values
of system (14)

σi(ρ) =
√

λi(Xc(ρ)Xo(ρ)) = ρ

√
λi(XcXo) = ρσi (21)

Since the positive valued scheduling parameter acts only
as a scaling, the information on the observability and the
controllability of the states is carried by the constant σi

values . Therefore, we can choose T to be the constant bal-
ancing transformation computed from Xc and Xo. Then,

by definition T
−1

XcT
−T

= T
T
XoT = diag(σ1, . . . , σnae).

Defining x̃ae = Txae the Gramians of the transformed

LPV system can be obtained as follows:

X̃c(ρ) = T
−1

Xc(ρ)T
−T

=
1

ρ
diag(σ1, . . . , σnae

) (22)

X̃o(ρ) = T
T
Xo(ρ)T = ρ3diag(σ1, . . . , σnae

), (23)

Consequently, the states of x̃ae associated with small σi
value are less controllable and less observable, so they can
be eliminated from the model. It can also be checked that
either truncation or residualization is applied the simple
structure of the parameter dependence is preserved in the
reduced order model, i.e. Aae,r(ρ) = ρA1,r, Cae,r(ρ) =
ρ2C2,r, Dae,r(ρ) = D0,r + ρD1,r + ρ2D2,r.

6. NUMERICAL RESULTS - REDUCTION OF THE
BAH WING MODEL

In this section the detailed comparison of the two methods
is presented through the numerical results obtained for the
BAH wing model.

Model decompositions Although, the two methodologies
represent two different approaches, it is very interesting
and useful to take a closer look on the decompositions
in each frameworks. The structured model reduction ex-
ploits the underlying interconnection as depicted in Fig.
1. Analyzing the IO behaviors, it is found that neither
the LTI structural dynamics, nor the actuator dynamics
can be further reduced by using standard techniques. That
is, only the 88 dimensional aerodynamics block is subject
of the model reduction, as discussed in Section 5. On the
other hand, the generic LPV model reduction methodology
in Section 4 does not incorporate explicitly the specific
structure of the model. Instead, the hierarchical clustering
is applied to exploit the dynamical structure of the system.
For this, the approximate modal decomposition has to
be constructed first. By performing time-domain Monte
Carlo simulations it can be checked that the ρ̇-dependent,
coupling terms in (13) can be neglected without caus-
ing significant change in the IO behavior. Therefore, the
modal system depends only on ρ. Continuing the process
by removing the unstable modes, the 106 dimensional
stable part is subdivided into 13 clusters. Nine of these
clusters are 2 dimensional, containing dynamics of a sin-
gle complex-conjugate mode. Obviously, these are non-
reducible blocks. Therefore, only the remaining 4 clusters
can be reduced, with the following dimensions: 22,21,24
and 21; altogether 88 states are subject to the balancing
model reduction described in Section 4. The corresponding
dynamics are clearly related to the aerodynamics block,
where due to the feedback configuration complex modes
appear. This similarity verifies the proposed hierarchical
clustering approach of the modal-based LPV model re-
duction algorithm.

Model reduction The special parameter dependence of
the aerodynamics block is utilized in the structured reduc-
tion algorithm. Consequently the problem is boiled down
to a parameter-independent one, as discussed in Section
5. This approximation does not suffer from the curse of
dimensionality (in contrast to LMI methods), hence it is
possible to compute the 88 dimensional Gramians of the
corresponding Lyapunov equalities. Based on the Hankel
singular values 76 states can be neglected, resulting in a
34 dimensional reduced model. At the same time, further
reduction of the aerodynamic block is still possible due to
the feedback configuration. Hence an additional 6 states
are removed, obtaining a 28 dimensional approximation
of the original dynamics. Under the generic framework,
LPV balancing methods are used for reducing the smaller
dimensional clusters. For each subsystem a parameter-
independent controllability and observability Gramians is
searched and computed by solving the iterative optimiza-
tion over LMI constraints (Wood, 1995). The correspond-
ing singular values imply 6, 12, 12 and 10 significant states
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where the matrices A1, B0, C2, Di are all constant. The
vector xae ∈ Rnae is the state vector of the aerodynamics.
The input vector uae contains the modal coordinates, the
control input and their first and second derivatives. The
output vector yae collects the generalized forces which are
in the modal coordinate system.

To construct the Gramians, consider first inequality (3a).
By substituting the LPV model (14) it takes the form

ρA1Xc(ρ) +Xc(ρ)(ρA1)
T +B0B

T
0 − Ẋc(ρ) � 0 (15)

Let Xc(ρ) =
1
ρXc and thus Ẋc(ρ) = − ρ̇

ρ2Xc, where Xc is

a constant matrix. Then the LMI above can be written as

(A1 +
ρ̇

2ρ2
I)Xc +Xc(A1 +

ρ̇

2ρ2
I)T +B0B

T
0 � 0 (16)

Since both ρ̇ and ρ are bounded, the term ρ̇
2ρ2 has a

maximum over Γ × Ω. Let this maximum be denoted by
α. We can now consider the following Lyapunov equality
instead of the inequality above:

(A1 + αI)Xc +Xc(A1 + αI)T +B0B
T
0 = 0 (17)

Note that, this equation has a unique positive semidefinite
solution Xc if (A1+αI) is a Hurwitz matrix. Furthermore,
if Xc � 0 is a solution then Xc(ρ) = 1

ρXc satisfies

inequality (15) for all ρ ∈ Γ and ρ̇ ∈ Ω. Thus Xc(ρ)
is a controllability Gramian for (14) and it has been
constructed by solving only a set of linear equations
instead of performing the computationally demanding
semidefinite optimization (3).

As for the observability Gramian Xo(ρ), a similar proce-
dure can be applied. For this we start from the LMI

(ρA1)
TXo(ρ) +Xo(ρ)ρA1 + (ρ2C2)

T ρ2C2 + Ẋo(ρ) � 0
(18)

If Xo(ρ) = ρ3Xo and thus Ẋo(ρ) = 3ρ2ρ̇Xo then the LMI
above takes the following simpler form:

(A1 +
3ρ̇

2ρ2
I)TXo +Xo(A1 +

3ρ̇

2ρ2
I) + CT

2 C2 � 0 (19)

Let β = max 3ρ̇
2ρ2 and consider the Lyapunov equality

(A1 + βI)TXo +Xo(A1 + βI) + CT
2 C2 = 0 (20)

Again, this equation has a unique positive definite solution
Xo if (A1 + βI) is Hurwitz and if Xo � 0 solves (17) then
Xo(ρ) = ρ3Xo satisfies (18).

From Xo(ρ) and Xc(ρ) we can now construct the bal-
ancing state transformation T (ρ). Instead of performing
the standard procedure described in (Wood, 1995), we
use now a different approach resulting in a parameter
independent state transformation T that also transforms
the system in a form in which the less observable and
less controllable states can be identified but as it being
constant, the reduced order model will not depend on ρ̇.

For this, consider the generalized Hankel singular values
of system (14)

σi(ρ) =
√
λi(Xc(ρ)Xo(ρ)) = ρ

√
λi(XcXo) = ρσi (21)

Since the positive valued scheduling parameter acts only
as a scaling, the information on the observability and the
controllability of the states is carried by the constant σi

values . Therefore, we can choose T to be the constant bal-
ancing transformation computed from Xc and Xo. Then,

by definition T
−1

XcT
−T

= T
T
XoT = diag(σ1, . . . , σnae).

Defining x̃ae = Txae the Gramians of the transformed

LPV system can be obtained as follows:

X̃c(ρ) = T
−1

Xc(ρ)T
−T

=
1

ρ
diag(σ1, . . . , σnae

) (22)

X̃o(ρ) = T
T
Xo(ρ)T = ρ3diag(σ1, . . . , σnae

), (23)

Consequently, the states of x̃ae associated with small σi
value are less controllable and less observable, so they can
be eliminated from the model. It can also be checked that
either truncation or residualization is applied the simple
structure of the parameter dependence is preserved in the
reduced order model, i.e. Aae,r(ρ) = ρA1,r, Cae,r(ρ) =
ρ2C2,r, Dae,r(ρ) = D0,r + ρD1,r + ρ2D2,r.

6. NUMERICAL RESULTS - REDUCTION OF THE
BAH WING MODEL

In this section the detailed comparison of the two methods
is presented through the numerical results obtained for the
BAH wing model.

Model decompositions Although, the two methodologies
represent two different approaches, it is very interesting
and useful to take a closer look on the decompositions
in each frameworks. The structured model reduction ex-
ploits the underlying interconnection as depicted in Fig.
1. Analyzing the IO behaviors, it is found that neither
the LTI structural dynamics, nor the actuator dynamics
can be further reduced by using standard techniques. That
is, only the 88 dimensional aerodynamics block is subject
of the model reduction, as discussed in Section 5. On the
other hand, the generic LPV model reduction methodology
in Section 4 does not incorporate explicitly the specific
structure of the model. Instead, the hierarchical clustering
is applied to exploit the dynamical structure of the system.
For this, the approximate modal decomposition has to
be constructed first. By performing time-domain Monte
Carlo simulations it can be checked that the ρ̇-dependent,
coupling terms in (13) can be neglected without caus-
ing significant change in the IO behavior. Therefore, the
modal system depends only on ρ. Continuing the process
by removing the unstable modes, the 106 dimensional
stable part is subdivided into 13 clusters. Nine of these
clusters are 2 dimensional, containing dynamics of a sin-
gle complex-conjugate mode. Obviously, these are non-
reducible blocks. Therefore, only the remaining 4 clusters
can be reduced, with the following dimensions: 22,21,24
and 21; altogether 88 states are subject to the balancing
model reduction described in Section 4. The corresponding
dynamics are clearly related to the aerodynamics block,
where due to the feedback configuration complex modes
appear. This similarity verifies the proposed hierarchical
clustering approach of the modal-based LPV model re-
duction algorithm.

Model reduction The special parameter dependence of
the aerodynamics block is utilized in the structured reduc-
tion algorithm. Consequently the problem is boiled down
to a parameter-independent one, as discussed in Section
5. This approximation does not suffer from the curse of
dimensionality (in contrast to LMI methods), hence it is
possible to compute the 88 dimensional Gramians of the
corresponding Lyapunov equalities. Based on the Hankel
singular values 76 states can be neglected, resulting in a
34 dimensional reduced model. At the same time, further
reduction of the aerodynamic block is still possible due to
the feedback configuration. Hence an additional 6 states
are removed, obtaining a 28 dimensional approximation
of the original dynamics. Under the generic framework,
LPV balancing methods are used for reducing the smaller
dimensional clusters. For each subsystem a parameter-
independent controllability and observability Gramians is
searched and computed by solving the iterative optimiza-
tion over LMI constraints (Wood, 1995). The correspond-
ing singular values imply 6, 12, 12 and 10 significant states
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Fig. 3. Frequency distribution of the ν-gap

for the respective subsystems. Accordingly, the 88 dimen-
sional LPV system is reduced to 40 dimensional. Never-
theless, this state dimension can also be further reduced,
after joining the reduced subsystems together. A second
balanced reduction is then applied for the 40 dimensional
system, where an additional 24 states are eliminated suc-
cessfully. This step takes into consideration the relative
contributions of the subsystems in the overall IO behavior
of the model. Hence, the final LPV approximation is 34
dimensional.

Numerical aspects As discussed above, the two ap-
proaches use different numerical solutions. The structured
methodology relies on Lyapunov equalities, which is cer-
tainly a much more well conditioned problem than the
inequality based solution of the generic LPV reduction.
The number of decision variables is 3916 × 2 for the cor-
responding Lyapunov equalities, which can be solved in
1sec using the available SLICOT’s solver SB03MD under
MATLAB. For the modal-decomposition based approach
the decision variables are: 253 × 2, 231 × 2, 300 × 2 and
231 × 2 for the respective 22, 21, 24 and 21 dimensional
clusters. The corresponding LMIs are solved in an iterative
manner, where each step takes approximately 60secs by
using the MOSEK semidefinite solver under MATLAB.

Comparison The model reduction is often motivated
by the computational limitations of the controller design,
hence the ν-gap metric is chosen to evaluate the goodness
of the reduced-order models (Vinnicombe, 1993). The ν-
gap between the full- and reduced-order models char-
acterizes the stability margin of the controllers working
with the former and designed for the latter. The δν(ρ, ω)
function is constructed by computing point-wise ν-gap
over a two-dimensional grid of the scheduling parameter
ρ and frequency range ω. Moreover, Figure 3 shows the
frequency distribution of δν(ρ, ω), i.e.: maxρ δν(ρ, ω). It
can be seen that the two models approximate the full-
order system equally good on middle and high frequency
ranges. However, the balanced truncation of the generic
LPV reduction method leads to higher ν-gap values in
the low frequency range. Nonetheless, the results are still
promising.

7. CONCLUSION

In the paper two methods have been proposed for reducing
large scale aeroelastic models. To demonstrate the appli-
cability of the algorithms to reveal their most important
properties the 110 dimensional model of the BAH trans-
port jet wing has been reduced. The presented approaches
will be used to generate a numerically tractable LPV
model for the FLEXOP demonstrator aircraft, which will
be flight tested in 2018.
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