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1. Introduction

In this paper, we consider the following parameterized functional differential equations of mixed type (MFDE)

ẋ(ξ) = L(α)xξ + f (α, xξ ), (1)

where α ∈ R, x is a continuous Rn-valued function and for any ξ ∈ R, the state xξ ∈ C := C([τmin, τmax], Cn) is defined
by xξ (θ) = x(ξ + θ). We allow τmin ≤ 0 and τmax ≥ 0, hence the operators L(α) and f (α, ·) may depend on advanced and
retarded arguments simultaneously. Furthermore, we assume that L(α): C → Rn is a linear operator, and f : C → Rn is a
smooth enough nonlinear operator satisfying f (α, 0) = 0. We say that (1) is Γ -equivariant if there exists a representation
ϱ of a group Γ such that

f (α, ϱ(γ )φ) = ϱ(γ )f (α, φ), L(α)ϱ(γ )φ = ϱ(γ )L(α)φ, (2)

for (α, γ , φ) ∈ R×Γ ×C , whereϱ(γ )φ ∈ C is given by (ϱ(γ )φ)(s) = ϱ(γ )φ(s) for s ∈ [−τ , 0]. Recall that a representation
ϱ of a groupΓ is a group homomorphism ϱ : Γ → GL(n, R). Condition (2) is equivalent to saying that system (1) is invariant
under the transformation (x, t) → (ϱ(γ )x, t) in the sense that x(t) is a solution of (1) if and only if ϱ(γ )x(t) is a solution.
Throughout this paper we always assume that Γ is a compact Lie group and system (1) is Γ -equivariant.

Historically, the primary motivation for the study of MFDE comes from the study of lattice differential equations (LDEs),
which are systems of differential equations indexed by points on an (infinite) spatial lattice. In addition, MFDE plays amajor
role in a number of applications from economic theory.

The linearization around the equilibrium 0 is

ẋ(ξ) = L(α)xξ . (3)
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The ill-posedness of the initial value problem of (3) prevents us from the construction of its semigroup and invariant
manifolds for MFDE (1) as well. This drawback has long limited our understanding of the full nonlinear system (1). It
was only during the last decade that significant theoretical progress has been made. Recently, a center manifold approach
was developed to capture all solutions of (1) that remain sufficiently close to the equilibrium 0. It was shown that the
dimension and linear structure on the center manifold are entirely determined by the holomorphic characteristic matrix
∆ : R2

→ Rn×n explicitly given by

∆(α, λ) = λIdn − L(α) exp{λ(·)}. (4)

The presence of the exponential functions with opposite signs in their arguments will in general cause the characteristic
equation det∆(α, λ) = 0 to have an infinite set of roots both to the right and left of the imaginary axis, which is completely
different from the spectrum of semigroup generators. The asymptotic location of eigenvalues for (3) was analyzed in early
work by Bellman and Cooke [1]. An important observation is that any vertical strip {z ∈ C : v1 < Re z < v2} contains only
finitely many roots.

Suppose that a pair of roots of the characteristic equation det∆(α, λ) = 0 crosses the imaginary axis at a certain
parameter value α0. Under suitable conditions the Hopf bifurcation theorem can be lifted to the infinite dimensional
setting of (1) and hence one may conclude the existence of a branch of periodic solutions to (1) bifurcating from the trivial
equilibrium x = 0 for α ∼ α0. In [2] this approach was used to analyze an economic optimal control problem involving
delays. This problemwas proposed by Rustichini in order to simplify amodel describing the dynamics of a capitalmarket [3],
whilst still retaining the periodic orbits that are compulsory for any such model. The existence of these periodic orbits
was established by numerically analyzing the resulting characteristic equation and looking for root-crossings through the
imaginary axis.

On the other hand, the presence of symmetry may cause purely imaginary eigenvalues to arise with higher multiplicities
which cause the bifurcation problem to becomemore complicated, see for instance [4]. Themost common approach to study
bifurcation problems in function differential equations involves the computation of (normal forms of) reduced bifurcation
equations on center manifolds. However, as stated before, major difficulties that need to be overcome in the construction
of center manifolds for MFDE are the absence of a semiflow and the ill-posedness of the natural initial value problem.
This precludes the direct application of the ideas developed by Faria and Magalhães [5] for retarded functional differential
equations.

In this paper, we present a treatment of generic codimension-one Hopf bifurcation for equivariant MFDEs on the basis of
equivariant Lyapunov–Schmidt reduction, following the spirit of the treatment of Golubitsky and Stewart [6,4] in the case of
equivariantODEs.Moreover, our results generalize those obtainedbyHupkes andVerduyn Lunel [7]. In theprocessweobtain
explicit expressions in terms of the original system that determine the monotonicity of the period and Hopf bifurcation
direction of branches of bifurcating symmetric periodic solutions. With these expressions at our disposal, the study of
equivariant Hopf bifurcation in explicit examples can be performed without having to resort to lengthy computations
associated to center manifold reduction.

2. Main results

We first focus our attention on the state space C and define a closed and densely defined operatorAα: Dom(Aα) ⊂ C →

C , via

Dom(Aα) = {ϕ ∈ C 1
| ϕ′(0) = L(α)ϕ},

Aαϕ = ϕ′,
(5)

where C 1
= C1([τmin, τmax], Cn). Note that the closedness of Aα can be easily established using the fact that differentiation

is a closed operation, together with the continuity of L(α). The density of the domain Dom(Aα) follows from the density
of C1-smooth functions in C , together with the fact that for any ε > 0 and any neighbourhood of zero, one can modify an
arbitrary C1 functionϕ in such away thatϕ′(0) can be set atwill, whileϕ(0) remains unchanged and ‖ϕ‖ changes by atmost
ε. C is indeed a state space for the homogeneous equation (3) in some sense, even though one cannot view this equation as
an initial value problem (see, for example, [7]).

The spectrum of Aα , denoted by σ(Aα), is the point spectrum (see [7] for a detailed proof). Moreover, λ is an eigenvalue
of Aα , i.e., λ ∈ σ(Aα), if and only if λ satisfies that det∆(α, λ) = 0, where the characteristic matrix ∆(α, λ) is given by (4).
Moreover, φ ∈ C is an eigenvector of Aα associated with the eigenvalue λ if and only if φ(θ) = eλθb for θ ∈ [−τ , 0] and
some vector b ∈ Cn such that ∆(α, λ)b = 0. Assume that det∆(0, λ) = 0 has a pair of purely imaginary roots at λ = ±iβ0.
The symmetry group Γ often causes purely imaginary roots to be multiple. So, we always assume that

(H1) The characteristic equation det∆(0, ·) = 0 has a pair of purely imaginary roots at ±iβ0, each of multiplicitym, and no
other root belongs to iβ0Z.

In studying the bifurcation problem we wish to consider how the eigenvalues of Aα cross the imaginary axis at α = 0
and to describe the structure of the associated eigenspace Eα,λ. We consider the following nontrivial restrictions on the
corresponding imaginary eigenspace of A0.
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(H2) E0,±iβ0 is Γ -simple.

Thus, wemake use of the implicit function theorem and Lemma 1.5 in Page 265 of [4] and obtain the following results about
the multiplicity of this eigenvalue and its associated eigenvectors of Aα .

Theorem 2.1. Under conditions (H1)–(H2) , for sufficiently smallα, infinitesimal generator Aα has one pair of complex conjugate
eigenvalues σ(α) ± iρ(α), each of multiplicity m. Moreover, σ and ρ are smooth functions of α and satisfy that σ(0) = 0 and
ρ(0) = β0.

In view of (H1) , the purely imaginary eigenvalues of A0 has high multiplicity, so the standard Hopf bifurcation theorem
cannot be applied directly. So,we first develop the equivariant Lyapunov–Schmidt reduction for (1) to consider the existence
of periodic solutions. Let ω0 = 2π/β0, and Cω0 (respectively, C 1

ω0
) be the set of continuous (respectively, differentiable)

n-dimensional ω0-periodic mappings. If we denote

‖x‖0 = max
1≤i≤n

max
t∈[0,ω0]

{|xi(t)|}

for x = (x1, x2, . . . , xn)T ∈ C ω0 , and ‖x‖1 = max{‖x‖0, ‖ẋ‖0} for x∈ C 1
ω0
, then Cω0 and C 1

ω0
are Banach spaces when they

are endowed with the norms ‖ · ‖0 and ‖ · ‖1, respectively. It is easy to see that Cω0 is a Banach representation of the group
Γ × S1 with the action given by

(γ , θ)u(t) = ϱ(γ )u(t + θ), for (γ , θ) ∈ Γ × S1.

We introduce the inner product ⟨·, ·⟩ : C ω0 ×C ω0 → R defined by ⟨v, u⟩ =
1
ω0

 ω0
0 vT (t)u(t)dt for u, v ∈ C ω0 . Let

β ∈ (−1, 1), x(ξ) = u(t), t = (1 + β)ξ . Then Eq. (1) can be rewritten as

(1 + β)u̇(t) = L(α)ut,β + f (α, ut,β),

where ut,β(θ) = u(t + (1 + β)θ) for θ ∈ [τmin, τmax]. Define F : C 1
ω0

×R2
→ C ω0 by

F(u, α, β) = −(1 + β)u̇(t) + f (α, ut,β). (6)

By varying the newly introduced small variable β , one keeps track not only of solutions of (1) with period ω0 but also of
solutions with nearby period. In fact, solutions to F(u, α, β) = 0 correspond to ω0

1+β
-periodic solutions of (1). It follows

that the Γ -equivariance of L and f that F is Γ × S1-equivariant. The operator Lu = −u̇ + L(0)ut is the linearization
of F at the origin. Obviously, the elements of KerL correspond to solutions of the linear system u̇ = L(0)ut satisfying
u(t) = u(t + ω0). Let L∗ be the adjoint operator of L, satisfying ⟨v, Lu⟩ = ⟨L∗v, u⟩ for all u, v ∈ C 1

ω0
. It follows

from (H1) that KerL ∼= Ker∆(0, ±iβ0) and KerL∗ ∼= Ker∆∗(0, ±iβ0), both of which are 2m-dimensional. Furthermore,
we have.

Lemma 2.1. Spaces KerL, RangeL, and Q = (KerL∗)⊥


C
1
ω0

are Γ × S1-invariant subspaces of Cω0 . Moreover, Cω0 =

KerL ⊕ RangeL and C 1
ω0

= KerL ⊕ Q.

Let P and I − P denote the projection operators defined by P: Cω0 → RangeL and I − P: Cω0 → KerL. Obviously, P and
I − P are Γ × S1-equivariant. Thus, F(u, α, β) = 0 is equivalent to the following system:

PF(v + w, α, β) = 0,
(I − P)F(v + w, α, β) = 0. (7)

Here we have written u∈ C ω0 in the form u = v + w, with v = (I − P)u ∈ KerL and w = Pu ∈ Q. Near the critical point
(u, α, β) = (0, 0, 0), the implicit function theorem implies that the first equation of (7) can be solved for w = W (v, α, β),
where W : KerL × R2

→ Q is a continuously differentiable S1-equivariant map satisfying W (0, 0, 0) = 0. Substituting
w = W (v, α, β) into the second equation of (7), we have

B(v, α, β) ≡ (I − P)F(v + W (v, α, β), α, β) = 0. (8)

Thus, we reduce our Hopf bifurcation problem to the problem of finding zeros of themap B : KerL×R2
→ KerL. We refer

to B as the bifurcation map of the system (1). It follows from the Γ × S1- equivariance of F andW that the bifurcation map
B is also Γ × S1-equivariant. Moreover, B(0, 0, 0) = 0 and Bv(0, 0, 0) = 0.

Finding periodic solutions to (1) rests on prescribing in advance the symmetry of the solution we seek. This can often be
used to select a subspace onwhich the eigenvalues are simple. In addition, we should take temporal phase-shift symmetries
in terms of the circle group S1 into account as well as spatial symmetries. Here, we place emphasis on two-dimensional
fixed-point subspaces and assume that

(H3) dim Fix(Σ, E0,±iβ0) = 2 for some subgroup Σ of Γ × S1.
(H4) σ ′(0) ≠ 0.
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Assumption (H4) is the transversality condition analogous to those of the standard Hopf bifurcation theorem. Now, we can
present our main results about equivariant Hopf bifurcation.

Theorem 2.2. Under conditions (H1)–(H4), in every neighbourhood of (x = 0, α = 0) system (1) has a bifurcation of periodic
solutions whose spatio-temporal symmetry can be completely characterized by Σ .

Proof. We consider the restriction mapping B : Fix(Σ,KerL) × R2
→ KerL of B : KerL × R2

→ KerL on
Fix(Σ,KerL) × R2, i.e., B(v, α, β) = (I − P)F(v + W (v, α, β), α, β) for v ∈ Fix(Σ,KerL), α ∈ R, and β ∈ R.
Clearly, B is also Γ × S1-equivariant, and satisfies that B(0, 0, 0) = 0 and Bv(0, 0, 0) = 0. Moreover, it is easy to see
that RangeB ⊆ Fix(Σ,KerL). Namely, B maps Fix(Σ,KerL) × R2 to Fix(Σ,KerL). Therefore, we only need to consider
the existence of nontrivial zeroes of B.

Without loss of generality, assume that Fix(Σ,KerL) = span{q, q}, where q(θ) = Aeiβ0θ and A ∈ Cn satisfies
∆(0, iβ)A = 0. As stated in Theorem 2.1, for sufficiently small α, the infinitesimal generator Aα has one pair of complex
conjugate eigenvalues λ(α), each ofmultiplicitym. Moreover, there exists a C1-continuous function A(α) such that A(0) = A
and ∆(α, λ(α))A(α) ≡ 0 for all sufficiently small α, we differentiate it with respect to α at α = 0 and obtain

[∆α(0, iβ0) + λ′(0)∆λ(0, iβ0)]A + ∆(0, iβ0)A′(0) = 0. (9)

In addition, there exists B ∈ Cn such that B
T
∆(0, iβ0) = 0 and p = Beiβ0(·) ∈ Fix(Σ,KerL∗) = Fix(Σ,KerL)∗. Thus,

multiplying both sides of (9) by B
T
gives us

B
T
∆α(0, iβ0)A + λ′(0)B

T
∆λ(0, iβ0)A = 0. (10)

In fact, we can normalize B ∈ Cn such that B
T
∆λ(0, iβ0)A = 1. Thus, it follows from (10) that λ′(0) = −B

T
∆α(0, iβ0)A.

For each φ ∈ Fix(Σ,KerL), φ = zq + zq, where z = ⟨p, φ⟩. Let

g(z, α, β) := ⟨p, B(zq + zq, α, β)⟩.

Thus, we only need to consider the existence of nontrivial solutions to g(z, α, β) = 0. It follows that gz(0, 0, 0) = 0 and
gz(0, 0, 0) = 0. It is easy to see that g(z, α, β) is S1-equivariant. Using similar arguments to that in [4], we can find two
functions ℜ, ℑ : R3

→ R such that

g(z, α, β) = ℜ(|z|2, α, β)z + ℑ(|z|2, α, β)iz. (11)

It follows from gz(0, 0, 0) = 0 that ℜ(0, 0, 0) = 0 and ℑ(0, 0, 0) = 0. Let z = reiθ . Then solving g is equivalent to either
solving r = 0 orℜ(r2, α, β) = 0 andℑ(r2, α, β) = 0. In view of the implicitly defined functionW (v, α, β), which vanishes
through first order in v = zq + zq, we have

F(v + W (v, α, β), α, β) = −(1 + β)v̇(t) + L(α)vt,β + O(|z|2).

Therefore,

gα(z, 0, 0) = ⟨p, Fα(v, 0, 0)⟩
= ⟨p, L′(0)vt⟩ + O(|z|2)
= ⟨p, L′(0)qt⟩z + ⟨p, L′(0)qt⟩z + O(|z|2)

= zB
T
L′(0)(Aeiβ0(·)) + O(|z|2)

= zλ′(0) + O(|z|2).

In addition,

gβ(z, 0, 0) = ⟨p, Fβ(v, 0, 0)⟩

= ⟨p, −v̇(t) + iβ0L(0)(θv(t + θ))⟩ + O(|z|2)
= ⟨p, −iβ0q(t) + iβ0L(0)(θq(t + θ))⟩z + ⟨p, −iβ0q(t) + iβ0L(0)(θq(t + θ))⟩z + O(|z|2)
= −iβ0z + iβ0L(0)(θAeiβ0θ )z + O(|z|2)
= −iβ0z + O(|z|2).

Therefore,Gα(0, 0, 0) = λ′(0) andGβ(0, 0, 0) = −β0. So the Jacobian determinant of the real and imaginary part of function
g with respect to α and β is

det
[
Re{gα(0, 0, 0)} Re{gβ(0, 0, 0)}
Im{gα(0, 0, 0)} Im{gβ(0, 0, 0)}

]
= −β0 Re{λ′(0)}.
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Thus, under condition (H4), the above Jacobi determinant is nonzero. The implicit function theorem implies that there exists
a unique function α = α(r2) and β = β(r2) satisfying α(0) = 0 and β(0) = 0 such that

ℜ(r2, α(r2), β(r2)) ≡ 0, ℑ(r2, α(r2), β(r2)) ≡ 0 (12)

for all sufficient small r . Therefore, g(z, α(|z|2), β(|z|2)) ≡ 0 for z sufficiently near 0. Therefore, system (1) has a bifurcation
of periodic solutions whose spatio-temporal symmetry can be completely characterized by Σ . This completes the proof of
Theorem 2.2. �

Remark 2.1. Theorem 2.2 implies that a Hopf bifurcation for (1) occurs at α = 0. Namely, in every neighbourhood of
(x = 0, α = 0) there is a branch of Σ-symmetric periodic solutions x(t, α) with x(t, α) → 0 as α → 0. The period
ωα of x(t, α) satisfies that ωα → ω0 as α → 0. Moreover, Γ -equivariance implies that there are (Γ × S1)/Σ different
periodic solutions, which have isotopy subgroups conjugate to Σ in Γ × S1.

In what follows, we consider the bifurcation direction. Assuming sufficient smoothness of f , we write

f (0, ϕ) =
1
2

E(ϕ, ϕ) +
1
6

F (ϕ, ϕ, ϕ) + o(‖ϕ‖
3). (13)

WriteW (zq + zq, 0, 0) and g(z, 0, 0) as

W (zq + zq, 0, 0) =

−
s+l≥2

1
s!l!

Wslzsz l g(z, 0, 0) =

−
s+l≥2

1
s!l!

gslzsz l.

It follows from (11) that g21 = ℜ1(0, 0, 0) + iℑ1(0, 0, 0), where ℜ1(u, α, β) = ℜu(u, α, β) and ℑ1(u, α, β) = ℑu(u, α, β).
Therefore, ℜ1(0, 0, 0) = Re{g21} and ℑ1(0, 0, 0) = Im{g21}. From (12), we can calculate the derivatives of α(r2) and β(r2)
and evaluate at r = 0:

α′(0) = −
Re{g21}
Re{λ′(0)}

, β ′(0) = −
Im{λ′(0)g21}
Re{λ′(0)}

.

The bifurcation direction is determined by signα′(0), and the monotonicity of period of bifurcating closed invariant curve
depends on signβ ′(0). Using a similar argument as that in [6], we have

g21 = ⟨p, F (q, q, q)⟩ + 2⟨p, E(q,W11)⟩ + ⟨p, E(q,W20)⟩.

We still need to computeW11 and W20. In fact, it follows that

W20 = −L−1PE(q, q),
W11 = −L−1PE(q, q).

In order to evaluate functionW20, we must solve the following differential equations

Ẇ20 − L(0)W20 = PE(q, q). (14)

Note that B(q, q) = B(Aeiβ0(·), Aeiβ0(·))e2iβ0t and E(q, q) = E(Aeiβ0(·), Aeiβ0(·))e2iβ0t . So, g20 = ⟨p, E(q, q)⟩ = 0. Namely,
E(q, q) ∈ RangeL. Hence, the projection P on E(q, q) acts as the identity, and (14) is an inhomogeneous difference equations
with constant coefficients. Thus, there is a particular solution of (14) of the form W ∗

20(t) = D2e2iβ0t . Substituting W ∗

20 into
(14) and comparing the coefficients, we obtain

D2 = ∆−1(0, 2iβ0)E(Aeiβ0(·), Aeiβ0(·)). (15)

In addition, W ∗

20 is orthogonal to p, so it belongs to RangeL. Thus W20(0, 0, 0) is equal to W ∗

20 with D2 determined by (15).
Similarly, we have

W02 = D2e−2iβ0t , W11 = D0,

where D0 = ∆−1(0, 0)E(Aeiβ0(·), Ae−iβ0(·)). Therefore,

g21 = B
T
F (Aeiβ0(·), Aeiβ0(·), Ae−iβ0(·)) + 2B

T
E(Aeiβ0(·),D0) + B

T
E(Ae−iβ0(·),D2).

We summarize the above discussion as follows.

Theorem 2.3. In addition to conditions (H1)–(H4), assume that L(α) and f (α, ·) are sufficiently smooth. Then there exists a
branch of Σ-symmetric periodic solutions, parameterized by α, bifurcating from the trivial solution x = 0 of (1). Moreover,

(i) Re{λ′(0)}Re{g21} determines the direction of the bifurcation: the bifurcation is supercritical (respectively, subcritical), i.e. the
bifurcating periodic solutions exist for α > 0 (respectively, < 0), if Re{λ′(0)}Re{g21} < 0 (respectively, > 0). and

(ii) Re{λ′(0)}Im{λ′(0)g21} determines the period of the bifurcating periodic solutions along the branch: the period is greater than
(respectively, smaller than) ω0 if it is positive (respectively, negative).
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3. Application to a ring network

To illustrate the results presented above, we consider a ring network consisting of 3 identical elements with nearest-
neighbour coupling:

u̇j(t) = −uj(t) + 2uj(t − 1) + ag(uj+1(t + 1) − uj+1(t − 1)) + ag(uj−1(t + 1) − uj−1(t − 1)), (16)

where j (mod 3), g ∈ C3(R; R) with g(0) = g ′′(0) = 0 and g ′(0) = 1, and a ∈ R is the bifurcation parameter. Define the
action of the dihedral group D3 on R3 by

(ρ · u)j = uj+1 and (κ · u)j = u2−j (17)

for all j (mod 3) and u ∈ R3. It is easy to see that system (16) is D3-equivariant. The holomorphic characteristic matrix of
the linearized system of (16) around the equilibrium 0 is given by

∆(a, λ) =

λ + 1 − 2e−λ a(e−λ
− eλ) a(e−λ

− eλ)

a(e−λ
− eλ) λ + 1 − 2e−λ a(e−λ

− eλ)

a(e−λ
− eλ) a(e−λ

− eλ) λ + 1 − 2e−λ

 .

Obviously, det∆(a, λ) = [λ+1−2aeλ
−2(1−a)e−λ

][λ+1+aeλ
− (2+a)e−λ

]
2. LetA(a) be the linear operator associated

with the linearization of (16) about the equilibrium 0. It can be shown that λ ∈ C is an eigenvalue of A(a) if and only if
det∆(a, λ) = 0, that is, either [λ + 1 − 2aeλ

− 2(1 − a)e−λ
= 0 or λ + 1 + aeλ

− (2 + a)e−λ
]
2

= 0.
Firstly, λ + 1 − 2aeλ

− 2(1 − a)e−λ has a pair of purely imaginary zeros ±iβ0 if 1 = 2 cosβ0 and β0 = 2(2a − 1) sinβ0.
This results in a family of bifurcation values a1,k ∈ R, where a1,k = (βk + 2 sinβk)/(4 sinβk) for k ∈ N, and {βk}

∞

k=1 is
a strictly increasing sequences of positive numbers satisfying cosβk =

1
2 for all k ∈ N and limk→∞ βk = ∞. Obviously,

β1 =
π
3 . Moreover, if λ(a) is a smooth curve of zeros of λ + 1 − 2aeλ

− 2(1 − a)e−λ with λ(a1,k) = iβk, it is easy to see that

λ′(a1,k) = 4ih−1
1,k sinβk (18)

and hence that Re{λ′(a1,k)} < 0, where h1,k = 1 − 2a1,keiβk + 2(1 − a1,k)e−iβk . Therefore, A(a1,k) has a pair of purely
imaginary eigenvalues ±iβk with the associated eigenspace E0 spanned by the eigenvectors eiβk(·)v0 and e−iβk(·)v0, where
v0 = (1, 1, 1)T . In view of (17), it follows from the action of D3 × S1 on E0 that the D3 × S1-action on C is given by ρ · z = z,
κ · z = z, and θ · z = eiβkθ z for z ∈ C. Obviously, the maximal isotropy subgroup is D3, which corresponds to a Hopf
bifurcation in which D3 symmetry is preserved. Thus, all elements are synchronous (i.e., have the samewaveform andmove
in phase). Namely, the state (u1(t), u2(t), u3(t)) of system (16) satisfies uj(t) = u(t) for all j = 1, 2, 3, where u(t) is the
periodic solution to the following system

u̇(t) = −u(t) + 2u(t − 1) + 2ag(u(t + 1) − u(t − 1)). (19)

Similarly, λ + 1+ aeλ
− (2+ a)e−λ has a pair of purely imaginary zeros ±iβ0 if 1 = 2 cosβ0 and β0 = −2(a+ 1) sinβ0.

This results in a family of bifurcation values a2,k ∈ R, where a2,k = −(βk + 2 sinβk)/(2 sinβk) for k ∈ N, and {βk}
∞

k=1 is
defined as above. Moreover, if λ(a) is a smooth curve of zeros of λ + 1 + aeλ

− (2 + a)e−λ with λ(a2,k) = iβk, it is easy to
see that

λ′(a2,k) = −2ih−1
2,k sinβk (20)

and hence that Re{λ′(a2,k)} > 0, where h2,k = 1 + a2,keiβk + (2 + a2,k)e−iβk . Therefore, A(a2,k) has a pair of purely
imaginary eigenvalues ±iβk with the associated eigenspace E0 = span{eiβk(·)v1, eiβk(·)v1, e−iβk(·)v1, e−iβk(·)v1}, where v1 =

(1, e2π i/3, e−2π i/3). It follows from [8] that

Fix(Σ+

κ ) = span{w1 cos(βkt), w1 sin(βkt)},
Fix(Σ−

κ ) = span{w2 cos(βkt), w2 sin(βkt)},
Fix(Σ+

ρ ) = span{Re(v1eiβkt), Im(v1eiβkt)},

Fix(Σ−

ρ ) = span{Re(v1eiβkt), Im(v1eiβkt)},

(21)

where w1 = Re(v1), w2 = Im(v1), Σ+
κ is generated by (κ, 0) ∈ D3 × S1, Σ−

κ is generated by (κ, π) ∈ D3 × S1, and Σ±
ρ is

generated by (ρ, ± 2π
3 ) ∈ D3 × S1. Namely, Σ±

κ and Σ±
ρ are maximal isotropy subgroups of D3 × S1. Firstly, the isotropy

subgroups Σ±
ρ correspond to phase-locked waves of (16), which take the form

ui(t) = ui+1


t ±

ω

3


(22)

for all t ∈ R and i (mod 3), where ω > 0 is a period of u(t). That is, all elements have identical waveforms but are phase-
shifted by ω/3. Next, the isotropy subgroup Σ+

κ corresponds to a mirror-reflecting wave of (16), which takes the form

xi(t) = x2−i(t) (23)
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for all t ∈ R and i (mod 3). Thus, the second and third elements behave identical, i.e., they have the same waveform and
move in phase. Finally, the isotropy subgroup Σ−

κ corresponds to a standing wave of (16), which takes the form

xi(t) = x2−i


t −

ω

2


(24)

for all t ∈ R and i (mod 3), whereω > 0 is a period of u(t). Namely, the second and third elements have identical waveforms
but are phase-shifted by half a period, the first element has different waveform and twice the frequency of the others, i.e., it
is half a period out of phase with itself.

We summarize the above discussion as follows.

Theorem 3.1. (i) Near a = a1,k for each k ∈ N, there exists a branch of synchronous periodic solutions of period ω near
(2π/βk) bifurcated from the zero solution of the system. (ii) Near a = a2,k for each k ∈ N, there exist 8 branches of asynchronous
periodic solutions of period ω near (2π/βk) bifurcated from the zero solution of the system and these are two phase-locked
waves, 3mirror-reflecting waves, and 3 standing waves.

In what follows, we start with the two phase-locked oscillations mentioned above, which are characterized by Σ±
ρ . In

view of (21), for the vectors A and B defined in Section 2, we choose A = 3h2,kB = v1 or A = 3h2,kB = v1 such that

∆(a2,k, iβ0)A = 0, B
T
∆(a2,k, iβ0) = 0, B

T
∆λ(a2,k, iβ0)A = 1. (25)

We have

g21 = −12ia2,kg ′′′(0)h−1
2,k sin

3 βk = 6a2,kg ′′′(0) sin2 βkλ
′(a2,k)

and hence

sgn{Re{g21}} = sgn{a2,kg ′′′(0)}. (26)

Similarly, we choose A =
3
2h2,kB = w1 for the mirror-reflecting waves characterized by Σ+

κ , and A =
3
2h2,kB = w2 the

standing waves characterized by Σ−
κ . By a direct computation, we also have sgn{Re{g21}} = sgn{a2,kg ′′′(0)}.

Finally, for the synchronous periodic solution mentioned in Theorem 3.1, we can show that sgn{Re{g21}} =

−sgn{a1,kg ′′′(0)}. Thus, applying Theorem 2.3, we have the following results.

Theorem 3.2. Near a = aj,k for each j ∈ {1, 2} and k ∈ N, system (16) undergoes a Hopf bifurcation, the bifurcation direction
is determined by the sign of aj,kg ′′′(0). More precisely, if aj,kg ′′′(0) < 0 (or >0) then the Hopf bifurcation is supercritical
(respectively, subcritical) and all the bifurcating asynchronous periodic solutions exist for a > aj,k (respectively, <aj,k).
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