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FULL PAPER
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aInstitute of Systems and Robotics, University of Coimbra, Pólo II, Coimbra 3030-290, Portugal; bRoboCorp, Engineering Institute of
Coimbra, Quinta da Nora, Coimbra 3030-199, Portugal

(Received 24 October 2012; accepted 25 February 2013)

This paper proposes two extensions of Particle Swarm Optimization (PSO) and Darwinian Particle Swarm Optimization
(DPSO), respectively denoted as RPSO (Robotic PSO) and RDPSO (Robotic DPSO), so as to adapt these promising
biologically inspired techniques to the multi-robot systems domain, by considering obstacle avoidance and communica-
tion constraints. The concepts of social exclusion and social inclusion are used in the RDPSO algorithm as a ‘punish–
reward’ mechanism, thus enhancing the ability to escape from local optima. Experimental results obtained in a simulated
environment shows the superiority of the RDPSO evidencing that sociobiological inspiration can be useful to meet the
challenges of robotic applications that can be described as optimization problems (e.g. search and rescue). Moreover, the
performance of the RDPSO is further evaluated within a population of up to 12 physical robots under communication
constraints. Experimental results with real platforms show that only 4 robots are needed to accomplish the herein
proposed mission and, independently on the number of robots and maximum communication distance, the global
optimum is achieved in approximately 90% of the experiments.

Keywords: swarm robotics; distributed search; MANET; initial deployment

1. Introduction

Behavior-based paradigms have a strong influence in
multi-robot system research. Moreover, the analysis of
the social characteristics of insects and animals is essen-
tial in order to apply these findings to the design of
multi-robot systems (MRS). The most common applica-
tion of this knowledge is in the use of simple local
control rules of several biological societies (e.g. ants,
bees and birds) to the development of similar behaviors
in cooperative MRS.[1] The Particle Swarm Optimiza-
tion (PSO) developed by Kennedy & Eberhart [2] is an
optimization technique that models a set of potential
problem solutions as a swarm of particles moving around
in a virtual search space. However, a general problem
with the PSO and other optimization algorithms is that
of becoming trapped in a local optimum, such that it
may work in some problems but may fail on others. In
search of a better model of natural selection using the
PSO algorithm, the Darwinian Particle Swarm Optimiza-
tion (DPSO) was formulated by Tillett et al. [3]. In this
algorithm, multiple swarms of test solutions, performing
just like an ordinary PSO, may exist at any time with
some rules governing the collection of swarms that are
designed to simulate natural selection. Just like in MRS

where groups of robots interact to accomplish their
goals,[4] both PSO and DPSO use groups of interacting
virtual agents (i.e. particles) in order to achieve their
optimization. However, contrarily to virtual agents,
robots are designed to act in the real world where obsta-
cles need to be taken into account. Also, and since that
in certain environments or applications, such as hostile
environments, search and rescue, disaster recovery, bat-
tlefields, space and others, the communication infrastruc-
ture may be damaged or missing, and the self-spreading
of autonomous mobile nodes of a mobile ad hoc net-
work (MANET) over a geographical area needs to be
considered. For instance, the work of Sahin et al. [5]
presented a few bio-inspired computation techniques to
carry out real missions such as military applications.
Under those circumstances, the authors focused on the
self-spreading of autonomous mobile nodes over an
unknown geographical area so as to create and maintain
the MANET connectivity.

Bearing these ideas in mind, this article proposes
extensions of both PSO and DPSO to MRS, respectively
denoted as RPSO (Robotic PSO) and RDPSO (Robotic
DPSO), which takes into account obstacle avoidance and
communication constraints, thus guaranteeing the
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MANET connectivity. In order to establish the initial
deployment of robots while preserving the MANET con-
nectivity, this paper also proposes a novel approach
inspired on the Spiral of Theodorus. The algorithm is
demonstrated in multi-robot exploration tasks, wherein
each robot is represented by a particle that needs to be
evaluated at each iteration. After each set of evaluations,
robots communicate to share the objective information
(e.g. cost or fitness) needed to progress to the next itera-
tion of the algorithm while avoiding obstacles and fulfill-
ing MANET connectivity.

2. Related work

In the last two decades, a significant progress in applied
computing and robotics has occurred through the appli-
cation of principles derived from the study of biology.
The navigation of groups of robots, especially swarm
robots, has been one of the fields that has benefited from
biological inspiration.[6] However, real MRS present
several constraints that need to be considered. For
instance, communication constitutes one of the most
important resources for more effective cooperation
among robots and improved robust collective perfor-
mance. The development of robot teams for surveillance
or rescue missions requires that robots have to be able to
maintain communication among them without the aid of
a communication infrastructure. Besides that, robots also
need to ensure MANET connectivity in order to explic-
itly exchange information within multi-hop network
paths, thus not restricting unnecessarily the team’s range.

One of the first adapted versions of the PSO to han-
dle real-world constraints such as obstacles is presented
by Min et al. [7]. Similar to the current work, this
approach adjusts the velocity and direction of the mobile
robot in real time thus allowing the robot to reach its
goal, avoiding obstacles in the way. Each robot runs an
entire swarm and the global best particle is considered
the best solution. Unfortunately, simulation results pre-
sented the comparison with Artificial Potential Field
algorithms with only one robot. Also, simulation experi-
ments lack some information such as the distance the
robot needs to travel (since the time which the mobile
robot spends in reaching the goal is presented).

Another similar approach was developed by Pugh
and Martinoli [8] where an adapted version of the PSO
to distributed unsupervised robotic learning in groups of
robots with only local information is presented. The
main difference between this algorithm and classical
PSO is that each robot (i.e. particle) only takes into con-
sideration the information of the robots within a fixed
radius r (omnidirectional communication). The authors
analyzed how the performance was affected if the stan-
dard PSO neighborhood structure was adapted to a more
closely model, which is possible in a real robot group

with limited communication abilities. Experimental
results obtained using Webots simulator showed that the
adapted version of the PSO maintained good perfor-
mance for groups of robots of various sizes when
compared to other bio-inspired methods. However,
contrarily to the presented RDPSO algorithm proposed
herein, all bio-inspired methods used, including the
adapted PSO, tend to get trapped in local solutions.
Furthermore, and contrarily to the experimental results
shown in this work, the authors do not use multi-hop
connectivity and do not apply any kind of algorithm to
enforce communication between robots. Similarly, Here-
ford and Siebold [9] presented an embedded version of
the PSO in swarm platforms. As in RDPSO, there is no
central agent to coordinate the robots movements or
actions. Despite the potentialities of the physically
embedded PSO, experimental results were carried out
using a population of only three robots, performing a
distributed search in a scenario without local solutions.
Also, collision avoidance and fulfillment of MANET
connectivity were not considered. To maintain the MRS
connectivity, a behavior-based strategy was presented by
Arrichiello et al. in [10]. The authors presented the
extension of the Null-Space-based Behavioral approach
to control a group of marine vehicles to execute multi-
robot missions, such as formation control and coopera-
tive target visiting with communication constraints. This
is a promising approach since it would be possible to
merge the behaviors of the proposed RDPSO with differ-
ent priorities, in order to define the final motion direc-
tives of the robots. However, the design choices
concerning how to organize the behaviors in priority rep-
resents a higher complexity, since these choices derive
from practical considerations related to both the mission
objective and the hardware/software features of the
robotic system.

Çelikkanat and Sahin studied the flocking behavior to
steer self-organized flocks in both physical and simulated
mobile robots.[11] Experimental results showed that the
flock could be steered along a desired direction maintain-
ing a ratio of informed robots above 10% of the popula-
tion. Despite the dissimilarities of the main objective
when compared to the scope of this article, the proposed
RDPSO algorithm also tries to reduce the shared informa-
tion between the robots, since it divides the population in
multiple swarms. This means that if a population is
divided into three swarms, the exchanged information
between robots of the same swarm will be one-third of
the whole information. Tardioli et al. proposed a robots’
navigation based on a Spring-Damper Systems (SDSs),
with one robot being the leader of the formation and
other robots being the slaves.[12] This kind of approach
incorporates the management of the system dynamics in
real situations dealing with dynamic behavior of robots.
Also, the SDS mechanism allows maintaining multi-hop

2 M.S. Couceiro et al.
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routes between nodes of sufficient quality, in order to
avoid the network becoming disconnected. Thus, a mea-
sure of the communication link quality is used [13]
instead of the commonly used communication range,
such as [14]. Like in our approach the robots movements
are restricted if necessary by using this measure. How-
ever, the use of SDSs introduces constraints that tradi-
tional allocation methods do not face. Similar and simpler
methodologies that also take into consideration the
dynamic behavior of robots could be used such as elastic
bands [15] or even fuzzy systems.[16]

3. Robotic PSO

In nature, some complex group behaviors arise in
biological systems composed of swarms that are observed
in a variety of simple social organisms (e.g. ants, bees).
[1] One of the most relevant topics in MRS is the model-
ing and control of the population. The PSO [2] consists of
a number of N particles that collectively move on the
search space in search of the global optimum. Each parti-
cle is characterized by its position and performance f
(xn[t]) at each discrete time, or iteration, t 2 N. In each
step of the algorithm, an objective function is used to
evaluate the particle success. The cost of a particle closer
to the global solution is lower than that of a particle that
is farther. Conversely, the fitness of a particle closer to the
global solution is higher than that of a particle that is far-
ther. PSO thrives to minimize a cost function, or maxi-
mize a fitness function. To model the swarm, each particle
n moves in a multidimensional space according to posi-
tion vector (xn[t+ 1]) and velocity vector (vn[t+ 1]), which

are highly dependent on local best vector (xn
^½t�) and

global best vector ( x
^
n½t�) and global best vector (g

^

n½t�)
information. The size of the vectors depends on the
dimension of the multidimensional space.

vn½t þ 1� ¼ wvn½t� þ q1r1(x
^

n½t� � xn½t�)
þ q2r2(g

^

n½t� � xn½t�) ð1Þ

xn½t þ 1� ¼ xn½t� þ vn½t þ 1� (2)

Coefficients w, ρ1 and ρ2 assign weights to the iner-
tial influence, the local best and the global best when
determining the new velocity, respectively. Typically, the
inertial influence is set to a value slightly less than 1. ρ1
and ρ2 are constant integer values, which represent ‘cog-
nitive’ and ‘social’ components. Depending on the appli-
cation and the characteristics of the problem being
considered, tuning these parameters properly will lead to
better results. Parameters r1 and r2 are random vectors,
wherein each component is generally a uniform random
number between 0 and 1. The intent is to multiply a new
random component per velocity dimension, rather than

multiplying the same component with each particle’s
velocity dimension. In the beginning, i.e. t= 0, the
particles’ velocities are set to zero and their position is
randomly set within the boundaries of the search space.
The local and global bests are initialized with the worst
possible values, taking into account the nature of the
problem. The stopping criteria (e.g. number of iterations)
also needs to be adjusted to get overall good solutions in
acceptable time. The RPSO, just like the PSO, basically
consists on a population of robots that collectively move
on the search space (e.g. catastrophic scenario, city) in
search of the global optimum (e.g. number of victims,
number of passengers); each robot is characterized by its
pose and performance. For instance, if we have a group
of mobile olfactory robots that are trying to find a gas
leak (cf. [17]) in an indoor environment, each robot will
be characterized by its pose (i.e. position and orientation)
and by the corresponding value of gas density. The main
difference between RPSO and PSO resides in the imple-
mentation of real-world scenarios where strategies for
obstacle avoidance and communication constraints need
to be taken into account.

3.1. Obstacle avoidance

RPSO algorithm tries to minimize a cost function, or
maximize a fitness function depending on the mission
objective. The approach proposed in this section seeks to
create a new cost or fitness function in such a way that
it would guide the robot to perform the main mission
while avoiding obstacles. When a robot must move from
any arbitrary start position to any target position in the
environment, it must be able to avoid both static and
dynamic obstacles.[18] For this purpose, we assume that
each robot is equipped with sensors capable of sensing
the environment for obstacle detection within a finite
sensing radius rs. A monotonic and positive sensing
function g(xn[t]) is defined. This function depends on the
sensing information, i.e. distance from the robot to
obstacle. Note that, in most situations, the sensing func-
tion g(xn[t]) can be represented as the relation between
the analog output voltage of distance sensors and the
distance to the detected object.

Let us first rewrite Equations (1) and (2) as the
discrete matrix equations considering iteration t:

V ½t þ 1� ¼ I ½t� þ q1r1C½t� þ q2r2S½t� (3)

X ½t þ 1� ¼ X ½t� þ V ½t þ 1� (4)

wherein each line of matrices V[t] and X[t] represents the
velocity and position vector of each different robot,
respectively. Matrices I[t], C[t] and S[t] represent the
inertial, cognitive and social matrix components, respec-
tively. Then, the new velocity of each robot can be

Advanced Robotics 3
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defined as an extension of Equation (3) taking into
account the presence of obstacles:

V ½t þ 1� ¼ I ½t� þ q1r1C½t� þ q2r2S½t� þ q3r3O½t� (5)

where ρ3 and r3 are the obstacle susceptibility weight
and respective random vector, while O[t] is the obstacle
matrix represented by the difference between the position
of each robot that optimizes the monotonically decreas-
ing or increasing sensing function g(xn[t]) and its current
position. In other words, when a robot does not sense
any obstacle at time t, the best position that optimizes
g(xn[t]) is constantly updated and equal to the current
position xn[t]. Afterward, if the robot detects any
obstacle inside its sensing range, the best position that
optimizes g(xn[t + 1]) is not updated, thus creating a
repulsive force toward its last best position xn[t].

3.2. Communication constraints

It has generally been assumed in MRS that each robot has
the ability to communicate with any other robot with
small consideration for the quality and performance of the
wireless communication network. Although being valid in
particular situations, such an assumption does not gener-
ally hold. Since robots may move apart to further areas, it
is important to have a pervasive networking environment
for communications among robots. Furthermore, without
a preexistent infrastructure, robots need to be able to act
as intermediate nodes, i.e. routers, in order to relay
information from one point to another, thus supporting
multi-hop communication in a MANET.[19,20]

3.2.1. Problem statement

Consider a population of N robots where each robot is
both an exploring agent of the environment and a mobile
node of a MANET that performs packet forwarding,
according to a paradigm of multi-hop communication.
The goal is to ensure that the robots explore an unknown
environment, while ensuring that the MANET remains
connected throughout the mission.

3.2.2. General approach

The connectivity between robots can be described by
means of a link matrix L= {lij} for an N-node network,
where each entry represents the link between nodes (i.e.
robot) i and j. The link is defined accordingly with the
users’ preferences. The most common approaches include:
(1) calculating the lij values as functions of the distance
between pairs of nodes and indicating the link distance
between them [14]; (2) calculating the lij values as func-
tions of the radio quality signal between pairs of nodes
indicating the link quality between them.[13] The
approach 1 is the most common and easier to implement
in simulation, since the link between nodes is always

symmetric, i.e. the distance between robot i and j is the
same as the distance between robot j and i. However,
in approach 2, the link between nodes can be asymmetric,
i.e. the radio signal received by robot i when robot j
transmits can be different from the one received by robot j
when robot i transmits. In general, the differences are
small and it is assumed that the link matrix is always
square and symmetric. Nevertheless, in real experiments,
the signal quality is easier to obtain than the distance
between robots since most part of wireless equipment
benefit from the Received Signal Strength Indicator.[21]

Depending on the chosen approach (1 or 2), an
adjacency matrix A= {aij} can be defined based on the
maximum distance or minimum radio quality signal
between nodes, respectively.[19] The adjacency matrix, i.
e. one-hop connectivity matrix, where a 1 entry at (i, j)
indicates a connection between node i and j and a 0
entry at (i, j) indicates no connection between node i and
j, represents the neighbors of each node, i.e. direct
connection between robots.

aij ¼ 1; i and j connected
0; i and j not connected

�
(6)

Note that the diagonal elements (i.e. when i= j) of the
adjacency matrix are set equal to 0. If the communication
system supports the relay of messages to distant nodes via
intermediate nodes, then multi-hop connections can be
made. In the case where each robot corresponds to a node,
in order to overcome the non-connectivity between them,
the desired position of each robot, i.e. xn[t+ 1], must be
controlled, since it influences the link matrix. One way to
ensure the full connectivity of the MANET is to ‘force’
each robot to communicate with its nearest neighbor that
has not chosen it as its nearest neighbor. Since the connec-
tivity depends on the distance/signal quality, connectivity
between nodes may be enforced by computing the
minimum/maximum values of each line of adjacency
matrix A, after excluding zeros and (i, j) pairs previously
chosen. Therefore Equation (5) can be rewritten as:

V ½t þ 1� ¼ I ½t� þ q1r1C½t� þ q2r2S½t� þ q3r3O½t�
þ q4r4M ½t� (7)

where ρ4 and r4 are the communication enforcing weight
and respective random vector, while M[t] is the MANET
matrix that is represented by the difference between the
positions of the nearest neighbor increased by the maxi-
mum allowed communication range dmax toward robot’s
current position . In this work, the multihop connectivity
matrix C(N� 1) and auxiliary matrices (CB and Cbreak) will
only be used as information about network topology.

To further understand matrix M[t] consider the
topology depicted in Figure 1. As it may be perceived,
robot 2 is the nearest neighbor of robot 1 and is at the

4 M.S. Couceiro et al.
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correct distance dmax resulting in a null force connectiv-
ity vector. The nearest neighbor of robot 2 is robot 3
which is too close, thus resulting in a repulsive force at
robot 2 in order to ensure dmax. Finally, the nearest
neighbor of robot 3, that was not previously chosen, is
robot 4 which is too far away, thus being affected by an
attraction force toward robot 4.

The exchanged data concerning to the signal quality
or robot’s position will allow the implicit processing of
the enforcing network connectivity algorithm by the
team in a distributed way. In other words, every robot
needs to be aware of the position or signal quality of all
other robots in the swarm in order to compute the
enforcing network connectivity algorithm. This is an
algorithm limitation since all robots need to be equipped
with localization systems (e.g. GPS). An alternative to it
would be extending the GPS capabilities of some robots
to non-GPS robots [22] using strategies to find the team-
mates position under their visual range. For instance, if
robots are equipped with laser range finders the use of
retro-reflective markers can be used for recognition.
Since the implementation of such strategies is out of
scope of this paper they will not be taken into account.

One of the major concerns in this approach is that all
robots should have an initial deployment that preserves
the communication between the robots in the population.
Moreover, it is also known that in classical PSO
algorithms particles need to be scattered throughout the
scenario. Hence, next section presents a novel methodol-
ogy to establish an initial planar deployment of the
robots that preserves the connectivity of the MANET,
while spreading out the robots as much as possible.

3.3. Initial deployment

One of the fundamental problems in MRS that has not
been fully addressed is how to deploy a group of robots
over an environment to carry out sensing, surveillance,
data collection, or distributed servicing tasks.[23] For
instance, when the robots are transported to the catastro-
phe site, they need to be deployed. The deployment
problem is to decide how many robots and where they will
be initially located before performing the SR mission
using their control strategy (e.g. coverage) (e.g. [24]). One
of the common approaches in the initial deployment of
mobile robots is using a random distribution along the
scenario.[25] This methodology is the simplest way for
deploying robots and in most situations (e.g. SR), the dis-
tribution of the points of interest (e.g. victims) is random.
However, in real situations, it is necessary to ensure sev-
eral constraints of the system. If the network supports
multi-hop connectivity, this kind of constraints may signif-
icantly increase the complexity of the random distribution
since it would depend not only on the communication
constraints but also on the number of robots and their own
position. Moreover, random deployment may cause unbal-
anced deployment therefore increasing the hardware cost
(e.g. number of needed robots, energy depletion).

This work tries to take advantage of a random planar
deployment of robots, while eliminating the disadvan-
tages inherent to it and considering the communication
constraints by using a deployment strategy based on the
Spiral of Theodorus. This spiral is composed of contigu-
ous right triangles, formerly called rectangled triangles,
with each cathetus having a length equal to 1.[26]
Triangles’ hypotenuses hi are given by the square root to
a consecutive natural number, with h1 ¼

ffiffiffi
2

p
. The use of

the spiral of Theodorus to carry out the initial deployment
of robots, requires two adjustments: (1) the initial posi-
tion of each robot is set at the further vertex of the center
of the spiral for each right triangle with a random orienta-
tion; and (2) the size of the cathetus is set as the maxi-
mum communication range dmax consequently changing
the triangles’ hypotenuses hi to the product between the
maximum communication range dmax and the square root
of the consecutive natural number. These assumptions
allow having an initial deployment of the robots in the
target area which depends on both the number of robots
and the communication constraints (Figure 2(a)).

The growth of the angle uk of the next triangle
(or spiral segment) k, can be calculated using the
trigonometric properties of right triangles.

uk ¼ arc tan
1ffiffiffi
k

p (8)

The total angle un for the nth robot is calculated as
the cumulative sum presented above.

Figure 1. Illustration of a MANET topology of a swarm.
Dashed lines represent the maximum distance dmax between
each pair of robots and the arrows represent the force vectors
that ensure MANET connectivity.
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un ¼
Xn

k¼1

uk (9)

Once again, using the trigonometric functions, the
initial planar position (i.e. t= 0) of each robot n can
easily be calculated.

xn½0� ¼ xo þ dmax

ffiffiffiffiffiffiffiffiffiffiffi
nþ 1

p � cos (un)
dmax

ffiffiffiffiffiffiffiffiffiffiffi
nþ 1

p � sin (un)

� �
(10)

where x0 is the center of the spiral which can be
randomly assigned at each trial ensuring the efficiency of
the stochastic algorithms. Hence, the initial deployment
of a swarm will correspond to a spiral in which the
position of each robot depends on the prior deployed
robot and the center of the spiral x0. To allow the
autonomous deployment of robots in a scenario, a
preprocessing of the environment needs to be undertaken
in order to prevent robots from being deployed into areas
of no interest (e.g. water, obstacles, and other robots).
This can be accomplished with unmanned aerial vehicles
through image segmentation (cf. [22]).

In short, all the previously described matrices can be
represented within a small population in Figure 2(b).
Merging all these features, the RPSO algorithm can be
summarized as shown in Algorithm 1.

This section bridged the gap between classical PSO
algorithms and its application in MRS, denoted as
RPSO. However, both PSO and RPSO have an important
drawback: they may get stuck on local optima. In other
words, the RPSO do not have any mechanism to avoid
stagnation nor to adapt the behavior of robots based on
contextual information.

Next section proposes a novel multi-robot exploration
algorithm inspired by the DPSO formulated by Tillet
et al. [3] which overcomes the problem.

Algorithm 1: RPSO Algorithm

1 Initialize swarm
2 Initialize X[t] using the spiral of Theodorus

methodology (Section 3.3)
3 Initialize V[t] as a matrix of zeros
4 Initialize C[t] and S[t] based on the best individual

and global solution
5 Initialize O[t] based on obstacle information
6 Initialize M[t] based on te position of the nearest

neighbor that has not chosen it
7 Loop:
8 for all robots
9 Evaluate the objective function
10 Calculates the adjacency matrix A
11 Update C[t], S[t], O[t] and M[t]
12 Calculates V[t+ 1] and X[t+ 1]
13 end
14 until stopping criteria (convergence)

4. Robotic DPSO

The DPSO [3] may be represented by multiple swarms
of test solutions where each swarm individually
performs just like an ordinary PSO algorithm with some
rules governing the collection of swarms that are
designed to simulate natural selection, like in Darwin’s
Theory. The selection process implemented is a selec-
tion of swarms within a constantly changing collection
of swarms. In the common DPSO, ‘punish’ means
deleting particles and swarms, while ‘reward’ means
spawning from new particles to swarms. In order to
adapt DPSO to mobile robotics, we propose the deleting
and spawning of a robot to be modeled by the mecha-
nisms of social exclusion and social inclusion, respec-
tively. The following definition of social exclusion was
proposed by Burchardt [27]: ‘an individual is socially

(a) (b)

Figure 2. (a) Initial deployment based on the spiral of Theodorus of a swarm of robots. (b) Geometrical illustration of the RPSO.
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excluded if he/she does not participate to a reasonable
degree over time in certain activities of his/her society,
and (a) this is for reasons beyond his/her control, and
(b) he/she would like to participate’. In other words,
the adaptation of DPSO to MRS, herein denoted as
RDPSO, will also be represented by multiple swarms
(group of robots) where each swarm individually
performs just like RPSO algorithm in search for the
solution and some rules governs the whole population
of robots.

Algorithm 2: RDPSO Algorithm

Main Program Loop Evolve Swarm Algorithm

1 For each swarm in the
collection

1 For each s

2 Computes Algorithm
(RPSO Algorithm)

2 Evolve the swarm
Evolve Swarm
Algorithm

3 If swarm s gets better

(right →) 4 Reward swarm s with
the best performing
robot in the socially
excluded group

3 Allow the swarm to
spawn a new swarm
from the n1 best
performing robots in
the socially excluded
group

5 If swarm s has not
improved

4 Move ‘failed’
swarms to the socially
excluded group

6 Punish swarm s by
excluding the worst
performing robot adding
it to a socially excluded
group

The number of times a swarm s is evolved without
finding an improved objective is tracked with a search
counter, SCs. If the swarm’s search counter exceeds a
maximum critical threshold, SCmax, the swarm is
punished by excluding the worst performing robot,
which is added to a socially excluded group. In this situ-
ation, the swarm’s search counter is then reset to a value
near SCmax that can be calculated using Equation (11).

Nkill
s represents the number of robots excluded from

the swarm s over a period of time in which there was no
improvement in the swarm’s objective function.

SCs ¼ SCmax 1� 1

N kill
s þ 1

� �
(11)

The worst performing robot is evaluated by the value
of its objective function compared to other members in
the same swarm. If the number of robots falls below the
minimum acceptable number of robots to form a swarm
nmin, the swarm is punished by being dismantled and all
the robots that belong to that swarm are added to the
socially excluded group. On the other hand, if the swarm
improves its objective function, then it is rewarded with
the best performing robot in the socially excluded group.
If a swarm has been more often rewarded than punished,
it has a small probability p= f /ST of spawning a new
swarm, where f is a uniform random number on [0,1]
and ST is the number of active swarms. This factor
avoids the creation of newer swarms when there are
already a large number of swarms. Moreover, the group
of robots forming this new swarm will be the best per-
forming robots within the socially excluded group. The
key issue in this novel approach is the answer to the
question: What do robots belonging to the socially
excluded group do? In fact the answer is the same that
we would give if asking about a group excluded from
our society: they do not do ‘anything’. Instead of search-
ing for the objective function’s global optimum (i.e. the
main activity of the society) like the other robots in the
active swarms do, they randomly wander in the scenario.
Note, however, that they are always aware of their indi-
vidual solution and the global solution of the socially
excluded group.

Consider the example in Figure 3. Let us suppose a
population divided into 3 swarms of 3 robots each
(Figure 3(a)). If swarms 1 and 2 (red and green robots,
respectively) cannot improve their objective for SCmax

iterations they are punished by excluding the worst per-
forming robot of each swarm and adding them to the
socially excluded group (Figure 3(a)). The socially
excluded robots randomly wander in the scenario memo-
rizing their individual best solution and the global best
solution of the socially excluded group (Figure 3(c)).
Swarm 3 improves its solution, since it finds a local opti-
mum, and it is rewarded with the best performing robot
in the socially excluded group (Figure 3(d)). Finally, the
new member of swarm 3 communicates its best individ-
ual solution to the other members which is better than
their best global solution inducing them to move toward
this new solution (Figure 3(e)).

Algorithm 2 summarizes the RDPSO algorithm. This
new approach benefits from Darwin’s Theory, survival of
the fittest, thus presenting a mechanism to escape from
local solutions. Furthermore, note that having multiple
swarms enables a more distributed approach than in
RPSO because the network that was previously defined

Advanced Robotics 7

D
ow

nl
oa

de
d 

by
 [

b-
on

: B
ib

lio
te

ca
 d

o 
co

nh
ec

im
en

to
 o

nl
in

e 
IP

C
],

 [
M

ic
ae

l C
ou

ce
ir

o]
 a

t 0
9:

56
 1

8 
Ju

ly
 2

01
3 



Figure 3. Sequence of an exploration on a scenario with a regular density of obstacles using the RDPSO algorithm.
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Figure 4. Performance of the algorithms changing the number of robots N in the population; (a) RPSO; (b) RDPSO with a regular
density of obstacles; (c) RPSO; (d) RDPSO with a high density of obstacles.
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by the whole population of robots is now divided into
multiple smaller networks (one for each swarm), thus
decreasing the number of nodes (i.e. robots) and the
information exchanged between robots of the same net-
work. In other words, robots interaction with other
robots through communication is confined to local inter-
actions inside the same swarm, thus making RDPSO
scalable to large populations of robots. Furthermore,
since swarms are dynamic (members can be punished or
rewarded), there is a larger possibility to escape from
local solutions when robots are socially excluded or need
to travel from one swarm to another. At this point of the
work, the way robots travel from their old swarm to a
new swarm consists on a simple wandering algorithm
until the robot finds its new swarm.

5. Experimental results

In this section, the effectiveness of using a modified
version of PSO and DPSO, respectively denoted as
RPSO and RDPSO, on a group of robots performing dis-
tributed unsupervised learning with local and global
information is experimentally assessed with simulations.
The number of robots is equal to the number of particles
in the population, so each robot is represented by a sin-
gle unique particle. Robots are randomly deployed in the
search space in a spiral manner (cf. Section 3.3) where
the radius depends on the maximum communication dis-
tance dmax and the number of robots N in the population.
For the sake of simplicity and without lack of generality,
a distance criterion dmax was used to model communica-
tion constraints. Trying to maintain the network connec-
tivity by considering only the communication range dmax

does not match reality since the propagation model is

more complex – the signal depends not only on the
distance but also on the multiple paths from walls and
other obstacles. However, the communication distance is
a good approach and it is easier to implement. Moreover,
the conclusion presented in this section can be extrapo-
lated by replacing maximum distance by minimum signal
quality. Experimental results are divided in two stages:
(1) evaluate and compare the RPSO and RDPSO
algorithms; and (2) understand the relationship between
the population of robots N and the maximum communi-
cation distance dmax for the best performing algorithm.

5.1. Comparison of the algorithms

Multiple test groups of 250 trials with 350 iterations each
were considered for both RPSO and RDPSO algorithms.
In the particular case of the RDPSO, it is used a mini-
mum, initial and maximum number of 1, 3 and 6 swarms,
respectively (represented by different colors in Figure 3),
independently of the population of robots taking into
account the algorithm description in Section 4, where the
number of swarms may vary throughout the simulation.
In these experiments, the search space is represented by
an example of a Gaussian distribution on a function of
two variables of the search space, x and y-axis, which
represents the position of the robot in meters. The opti-
mum value of this function (�6.54 in the example) is
represented in Figure 5 by a dashed line. The particles
will then move in a scenario of size 30� 30m where the
z-axis represents the value of the objective function. In
this specific case, the objective of the particles is to find
the minimum value of the cost. Both algorithms will be
evaluated by changing the density of obstacles and the
number of robots (i.e. population). Boxplot charts are

N = 3

(a) (b)
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N = 21

N = 27

N = 33
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Figure 5. Convergence of the algorithms changing the number of robots N in the population with a high density of obstacles; (a)
RPSO; (b) RDPSO.
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used to present graphically the final result of each trial.
Experiments are then divided into three types: (1) without
obstacles; (2) with a regular density of obstacle randomly
deployed at each trial; and (3) with a high density of
obstacles randomly deployed at each trial.

The experimental results obtained without obstacles
are used as guidelines for a better understanding of the
impact of obstacles in the algorithm’s performance since
both algorithms performed efficiently without obstacles
and obtained the optimal solution. The number of robots
will vary from 3 robots to 33 robots with incremental
steps of 6 robots, i.e. N= {3, 9, 15, 21, 27, 33} in order to
understand the performance of the algorithms related to
the population size (Figures 4 and 5). As expected, the
rise in the number of obstacles leads to a decrease of per-
formance in both algorithms, for a robot population infe-
rior to 21 robots. It is also clear that the RPSO gets stuck
in the local optimum (in the neighborhood of 0 and �3),
thus increasing the inconsistency of the final result
obtained (larger blue boxes and whiskers). This perfor-
mance gets better as the number of robots rises. However,
there are some situations in which a population of 3
robots performs better than a population of 9 or 15. This
happens since dynamic obstacles increases when the pop-
ulation increases. Simulation results show that this draw-
back can only be overcome using a population superior to
15 robots. It is also verified that for NP 27 the algorithm
tends to stabilize and the impact of the presence of obsta-
cles in the algorithm performance is diminished as robots
always arrive at the desired destination. The data distribu-
tion, despite the considered trial, turns out to be positively
skewed (i.e. the mean is higher than the median). This
means that, in this case, as the goal is to minimize the cost
function, 50% of the trials are around the desired objec-
tive value. Nevertheless, the RDPSO shows a better per-
formance when compared with the RPSO in the three
experimental datasets, being the median (red line) closer
to the objective value, regardless of the number of robots.

Since these simulation experiments represent a search
task, it is necessary to evaluate not only the complete-
ness of the mission but also the speed. Therefore, to fur-
ther compare both algorithms, the convergence of the
RPSO and RDPSO can be analyzed for the worst case
scenario, i.e. for a high density of obstacles.

As Figure 5 shows, the median of the best solution
over the 250 trials was taken as the final output for each
value in the set N = {3, 9, 15, 21, 27, 33}. Once again,
the performance of the RDPSO turns out to be better
than the performance of the RPSO, with a full conver-
gence to the desired objective value at time t= 50,
regardless of the number of robots considered. This can
be explained by the effect of social exclusion/inclusion
described in Section 4 in which the main goal is to avoid
being stuck in local optima. As Figure 5(a) confirms, the
RPSO algorithm sometimes gets stuck in local solutions.

5.2. Population vs. communication distance

In this section, it is explored the effectiveness of using
the RDPSO under different communication constraints
and number of robots. Multiple test groups of 100 trials
with 300 iterations each were considered. Once again, it
is used a minimum, initial and maximum number of 1, 3
and 6 swarms. The search space is represented by a
Gaussian distribution consisting on a function of two
variables of the search space, x and y-axis, which repre-
sents the position of the robot in meters. The robots will
then move in a 300� 300m scenario.

In order to improve the interpretation of the algorithm
performance, results were normalized in a way that the
objective of robotic team is to find the optimal value of 1
while avoiding obstacles and enforcing the MANET
connectivity. The maximum communication distance dmax

between robots depends on the chosen wireless protocol.
Four conditions were described: (1) With communication
infrastructure (i.e. without communication constraints ≡
dmax → ∞); (2) WiFi; (3) ZigBee; and (4) Bluetooth.
Table 1 depicts the maximum communication distance
adapted from the comparison between the key character-
istics of each wireless protocol made in [28].

The mean between the minimum and maximum
range shown in [28] was considered as the maximum
communication distance dmax. To demonstrate the perfor-
mance of the algorithm while constrained by the commu-
nication distance, the number of robots is increased until
it achieves a mean value equal or superior to 90% of the
optimal value 1.

Through the analysis of Figure 6 it can be verified
that the number of used robots must be higher in order
to obtain a performance closer to the one obtained in a
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Figure 6. Performance of the algorithm under limited
communication distance.

Table 1. Typical maximum communication distances of the
WiFi, ZigBee and Bluetooth protocols.

WiFi ZibBee Bluetooth

dmax [m] 100 55 10

10 M.S. Couceiro et al.
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system with no communication constraints. In a
300� 300m scenario, by imposing a 100m range
limitation (i.e. WiFi) 16 robots are needed. In the case of
ZigBee, the range limitation is 55m, resulting in the need
of 18 robots. The number of needed robots dramatically
increases to 28 robots when the system has a range limi-
tation of 10m (i.e. Bluetooth). It should be noted that,
although WiFi and ZigBee do not have a significant
influence on the performance of the wireless network,1

the increase in the number of robots (i.e. nodes) from a
range of 3 to 33, may have a bigger influence when
considering Bluetooh as the performance could be
slightly decreased since each network (i.e. piconet) can
only be formed by 8 nodes resulting in the need to
interconnect multiple piconets (i.e. scatternet).

5.3. Evaluation on real robots

In this section, it is explored the effectiveness of using the
RDPSO on swarms of real robots, while performing a
collective foraging task with local and global information
under communication constraints. Since the RDPSO is a
stochastic algorithm, every time it is executed it may lead
to different trajectory convergence. Therefore, multiple test
groups of 20 trials of 3min each were considered. A mini-
mum, initial and maximum number of 1, 2 and 3 swarms
were used independently of the population of robots.

The eSwarBot was the platform used to evaluate the
algorithm (Figure 7(a)). It consists on a differential
ground platform recently developed and presented in [29]
for applications in swarm robotics. Although the platform
presents a limited kinematic resolution of 3.6 degrees
while rotating and 2.76mm when moving forward, its
low cost and high autonomy allowed to perform experi-
ments with up to 12 robots, with N = {4, 8, 12}. Robots
are equipped with RGB-LEDs on top of them that allow
representing a wide range of different colors that matches
different swarms. All of the experiments were carried out
in an enclosed arena of 2.55–2.45m that contained two
sites (Figure 7(b)). Each site was represented by an

illuminated spot uniquely identifiable by controlling the
brightness of the light. Despite being an obstacle free sce-
nario, the robots themselves act as dynamic obstacles –
note that a maximum number of 12 robots correspond to
a population density of approximately 2 robotsm�2. Each
robot possessed overhead light sensors (LDR) that
allowed it to find candidate sites and measure their
quality. The brighter site (global optimum) was consid-
ered better than the dimmer one (local optimum), and so
the goal of the robots was to collectively choose the
brighter site. Inter-robot communication to share positions
and local solutions were carried out using ZigBee
802.15.4 wireless protocol. Since robots were equipped
with XBee modules that allow a maximum communica-
tion range larger than the whole scenario (near 30m in
indoor scenario), robots were provided with a list of their
teammates’ address in order to simulate the ad hoc
multihop network communication with limited range. The
maximum communication distance between robots dmax

was varied between 0.50 and 1.50m. At each trial, robots
were manually deployed on the scenario in a spiral
manner while preserving the maximum communication
distance dmax. The previously described conditions give a
total of 120 experiments, thus leading to a runtime of 6 h.
The next sequence of frames (Figure 8) presents a trial of
the team’s performance using N= 12 and dmax = 1.50m.

Since these experiments represent a foraging task, it
is necessary to evaluate both the completeness of the
mission and the time needed to complete it. Therefore,
Figure 9 depicts the convergence of the RDPSO for the
several proposed conditions. The median of the best
solution in the 20 experiments was taken as the final out-
put in the set N = {4, 8, 12} for each dmax.

Analyzing Figure 9, it is clear that the proposed
mission can be accomplished by any number of robots
between 4 and 12. In fact, independently on the number
of robots, teams converge to the solution in approxi-
mately 90% of the experiments. The charts also show
that increasing the number of robots slightly increases
the convergence time. A population of 4, 8 and 12

global solution

local solution

RGB-LEDs

ZigBee module
Light sensor

Ultrassound
sensor

(a) (b)

Figure 7. (a) The eSwarBot differential ground platform. (b) Experimental setup with 12 eSwarBots.
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robots takes, in average, 77, 106 and 112 s to converge
to the global optimum, respectively. This is a repercus-
sion of having more robots inside the same arena – the
number of dynamic obstacles is higher. As expected,
increasing the maximum communication distance gener-
ally results in a faster convergence to the global solution.
Another important factor is that some robots of a given
swarm are unable to converge to the final solution when
one robot of the same swarm finds it. This issue is
related with odometry limitations of the platforms which
results in the accumulation of positioning errors. The use
of encoders, such as the ones used in these robots, is a
classical method, being of low-cost and simple use.

However, it is verified the existence of errors inherent to
their use are cumulative.

6. Conclusion and future work

Modified versions of the PSO and the Darwinian PSO
(DPSO) algorithms based on real-world MRS characteris-
tics such as obstacles avoidance abilities and communica-
tion issues were developed and respectively named as
RPSO (Robotic PSO) and RDPSO (Robotic DPSO). The
features presented in this document were first imple-
mented in a simulated environment and experimental
results show how the performance of an MRS with a bio-

(a) t = 0 seconds (b) t = 31 seconds (c) t = 54 seconds

(d) t = 69 seconds (e) t = 103 seconds (f) t = 143 seconds

Figure 8. Frame sequence showing the RDPSO performance on a population of 12 robots (some robots may be outside camera’s
range). (a) The population is initially divided into two swarms – green swarm and red swarm – deployed in a spiral manner; (b) The
swarms independently search for the brighter site taking into account a maximum communication distance of 1.5m between robots of
the same swarm; (c) One robot from the red and green swarm finds the local and global optima, respectively; (d) As the red swarm
does not improve, some robots are excluded, thus being added to the socially excluded group (white swarm); (e) Since the green
swarm has improved, it is able to call new members from the socially excluded group; (f) Finally, the green swarm proliferates
calling all the previously excluded robots that were unable to improve their solution. Note that robots do not all converge the global
solution as they try to maintain a distance of dmax between them.

time [seconds] time [seconds]

gl
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N = 8

N = 12

N = 4

N = 8
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Figure 9. Performance of the algorithms changing the number of robots N in the population: (a) dmax = 0.5m; (b) dmax = 1.5m.
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logically inspired behaviour based on natural selection
and social exclusion, as in the RDPSO, increases when
compared to the RPSO. As expected, the influence
inherent to communication’s limitations can be attenuated
as the number of robots or the communication range/
quality increases. This is a promising result for communi-
ties of swarm robots with many individuals since they
can develop efficient coordination techniques, just like
natural swarm agents, allowing cooperative and competi-
tive work in large and super-large societies. Moreover, to
further evaluate the RDPSO, experiments with up to 12
physical robots were conducted. Experimental results
show that the performance of the robotic population in
the proposed scenario is not significantly affected by the
number of robots in the population and the maximum
communication distance between robots. Nevertheless,
one of the main limitations of the algorithm resides in
having several parameters, such as the fractional order,
influencing the performance of the robotic team. There-
fore, one of the future approaches will be the analytical
analysis of the RDPSO in order to find a relationship
between parameters, thus optimizing the algorithm with
regard to the main objective, robot dynamics, obstacles
susceptibility, and MANET connectivity.
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