Call Control in Rings*

Udo Adamy, Christoph AmbueHl, R. Sai Anan&**, and Thomas Erlebaéh

! Institute for Theoretical Computer Science, ETH ZiiricB98 Ziirich, Switzerland.
{adany| anbuehl }@ nf. et hz. ch
2 Computer Engineering and Networks Laboratory, ETH ZUrB®02 Zirich, Switzerland.
{anand| er |l ebach}@i k. ee. et hz. ch

Abstract. The call control problem is an important optimization petl en-

countered in the design and operation of communication orésy The goal of
the call control problem in rings is to compute, for a givengrinetwork with

edge capacities and a set of paths in the ring, a maximumneditgli subset of
the paths such that no edge capacity is violated. We give ympuoiial-time al-

gorithm to solve the problem optimally. The algorithm is &dn a decision
procedure that checks whether a solution with at légsaths exists, which is in
turn implemented by an iterative greedy approach operatimgunds. We show
that the algorithm can be implemented efficiently and, as-prbguct, obtain a
linear-time algorithm to solve the call control problem imains optimally.

1 Introduction

Due to the ever-increasing importance of communicatiowagis for our society and
economy, optimization problems concerning the efficiergrafion of such networks
are receiving considerable attention in the research camitgniMany of these prob-
lems can be modeled as graph problems or path problems ihgrapprominent ex-
ample is thecall admission control problepwhere the task is to determine which of
the requests in a given set of connection requests to accepjeat so as to optimize
some objective, e.g., the number of accepted requestsisipdiper, we consider a call
admission control problem in ring networks and prove thagit be solved optimally
by an efficient polynomial-time algorithm. The ring topojog a fundamental network
topology that is frequently encountered in practice. As dalittonal application of our
algorithm, we show that it can also be used to compute optanlaltions to periodic
scheduling problems with rejection.

Problem Definition and Applications. The CaLL CONTROL problem considered in
this paper is defined as follows. An instance of the problegivien by an undirected
graph(V, E) with edge capacities: E — IN and a multi-sef’ of m paths in(V, E).
The paths represent connection requests whose acceptandees the reservation of
one unit of bandwidth on all edges of the path. A feasibletsmius a multi-set) C P
such that for every edgee E, the number of paths i) that contaire is at mosi:(e).

* Research partially supported by the Swiss National Sci€ocadation.
** Supported by the joint Berlin/Zurich graduate program Coratorics, Geometry, and Com-
putation (CGC), financed by ETH Zurich and the German Sci€oeadation (DFG).

Such a multi-set of paths is calledeasible seind the paths in it are callextcepted
The objective is to maximize the number of accepted pathendter we talk about a
set of paths in the following, we allow that the set is actualmulti-set, i.e., that it can
contain several instances of the same path. In this papeealendth CALL CONTROL
mainly in ring networks. Aring networkwith n nodes is an undirected graph, F)
that is a cycle on the nodés = {0,...,n — 1}. We imagine the cycle drawn in the
plane with the nodes labeled clockwise. The edge E, 0 < i < n, connects the two
neighboring nodesand(i + 1) mod n and has a non-negative integer capacigy).

The problem of @LL CONTROL in ring networks as defined above applies to var-
ious types of existing communication networks with ringdtqgy. For example, the
problem applies to ring networks that support bandwidtlemestion (e.g., ATM net-
works) and in which the route taken by a request is determinyesome other mech-
anism and cannot be modified by the call control algorithmith&rmore, it applies to
bidirectional self-healing rings with full protection. Buch rings, one direction of the
ring (say, clockwise) is used to route all accepted requizsiag normal operation, and
the other direction is used only in case of a link failure iderto reroute the active con-
nections that are affected. In all-optical WDM ring netwskith w wavelengths that
have a wavelength converter in at least one node, any sahiphths with maximum
link loadw can be established simultaneously [13]. Thus, call adorigsdntrol in such
networks can be modeled ag @ CoNTROL with all edge capacities equal ta

Furthermore, it should be noted that problems related ticachthission control are
often encountered in an on-line setting, where the requestpresented to the algo-
rithm one by one and the algorithm must accept or reject eaghast without knowl-
edge of future requests. However, we think that it is medning study the off-line
version as well for several reasons. First, an off-line calhtrol algorithm is needed
in the networkdesignphase, when a candidate topology with link capacities isicbn
ered and one wants to know how many of the forecasted traffigirements can be
satisfied by the network. Second, an off-line call contrglogithm is useful in a sce-
nario that supports advance reservation of connectiortguse then it is possible to
collect a number of reservation requests before the adomssintrol is carried out for
a whole batch of requests. Finally, an optimal off-line ealhtrol algorithm is helpful
as a benchmark for the evaluation of other off-line or orelaall control strategies.

We briefly discuss an application in periodic schedulingthdfit loss of generality,
we assume a time period of one day. Therekameachines and a set of tasks with fixed
start and end times. (For example, there could be a task fiamXo 5pm and another
task from 3pm to 2am on the following day.) Each task must loejgted or rejected. If
it is accepted, it must be executed every day from its stae to its end time on one of
the £ machines, and each machine can execute only one task at.altimgoal is to
select as many tasks as possible while ensuring that atkrafshe selected tasks are
to be executed simultaneously at any point in time. By taltirggstart times and end
times of all given tasks as nodes in a ring, we can view thestaskcalls and compute
an optimal selection of accepted tasks by solving the cpomding G\LL CONTROL
problem with all edge capacities set ko Even if the number of available machines
changes throughout the day (and the changes are the samgadaygrthe problem can
still be handled as a & L CONTROL problem with arbitrary edge capacities.

Related Work. As paths in a ring network can be viewed as arcs on a circldy pat
problems in rings are closely related ¢ocular-arc graphs A graph is a circular-arc
graph if its vertices can be represented by arcs on a ciral that two vertices are
joined by an edge if and only if the corresponding arcs iretrf9]. Circular-arc graphs
can be recognized efficiently [5]. For a given circular-araph, a maximum clique
or a maximum independent set can be computed in polynomia [B]. Coloring a
circular-arc graph with the minimum number of colors\i®-hard [8]. A coloring with
at mostl.5 w colors always exists and can be computed efficiently [10Enet is the
size of a maximum clique in the graph. Concerning owt CCONTROL problem, we
note that the special case where all edges have cagaisigguivalent to the maximum
independent set problem in circular-arc graphs. We aregsted in the case of arbitrary
edge capacities, which has not been studied previously.

Many authors have investigated call control problems foiots network topolo-
gies in the off-line and on-line setting. For topologies @aming cycles, an important
distinction for call control is whether the paths are spedifis part of the input (like we
assume in this paper) or can be determined by the algoritmthel latter case, only the
endpoints are specified in the input, and we refer to the protds @QLL CONTROL-
ANDROUTING. The special case of &LL CONTROLANDROUTING where all edges
have capacityl is called themaximum edge-disjoint patipgoblem (MEDP). We re-
fer to [3, Chapter 13] and [11, 12] for surveys on on-line aiguns for call control
problems and mention only some of the known results here.

For chains, the off-line version of A&LL CONTROL is closely related to the maxi-
mumk-colorable induced subgraph problem for interval grapline lhtter problem can
be solved optimally in linear time by a clever implementatf a greedy algorithm
provided that a sorted list of interval endpoints is giveh [Fhis immediately gives
a linear-time algorithm for @LL CONTROL in chains where all edges have the same
capacity. It is not difficult to adapt the approach to chairthwarbitrary capacities in-
curring an increase in running-time. As a by-product of dgogathm for rings, we will
obtain a linear-time algorithm for & L CONTROL in chains with arbitrary capacities.

The on-line version of @LL CONTROL in chains with unit edge capacities was
studied for the case with preemption (where interrupting discarding a call that was
accepted earlier is allowed) in [7], where competitiveadati(logn) is achieved for
a chain withn nodes by a deterministic algorithm. A randomized preenepti1)-
competitive algorithm for @LL CONTROL in chains where all edges have the same
capacity is givenin [1]. It can be adapted to ring networkéhweiqual edge capacities.

In [2], the preemptive on-line version ofALL CONTROL is studied with the number
of rejectedcalls as the objective function. They obtain competitiviora for chains
with arbitrary capacities? for arbitrary graphs with unit capacities, ay{,/m) for
arbitrary graphs withn edges and arbitrary capacities. For the off-line versibeyt
give anO (log m)-approximation algorithm for arbitrary graphs and arbireapacities.

2 Preliminaries

LetP = {p1,..., pm } denote the given set @f paths, each connecting two nodes in

the ring network. Every; € P is an ordered pair of nodes = (s;, t;) from V2 with

s; # t;. The pathp; contains all edges from theource nodes; to thetarget nodet;

in clockwise direction. For a subsét C P, theringload L(Q, e;) of an edgez; with
respect tay is the number of paths i) that contain the edgsg, i.e. L(Q,e;) := |{p €

Q@ : e; € p}|. Asubset)) C P is calledfeasibleif the ringload does not exceed the
capacity of any edge, i.€.(Q, e;) < c(e;) foralle; € E.

By opening the ring at nodeé, we partition the sef’ of paths into two disjoint
subsetsP; and P,, whereP is the set of paths that do not have nédas an internal
node andP, are the remaining paths, i.e., the paths going through ficBach path in
P, consists of two pieces: tHeeadof the path extends from its source node to node
thetail from node0 to its target node. To simplify the explanation we introdageode
n and identify it with nodd). From now on, the paths with target nodlare treated as
if they end at node:. Thus we have the characterizatibn = {p; € P : s; < t;} and
Py :{p, €P:s; >t,;}.NOtethatP:P1 U pbs.

We define a linear ordering on the pathgAras follows. All paths inP; are strictly
less than all paths . Within both subsets we order the paths by increasing tar-
get nodes. Paths with equal target nodes are ordered aitpitvéle call this ordering
greedy In the example of Fig. 1(a) the paths, .. ., ps are in greedy order. The solid
pathsp:, ..., ps are inP;. P, consists of the dotted patlps andps.

The algorithm considers a chain 2f edges consisting of two copies of the ring
glued together. The chain begins with the first copyegfand ends with the second
copy ofe,,_1, see Fig. 1(b). The tails of thi,-paths are in the second copy of the ring,
while the P, -paths and the heads of tli&-paths are in the first copy. Note that the
greedy order of the paths corresponds to an ordering by eigtipoints in this chain.

For a given set) of paths, we definé;(Q, e;) andL»(Q, ¢;) to be the load of the
paths inQ on the first copy ok; and their load on the second copyegf respectively.
Thus, the paths i?; and the heads of the paths i contribute to the load values
L, (P, e;) of the first copy of the ring. The tails of thB,-paths determine the load
valuesL. (P, e;). The ringloadL is simply the sum of.; andL.. With this definition
of Lo, we can introduce the central notion of profiles.

Definition 1 (Profiles).Let() be a set of paths. The profiteof () is the non-increasing
sequence af load valuesl, for the edges,, . .., e,_1 in the second copy of the ring,

T™Q ‘&= LQ(Q,EO) .. .L2(Q,en71).

With 7 (e;) we denote the profile valuds; (@, e;) for all edgese; € E. The empty
profile is zero everywhere. For profilesand =’ we haver < =, iff w(e;) < 7'(e;) for
alledges; € E.

A set (@ of paths is callecthain-feasibldf it does not exceed the capacity of any
edge in this chain of lengthw. In other words() is chain-feasibleif it does not exceed
the capacities in both copies of the ring, iI8(Q, e;) < ¢(e;) andLy(Q, e;) < c(e;)
for all e; € E. Itis calledchain-feasible for (starting) profile if it is chain-feasible
and in the first copy of the ring the stronger inequalitie$Q, e;) + w(e;) < ¢(e;) hold
for all e; € E. Observe that a s& of paths is feasible (in the ring) if and only if it is
chain-feasible for starting profile,.

T T T T T T 1
01 2 3 45 01 2 3 45

(a) A set of paths for the (b) The same paths in greedy order.
ring on6 nodes.

b | b, |
p2 [— | m— |
p——— | p3 |
o —
5! 51
—_—e p p— p
—_eee ‘....6.‘ % —_eee ‘....6.‘

- T T T T T T 1
01 2 3 45 01 2 3 45

01 23450102 3 4's5 |
(c) The candidate sef): of the first (d) The feasible solutiorQ, found in
round. Its profile is dotted. round 2.

Fig. 1. The decision procedure. Is there a feasible solution withthg?

3 The Algorithm

The goal of the algorithm is to find a maximum sized feasiblesstiof paths irP. The
algorithm builds a chain dfn edges consisting of two copies of the ring glued together.
It sorts the paths iP according to the greedy order. The heart of our algorithm is a
decision procedure that, given a paramétedecides whether there exists a feasible
solution@ C P of sizek, or not. Clearly, the maximurk can be found by several calls
to this procedure. The decision procedure makes heavy ugeegfeedy algorithm
which processes the paths one by one in greedy order. If gdaincurrent path does not
exceed any capacity constraint on its edges, the path iprtand the edge capacities
are reduced accordingly; otherwise it is rejected.

We are now ready to describe the decision procedure. Wevgithirthe empty pro-
file. The decision procedure works in rounds. In each rounchinputes a greedy so-
lution of k& paths for a given profile as follows. It initializes both cepiof the ring with
the edge capacitiege;) and subtracts the profile values from the initial capacities
the edges in the first copy, since these capacities are amtiyyithe profile. Then, it
starts to placé& paths using the greedy algorithm. If the procedure runs bpiaths
before it can select of them, there is no feasible solution of sizelt answers “no”
and stops. Otherwise, 16}; denote the candidate setbthosen paths in round By

construction, the s&); is chain-feasible for the given starting profile, but notessar-
ily feasible in the ring, since the tails of the chodenpaths together with the selected
pathsinP; and the heads of the chosBEs-paths may violate some capacity constraints.

At the end of round, the procedure compares the profile(@f with the profile of
the previous round. If both are equal, the pathg)inform a feasible solution of size
k. The procedure output3;, answers “yes”, and stops. Otherwise, the procedure uses
the profile of@); as the starting point for the rounid+ 1. As we will prove later, the
profiles of such a greedily chosép serve as a lower bound for any feasible solution
in the sense that there exists no feasible solution with dlsnmaofile.

We illustrate the decision procedure at the example in Figet the capacities be
c(e;) = 2 for every edge, . . ., e5. We ask for a feasible solution consistingtof 4
paths. The paths are always processed in the greedy ordeh istshown in Fig. 1(b).

In the first round the pathg, andp, are accepted. The patlpg andp, are rejected,
because they violate the capacity constraint of the edgafter the pathg, andp,
have been accepted. The pathsandps are both accepted to form the candidate set
@1 = {p1,p2,p5,p6} Of 4 paths shown in Fig. 1(c). The profile ¢f; is 2 for the
edgeey, 1 for the edges;, and0 elsewhere(); is not feasible becaude(Q)1,eq) = 3
exceeds the capacityeq) = 2.

The procedure starts a second round, this time with the profil); as the starting
profile. In this round the procedure accepts the patligir= {p1, ps, ps, ps } illustrated
in Fig. 1(d). The pathp- is rejected this time, because both edggeande; are saturated
by the profile of@); and the pattp;. The pathp, is rejected for the same reason as
before. The profile o), is again2 for the edge:, 1 for the edge=;, and0 elsewhere.
Since the resulting profile(, is equal to the starting profileg,, ()2 is a feasible
solution of sizet. The procedure stops.

4 Correctness of the Algorithm
The decision procedure will generate a sequence of profil@slhain-feasible solutions

o Q1 m Qz 2

wherem is the empty profile we start with, an@; denotes the chain-feasible solution
computed in round. We set the profiler; := 7,

We represent a chain-feasible solutiéiy the indices of the chosen paths in greedy
order. A chain-feasible set of k paths corresponds tokavectorA = (aq, as, . . ., ax),
whereaq; is the index of theth path chosen by the greedy algorithm Afand B are
two chain-feasible solutions, we writé < B, iff a; < b; forall1 < i < k.

Note thatd < B impliesms < wg. This can be seen by comparing ttle path in
A with theith path inB: Since their indices; andb; satisfy the conditior; < b; for
all i, the paths ind contribute no more to the profile values (e;) than the paths iB
add to their respective profile values (e;) for all edgesz;. Thus,m4 < 7p.

Fromn < «’ it follows easily that any chain-feasible solution for plefi’ is also
chain-feasible for profiler. In the following, we call a solutiont that is chain-feasible
for profile = minimalif for any other solutionB that is chain-feasible far and has the
same cardinality ad, we haved < B.

Lemma 1 (Optimality of greedy algorithm). Let 7 be some starting profile. If there
exists a solution of sizk that is chain-feasible for profile, there is also a minimal
such solution, and the greedy algorithm computes this naihdmlution.

Proof. Let) be any chain-feasible solution for profite of size k. We transform@
step by step into the greedy solutiéhby replacing paths i) by paths inG with
smaller index. This is done during the execution of the gyesdorithm as it processes
the paths in greedy order. We maintain the invariant thas always a chain-feasible
solution of sizek and that() is equal toG with respect to the paths that have been
processed so far.

Initially, the invariant clearly holds. Suppose the ineant holds up to pathy; 1,
and the greedy algorithm processes the path

If adding the pathp; violates some capacity constraimpt, is not selected by the
greedy algorithm. Because of the invariant, the patis not inQ) either. Otherwise, the
pathp; is chosen by the greedy algorithm. We distinguish two cases:

Case 1p; € Q. Since the path; is in bothG and@, no transformation is needed,
and(@ remains feasible.

Case 2p; ¢ Q. From the set of paths i@ with indices larger than, we select a
pathp; with the smallest source node (starting leftmost). We fi@ns) by replacing
p; by p;. Sincej > 4, the index; in @ is reduced ta. We have to check the invariant. If
the pathp; is contained irp;, the invariant clearly holds, since replacipngby p; does
not affect feasibility. Otherwise, look at the remainingaaities. The edges to the left
of the pathp; do not matter, becauge has the smallest source node among all paths in
() greater tham;. On the edges in the intersection of the pathandp;, taking either
pathp; or p; does not affect the capacities. Finally, we even gain oneairiapacity
on all edges between the target node of the patind the target node of the paih,
sincei < j. Altogether,Q is again feasible. The invariant holds.

At the end of the greedy algorithnd) equalsG. During the transformation we
always replaced paths € @ by pathsp; € G with i < j. This implies that7 is less
than or equal to the initial chain-feasible soluti@ni.e.G < Q. O

Lemma 2. The sequence of profiles generated by the decision procé&lorenotoni-
cally increasing, i.e., we have < ;4 for all 1.

Proof. (by induction) Fori = 0, the claim holds, since, is the empty profile. Assume
that the claim holds foi — 1. The induction hypothesis; ; < =; implies that the
greedy solutior®;,1, which is chain-feasible for profile;, is also chain-feasible for
the profiler; ;. Becauseay); is the greedy solution for the profile; ;, we obtain
Qi < Qiy1 by Lemma 1. Thereforer; < mit1. O

Lemma 3. If a feasible solution)* with & paths exists, then each profile in the se-
quence of profiles generated by the decision procedure indexiby the profile af)*,
i.e., we haver; < mg- for all 5.

Proof. (by induction) Sincer is the empty profile, the cage= 0 holds trivially. Now
supposer; < mg- holds for some. Becaus&)* is chain-feasible forrg-, it is also
chain-feasible forr;. Then, the greedy solutiai; ., satisfie€;,1 < @* by Lemma 1,
which immediately impliesr; ;1 < mg-. O

Lemma 4. The decision procedure gives correct results and termiafeer at most
n - ¢(eq) rounds.

Proof. Assume first that there exists a feasible solutipnwith & paths. By Lemma 3,
the profile of the chain-feasible solutions computed by therithm always stays below
the profile of@*. By Lemma 2, in each round the profile either stays the sameoargy
If the profile stays the same, a feasible solution has beamdfoy the algorithm. If the
profile grows, the algorithm will execute the next round, aftér finitely many rounds,
a feasible solution will be found.

Now assume that the answer is “no”. Again, the profile growesich round, so there
can be only finitely many rounds until the algorithm does rmud £ paths anymore and
says “no”.

We havezg.‘;ol 7. (ej) < n-mg,(en) < n-c(eg) for every generated profitey,,
since profiles are non-increasing sequences and@aischain-feasible. As the profile
grows in each round, the number of rounds is bounded by(eg). O

Theorem 1. There is a polynomial-time algorithm that computes an ogtigolution
for CALL CONTROL N rings.

Proof. By Lemma 4, we have a decision procedure with c(eg) rounds to decide
whether there exists a feasible solution witlpaths. Each round is a pass through the
m given paths in greedy order, which can obviously be impleee@in polynomial
time. The number of rounds is polynomial as well, since weassume without loss of
generality that(eq) < m.

Given the decision procedure, we can use binary searéhtowletermine the max-
imum value for which a feasible solution exists with(logm) calls of the decision
procedure. O

5 Efficient Implementation

In this section, we discuss how the algorithm can be implaeteafficiently and an-
alyze the worst-case running-time. Let an instance 8fIGCCONTROL be given bym
paths in a ring withmh nodes. Each path is specified by its counterclockwise arakelo
wise endnode. We assume< 2m since every node that is not an endpoint of a path
can be removed. A sorted list of all path endpoints can be eoatan timeO(m + n)
using bucketsort, and it suffices to do this once at the sfaheoalgorithm. From this
list it is easy to determine the greedy order of the pathsiiedr time.

First we consider the implementation of the greedy algarifor CALL CONTROL
in chain networks with arbitrary capacities that is exedumesach round of the decision
procedure. While atd(mn) implementation of the greedy algorithm is straightforward
we show in the following that it can even be implemented irdintimeO(m).

5.1 Implementation of the Greedy Algorithm for Chains

The input of the greedy algorithm consists of a chain with= 2n + 1 nodes and
arbitrary edge capacities, a setofpaths in the chain, and a parametet he algorithm

Fig. 2. The dummy paths for a given capacity function.

processes the paths in greedy order and accepts each gatbékinot violate any edge
capacity. It stops when eithérpaths are accepted or all paths have been processed.

Let C = max.cg ¢(e) denote the maximum edge capacity. Without loss of gen-
erality, we can assum€ < m. In the following, we assume that we let the greedy
algorithm run until all paths have been processed even ddaepts more thak paths.

In this way the greedy algorithm actually computes a maxinoandinality subset of
the paths that does not violate any edge capacity [4]. Stgpihie greedy algorithm as
soon ask paths are accepted is then a trivial modification.

For the case that all edges have the same cap&gcitylinear-time implementation
of the greedy algorithm was given in [4]. The main idea of tladgorithm is to actually
compute aC'-coloring of the accepted paths and to maintainlézalerfor each color
(the greatest path in greedy order colored with that colofagpin a data structure.
When a pathp is processed, the rightmost (greatest in greedy ordereleadt inter-
sectingp, denoted byleader (p), is determined. If no such leader existsis rejected.
Otherwisep is assigned the color ééader (p) and becomes the new leader of that color.

The union-find data structure of [6] is used to compute lemiteamortized con-
stant time. For this purpose, each pathas a preferred leadetdj (p), which is the
greatest path in greedy order ending to the lefpofWhenp is processed anddj (p)
is really a leader, the correct leader fois adj(p). Otherwise,adj(p) has either been
rejected or is no longer a leader, and an operatiod(adj(p)) is used to determine
the rightmost leader ending no later thad)j (p), which is the correct leader fgr. If
such a leader is foung,is colored with the color of that leader and the sets comgini
leader(p) andpred(leader(p)) are merged, whergred(q) denotes the last path before
g in the greedy order. If no leader is foundis rejected and the sets containimgnd
pred(p) are merged. We refer to [4] for a detailed explanation why thélds a correct
implementation of the greedy algorithm.

In order to adapt this approach to the case of arbitrary gapscwe add dummy
paths to the instance to fill up th@ — c(e;) units of extra capacity on every edgge
as shown in Fig. 2 for an example. After setting all edge ciigacequal toC, we
compute an optimal solution containing all dummy paths. Béng them from the
solution yields an optimal solution for the original protrieWe will show later how to
modify the algorithm of [4] to ensure that all dummy paths enéored. The dummy
paths are computed by scanning the chain from left to rightdectiding at each node
how many dummy paths should start or end here: If the edgéetett and to the right
of the current node arg ande; 1, thenc(e; 1) — c(e;) dummy paths end at the node
if c(ei+1) > c(e;) ande(e;) — ¢(e;+1) dummy paths begin at the node otherwise.

In order to achieve a linear running-time, the number of dympaths should be
O(m). However, there are capacity functions whérenn) dummy paths are needed
(e.g., capacities alternating betwekeandm). Therefore, we introduce the following
preprocessing step in order to somewhat flatten the cadacityion. We scan the chain
of nodes from left to right. Let(:7) denote the number of original paths that have node
i as their left endpoint. For each edgeve set the new capacigy(e;) for the edge; to
the minimum of the original capacityfe;) andc'(e;_1) +n(i). Hence, a decrease in the
original capacity function is replicated by the new capafiinction, while an increase
is limited to the number of paths starting at the current nddehave’ (e;) < ¢(e;) for
all edges; and that any subset of paths that is feasible for capacitytimmc is also
feasible for capacity functiod. To see the latter, note that the number of paths using
edgee; in any feasible solution for capacity functieris at moste(e;_1) + n(i). The
new capacity functiom’ can clearly be computed in linear time.

Lemma 5. With the new capacity functiat, the number of dummy paths added by the
algorithm isO(m).

Proof. Let us define thé¢otal increaseof the capacity functior’ to be the sum of the
valuesmax{c'(e;) — ¢’(ei—1),0} fori = 0,..., N — 1, where we take'(e_;) = 0.
By definition of¢’, the total increase af is at mostm, since every increase bycan
be charged to a different path. Now consider the dummy pattisdiby the algorithm.
Every dummy path ends because of an increase tfyc’ or because the right end of
the chain is reached. Therefore, there can be at masC = O(m) dummy paths. O

After preprocessing the capacity function and adding themy paths, we compute
a maximum(C'-colorable subset of paths in which all dummy paths are edlott is
clear that then the set of colored original paths forms ammgdtsolution in the original
chain (with capacities(e;) or ¢'(e;)).

We must modify the algorithm of [4] to make sure that all dunayhs are accepted
and colored. We assume that all paths including dummy paghgigen as a sorted list
of their endpoints such that for every noileghe right endpoints of paths endingiat
come before the left endpoints of paths starting.athe endpoints are processed in
this order. Now the idea is to process original paths at thglit endpoints and dummy
paths at their left endpoints to make sure that all dummyspaith accepted and colored.

We give a rough sketch of the resulting algorithm, omitting details such as the
initialization of the union-find data structure (which igtsame as in [4]). The algorithm
maintains at any point the last path whose right endpointafr@ady been processed.
This path is calledastand is stored in a variable with the same name.

Let 2 be the path endpoint currently being processed aitlde respective path.
First, consider the case thatis the left endpoint op. Then we setdj(p) to be the
path stored idast If p is a dummy path, we want to colprimmediately and perform
a find operation onudj(p) to find ¢ = leader(p). We colorp with the color ofg and
perform a union operation to merge the set contaigimgth the set containingred (q).

If pis not a dummy path, nothing needs to be donefeow, becausg will be colored
later when its right endpoint is processed.

Now, consider the case thats the right endpoint gb. Thenp is stored iflast, since
itis now the last path whose right endpoint has already bearegsed. I is an original

path, we want to color it now, if possible. Therefore, we peri a find operation on
adj(p) in order to find its leader. If such a leadgrs found, the color op is set to the
color of ¢, and the set containingis merged with the set containipged (q); otherwise,
p is rejected and the set containipdgs merged with the set containinged (p). If p is
a dummy pathp has already been colored at its left endpoint, so nothingsiée be
done forp anymore.

The union-find data structure of [6] is applicable, sincedtmacture of the potential
union operations is a tree (actually, even a chain). Theeetbe algorithm runs in time
linear in the number of all paths including the dummy path® @arguments for proving
that this gives a correct implementation of the greedy atlgor are similar to the ones
givenin [4] and are omitted here. Furthermore, it can be shsiwilar to Lemma 1 that
the computed solution is optimal.

Summing up, the algorithm does a linear-time preprocessirige capacity func-
tion, then add$)(m) dummy paths in linear time, and then uses an adapted verkion o
the algorithm in [4] to run the greedy algorithm in time liméathe number of paths.

Theorem 2. The greedy algorithm computes optimal solutions@ai.L CONTROL in
chains with arbitrary edge capacities and can be implemgtdgeun in timeO(n+m),
wheren is the number of nodes in the chain amds the number of given paths.

5.2 Analysis of Total Running Time for Rings

An instance of GLL CONTROL in ring networks is given by a capacitated ring with
nodes andn paths in the ring. To implement the algorithm of Sect. 3, we bimary
search ork to determine the maximum value for which a feasible soluégrists. This
amounts ta0(log m) calls of the decision procedure. In each call of the decigian
cedure, the number of rounds is boundedby:(eq) according to Lemma 4. This can
be improved to: - emin by labeling the nodes such thdt,) equals the minimum edge
capacitycnin. Each round consists of one execution of the greedy algoritlhich
takes timeD(m) as shown in Sect. 5.1. Thus the total running-time of ourtigm is
bounded byO (mnemin log m).

Theorem 3. There is an algorithm that solveSaLL CONTROL in ring networks opti-
mally in timeO(mnemin log m), wheren is the number of nodes in the ring, is the
number of paths, and,i, is the minimum edge capacity.

A minor improvement in the number of calls of the decisionqadure may be
obtained on certain instances as follows. We first run thedyelgorithm of Sect. 5.1
on the paths inP;. This yields an optimal feasible subsgtof P,. Lett = |@]. Then
we know that the size of an optimal feasible subsefodlies in the intervallt,t +
min{|Ps|, ¢(eg), c(en—1)}]. The number of calls of the decision procedure is reduced
to O(log min{|Ps|, c(eq), c(en—1)}).

6 Conclusion and Open Problems

We have presented an algorithm forE CONTROL in ring networks that always com-
putes an optimal solution in polynomial timeAQ. CONTROL in rings is significantly

more general than the maximum edge-disjoint paths probtemrigs and appears to
be close to the maximui-colorable subgraph problem for circular-arc graphs, Wwhic
is NP-hard. Therefore, we find it interesting to see that CCONTROL in rings is still
on the “polynomial side” of the complexity barrier. Besidesapplications in call ad-
mission control for communication networks, the algoritbam also be used to solve
periodic scheduling problems with rejection. Furthermdne algorithm can be imple-
mented efficiently, and as a by-product we obtain a lingaetimplementation of the
greedy algorithm that solvesACL CONTROL in chains optimally.

These results lead to some open questions for future rdsdsrst, one could con-
sider a weighted version ofA&LL CONTROL where each request has a certain profit and
the goal is to maximize the total profit of the accepted retgu&econd, one could try to
tackle the version of &L CONTROL where the paths for the accepted requests can be
determined by the algorithm. For both problem variants, wendt yet know whether
they can be solved optimally in polynomial time as well. Wmeak that the weighted
version of G\LL CONTRoOL in chains can be solved in polynomial time by adapting the
approach based on min-cost network flow of [4].

References

1. R. Adlerand Y. Azar. Beating the logarithmic lower bouRd&ndomized preemptive disjoint
paths and call control algorithms. Rroceedings of the 10th Annual ACM-SIAM Symposium
on Discrete Algorithms SODA’'9®ages 1-10, 1999.

2. A.Blum, A. Kalai, and J. Kleinberg. Admission control tormimize rejections. IrProceed-
ings of the 7th International Workshop on Algorithms and @&tructures (WADS 2001)
LNCS 2125, pages 155-164, 2001.

3. A. Borodin and R. El-Yaniv.Online Computation and Competitive AnalysiSambridge
University Press, 1998.

4. M.C. Carlisle and E. L. Lloyd. On thie-coloring of intervalsDiscrete Applied Mathematics
59:225-235, 1995.

5. E. M. Eschen and J. P. Spinrad. &{n?) algorithm for circular-arc graph recognition. In
Proceedings of the Fourth Annual ACM-SIAM Symposium onr@tisélgorithms SODA'93
pages 128-137, 1993.

6. H. Gabow and R. Tarjan. A linear-time algorithm for a spéciase of disjoint set union.
Journal of Computer and System Scien@&§2):209-221, 1985.

7. J. A. Garay, |. S. Gopal, S. Kutten, Y. Mansour, and M. YuBéficient on-line call control
algorithms.Journal of Algorithms23:180-194, 1997.

8. M. R. Garey, D. S. Johnson, G. L. Miller, and C. H. Papadimit The complexity of
coloring circular arcs and chordSIAM J. Algebraic Discrete Method$(2):216—227, 1980.

9. M. C. Golumbic. Algorithmic Graph Theory and Perfect Graphg\cademic Press, New
York, 1980.

10. I. A. Karapetian. On the coloring of circular arc graplisurnal of the Armenian Academy
of Sciencesr0(5):306—311, 1980. (in Russian)

11. S. Leonardi. On-line network routing. In A. Fiat and GWoeginger, editorsPnline
Algorithms: The State of the AIENCS 1442. Springer-Verlag, Berlin, 1998.

12. S. Plotkin. Competitive routing of virtual circuits inTM networks. IEEE Journal of Se-
lected Areas in Communicationk3(6):1128-1136, August 1995.

13. G. Wilfong and P. Winkler. Ring routing and wavelengtanslation. InProceedings of
the Ninth Annual ACM-SIAM Symposium on Discrete AlgoritBRHA’98 pages 333-341,
1998.

