
Call Control in Rings?
Udo Adamy1, Christoph Ambuehl1, R. Sai Anand2;??, and Thomas Erlebach21 Institute for Theoretical Computer Science, ETH Zürich, 8092 Zürich, Switzerland.fadamy|ambuehlg@inf.ethz.ch2 Computer Engineering and Networks Laboratory, ETH Zürich, 8092 Zürich, Switzerland.fanand|erlebachg@tik.ee.ethz.ch

Abstract. The call control problem is an important optimization problem en-
countered in the design and operation of communication networks. The goal of
the call control problem in rings is to compute, for a given ring network with
edge capacities and a set of paths in the ring, a maximum cardinality subset of
the paths such that no edge capacity is violated. We give a polynomial-time al-
gorithm to solve the problem optimally. The algorithm is based on a decision
procedure that checks whether a solution with at leastk paths exists, which is in
turn implemented by an iterative greedy approach operatingin rounds. We show
that the algorithm can be implemented efficiently and, as a by-product, obtain a
linear-time algorithm to solve the call control problem in chains optimally.

1 Introduction

Due to the ever-increasing importance of communication networks for our society and
economy, optimization problems concerning the efficient operation of such networks
are receiving considerable attention in the research community. Many of these prob-
lems can be modeled as graph problems or path problems in graphs. A prominent ex-
ample is thecall admission control problem, where the task is to determine which of
the requests in a given set of connection requests to accept or reject so as to optimize
some objective, e.g., the number of accepted requests. In this paper, we consider a call
admission control problem in ring networks and prove that itcan be solved optimally
by an efficient polynomial-time algorithm. The ring topology is a fundamental network
topology that is frequently encountered in practice. As an additional application of our
algorithm, we show that it can also be used to compute optimalsolutions to periodic
scheduling problems with rejection.

Problem Definition and Applications. The CALL CONTROL problem considered in
this paper is defined as follows. An instance of the problem isgiven by an undirected
graph(V;E) with edge capacities
 : E ! IN and a multi-setP of m paths in(V;E).
The paths represent connection requests whose acceptance requires the reservation of
one unit of bandwidth on all edges of the path. A feasible solution is a multi-setQ � P
such that for every edgee 2 E, the number of paths inQ that containe is at most
(e).? Research partially supported by the Swiss National ScienceFoundation.?? Supported by the joint Berlin/Zurich graduate program Combinatorics, Geometry, and Com-

putation (CGC), financed by ETH Zurich and the German ScienceFoundation (DFG).

Such a multi-set of paths is called afeasible setand the paths in it are calledaccepted.
The objective is to maximize the number of accepted paths. Whenever we talk about a
set of paths in the following, we allow that the set is actually a multi-set, i.e., that it can
contain several instances of the same path. In this paper we deal with CALL CONTROL

mainly in ring networks. Aring networkwith n nodes is an undirected graph(V;E)
that is a cycle on the nodesV = f0; : : : ; n � 1g. We imagine the cycle drawn in the
plane with the nodes labeled clockwise. The edgeei 2 E, 0 � i < n, connects the two
neighboring nodesi and(i+ 1) mod n and has a non-negative integer capacity
(ei).

The problem of CALL CONTROL in ring networks as defined above applies to var-
ious types of existing communication networks with ring topology. For example, the
problem applies to ring networks that support bandwidth reservation (e.g., ATM net-
works) and in which the route taken by a request is determinedby some other mech-
anism and cannot be modified by the call control algorithm. Furthermore, it applies to
bidirectional self-healing rings with full protection. Insuch rings, one direction of the
ring (say, clockwise) is used to route all accepted requestsduring normal operation, and
the other direction is used only in case of a link failure in order to reroute the active con-
nections that are affected. In all-optical WDM ring networks withw wavelengths that
have a wavelength converter in at least one node, any set of lightpaths with maximum
link loadw can be established simultaneously [13]. Thus, call admission control in such
networks can be modeled as CALL CONTROL with all edge capacities equal tow.

Furthermore, it should be noted that problems related to call admission control are
often encountered in an on-line setting, where the requestsare presented to the algo-
rithm one by one and the algorithm must accept or reject each request without knowl-
edge of future requests. However, we think that it is meaningful to study the off-line
version as well for several reasons. First, an off-line callcontrol algorithm is needed
in the networkdesignphase, when a candidate topology with link capacities is consid-
ered and one wants to know how many of the forecasted traffic requirements can be
satisfied by the network. Second, an off-line call control algorithm is useful in a sce-
nario that supports advance reservation of connections, because then it is possible to
collect a number of reservation requests before the admission control is carried out for
a whole batch of requests. Finally, an optimal off-line callcontrol algorithm is helpful
as a benchmark for the evaluation of other off-line or on-line call control strategies.

We briefly discuss an application in periodic scheduling. Without loss of generality,
we assume a time period of one day. There arek machines and a set of tasks with fixed
start and end times. (For example, there could be a task from 10am to 5pm and another
task from 3pm to 2am on the following day.) Each task must be accepted or rejected. If
it is accepted, it must be executed every day from its start time to its end time on one of
thek machines, and each machine can execute only one task at a time. The goal is to
select as many tasks as possible while ensuring that at mostk of the selected tasks are
to be executed simultaneously at any point in time. By takingthe start times and end
times of all given tasks as nodes in a ring, we can view the tasks as calls and compute
an optimal selection of accepted tasks by solving the corresponding CALL CONTROL

problem with all edge capacities set tok. Even if the number of available machines
changes throughout the day (and the changes are the same every day), the problem can
still be handled as a CALL CONTROL problem with arbitrary edge capacities.

Related Work. As paths in a ring network can be viewed as arcs on a circle, path
problems in rings are closely related tocircular-arc graphs. A graph is a circular-arc
graph if its vertices can be represented by arcs on a circle such that two vertices are
joined by an edge if and only if the corresponding arcs intersect [9]. Circular-arc graphs
can be recognized efficiently [5]. For a given circular-arc graph, a maximum clique
or a maximum independent set can be computed in polynomial time [9]. Coloring a
circular-arc graph with the minimum number of colors isNP-hard [8]. A coloring with
at most1:5! colors always exists and can be computed efficiently [10], where! is the
size of a maximum clique in the graph. Concerning our CALL CONTROL problem, we
note that the special case where all edges have capacity1 is equivalent to the maximum
independent set problem in circular-arc graphs. We are interested in the case of arbitrary
edge capacities, which has not been studied previously.

Many authors have investigated call control problems for various network topolo-
gies in the off-line and on-line setting. For topologies containing cycles, an important
distinction for call control is whether the paths are specified as part of the input (like we
assume in this paper) or can be determined by the algorithm. In the latter case, only the
endpoints are specified in the input, and we refer to the problem as CALL CONTROL-
ANDROUTING. The special case of CALL CONTROLANDROUTING where all edges
have capacity1 is called themaximum edge-disjoint pathsproblem (MEDP). We re-
fer to [3, Chapter 13] and [11, 12] for surveys on on-line algorithms for call control
problems and mention only some of the known results here.

For chains, the off-line version of CALL CONTROL is closely related to the maxi-
mumk-colorable induced subgraph problem for interval graphs. The latter problem can
be solved optimally in linear time by a clever implementation of a greedy algorithm
provided that a sorted list of interval endpoints is given [4]. This immediately gives
a linear-time algorithm for CALL CONTROL in chains where all edges have the same
capacity. It is not difficult to adapt the approach to chains with arbitrary capacities in-
curring an increase in running-time. As a by-product of our algorithm for rings, we will
obtain a linear-time algorithm for CALL CONTROL in chains with arbitrary capacities.

The on-line version of CALL CONTROL in chains with unit edge capacities was
studied for the case with preemption (where interrupting and discarding a call that was
accepted earlier is allowed) in [7], where competitive ratio O(logn) is achieved for
a chain withn nodes by a deterministic algorithm. A randomized preemptiveO(1)-
competitive algorithm for CALL CONTROL in chains where all edges have the same
capacity is given in [1]. It can be adapted to ring networks with equal edge capacities.

In [2], the preemptive on-line version of CALL CONTROL is studied with the number
of rejectedcalls as the objective function. They obtain competitive ratio 2 for chains
with arbitrary capacities,2 for arbitrary graphs with unit capacities, andO(pm) for
arbitrary graphs withm edges and arbitrary capacities. For the off-line version, they
give anO(logm)-approximation algorithm for arbitrary graphs and arbitrary capacities.

2 Preliminaries

Let P = fp1; : : : ; pmg denote the given set ofm paths, each connecting two nodes in
the ring network. Everypi 2 P is an ordered pair of nodespi = (si; ti) from V 2 with

si 6= ti. The pathpi contains all edges from thesource nodesi to the target nodeti
in clockwise direction. For a subsetQ � P , theringloadL(Q; ei) of an edgeei with
respect toQ is the number of paths inQ that contain the edgeei, i.e.L(Q; ei) := jfp 2Q : ei 2 pgj. A subsetQ � P is calledfeasibleif the ringload does not exceed the
capacity of any edge, i.e.L(Q; ei) �
(ei) for all ei 2 E.

By opening the ring at node0, we partition the setP of paths into two disjoint
subsetsP1 andP2, whereP1 is the set of paths that do not have node0 as an internal
node andP2 are the remaining paths, i.e., the paths going through node0. Each path inP2 consists of two pieces: theheadof the path extends from its source node to node0,
thetail from node0 to its target node. To simplify the explanation we introducea noden and identify it with node0. From now on, the paths with target node0 are treated as
if they end at noden. Thus we have the characterizationP1 = fpi 2 P : si < tig andP2 = fpi 2 P : si > tig. Note thatP = P1 [P2.

We define a linear ordering on the paths inP as follows. All paths inP1 are strictly
less than all paths inP2. Within both subsets we order the paths by increasing tar-
get nodes. Paths with equal target nodes are ordered arbitrarily. We call this ordering
greedy. In the example of Fig. 1(a) the pathsp1; : : : ; p6 are in greedy order. The solid
pathsp1; : : : ; p4 are inP1. P2 consists of the dotted pathsp5 andp6.

The algorithm considers a chain of2n edges consisting of two copies of the ring
glued together. The chain begins with the first copy ofe0 and ends with the second
copy ofen�1, see Fig. 1(b). The tails of theP2-paths are in the second copy of the ring,
while theP1-paths and the heads of theP2-paths are in the first copy. Note that the
greedy order of the paths corresponds to an ordering by rightendpoints in this chain.

For a given setQ of paths, we defineL1(Q; ei) andL2(Q; ei) to be the load of the
paths inQ on the first copy ofei and their load on the second copy ofei, respectively.
Thus, the paths inP1 and the heads of the paths inP2 contribute to the load valuesL1(P; ei) of the first copy of the ring. The tails of theP2-paths determine the load
valuesL2(P; ei). The ringloadL is simply the sum ofL1 andL2. With this definition
of L2, we can introduce the central notion of profiles.

Definition 1 (Profiles).LetQ be a set of paths. The profile� ofQ is the non-increasing
sequence ofn load valuesL2 for the edgese0; : : : ; en�1 in the second copy of the ring,�Q := L2(Q; e0) : : : L2(Q; en�1):
With �Q(ei) we denote the profile valuesL2(Q; ei) for all edgesei 2 E. The empty
profile is zero everywhere. For profiles� and�0 we have� � �0, iff �(ei) � �0(ei) for
all edgesei 2 E.

A setQ of paths is calledchain-feasibleif it does not exceed the capacity of any
edge in this chain of length2n. In other words,Q is chain-feasible, if it does not exceed
the capacities in both copies of the ring, i.e.L1(Q; ei) �
(ei) andL2(Q; ei) �
(ei)
for all ei 2 E. It is calledchain-feasible for (starting) profile� if it is chain-feasible
and in the first copy of the ring the stronger inequalitiesL1(Q; ei)+�(ei) �
(ei) hold
for all ei 2 E. Observe that a setQ of paths is feasible (in the ring) if and only if it is
chain-feasible for starting profile�Q.

e5

p5

e3

p
6

✂

e

p

p
4

3

4

e

p

0

2

1

0

5

4 2

3

1

e2

e1

p

(a) A set of paths for the
ring on6 nodes.

0 1 2 3 4 5 0 1 2 3 4 5

p
3 p

4 p
5 p

6

p
1p

2

(b) The same paths in greedy order.

0 1 2 3 4 5 0 1 2 3 4 5

p
5 p

6

p
1p

2

(c) The candidate setQ1 of the first
round. Its profile is dotted.

0 1 2 3 4 5 0 1 2 3 4 5

p
3

p
5 p

6

p
1

(d) The feasible solutionQ2 found in
round 2.

Fig. 1. The decision procedure. Is there a feasible solution with 4 paths?

3 The Algorithm

The goal of the algorithm is to find a maximum sized feasible subset of paths inP . The
algorithm builds a chain of2n edges consisting of two copies of the ring glued together.
It sorts the paths inP according to the greedy order. The heart of our algorithm is a
decision procedure that, given a parameterk, decides whether there exists a feasible
solutionQ � P of sizek, or not. Clearly, the maximumk can be found by several calls
to this procedure. The decision procedure makes heavy use ofthe greedy algorithm,
which processes the paths one by one in greedy order. If adding the current path does not
exceed any capacity constraint on its edges, the path is accepted and the edge capacities
are reduced accordingly; otherwise it is rejected.

We are now ready to describe the decision procedure. We startwith the empty pro-
file. The decision procedure works in rounds. In each round, it computes a greedy so-
lution of k paths for a given profile as follows. It initializes both copies of the ring with
the edge capacities
(ei) and subtracts the profile values from the initial capacitiesof
the edges in the first copy, since these capacities are occupied by the profile. Then, it
starts to placek paths using the greedy algorithm. If the procedure runs out of paths
before it can selectk of them, there is no feasible solution of sizek. It answers “no”
and stops. Otherwise, letQi denote the candidate set ofk chosen paths in roundi. By

construction, the setQi is chain-feasible for the given starting profile, but not necessar-
ily feasible in the ring, since the tails of the chosenP2-paths together with the selected
paths inP1 and the heads of the chosenP2-paths may violate some capacity constraints.

At the end of roundi, the procedure compares the profile ofQi with the profile of
the previous round. If both are equal, the paths inQi form a feasible solution of sizek. The procedure outputsQi, answers “yes”, and stops. Otherwise, the procedure uses
the profile ofQi as the starting point for the roundi + 1. As we will prove later, the
profiles of such a greedily chosenQi serve as a lower bound for any feasible solution
in the sense that there exists no feasible solution with a smaller profile.

We illustrate the decision procedure at the example in Fig. 1. Let the capacities be
(ei) = 2 for every edgee0; : : : ; e5. We ask for a feasible solution consisting ofk = 4
paths. The paths are always processed in the greedy order, which is shown in Fig. 1(b).
In the first round the pathsp1 andp2 are accepted. The pathsp3 andp4 are rejected,
because they violate the capacity constraint of the edgee2 after the pathsp1 andp2
have been accepted. The pathsp5 andp6 are both accepted to form the candidate setQ1 = fp1; p2; p5; p6g of 4 paths shown in Fig. 1(c). The profile ofQ1 is 2 for the
edgee0, 1 for the edgee1, and0 elsewhere.Q1 is not feasible becauseL(Q1; e0) = 3
exceeds the capacity
(e0) = 2.

The procedure starts a second round, this time with the profile ofQ1 as the starting
profile. In this round the procedure accepts the paths inQ2 = fp1; p3; p5; p6g illustrated
in Fig. 1(d). The pathp2 is rejected this time, because both edgese0 ande1 are saturated
by the profile ofQ1 and the pathp1. The pathp4 is rejected for the same reason as
before. The profile ofQ2 is again2 for the edgee0, 1 for the edgee1, and0 elsewhere.
Since the resulting profile�Q2 is equal to the starting profile�Q1 , Q2 is a feasible
solution of size4. The procedure stops.

4 Correctness of the Algorithm

The decision procedure will generate a sequence of profiles and chain-feasible solutions�0 Q1 �1 Q2 �2 : : : ;
where�0 is the empty profile we start with, andQi denotes the chain-feasible solution
computed in roundi. We set the profile�i := �Qi .

We represent a chain-feasible solutionA by the indices of the chosen paths in greedy
order. A chain-feasible setA of k paths corresponds to ak-vectorA = (a1; a2; : : : ; ak),
whereai is the index of theith path chosen by the greedy algorithm. IfA andB are
two chain-feasible solutions, we writeA � B, iff ai � bi for all 1 � i � k.

Note thatA � B implies�A � �B . This can be seen by comparing theith path inA with theith path inB: Since their indicesai andbi satisfy the conditionai � bi for
all i, the paths inA contribute no more to the profile values�A(ej) than the paths inB
add to their respective profile values�B(ej) for all edgesej . Thus,�A � �B .

From� � �0 it follows easily that any chain-feasible solution for profile �0 is also
chain-feasible for profile�. In the following, we call a solutionA that is chain-feasible
for profile� minimalif for any other solutionB that is chain-feasible for� and has the
same cardinality asA, we haveA � B.

Lemma 1 (Optimality of greedy algorithm). Let � be some starting profile. If there
exists a solution of sizek that is chain-feasible for profile�, there is also a minimal
such solution, and the greedy algorithm computes this minimal solution.

Proof. Let Q be any chain-feasible solution for profile� of sizek. We transformQ
step by step into the greedy solutionG by replacing paths inQ by paths inG with
smaller index. This is done during the execution of the greedy algorithm as it processes
the paths in greedy order. We maintain the invariant thatQ is always a chain-feasible
solution of sizek and thatQ is equal toG with respect to the paths that have been
processed so far.

Initially, the invariant clearly holds. Suppose the invariant holds up to pathpi�1,
and the greedy algorithm processes the pathpi.

If adding the pathpi violates some capacity constraint,pi is not selected by the
greedy algorithm. Because of the invariant, the pathpi is not inQ either. Otherwise, the
pathpi is chosen by the greedy algorithm. We distinguish two cases:

Case 1:pi 2 Q. Since the pathpi is in bothG andQ, no transformation is needed,
andQ remains feasible.

Case 2:pi =2 Q. From the set of paths inQ with indices larger thani, we select a
pathpj with the smallest source node (starting leftmost). We transformQ by replacingpj by pi. Sincej > i, the indexj in Q is reduced toi. We have to check the invariant. If
the pathpi is contained inpj , the invariant clearly holds, since replacingpj by pi does
not affect feasibility. Otherwise, look at the remaining capacities. The edges to the left
of the pathpj do not matter, becausepj has the smallest source node among all paths inQ greater thanpi. On the edges in the intersection of the pathspi andpj , taking either
pathpi or pj does not affect the capacities. Finally, we even gain one unit of capacity
on all edges between the target node of the pathpi and the target node of the pathpj ,
sincei < j. Altogether,Q is again feasible. The invariant holds.

At the end of the greedy algorithm,Q equalsG. During the transformation we
always replaced pathspj 2 Q by pathspi 2 G with i < j. This implies thatG is less
than or equal to the initial chain-feasible solutionQ, i.e.G � Q. ut
Lemma 2. The sequence of profiles generated by the decision procedureis monotoni-
cally increasing, i.e., we have�i � �i+1 for all i.
Proof. (by induction) Fori = 0, the claim holds, since�0 is the empty profile. Assume
that the claim holds fori � 1. The induction hypothesis�i�1 � �i implies that the
greedy solutionQi+1, which is chain-feasible for profile�i, is also chain-feasible for
the profile�i�1. BecauseQi is the greedy solution for the profile�i�1, we obtainQi � Qi+1 by Lemma 1. Therefore,�i � �i+1. ut
Lemma 3. If a feasible solutionQ� with k paths exists, then each profile in the se-
quence of profiles generated by the decision procedure is bounded by the profile ofQ�,
i.e., we have�i � �Q� for all i.
Proof. (by induction) Since�0 is the empty profile, the casei = 0 holds trivially. Now
suppose�i � �Q� holds for somei. BecauseQ� is chain-feasible for�Q� , it is also
chain-feasible for�i. Then, the greedy solutionQi+1 satisfiesQi+1 � Q� by Lemma 1,
which immediately implies�i+1 � �Q� . ut

Lemma 4. The decision procedure gives correct results and terminates after at mostn �
(e0) rounds.

Proof. Assume first that there exists a feasible solutionQ� with k paths. By Lemma 3,
the profile of the chain-feasible solutions computed by the algorithm always stays below
the profile ofQ�. By Lemma 2, in each round the profile either stays the same or grows.
If the profile stays the same, a feasible solution has been found by the algorithm. If the
profile grows, the algorithm will execute the next round, andafter finitely many rounds,
a feasible solution will be found.

Now assume that the answer is “no”. Again, the profile grows ineach round, so there
can be only finitely many rounds until the algorithm does not findk paths anymore and
says “no”.

We have
Pn�1j=0 �Qi(ej) � n � �Qi(e0) � n �
(e0) for every generated profile�Qi ,

since profiles are non-increasing sequences and eachQi is chain-feasible. As the profile
grows in each round, the number of rounds is bounded byn �
(e0). ut
Theorem 1. There is a polynomial-time algorithm that computes an optimal solution
for CALL CONTROL in rings.

Proof. By Lemma 4, we have a decision procedure withn �
(e0) rounds to decide
whether there exists a feasible solution withk paths. Each round is a pass through them given paths in greedy order, which can obviously be implemented in polynomial
time. The number of rounds is polynomial as well, since we canassume without loss of
generality that
(e0) � m.

Given the decision procedure, we can use binary search onk to determine the max-
imum value for which a feasible solution exists withO(logm) calls of the decision
procedure. ut
5 Efficient Implementation

In this section, we discuss how the algorithm can be implemented efficiently and an-
alyze the worst-case running-time. Let an instance of CALL CONTROL be given bym
paths in a ring withn nodes. Each path is specified by its counterclockwise and clock-
wise endnode. We assumen � 2m since every node that is not an endpoint of a path
can be removed. A sorted list of all path endpoints can be computed in timeO(m+ n)
using bucketsort, and it suffices to do this once at the start of the algorithm. From this
list it is easy to determine the greedy order of the paths in linear time.

First we consider the implementation of the greedy algorithm for CALL CONTROL

in chain networks with arbitrary capacities that is executed in each round of the decision
procedure. While anO(mn) implementation of the greedy algorithm is straightforward,
we show in the following that it can even be implemented in linear timeO(m).
5.1 Implementation of the Greedy Algorithm for Chains

The input of the greedy algorithm consists of a chain withN = 2n + 1 nodes and
arbitrary edge capacities, a set ofm paths in the chain, and a parameterk. The algorithm

0 1 2 3 4 5 7 8 06

Fig. 2. The dummy paths for a given capacity function.

processes the paths in greedy order and accepts each path if it does not violate any edge
capacity. It stops when eitherk paths are accepted or all paths have been processed.

Let C = maxe2E
(e) denote the maximum edge capacity. Without loss of gen-
erality, we can assumeC � m. In the following, we assume that we let the greedy
algorithm run until all paths have been processed even if it accepts more thank paths.
In this way the greedy algorithm actually computes a maximumcardinality subset of
the paths that does not violate any edge capacity [4]. Stopping the greedy algorithm as
soon ask paths are accepted is then a trivial modification.

For the case that all edges have the same capacityC, a linear-time implementation
of the greedy algorithm was given in [4]. The main idea of their algorithm is to actually
compute aC-coloring of the accepted paths and to maintain theleaderfor each color
(the greatest path in greedy order colored with that color sofar) in a data structure.
When a pathp is processed, the rightmost (greatest in greedy order) leader not inter-
sectingp, denoted byleader (p), is determined. If no such leader exists,p is rejected.
Otherwisep is assigned the color ofleader (p) and becomes the new leader of that color.

The union-find data structure of [6] is used to compute leaders in amortized con-
stant time. For this purpose, each pathp has a preferred leaderadj (p), which is the
greatest path in greedy order ending to the left ofp. Whenp is processed andadj (p)
is really a leader, the correct leader forp is adj (p). Otherwise,adj (p) has either been
rejected or is no longer a leader, and an operation�nd(adj (p)) is used to determine
the rightmost leader ending no later thanadj (p), which is the correct leader forp. If
such a leader is found,p is colored with the color of that leader and the sets containingleader (p) andpred(leader (p)) are merged, wherepred(q) denotes the last path beforeq in the greedy order. If no leader is found,p is rejected and the sets containingp andpred(p) are merged. We refer to [4] for a detailed explanation why this yields a correct
implementation of the greedy algorithm.

In order to adapt this approach to the case of arbitrary capacities, we add dummy
paths to the instance to fill up theC �
(ei) units of extra capacity on every edgeei
as shown in Fig. 2 for an example. After setting all edge capacities equal toC, we
compute an optimal solution containing all dummy paths. Removing them from the
solution yields an optimal solution for the original problem. We will show later how to
modify the algorithm of [4] to ensure that all dummy paths arecolored. The dummy
paths are computed by scanning the chain from left to right and deciding at each node
how many dummy paths should start or end here: If the edges to the left and to the right
of the current node areei andei+1, then
(ei+1)�
(ei) dummy paths end at the node
if
(ei+1) >
(ei) and
(ei)�
(ei+1) dummy paths begin at the node otherwise.

In order to achieve a linear running-time, the number of dummy paths should beO(m). However, there are capacity functions where
(mn) dummy paths are needed
(e.g., capacities alternating between1 andm). Therefore, we introduce the following
preprocessing step in order to somewhat flatten the capacityfunction. We scan the chain
of nodes from left to right. Letn(i) denote the number of original paths that have nodei as their left endpoint. For each edgeei we set the new capacity
0(ei) for the edgeei to
the minimum of the original capacity
(ei) and
0(ei�1)+n(i). Hence, a decrease in the
original capacity function is replicated by the new capacity function, while an increase
is limited to the number of paths starting at the current node. We have
0(ei) �
(ei) for
all edgesei and that any subset of paths that is feasible for capacity function
 is also
feasible for capacity function
0. To see the latter, note that the number of paths using
edgeei in any feasible solution for capacity function
 is at most
(ei�1) + n(i). The
new capacity function
0 can clearly be computed in linear time.

Lemma 5. With the new capacity function
0, the number of dummy paths added by the
algorithm isO(m).
Proof. Let us define thetotal increaseof the capacity function
0 to be the sum of the
valuesmaxf
0(ei) �
0(ei�1); 0g for i = 0; : : : ; N � 1, where we take
0(e�1) = 0.
By definition of
0, the total increase of
0 is at mostm, since every increase by1 can
be charged to a different path. Now consider the dummy paths added by the algorithm.
Every dummy path ends because of an increase by1 of
0 or because the right end of
the chain is reached. Therefore, there can be at mostm+C = O(m) dummy paths. ut

After preprocessing the capacity function and adding the dummy paths, we compute
a maximumC-colorable subset of paths in which all dummy paths are colored. It is
clear that then the set of colored original paths forms an optimal solution in the original
chain (with capacities
(ei) or
0(ei)).

We must modify the algorithm of [4] to make sure that all dummypaths are accepted
and colored. We assume that all paths including dummy paths are given as a sorted list
of their endpoints such that for every nodei, the right endpoints of paths ending ati
come before the left endpoints of paths starting ati. The endpoints are processed in
this order. Now the idea is to process original paths at theirright endpoints and dummy
paths at their left endpoints to make sure that all dummy paths are accepted and colored.

We give a rough sketch of the resulting algorithm, omitting some details such as the
initialization of the union-find data structure (which is the same as in [4]). The algorithm
maintains at any point the last path whose right endpoint hasalready been processed.
This path is calledlast and is stored in a variable with the same name.

Let x be the path endpoint currently being processed andp the respective path.
First, consider the case thatx is the left endpoint ofp. Then we setadj (p) to be the
path stored inlast. If p is a dummy path, we want to colorp immediately and perform
a find operation onadj (p) to find q = leader (p). We colorp with the color ofq and
perform a union operation to merge the set containingq with the set containingpred (q).
If p is not a dummy path, nothing needs to be done forp now, becausep will be colored
later when its right endpoint is processed.

Now, consider the case thatx is the right endpoint ofp. Thenp is stored inlast, since
it is now the last path whose right endpoint has already been processed. Ifp is an original

path, we want to color it now, if possible. Therefore, we perform a find operation onadj (p) in order to find its leader. If such a leaderq is found, the color ofp is set to the
color ofq, and the set containingq is merged with the set containingpred(q); otherwise,p is rejected and the set containingp is merged with the set containingpred(p). If p is
a dummy path,p has already been colored at its left endpoint, so nothing needs to be
done forp anymore.

The union-find data structure of [6] is applicable, since thestructure of the potential
union operations is a tree (actually, even a chain). Therefore, the algorithm runs in time
linear in the number of all paths including the dummy paths. The arguments for proving
that this gives a correct implementation of the greedy algorithm are similar to the ones
given in [4] and are omitted here. Furthermore, it can be shown similar to Lemma 1 that
the computed solution is optimal.

Summing up, the algorithm does a linear-time preprocessingof the capacity func-
tion, then addsO(m) dummy paths in linear time, and then uses an adapted version of
the algorithm in [4] to run the greedy algorithm in time linear in the number of paths.

Theorem 2. The greedy algorithm computes optimal solutions forCALL CONTROL in
chains with arbitrary edge capacities and can be implemented to run in timeO(n+m),
wheren is the number of nodes in the chain andm is the number of given paths.

5.2 Analysis of Total Running Time for Rings

An instance of CALL CONTROL in ring networks is given by a capacitated ring withn
nodes andm paths in the ring. To implement the algorithm of Sect. 3, we use binary
search onk to determine the maximum value for which a feasible solutionexists. This
amounts toO(logm) calls of the decision procedure. In each call of the decisionpro-
cedure, the number of rounds is bounded byn �
(e0) according to Lemma 4. This can
be improved ton �
min by labeling the nodes such that
(e0) equals the minimum edge
capacity
min. Each round consists of one execution of the greedy algorithm, which
takes timeO(m) as shown in Sect. 5.1. Thus the total running-time of our algorithm is
bounded byO(mn
min logm).
Theorem 3. There is an algorithm that solvesCALL CONTROL in ring networks opti-
mally in timeO(mn
min logm), wheren is the number of nodes in the ring,m is the
number of paths, and
min is the minimum edge capacity.

A minor improvement in the number of calls of the decision procedure may be
obtained on certain instances as follows. We first run the greedy algorithm of Sect. 5.1
on the paths inP1. This yields an optimal feasible subsetQ of P1. Let t = jQj. Then
we know that the size of an optimal feasible subset ofP lies in the interval[t; t +minfjP2j;
(e0);
(en�1)g℄. The number of calls of the decision procedure is reduced
toO(logminfjP2j;
(e0);
(en�1)g).
6 Conclusion and Open Problems

We have presented an algorithm for CALL CONTROL in ring networks that always com-
putes an optimal solution in polynomial time. CALL CONTROL in rings is significantly

more general than the maximum edge-disjoint paths problem for rings and appears to
be close to the maximumk-colorable subgraph problem for circular-arc graphs, which
isNP -hard. Therefore, we find it interesting to see that CALL CONTROL in rings is still
on the “polynomial side” of the complexity barrier. Besidesits applications in call ad-
mission control for communication networks, the algorithmcan also be used to solve
periodic scheduling problems with rejection. Furthermore, the algorithm can be imple-
mented efficiently, and as a by-product we obtain a linear-time implementation of the
greedy algorithm that solves CALL CONTROL in chains optimally.

These results lead to some open questions for future research. First, one could con-
sider a weighted version of CALL CONTROL where each request has a certain profit and
the goal is to maximize the total profit of the accepted requests. Second, one could try to
tackle the version of CALL CONTROL where the paths for the accepted requests can be
determined by the algorithm. For both problem variants, we do not yet know whether
they can be solved optimally in polynomial time as well. We remark that the weighted
version of CALL CONTROL in chains can be solved in polynomial time by adapting the
approach based on min-cost network flow of [4].

References

1. R. Adler and Y. Azar. Beating the logarithmic lower bound:Randomized preemptive disjoint
paths and call control algorithms. InProceedings of the 10th Annual ACM–SIAM Symposium
on Discrete Algorithms SODA’99, pages 1–10, 1999.

2. A. Blum, A. Kalai, and J. Kleinberg. Admission control to minimize rejections. InProceed-
ings of the 7th International Workshop on Algorithms and Data Structures (WADS 2001),
LNCS 2125, pages 155–164, 2001.

3. A. Borodin and R. El-Yaniv.Online Computation and Competitive Analysis. Cambridge
University Press, 1998.

4. M. C. Carlisle and E. L. Lloyd. On thek-coloring of intervals.Discrete Applied Mathematics,
59:225–235, 1995.

5. E. M. Eschen and J. P. Spinrad. AnO(n2) algorithm for circular-arc graph recognition. In
Proceedings of the Fourth Annual ACM-SIAM Symposium on Discrete Algorithms SODA’93,
pages 128–137, 1993.

6. H. Gabow and R. Tarjan. A linear-time algorithm for a special case of disjoint set union.
Journal of Computer and System Sciences, 30(2):209–221, 1985.

7. J. A. Garay, I. S. Gopal, S. Kutten, Y. Mansour, and M. Yung.Efficient on-line call control
algorithms.Journal of Algorithms, 23:180–194, 1997.

8. M. R. Garey, D. S. Johnson, G. L. Miller, and C. H. Papadimitriou. The complexity of
coloring circular arcs and chords.SIAM J. Algebraic Discrete Methods, 1(2):216–227, 1980.

9. M. C. Golumbic. Algorithmic Graph Theory and Perfect Graphs. Academic Press, New
York, 1980.

10. I. A. Karapetian. On the coloring of circular arc graphs.Journal of the Armenian Academy
of Sciences, 70(5):306–311, 1980. (in Russian)

11. S. Leonardi. On-line network routing. In A. Fiat and G. J.Woeginger, editors,Online
Algorithms: The State of the Art, LNCS 1442. Springer-Verlag, Berlin, 1998.

12. S. Plotkin. Competitive routing of virtual circuits in ATM networks. IEEE Journal of Se-
lected Areas in Communications, 13(6):1128–1136, August 1995.

13. G. Wilfong and P. Winkler. Ring routing and wavelength translation. InProceedings of
the Ninth Annual ACM-SIAM Symposium on Discrete AlgorithmsSODA’98, pages 333–341,
1998.

