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RFMix: A Discriminative Modeling Approach
for Rapid and Robust Local-Ancestry Inference

Brian K. Maples,1,2 Simon Gravel,1,3 Eimear E. Kenny,1,4,5,6,7,8 and Carlos D. Bustamante1,8,*

Local-ancestry inference is an important step in the genetic analysis of fully sequenced human genomes. Current methods can only

detect continental-level ancestry (i.e., European versus African versus Asian) accurately even when using millions of markers. Here,

we present RFMix, a powerful discriminative modeling approach that is faster (~303) and more accurate than existing methods. We

accomplish this by using a conditional random field parameterized by random forests trained on reference panels. RFMix is capable

of learning from the admixed samples themselves to boost performance and autocorrect phasing errors. RFMix shows high sensitivity

and specificity in simulated Hispanics/Latinos and African Americans and admixed Europeans, Africans, and Asians. Finally, we demon-

strate that African Americans in HapMap contain modest (but nonzero) levels of Native American ancestry (~0.4%).
Introduction

Nonrandom mating and genetic drift have led to discern-

ible allele-frequency differences among many human

populations.1–4 Coupled with recent advances in computa-

tional and high-throughput genomics, these allele-

frequency differences afford high-resolution ancestry

inference across individual human genomes. Local-

ancestry inference (LAI), or ancestry deconvolution, is

critical for the analysis of admixed genomes and is a stan-

dard part of genetic analysis in a wide range of fields,

ranging from pharmacogenomics to human demographic

history.5–9 Although previous studies have focused on con-

tinental ancestry (e.g., European versus East Asian versus

sub-Saharan African ancestry), it has become evident that

subcontinental ancestries must also be considered.10 For

example, European populations are genetically heteroge-

neous, and many biomedical traits (including height,

blood pressure, and cholesterol levels) show gradients

that mirror genetic clines.11 Likewise, despite the fact

that both groups are classified as Latino, Puerto Ricans

and Mexicans living in the United States have the highest

and lowest incidence, morbidity, and mortality of asthma,

respectively, in the country.12 A final example is the South

Africa Colored population, which derives its ancestry from

an admixture of multiple African populations, as well as

European and Asian populations, and exhibits large varia-

tion in (and high incidence of) susceptibility to tubercu-

losis.13 The ability to uncover patterns of subcontinental

ancestry in such populations is critical for disentangling

the role of ancestry versus environment versus individual

genetic markers on these and other complex traits.

Recently, the 1000 Genomes Project Phase I released

low-pass sequencing, exome, and dense genotyping data
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for 1,092 individuals from 14 popualtions.1 A key finding

of this work and others14,15 was that the vast majority of

genetic variants in the human genome are rare in fre-

quency and are population specific. We hypothesize that

these features of whole-genome sequence data will allow

the differentiation of even closely related populations so

that most individuals in the world will trace their ancestry

to multiple genetically discernible ancestral populations.

Given that human populations have expanded dramati-

cally from less than 100,000,000 people 10,000 years ago

to 7,000,000,000 people today, the model of multiple

finite and genetically discernible ancestral populations is

a testable one.

Numerous computational approaches to LAI have been

developed. Early approaches, such as STRUCTURE, were

designed for unlinked markers16–18 and modeled local-

ancestry correlations due to common ancestry by using

Hidden Markov Models (HMMs) instead of explicitly

modeling linkage disequilibrium (LD). Although useful

for inferring highly diverged populations, these

approaches do not fully exploit the potentially rich infor-

mation in haplotypes (particularly for differentiating

closely related populations). Most approaches that do

incorporate LD explicitly (such as HAPMIX) can only

consider two ancestral populations at a time because of

computational limitations.19–21 Among the state-of-the-

art approaches is the LAMP algorithm, which is able to

draw inference accurately across more than two ancestral

populations and does so in a significantly shorter time

than HAPMIX.22 A potential limitation of many current

methods is that they require large reference panels that

are good proxies for the true ancestries of the admixed

samples. Despite the continuing contributions of orga-

nized efforts such as HapMap2 and the 1000 Genomes
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Table 1. Comparison of Accuracies and Speeds between Methods

Perfectly Phased Data Beagle-Phased Data

Diploid
Accuracy

Run
Time (s)

Diploid
Accuracy

Run
Time (s)

RFMix 95.6% 26 93.2% 108

LAMP-HAP or
LAMP-LDa

93.7% 878 90.7% 914

SupportMix 91.9% 44 77.3% 45

The table shows diploid accuracy and run time when local ancestry was
inferred in simulated Latino samples under different phasing conditions.
aLAMP-HAP and LAMP-LD were used for LAI on the perfectly phased data and
Beagle-phased data, respectively.
Project,1 publically available population-scale data sets

remain sparse, most notably for individuals from Native

American groups;22 thus, the accuracy of all methods

that rely solely on ancestry panels is limited by the avail-

able samples. This motivates the development of methods

that can utilize the ancestry information contained within

the admixed samples themselves and that are also fast

enough to analyze the tens of millions of SNPs recorded

in whole-genome sequence panels.

To address these issues, we depart from the generative

approach taken by all commonly used LAI algorithms,

wherein an explicit probabilistic model for the observed

variables (the alleles) and unobserved variables (the

ancestry) is fitted to the data via a HMM or an extension

thereof.19–23 We developed RFMix, a discriminative

approach that models ancestry along an admixed chromo-

some given observed haplotype sequences of known or

inferred ancestry. Consider a system that contains an unob-

served variable of interest Y and observed variables X that

we have measured to help us infer Y. Discriminative ap-

proachesmodel P(Y jX), the dependence of YonX, directly,

whereas generative approaches first estimate P(Y, X), the

joint dependence between all the variables in the system,

before using Bayes’ rule to estimate P(Y j X). Examples of

discriminative approaches include regular and logistic

regression. Whereas generative models offer advantages

when data are sparse, discriminative models have lower

asymptotic error.24 Because the amount of available human

genome data will keep growing over the coming years, we

expect that a well-designed discriminative approach to

LAI will outperform its generative counterpart.

In addition to providing increased accuracy, RFMix

allows for considerable gains in speed (Table 1). This allows

us to improve performance by running the method itera-

tively and using inferred ancestry assignments to augment

the training set. Incorporating the ancestral tracts inferred

in the admixed samples into the reference panels is advan-

tageous for at least three reasons. First, haplotypes in the

admixed populations are direct descendants from the

actual ancestral populations rather than of a proxy popula-

tion and thus should be able to better resolve ancestral

haplotype patterns. Second, by augmenting the reference

panel with chromosomes from admixed individuals, we
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increase the total number of observed haplotypes and,

thus, the training panel size. Third, identity-by-descent

(IBD) information across individuals in the admixed popu-

lation can be directly leveraged for ancestry inference.

These advantages are particularly beneficial in situations

where reference samples from close proxy populations

are not available or the number of reference samples

collected is low. This is often the case when panels must

be chosen from pre-existing publically available data sets.

We finally provide a RFMix generalization that jointly

models phasing errors and local ancestry. This is particu-

larly important when phasing in the admixed population

is performed statistically with the use of population data;

in such cases, long-range phasing is often very inaccurate,

and we hypothesize that modeling ancestry and phase

jointly could lead to improved inference of both.

We use simulated continental-scale admixtures of Native

American, African, and European ancestries to demon-

strate that RFMix is faster and more accurate than the

state-of-the-art methods and is capable of utilizing

ancestry information from admixed samples to substan-

tially increase performance across a number of realistic

scenarios. We also show that RFMix scales to whole-

genome sequence data to achieve high accuracy across a

number of simulated subcontinental admixtures. In addi-

tion, we show that the phase-correction strategy not only

improves phasing but also allows accurate LAI in admixed

haplotypes containing phase errors. Finally, we apply

RFMix to HapMap African Americans to study the exis-

tence of Native American ancestry within this group.
Material and Methods

Theory
In brief, our discriminative modeling approach works by dividing

eachchromosome intowindowsand inferring local ancestrywithin

eachwindowby using a conditional randomfield (CRF) parameter-

ized by random forests trained on reference panels (Figure 1).25,26

Once ancestries have been assigned to the windows within ad-

mixed chromosomes, they are used for refining our knowledge of

haplotype patterns in the ancestral populations and improving

inference accuracy with an expectation-maximization (EM) step.

For simplicity, we first explain the initial iteration of the calling

strategywithnophase-error correction.Also, because local ancestry

canbe inferredoneachchromosome in thegenome independently,

we describe the analysis of one chromosome in the genome.

Inputs and Windowing

RFMix uses the genetic location of SNPs to divide the chromosome

into W contiguous disjoint windows such that the maximum dis-

tance between all SNPs in any window is d cM. The N phased chro-

mosomes in the admixed and reference panels are read, whereby

one reference panel is supplied for each of the R ancestries. The

haplotypes of these chromosomes across windows can be repre-

sented by a random N 3 W matrix H, where the value of the

(i,j)th element Hi,j is the sequence of alleles Hi,j
(1), Hi,j

(2), .,

Hi,j
(s_j) of the ith haplotype in the jth window, where s_j is the num-

ber of SNPs in the jth window. Similarly, the local ancestry of these

chromosomes can be represented by a random N 3 W matrix A,
ican Journal of Human Genetics 93, 278–288, August 8, 2013 279



Figure 1. The LAI Algorithm
To illustrate the working of RFMix, we
consider a single admixed chromosome
from an individual with ancestry from
two diverged populations.
(A) For building reference panels,
samples are collected from proxy popula-
tions related to the ancestral populations.
Phased chromosomes are divided into
windows of equal size on the basis of
genetic distance.
(B) For each window, a random forest is
trained to distinguish ancestry by using
the reference panels.
(C) Considering the admixed chromo-
some, each tree in the random forest gen-
erates a fractional vote for each ancestry
by following the path through the tree cor-
responding to the admixed sequence.
(D) These votes are summed, producing
posterior ancestry probabilities within
each window. These posterior probabilities
are used for determining the most likely
sequence of ancestry across windows via
MAP inference (black line) or via max
marginalization of the forward-backward
posterior probabilities (not shown).
(E) The local ancestries inferred by MAP
across the admixed chromosome.
where the (i,j)th element Ai,j is the local ancestry of the ith chromo-

some in the jth window. Although all elements of H are observed,

only the elements of A in rows corresponding to chromosomes

designated as references are initially observed. For notational pur-

poses, Hi,* and Ai,* represent the haplotype structure and local

ancestry, respectively, along the entire ith haploid chromosome.

LAI

A CRF framework is used for LAI. We use a linear-chain CRF to

model the conditional distribution PðAi;�jHi;� : QÞ. The CRF can

be represented in log-linear form:

PðAi;� jHi;� : QÞ ¼ 1

ZðHi;�Þ exp
(XW

w¼1

XR
r¼1

X
heHw

qAw;r;h1fAi;w¼rg1fHi;w¼hg

þ
XW�1

p¼1

XR
j¼1

XR
k¼1

qTp;j;k1fAi;p¼jg1fAi;pþ1¼kg
)
;

where

Hw is the set of all possible haplotypes in window w

1{x ¼ x0} is an indicator function that equals 1 when x equals x0

and 0 otherwise

ZðHi;�Þ ¼
X
Ai;�

exp

(XW
w¼1

XR
r¼1

X
heHw

qAw;r;h1fAi;w¼rg1fHi;w¼hg

þ
XW�1

p¼1

XR
j¼1

XR
k¼1

qTp;j;k1fAi;p¼jg1fAi;pþ1¼kg
)

qAw;r;h ¼ lnðPðAi;w ¼ r jHi;w ¼ hÞÞ

qTp;j;k ¼ ln
�
P
�
Ai;p ¼ j; Ai;pþ1 ¼ k

��
qA and qT are the two sets of model parameters. The former set is

learned by the training of a random forest on the reference panels
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for each window, and the latter is set with the admixture model

described by Falush et al.16 (see below). Inference can then be

performed with maximum-a-posteriori (MAP) estimation or

smoothing, analogous to the Viterbi and forward-backward

inference approaches used in HMMs.

Learning Model Parameters

Learning the qA Parameters. For each window, a random forest is

trained with segments of the reference haplotypes within that

window and then used for estimating the posterior probability

of each ancestry given the segment of the admixed haplotype

within that window. The predictor variables in each window are

the alleles observed at the biallelic SNPs within that window,

and the response variable is the local ancestry in that window.

Although any discriminative classifier could in theory be used,

random forests have the advantage in that they can perform

classification with any number of ancestral classes, have a direct

probabilistic interpretation, and work optimally with binary pre-

dictor variables, which is the case when biallelic SNPs are used.

In addition, they are computationally fast and able to find high-

dimensional interactions between subsets of variables even in

the presence of many uninformative variables. This is ideal for

characterizing haplotype structure in data with many SNPs, such

as whole-genome sequence data.

The random-forest algorithm that we use is similar to the one

originally describedbyLeoBreiman,26 but it has twomodifications.

The first changes the bootstrapping subalgorithm from one step to

two. Instead of sampling each haplotype from all reference panels

with uniform probability, it first randomly samples an ancestry

with uniform probability and then randomly chooses a haplotype

from that ancestry with uniform probability. This is to address any

potential class-imbalance problem, where, for example, one

ancestry might happen to have many more samples collected

than another. This is especially important when ancestral tracts

inferred from admixed individuals are used because it is likely

that one ancestry is significantly more represented than another.
, 2013



The second modification replaces the per-tree majority unit vote

with a fractional vote that depends on the composition of the

node that an admixed haplotype maps to. For example, if an ad-

mixed haplotypemaps to a node with e1 haplotypes from ancestry

1 ande2haplotypes fromancestry 2, the fractional votes cast by this

tree for ancestries 1 and 2 would be e1 / (e1 þ e2) and e2 / (e1 þ e2),

respectively. This strategy has been found to improve the accuracy

of posterior-class-probability estimates from bagged classifiers.27

Learning the qT Parameters. The joint probability of local ances-

tries in adjacent windows depends on the global proportion of

each ancestry and the probability of recombination between the

two windows. For the former, we simply assume a uniform distri-

bution of ancestry, although we could modify it to take advantage

of demographic knowledge or iteratively update it in the EM step.

In calculating the probability of recombination between two loci,

we assume the admixture model described by Falush et al.16 Thus,

the joint probability distribution is

P
�
Ai;p ¼ j; Ai;pþ1 ¼ k

�
¼

�
qj

�
exp

��dpG
�þ �

1� exp
��dpG

��
qk

�
if j ¼ k

qj

�
1� exp

��dpG
��
qk otherwise;

where qj is the proportion of ancestry j in the admixed population,

G is the number of generations since admixture, and dp is the

distance between the middle of windows p and p þ 1.

Incorporating Information from Admixed Individuals

Above, we described how to model PðAi;�jHi;� : QÞ for each ad-

mixed chromosome independently. Ideally, we would model

PðA j H : QÞ, the joint ancestry across all admixed and reference

panel chromosomes, so as to incorporate information from the

admixed panel and discover latent admixture in the reference

panels. To accomplish this in a computationally tractable manner,

we take an EM approach.

First, we initialize the local-ancestry assignments of the admixed

chromosomes independently by using the approach described

above. For the M step, because we assume a uniform distribution

of global ancestry, the qT parameters do not need to be updated

because they do not depend on the local-ancestry-state assign-

ments. Otherwise, we could use the estimated global-ancestry pro-

portions of the admixed individual or the admixed population as a

whole tomodify these parameters. To update the qA parameters,we

train random forests in each window by using the local-ancestry

assignments for chromosomes in that window. Ideally, for each

chromosome in a window, we would train a random forest on all

other chromosomes and use that to infer the local-ancestry distri-

bution in that window for that chromosome. Although this would

avoid the problem of using a classifier trained on the data we want

to analyze, it would significantly slow downour approach. Instead,

in eachwindowwe divide the set of chromosomes randomly into b

bins such that each binhas as close to the samenumber of chromo-

somes from each ancestry in it as possible. Then for each bin, we

train a random forest on the remaining b� 1 bins and use it to infer

the probability distribution of local ancestry for each chromosome

in that bin. This underscores the importance of speed in the central

approach taken because this increases the runtime by a factor of b

times the number of iterations of EM. For the E step, we use the up-

dated parameters to infer local ancestry in each chromosome via

MAP or max marginalization as above.

Accounting for Phase Errors

We now model PðAi;�;Aic ;�;Hi;�;Hic ;�jOi;�;Oic ;� : QÞ, where i and ic
are the indices of both copies of the chromosome being analyzed

for a particular admixed individual and Oi,* is the observed phased
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sequence for chromosome i obtained from some phasing algo-

rithm. We assume that, at most, one strand-flip error occurs per

window per individual and let Fðoi;w;oic ;wÞ map a given ordered

pair of phased haplotypes in window w to the set of all possible

ordered pairs of phased haplotypes that can be achieved by the

addition of one strand flip or less to the input. Thus, with a log-

linear representation, the CRF is

PðAi;�;Aic ;�;Hi;�;Hic ;� jOi;�;Oic ;� : QÞ ¼

1

ZðOi;�;Oic ;�Þ
exp

8<
:

XW
w¼1

XR
r¼1

XR
rc¼1

X
o;ocewi;w

X
h;hceFðo;ocÞ

�
qAw;r;h þ qAw;rc ;hc

þ qFi;w;h;hc ;o;oc

�
1fAi;w¼rg1fAic ;w¼rcg1fHi;w¼hg1fHic ;w¼hcg1fOi;w¼og

�1fOic ;w¼ocg þ
XW�1

p¼1

XR
j¼1

XR
k¼1

qTp;j;k1fAi;p¼jg1fAi;pþ1¼kg

þ
XW�1

pc¼1

XR
jc¼1

XR
kc¼1

qTpc ;jc ;k1fAic ;pc
¼jcg1fAic ;pcþ1¼kcg

9=
;;

where

wi;w is the set of all possible haplotypes that could be con-

structed from the genotypes in window w for the sample

comprising chromosomes i and ic
qFi;w;h;hc ;o;oc

¼ lnðPðHi;w ¼ h;Hic ;w ¼ hcjOi;w ¼ o;Oic ;w ¼ ocÞÞ
ZðOi;�;Oic ;�Þ is the normalizing factor.

To calculate qFw;h;hc ;o;oc
, we assumed that the probability of a

strand-flip error at any heterozygous site would be 0.07. Thus, if

there were n heterozygous sites in window w for individual i,

qFi;w;h;hc ;o;oc
¼

�
ln
�
ð0:07Þ � ð0:93Þn�1

�
if one switch

lnðð0:93ÞnÞ otherwise:

MAP inference results in a new phasing for the haplotypes

of each individual, as well as local-ancestry calls along each

haplotype.
Simulations
Processing HapMap and Native American Samples

HapMap3 trio-phased samples were obtained, and individuals

who had a pairwise IBD proportion greater than 0.05 were

removed. We used LiftOver28 to get the build 37 genetic locations

of the SNPs and removed any SNPs that were unable to bemapped.

We also obtained Affymetrix (Affy) 6.0 genotype data for 43 Native

American individuals29 who had been determined to have insig-

nificant European admixture by ADMIXTURE and phased them

with Beagle. We removed all instances of duplicate SNPs in the

Native American data and intersected the remaining SNPs with

the HapMap data. Finally, we removed all A/T and G/C SNPs.

Using SNP Array Data for LAI on Simulated Latinos with Three-Way

Continental Admixture

We generated reference panels and simulated ten Latino genomes

with 45% Native American, 50% European, and 5% African

ancestry by using a two-step process. In the first step, we used a

Wright-Fisher simulation of 400 diploid individuals to construct

ten individuals with local-ancestry assignments sampled 12 gener-

ations after admixture. In the second step, we generated genotype
ican Journal of Human Genetics 93, 278–288, August 8, 2013 281



assignments for each individual by using processed NAT (Native

American)29 and HapMap CEU (Utah residents with ancestry

from northern and western Europe from the CEPH collection)

and YRI (Yoruba in Ibadan, Nigeria) samples.2 Samples not used

for constructing simulated genomes were used for building refer-

ence panels composed of 30 samples from each population.

LAI was then performed on chromosome 1 of each simulated

admixed sample with the use of the three ancestral population

samples of 30 individuals each as reference panels. For all RFMix

runs in this paper, we used input parameters of 0.2 cM window

sizes, eight generations of admixture, and 100 trees per random

forest. We also performed LAI by using LAMP-HAP with the pre-

liminary phasing step removed, as well as SupportMix.

Incorporating Information from the Admixed Panel with Small Reference

Panels

We simulated an additional 30 Latino samples in the samemanner

as above. We performed LAI on the combined 40 simulated Latino

chromosome 1’s by using ideal CEU, YRI, and NAT reference

panels of three individuals each. We then performed the EM

step for five iterations and used MAP inference to set ancestries

at each iteration. For all EM steps in this paper, we used ten bins

per EM iteration. For comparison, we also performed LAI by using

LAMP-HAP with the preliminary phasing step removed.

Incorporating Information from the Admixed Panel with Proxy Reference

Panels

We used 30 MKK (Maasai in Kinyawa, Kenya), 30 JPT (Japanese in

Tokyo, Japan) and CHB (Han Chinese in Beijing, China), and 30

TSI (Toscani in Italy) samples from HapMap as proxy reference

panels for the African, Native American, and European ancestries,

respectively. We used these reference panels to perform LAI on the

40 simulated Latino samples. We then performed the EM step for

five iterations and used MAP inference to set ancestries at each

iteration. We also performed LAI for this scenario by using

LAMP-HAP with the preliminary phasing step removed.

Incorporating Information from the Admixed Panel with Small, Proxy

Reference Panels

We used three individuals from each proxy reference panel as

references to infer ancestry in the 40 simulated Latino samples.

We then performed the EM step for five iterations and used MAP

inference to set ancestries at each iteration. We also performed

LAI for this scenario by using LAMP-HAP with the preliminary

phasing step removed.

Accounting for Strand-Flip Errors

We used Beagle to phase the initially simulated Latino chromo-

somes after removing all nonvariant and singleton sites and

used the phased chromosomes of the ideal reference panels as a

reference. We then inferred local ancestry by using the phase-

correcting model with the ideal reference panels.30 Because the

NAT data did not contain trios and thus did not provide a highly

accurate phasing against which we could compare our phase cor-

rections, we acquired Affy 6.0 data for ten Native American trios31

and simulated ten additional Beagle-phased Latino individuals

with these data. We used the original ideal reference panels to

perform LAI. We also simulated ten African American individuals

with 82% African and 18% European ancestry by using a similar

approach to the above and phased them with Beagle. We inferred

local ancestry in these individuals as well by using 30 YRI and 30

CEU individuals as ideal references. For comparison, we also

performed LAI with LAMP-LD and SupportMix.

LAI on Subcontinental Admixtures with and without Sequence Data

We used an approach similar to the above to construct admixed

genomes sampled 12 generations after a 50/50 admixture of
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Japanese and Han Chinese South (CHS) (JPT/CHS), British from

England and Scotland (GBR) and Tuscans (GBR/TSI), Finnish

from Finland (FIN) and Tuscans (FIN/TSI), British and Finnish

(GBR/FIN), and Yoruba and Luhya in Webuye, Kenya (LWK)

(YRI/LWK). We used phased, consensus data from the 1000

Genomes Project Phase I to create reference panels and fill the

genotypes of the admixed individuals.

We performed LAI on chromosome 11 for each admixed indi-

vidual by using the samples in the two ancestral populations as

a reference. Variant, nonsingleton sites from the integrated call

set were used for inference. This inference was repeated for both

the Affy 6.0 subset and the OMNI 2.5M subset of these sites. To

determine the effect of reference-panel size on accuracy, we used

the integrated call set and repeatedly halved the sizes of the refer-

ence panels (we rounded down when necessary) and used each

size to infer local ancestry. For all analyses, we made ancestry calls

at each SNP by doing max marginalization on the smoothed

posteriors. Accuracy was determined for different confidence

thresholds (50%, 90%, 99%, 99.9%, and 99.99%) on these

maximum posteriors. The number of sites where no call was

made was also recorded for each threshold.
Native American Ancestry in African Americans
We first used HapMap data to simulate ten African American

genomes resulting from an admixture of YRI, CEU, and NAT pop-

ulations eight generations in the past and used proportions of

82%, 17.5%, and 0.5%, respectively, based on previous esti-

mates.31 We then removed four individuals who had a global

Native American ancestry proportion greater than 1%, resulting

in a mean global Native American ancestry component of 0.54%

across the remaining six samples. We inferred local ancestry across

all autosomes in each sample by using the max-marginalization

approach with thresholds of 50%, 90%, 99%, 99.9%, and

99.99%. We then inferred local ancestry by using ten simulated

African American genomes generated from an admixture of 82%

YRI and 18% CEU populations. We used a proxy European refer-

ence panel of TSI samples, whereas we used ideal panels of YRI

and NAT individuals for the other populations. Each panel was

composed of 30 individuals. Finally, 20 trio-phased ASW (African

Ancestry in Southwest US) samples were obtained from HapMap,

and local ancestry was inferred as above with panels composed of

85 CEU, 97 YRI, and 43 NAT samples.
Results

Using SNP Array Data for Fast Inference of Local

Continental Ancestries

To evaluate the power and speed of RFMix for LAI in

Hispanic/Latino populations, we simulated Latino indi-

viduals sampled from a three-way admixed population

composed of 45% Native American, 50% European, and

5% African ancestry with admixture occurring 12 genera-

tions in the past. We simulated these individuals and built

reference panels by using Affy 6.0 data from HapMap CEU

and YRI samples, as well as Affy 6.0 NAT data.29 For

comparison, we also inferred local ancestry by using

LAMP-HAP,22 the state-of-the-art LAI method, and

SupportMix,23 a recently developed machine-learning

method that trains Support Vector Machines in a
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Figure 2. Comparison of Diploid Ancestry Error between LAMP-
HAP and RFMix Inferences for Simulated Latinos across a Range
of Real-World Scenarios
We simulated ten Latino individuals as described in the text and
used reference panels composed of 30 ideal samples (A). We
then simulated an additional 30 Latino individuals and used refer-
ence panels composed of three ideal samples (B), 30 proxy samples
(C), or three proxy samples (D). The 0th EM iteration of RFMix
refers to the initial round of learning and inference shown in
Figure 1.
sliding-window HMM framework (Table 1). We began by

considering the case where exact phasings are known for

the admixed samples. The performance criterion that we

compared was diploid ancestry accuracy because we later

wanted to assess performance when phasing of the

admixed genomes was imperfect. RFMix had a mean

diploid ancestry accuracy of 95.6% (0.68 SEM), which

was significantly more accurate than the mean diploid

ancestry accuracy of 93.7% (0.82 SEM) for LAMP-HAP

(one-tailed paired-sample Wilcoxon signed-rank test p

value ¼ 0.005), although both methods performed well

on this data set across all samples (Figure 2A). The differ-

ence was accentuated when small reference panels were

used (Figures 2B and 2D). The observed average accuracy

for LAMP-HAP was within 1 SE of the average accuracy

observed by Baran et al. on a similar data set with the

use of LAMP-HAP.22 SupportMix had a lower mean diploid

accuracy of 91.9% (0.57 SEM).

Combined learning and inference across ten simulated

samples took 26 s for RFMix, over 33-fold faster than

LAMP-HAP and 1.7-fold faster than SupportMix (Table 1)

(all methods ran on an Intel Xeon 3.0 GHz processor

with 24 GB RAM). Further, the discrete-window approach

employed in RFMix allows for further speed optimization

via parallelization. For example, during multithreading

across two processors, the time required for RFMix dropped

to nearly half of the nonparallelized time. As additional

parallelization was added, this trend continued.
The Amer
Incorporation of Ancestry Information from Admixed

Individuals

The speed of RFMix allowed us to integrate it into an EM

framework for incorporating the ancestry information

contained within admixed individuals. We hypothesized

that integrating ancestry information from admixed

samples would most likely significantly improve perfor-

mance in several practical scenarios, including (1) when

reference populations closely related to the ancestral pop-

ulations are unavailable and (2) when only a few samples

of the reference populations can be collected. In order to

gauge the effectiveness of the EM approach, we simulated

an additional 30 Latino individuals and constructed three

scenarios where EM is predicted to improve inference.

The first scenario featured small reference panels of three

CEU, three NAT, and three YRI individuals. We used RFMix

to infer local ancestry in the 40 simulated admixed individ-

uals and tracked performance through five iterations of the

EM. For comparison, we also inferred local ancestry with

LAMP-HAP. To compare this scenario to the original

scenario with larger reference panels, we only calculated

diploid ancestry accuracy in the ten initially simulated

Latinos. Interestingly, RFMix without an EM step had an

accuracy of 87.8% (0.99 SEM), compared to 75.5%

(1.1 SEM) for LAMP-HAP. After one iteration of EM, the

average accuracy of RFMix increased to 93.2% (0.87

SEM), and further iterations did not significantly change

this accuracy (Figure 2B).

In the second scenario, ancestry panels were different

from those used for generating the simulated individuals.

We refer to these reference panels as ‘‘proxy’’ panels, which

contrast with the ‘‘ideal’’ reference panels discussed above.

We used HapMap MKK, TSI, and combined JPT and CHB

individuals to construct proxy references for African,

European, and Native American ancestry, respectively.

Each panel contained 30 individuals. RFMix-run LAI with

these reference panels resulted in an average accuracy of

78.2% (2.1 SEM) before the EM step and an average accu-

racy of 93.2% (0.75 SEM) after three iterations of EM; no

significant change was observed over subsequent iterations

(Figure 2C). LAMP-HAP produced inferences with average

accuracies of 72.2% (2.0 SEM).

The third scenario was a combination of the first two—

we used three individuals from each proxy reference panel

for reference. Before the EM step, RFMix had an average

accuracy of 73.0% (2.0 SEM), and after two iterations of

EM, it had an average accuracy of 91.3% (1.4 SEM); no

significant change in accuracy was observed over subse-

quent iterations (Figure 2D). By comparison, LAMP-HAP

had an average accuracy of 54.8% (0.83 SEM).

To test what effect incorrectly inferred latent admixture

in the reference panels would have on performance, we

repeated the above experiments by using an RFMix option

that discards the original reference panels after the initial

inference step so that only the (imperfect) inferred ances-

tries within the admixed samples are used as a reference

in the subsequent EM stage. We found that the EM stage
ican Journal of Human Genetics 93, 278–288, August 8, 2013 283



Figure 3. Phase Correction with Local-Ancestry Information
Fraction of SNP pairs that are within contiguous heterozygous
ancestry regions and that are phased correctly with respect to
each other as a function of the genetic distance between them.
Blue and red lines correspond to simulated Latino and African
American samples, respectively. Dashed and solid lines correspond
to phasings that have and have not been corrected with local
ancestry, respectively. The horizontal line at 0.5 marks the
expected performance of random phasing.
still improved accuracies despite the occasionally high

error rate in the initial ancestry estimates (Figure S1, avail-

able online). In addition, although discarding the panels

resulted in lower accuracies, the effect was not strong

and accuracies remained high overall and did not diverge

over 30 iterations of EM. We also looked at the fraction

of inferred SNP ancestries that changed between each

iteration of EM. We found that this number converged to

approximately 1% in less than six iterations for all sce-

narios considered whether reference panels were kept after

the initial inference step or were discarded after this step

(Figure S2).

Autocorrecting Phase Errors

We extended our local-ancestry approach to simulta-

neously model potential phase errors along with local

ancestry (see Material and Methods). We used this

extended approach to perform LAI on simulated unrelated

African American and Latino samples that had been

phased with Beagle. The average diploid accuracy of infer-

ence with RFMix for the ten African Americans was 98.9%

(0.21 SEM). When we used RFMix and the original NAT

panel to infer local ancestry in the Latino samples, we

observed an average diploid accuracy of 93.2% (0.49

SEM), which was significantly greater than the 90.7%

(1.1 SEM) accuracy with LAMP-LD (one-tailed paired-sam-

ple Wilcoxon signed rank test p value ¼ 0.0049) but not

statistically different from the 93.7% (0.82 SEM) accuracy

observed with LAMP-HAP on the perfectly phased data
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(two-tailed paired-sample Wilcoxon signed rank test p

value ¼ 0.492) (Table 1). For the Latino individuals

simulated with the trio-phased Native American data, we

observed an average diploid accuracy of 93.4% (0.48

SEM). To illustrate the importance of modeling strand-

flip errors when inferring local ancestry on haplotypes

rather than diplotypes, we also performed LAI with

SupportMix, which does not account for phase errors

when inferring haplotype local ancestry and was more

severely impacted by the presence of strand-flip errors in

the Beagle-phased data (Table 1).

We hypothesized that using local-ancestry information

to correct phasing would reduce the occurrence of strand

flips in heterozygous ancestry regions, and so for each

pair of heterozygous sites in these regions, we examined

the probability that they would be phased in the correct

orientation relative to each other on the basis of the dis-

tance between them. We grouped SNP pairs into bins on

the basis of their distance and calculated this metric for

the original Beagle-phased admixed chromosomes and

for the new phasings generated by our approach. With

both the simulated African American and Latino samples,

we found that utilizing local-ancestry information

improved the long-range phasing within heterozygous

ancestry regions from statistically random to approxi-

mately 75% (Figure 3).

Using Whole-Genome Sequence Data for Inference of

Local Subcontinental Ancestries

The 1000 Genomes Project Phase I has made population-

scale combined SNP-chip and sequence data sets publically

available for the first time.1 To assess whether improved

resolution can be obtained with the use of sequence data

in addition to SNP-chip data, we simulated five two-way

subcontinental admixtures and used RFMix to infer local

ancestries by using the phased integrated call sets. We

used combinations of the TSI, YRI, JPT, LWK, CHS, GBR,

and FIN panels. In all cases, increasing the marginal prob-

ability threshold on whether to call a site increased the

average accuracy, suggesting that the calculation of

marginal probabilities is consistent (Figure 4). A large pro-

portion of loci (43%–91%) in all subcontinental admix-

tures had their local ancestry inferred with >90% accuracy

(Figure 4). To investigate the benefit of adding exome and

low-coverage whole-genome sequence data to SNP array

data, we also performed inference by using only the Affy

6.0 and Illumina OMNI 2.5M subsets of sites. Interestingly,

performance in some simulated admixtures was signifi-

cantly improved by the additional data, whereas others

showed no improvement (Figure 5).

To determine the effect of sample size on accuracy, we

repeatedly downsampled reference panels by half for

each admixture. Reference-panel size had a significant

impact on inference performance (Figure 6). For the JPT/

CHS admixture, doubling the reference panel sizes from

39 JPT and 49 CHS to 79 JPT and 90 CHS resulted in

approximately the same gain in accuracy as did adding
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Figure 4. Accuracy of LAI of Subcontinental Admixtures with a
Data Set Integrating SNP Array Data and Exome and Whole-
Genome Sequence Data
We inferred ancestry for simulated admixed individuals. Low- and
high-confidence call sets were generated with posterior-probabil-
ity thresholds of 50%, 90%, 99%, 99.9%, or 99.99%. We show
the accuracy in the resulting call sets as a function of the propor-
tion of the genome that did not meet the threshold.
sequence data to OMNI 2.5M data. The results also suggest

that doubling the largest reference panel size could result

in >90% accuracy across all sites for the JPT/CHS, FIN/

TSI, and YRI/LWK admixtures.

Inference on these whole-genome sequence data sets re-

mained fast with RFMix. Combined learning and inference

on the ten FIN/TSI samples with 519,937 SNPs in one chro-

mosome took 4 min and 30 s without parallelization.

Native American Ancestry in African Americans

A potential application of RFMix is identifying low-occur-

rence ancestry. A previous study estimated the proportion

of Native American ancestry in African Americans as

0.5%.31 To gauge RFMix’s ability to detect low levels of

Native American admixture in African Americans, we

used HapMap data to simulate six African American

genomes with mean Native American ancestry of 0.56%.

Because there was concern that Native American tracts in-

ferred in African Americans would actually be rare Eurasian

haplotypes, we used a proxy European reference panel of

TSI samples, whereas we used ideal panels of YRI and NAT

individuals for the other populations. We inferred local

ancestry on these simulated genomes and calculated both

the true-positive and the false-positive rates ofNativeAmer-

ican ancestry. To gauge the amount of Native American

ancestry inferred when none is present, we also simulated

ten African American genomes with no Native American

ancestry. At a 99.9% confidence threshold on inferred

ancestry, the average proportion of Native American

ancestry was close to the true amount in the simulated
The Amer
samples containing true Native American ancestry

(Figure 7). Also, at this threshold, the amount of false-posi-

tive Native American ancestry was nearly zero when none

was present in the samples. In addition, whenNative Amer-

ican ancestry was present, the positive predictive value for

this ancestry was 83.1%. Thus, we are confident that (1)

we did not falsely infer the presence of Native American

ancestry in the real samples, (2) the estimated global pro-

portion of Native American ancestry was accurate, and (3)

the positive predictive value for loci inferred as Native

American was high at this threshold. Using the 99.9% con-

fidence threshold, we inferred that Native American

ancestry comprises slightly over 0.44% of the total ancestry

of African Americans, validating the previous estimate.31
Discussion

We have described a discriminative approach for LAI and

have demonstrated (1) its improved performance

compared to that of the state-of-the-art method with

three-way continental admixtures, (2) its ability to use

the ancestry information within admixed samples to

improve performance in several real-world scenarios, (3)

its ability to rapidly and accurately infer ancestry in sub-

continental admixtures with the use of both SNP array

data and large sequencing data sets, and (4) its ability to

improve long-range phasing by using local ancestry.

Obtaining good proxy reference panels for admixture

deconvolution remains a challenge for many researchers

despite the growing availability of publically available pop-

ulation-scale data provided by international efforts such as

HapMap and the 1000 Genomes Project. Thus, our

approach’s ability to utilize the ancestry information

within the admixed samples represents a significant

advance in the field. The fact that accuracy with subconti-

nental admixtures significantly increased when the refer-

ence-panel sizes were increased also lends additional

motivation for expanding the publically available data

sets. The gain in accuracy observed from adding informa-

tion from sequencing data also further motivates popula-

tion-scale sequencing and public data release of properly

consented samples for method development.

We have also demonstrated that local-ancestry informa-

tion can improve long-range phasing. Because a large

number of people are admixtures of at least two subconti-

nental populations, combining subcontinental admixture

deconvolution with local-ancestry phase correction could

allow significantly improved long-range phasing in indi-

viduals not traditionally thought of as admixed. IBD anal-

ysis will also benefit from this work, given that phase

accuracy significantly affects the power to detect IBD seg-

ments.32 Other future work includes using RFMix

in situations where no proxy reference panel for one or

more of the ancestral populations exists. One potential

way in which to do this is to use a global-ancestry-infer-

ence algorithm such as ADMIXTURE to determine which
ican Journal of Human Genetics 93, 278–288, August 8, 2013 285



Figure 5. Integrating Exome andWhole-
Genome Sequence Data with SNP Array
Data
We generated haploid ancestry call sets by
using posterior-probability thresholds of
50%, 90%, 99%, 99.9%, or 99.99% and
simulated individuals, as in Figure 4, for
different ancestry pairs and data sets. The
following abbreviations are used: WGS,
1000 Genomes integrated data set;
OMNI, 1000 Genomes OMNI 2.5M data
set; Affy, the data set composed of the
subset of WGS sites present on the Affy
6.0 SNP array.
admixed individuals have the greatest proportion of each

ancestry and then use these individuals as references for

those ancestries in an initial inference step followed by

several iterations of the EM step. Another example of

future work involves slightly modifying the algorithm to

take advantage of its speed. For example, one approach

we have tried is performing inference through a majority

vote from multiple overlapping windows on each SNP.

We achieved this by running RFMix multiple times on a

sample with a range of different window sizes. However,

this approach resulted in only modest gains in accuracy

(Table S1).

The improvement in accuracy from adding information

from sequence data also motivates future work for deter-

mining the best way in which this type of data can be uti-

lized. One challenge will be in dealing with the higher rate

of sequencing and phasing errors due to rare variants.

Fortunately, these errors are most prominent for singleton

variants, which provide very little information about local

ancestry and can be discarded from the analysis. Because of

imputation and joint calling, common variants can be

called accurately with the use of whole-genome sequence

data, even where coverage is low. Because random-forest

classifiers are somewhat robust to training errors, we spec-

ulate that high-coverage, whole-genome data will lead to

higher accuracy than will genotyping chip data.

Finally, we used RFMix to infer tracts of Native American

ancestry in African Americans, thus confirming previous

observations.31,33 Future work will include determining
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the subcontinental Native American populations of these

tracts, as well as applying this analysis to uncover Native

American admixture in European Americans. As the

amount of data available for reference continues to grow,

we expect that it will become possible to predict sub-

continental ancestry across the entire genome with high

accuracy.

Supplemental Data

Supplemental Data include two figures and one table and can be

found with this article online at http://www.cell.com/AJHG.
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Figure 7. Native American Ancestry in African Americans
For the HapMap African American genome, the proportion in-
ferred to have Native American ancestry (blue) is compared to
the proportion inferred in a simulated population with 0.5% of
Native American ancestry (green). For comparison, we estimated
false-positive (‘‘FP’’) rates on the basis of simulation with and
without Native American ancestry. To ensure that the false-
positive rates correspond to a realistic situation, we simulated in-
dividuals by using segments of CEU, YRI, and NAT ancestry and
performed inference by using TSI, YRI, and NAT reference panels.

Figure 6. Effect of Reference-Panel Size on Performance of
Subcontinental Admixture Deconvolution with the 1000
Genomes Integrated Whole-Genome Call Set
We simulated admixed individuals as we did for Figures 4 and 5
and inferred local ancestry by using different reference-panel sizes
that correspond to roughly 1/2,

1/4, and
1/8 of the original panel.

Error bars represent the SEM. Because the same admixed
individuals are used in simulations with different panel sizes,
errors for different sample sizes are correlated.
Web Resources

The URLs for data presented herein are as follows:

1000 Genomes Project, http://www.1000genomes.org/

BEAGLE, http://faculty.washington.edu/browning/beagle/beagle.

html

International HapMap Project, http://hapmap.ncbi.nlm.nih.gov/

RFMix, http://med.stanford.edu/bustamantelab/

UCSC Genome Browser, http://genome.ucsc.edu/
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