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Abstract 

Channel routing is a vital task in the layout design of VLSI circuits. Multiterminal channel 
routing is different from two-terminal one. While the later is quite understood, the former still 
poses the difficulty. In this paper, we investigate the multiterminal channel routing problem in a 
hexagonal model, whose grid is composed of horizontal trucks, right tracks (with slope +60”), 
and left trucks (with slope -60’). We present an efficient algorithm for routing multiterminal 
nets on a channel of width d + 3, where d is the problem density. Furthermore, we can wire 
the layout produced by the router using four layers and there are no overlaps among different 
layers. This improves the previous known results [ 15, 191. 0 1999 Elsevier Science B.V. All 
rights reserved. 
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1. Introduction 

Channel routing plays an important role in the development of automated layout 

systems for integrated circuits [2, lo]. Many layout systems first place modules on a 

chip and then wire together terminals on different modules that should be electrically 

connected. This wiring problem is often solved by heuristically partitioning the given 

space into rectangular channels and then assigning to each such channel a set of wires 

that are to pass through it. This method reduces a “global” wiring problem to a set 

of disjoint “local” channel routing subproblems. For this reason, the channel routing 

problem has been intensively studied for over a decade, and numerous heuristics and 

approximation algorithms have been proposed [1, 7-9, 171. 

The Channel Routing Problem consists of connecting terminals belonging to nets, 

which are displayed on two opposite sides (entry and exit lines) of a rectangular 

channel. The main objective is to complete the connections in a channel of mini- 

mum width. The solution of a channel routing problem consists of how to construct 

a layout for the nets (routing), and how to distrbute the layout on the conductive 
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Fig. I. A multiteminal CRP instance. 

layers that support the tracks (Going). A net N = (P, Q) is represented by a pair 

of subsets P, Q of entry and exit terminals to be connected all together. Usually, 

terminals are represented by positive integers. The span of N = (X, Y) is defined as 

the pair [a, 61 where a = min(x: x E X U Y) and b =max(x: x EX U Y). We represent 

a multiterminal net of span [a, b] with a horizontal segment from abscissa a to b, 

with downward and upward spokes corresponding to the entry and exit terminals, 

respectively. A multiterminal channel routing problem is shown in Fig. 1, where 

Nl =({1,10,11},{2,7}), N2=({),{1L14,16}), N3=({2,6},{3,4}), N4=({7,12}, 

{lo}), N~=({14,17},{12,17}),N~=({3,4},{5,8}) and N~=({9,16},{15}). A net is 

a two-terminal net if IPU Ql =2. A two-terminal net is a unit net if b - a = 1, and a 

trivial net if b - a = 0 (i.e., P = Q = {x}). 

A fundamental parameter of the channel routing problem is the channel density 

d defined as follows. The density d is the maximum number of nets of spans 

(al, bl), . . . , (ad, bd) such that a non-integer value x with a, <x < bi (1 <i<d) exists. 

That is, d is the maximum number of different nets crossing an arbitrary vertical line 

of abscissa x. In the example of Fig. 1, we have d = 3. 

In this paper, we study the channel routing problem on a hexagonal grid. The paper 

is divided into sections as follows: In Section 2, we introduce the routing model and 

review the related results. In Section 3, we present an extended left-edge algorithm 

[lo] for the multiterminal channel routing that obtains d + 3 as an upper bound to the 

channel width, where d is the problem density. Furthermore, we can wire the layout 

produced by the router using four layers, and there are no overlaps among different 

layers. In Section 4, we discuss our result in comparison with those for other models 

and pose some open problems for further research. 

2. Motivations and routing model 

An important issue for routing problems is the routing model. A routing model 

specifies the constraints and the rules of wire layout. A variety of routing models 

have been proposed for channel routing, with differences on underlying tessellations of 

the plane, the number of layers allowed and the ways in which wires are allowed to 

interact. Three main models have been investigated: the Manhattan model (MM) [l], 
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Fig. 2. A channel in TSM. 

the knock-knee model (IX) [3, 9, 171 and the overlap model [8]. In the Manhattan 

model, two wires may share a grid point only by crossing at that point, but the wires are 

not allowed to overlap. In the knock-knee model, wires may share a grid point either 

by crossing or by bending at that point, but two wires are not allowed to overlap. In 

the overlap model, two wires are allowed to overlap. Besides the usual square grid, 

other tessellations of the plane, such as the diagonal grid [5, 13, 14, 16, 201, hexagonal 

grid [ 15, 19, 231, octagonal grid [ 181, and tri-hexagonal grid [21], have been proposed 

for solving channel routing problems. Some results on the wirability on uniform grids 

can be found in [12, 221. 

The routing model we use is called Times Square Model (TSM) [ 151, where the 

grid is composed of horizontal tracks, right tracks (with slope +60”), and left tracks 

(with slope -60”). Clearly, TSM requires at least three layers if the wire crossing is 

allowed. A channel on the TSM grid is shown in Fig. 2. The entry and exit terminals 

are located at unit distance on the entry and exit lines. The channel width w is the 

number of horizontal tracks. To align the entry and exit terminals on vertical straight 

lines, the channel must be composed of odd width w = 2h + 1. We will present an 

efficient algorithm for routing multiterminal nets in TSM that obtains d + 3 as an 

upper bound to the channel width, where d is the problem density. Furthermore, we 

can wire the layout produced by the router using four layers. In our routing, knock-knee 

contacts are allowed, but no overlaps exist. 

To evaluate the interest on TSM, let us compare it with the other routing models. For 

both Manhattan and knock-knee routing models [ 1, 171, density d is a lower bound on 

channel width. The Manhattan model also has flux f as a lower bound, where flux f 
can be as large as n(fi). To eliminate this defect, a variation of the Manhattan model, 

called diagonal modeZ (DM), was proposed in [13, 14, 161. The grid is composed of 

right diagonal tracks with slope f45” and left diagonal tracks with slope -45”. For 

a multiterminal channel routing problem with density d, a 5d DM router was given 

in [ 161. However, DM suffers from the fact that if the given channel routing problem 

has terminals placed one unit apart, then the distance between two parallel adjacent 
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diagonal tracks, as well as the distance between any two adjacent grid points, is fi/2. 

In TSM the situation is much better. If terminals are placed one unit apart, the distance 

between two parallel adjacent tracks is 412, while the distance between two adjacent 

grid points remains one (see also Fig. 2). This appears to be acceptable in current 

technology, because wires are much narrower than contact cuts, and the separation 

distance between two connections is generally established by the closest vias [24]. 

Routing on hexagonal grid has been studied in recent years. The Steiner grid (based 

on a hexagonal grid) was first proposed for routing in [6]. A router, called Overture, 

was proposed in [23], which obtains 2d/5 <w <d for two terminal channel routing 

problem in three layers. In [4], Brady et al. studied the channel routing problem on 

the hexagonal grid where the grid consists of vertical tracks, right and left tracks 

with slopes +30” and -3O”, respectively. They gave an algorithm that solves the 

channel routing problem of two terminal nets of maximum horizontal span s in width 

2s/& + 0( 1) in three layers. Times Square Model (TSM) was formulated in [ 151, 

where the hexagonal grid is composed of horizontal tracks, right tracks (with slope 

+60”), and left tracks (with slope -60”). In [19], Song and Tan proved a lower 

bound [2d/31 - 1 to the width of channel in TSM, and for two-terminal problems they 

presented an optimal routing algorithm that obtains [2d/31 + 2 as an upper bound to 

the channel width. However, the wiring problem remains unsolved. Recent advances 

in VLSI fabrication technology have increased the importance of multilayer channel 

routing [2, 7, 181. In [15], Lodi et al. gave a routing algorithm that produces a layout 

for multiterminal nets in a channel of width 2d + 1, where four layers are generally 

required for wiring. Thus, the result obtained in this paper improves upon these previous 

results [15, 191. 

3. Channel routing in TSM 

Let 17 denote the given channel routing problem. To simplify the presentation, we 

assume first that there exists neither trivial net nor unit net in n, that is, the span length 

of any net in Il is greater than or equal to 2. In order to route II, we arrange the nets 

of fl in horizontal lines, called &ins Cl, Cz,. . . , Cd (d is the problem density). Two 

nets can be put in the same chain only if their spans do not overlap (although they 

may have one common extreme). Ci starts from left with the net having span [a,6], 

where a is the leftmost terminal; the successive nets in Cl are chosen as tightly packed 

as possible. C2 is constructed from the remaining nets using the same criterion, and so 

on. In Fig. 1, the nets are arranged in the chains Ci, Cz and C3. 

Our routing schema for Il is to place chain Ci in the ith horizontal track of the 

channel. The routing algorithm makes use of a representative property of TSM, that 

is, for a trivial net, two different connections can be used to realize it. Depending on 

the starting position to the entry terminal, one is called the L-connection and the other 

is called the R-connection (see Fig. 2). For a net N = (P, Q) with span [a, b] in chain 

C,, our basic method is to use L-connections and R-connections to connect all entry 
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Fig. 3. An exchange operation for colliding terminals u’ and b. 
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Fig. 4. The obtained solution for the instance of Fig. 1. 

terminals in P and all exit terminals in Q to the ith horizontal track, respectively, and 

place the span [a,h] on the ith horizontal track from the position of a on the track 

to that of b. There may exist overlaps in this simple routing, because of a constant 

difference between grid points on even tracks and those on odd tracks in TSM. That 

is, a terminal x can be connected to the position of x + 0.5 or x - 0.5 on an odd 

track. Consider two nets N with span [a, b] and N’ with span [a’, b’] in a chain that 

share a common extreme (i.e., b = a’) and are placed on an odd track. If b and a’ are 

connected to the positions of b - 0.5 and u’ + 0.5 on the odd track, respectively, then 

even a knock-knee cannot occur. But, if b and a’ are, respectively, connected to the 

positions of b + 0.5 and a’ - 0.5, an overlap occurs. We call such terminals b and u’ 

collidimq terminals. However, since b = a’, the overlap can be avoided by exchanging 

the realization (L- or R-connection) of b with that of u’ (see Fig. 3). In other words, 

the colliding terminals b and a’ are connected to the odd horizontal track so that the 

positions of b and a’ are, respectively, b - 0.5 and a’ + 0.5. In conclusion, we can 

always route N and N’ on the odd track so that neither overlap nor knock-knee occurs 

at the common extreme (terminals b and a’). Clearly, there is no conflict or overlap 

in the resulting layout. Fig. 4 shows such a routing for the example given in Fig. 1. 

In Fig. 4, an exchange operation is performed in routing Ni and N2. 

Routing Algorithm 

Input: Il = {Nl, N2, . , N,}. 

Output: The Routing R. 
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{Chain construction} 

A= 1; 

WHILE 17 is not empty DO 

Curren tPos = 1; 

Take the net N of span [a,b] from ZI so that a is the minimum 

among the extremes of the nets in Xl with a 2 CurrentPos; 

Put N in Cd and let Il=ll- N; 

IF terminal b is greater than all leftmost terminals of the nets in Zl 

THEN d = d + 1 and CurrentPos = 1 

ELSE CurrentPos = b; 

END; {WHILE} 

{Routing phase} 

FORi-lTOdD0 

Assign the ith horizontal track to chain Ci; 

FOR each net N of span [a, b] E Ci DO 

Connect all entry terminal in P and exit terminals in Q to track i 

using L-connections and R-connections, respectively; 

IF either a or b is a colliding terminal 

THEN Change the connections for the colliding terminals as shown in Fig. 3; 

Proceed on track i from the position of a to that of 6; 

END {FOR} 

END {FOR} 

Consider now the wirability of the layout produced by the Routing Algorithm. Let 

four layers be numbered as 1,2,3 and 4. We call layers 1 and 2 top layers, layers 2 

and 3 middle layers, and layers 3 and 4 bottom layers. L-connections and R-connections 

are wired in layer 1 and layer 4, respectively, whereas horizontal connections use 

middle layers. In order to wire the horizontal connection for a net N of span [a, b], 

we consider the following cases. 

Case 1: The connections for both terminuls a and b are L- (or R-) connections. 

In this case, the horizontal connection for span [a, b] is wired only in layer 2 (or 

layer 3). 

Case 2: The connection jar a is an L-connection and the connection for b is a 

R-connection. (The symmetric case can be analogously dealt with.) The basic method 

is to divide the span [a, b] into two subspans [a, b - l] and [b - 1, b] and then place 

the subspan of [a, b - I] in layer 2 and the other [b - 1, b] in layer 3. 

Case 2.1: The spun [a, b] is routed on an even horizontal truck. We place a wire 

of length b - a - 1 from the position of a in layer 2 and a unit wire from b - 1 to 

b in layer 3. Clearly, a via at b - 1 is introduced to connect these two wires in layer 

2 and layer 3. Since the space between the positions of a and b is greater than one 

in this case, no empty wire can be placed in either layer 2 or layer 3. In other words, 

there is at least a unit wire in both middle layers. 
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Case 2.2: The spun [a, b] is routed on an odd truck. In this case, terminal a can 

be located at the position of a - 0.5 or a + 0.5 on the odd track, and terminal h at 

the position of b - 0.5 or b + 0.5. If the interval between the positions of a and b 

routed on the odd track is greater than one, then the wiring can be done as Case 2.1. 

That is, the first subspan is wired in layer 2 and the second unit wire in layer 3. If 

the interval is one (it may occur when a or b is a colliding terminal), then the length 

of first subspan becomes zero. In this case, the horizontal connection for span [a, b] is 

only wired in layer 3. (Under our assumption, the interval between the position of a 

and that of b cannot be zero. j 
Vias are now introduced at the intersections of L- or R-connections with the hori- 

zontal connection. Clearly, no via is required from layer 1 to layer 4. We show below 

that the above layer assignment successfully wires the horizontal connections, i.e., no 

via conflict can occur at any point whether it is a crossing or a knock-knee point, and 

that there are no overlaps among different layers. 

Lemma 1. The layout produced by the Routing Algorithm can be wired in four con- 

ducting layers, and there ure no overlaps umong diferent Iuyers. 

Proof. It is important to observe that the Routing Algorithm routes all spans of nets 

on a horizontal track with the length greater than or equal to 2 in the case where no 

collision occurs, and that in the colliding case, the exchange operation assures that no 

knock-knee occurs at the positions of colliding terminals. 

Since L-connections, R-connections and horizontal connections are wired in layer 1, 

layer 4 and middle layers, respectively, there is no via conflict at a crossing point. 

Consider now knock-knee points. It is the trivial case that knock-knees occur between 

an L-connection and a R-connection, since L-connections and R-connections are wired 

in layer 1 and layer 4, respectively. A knock-knee can occur if two nets N with span 

[a, b] and N’ with [a’, b’] are routed on the same even horizontal track and b’= a 

(Fig. 5(a)). Suppose that the connection for terminal b is an L-connection and the 

connection for terminal a’ is a R-connection. (The symmetric case can be analogously 

dealt with.) Then the whole span (Case 1) or the second subspan (Case 2) of N is 

wired in layer 2, and the whole span (Case 1) or the first subspan (Case 2) of N’ is 

wired in layer 3. Since both spans are routed on the even horizontal track, the wires 

for the above two subspans cannot be empty. Thus, the connections for N are wired in 

top layers at the position of b and the connections for N’ are wired in bottom layers 

at the position of a’. It implies that no conflict can happen in this case. 

A knock-knee can also occur in the case where the span [a, b] of net N and the 

span [a’, b’] of net N’ are routed on the same odd horizontal track and b + 1 = a’. That 

is, b and a’ are respectively connected to the positions of b + 0.5 and a’ - 0.5, see 

Fig. 5(b). (Recall that a knock-knee cannot occur in our routing when two nets N with 

span [a, b] and N’ with span [a’, b’] are routed on the same odd horizontal track and 

b=a’.) Without loss of generality, we assume that the connection for terminal b is an 

L-connection and the connection for terminal a’ is a R-connection. Then, the second 
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Fig. 5. Two cases of knobknee contacts 

subspan of N (Case 2) is wired in layer 2 and it always has the length of one. The 

first subspan of N’ (Case 2) is wired in layer 3. Since terminal a’ is routed at the 

position of u’ - 0.5 on the odd track and the length of span [a’, 6’1 is greater than or 

equal to 2, the interval between the position of a’ and that of b’ routed on the odd 

track must be greater than or equal to 2. That is, the first subspan (Case 2) of N’ 

cannot be empty. Hence, the connections for N (either Case 1 or Case 2) are wired in 

top layers at the position of b and the connections for N’ (either Case 1 or Case 2) 

are wired in bottom layers at the position of a’. Since knock-knees can occur only in 

the above three cases, we obtain that there is no via conflict at a knock-knee point. 

In our wiring, L-connections and R-connections are wired in layer 1 and layer 4, 

respectively. A horizontal span may make use of layer 2 and layer 3, but its two 

subspans are disjoint. Thus, there are no overlaps among different layers. 0 

To complete our routing algorithm, we need to remove the assumption that there 

exists neither trivial net nor unit net in the given channel routing problem IT. First, all 

trivial nets can be put in a single chain. For a trivial net, we utilize the corresponding 

L- (or R-) connection to realize it. The chain of trivial nets does not occupy any 

horizontal track, and one layer (e.g., layer 1) is enough to wire the routing for trivial 

nets. Second, all unit nets can be simply arranged in two chains so that the spans 

of two nets in the same chain do not overlap. For simplicity, we arrange the unit 

nets that have either two entry terminals or one entry terminal with smaller integer in 

chain Co and the rest nets in chain Cd+ 1, and route Co and Cd+ 1 in the first and last 
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Fig. 6. Illustraitons for unit triangles, Lo R and R o L connections 

horizontal tracks of the channel, respectively. Since all spans have the length of one, 

a net can be simply routed either by a unit triangle (when two terminals are entry (or 

exit) terminals) or by an L o R (or R o L) connection. See Fig 6 . Clearly, one layer is 

enough to wire the routing for unit nets. 

Theorem 1. Any multiterminal channel routing problem can be solved in a channel 

of width less than d + 3 in TSA4, and the luyout produced by this router can be wired 

in four layers without overlaps. The routing algorithm takes O(n log n) time. 

Proof. All the nets with the span length greater than or equal to 2 are routed in d 

horizontal tracks by Routing Algorithm. The trivial nets and the unit nets are simply 

routed in additional two horizontal tracks. This implies the completeness of our routing 

algorithm. Since the width of a TSM channel is odd, we obtain that any multiterminal 

channel routing problem can be solved in a channel of width less than d + 3 in TSM. 

The four-layer wirability and non-overlaps are shown in Lemma 1. 

For a k-terminal net, our algorithm introduces at most k + 1 vias. Note that k is 

the minimum number of vias required in the Manhattan model. We also note that our 

chain construction takes O(n log n) and the routing algorithm runs in O(n) time. Thus, 

the time complexity of our algorithm is O(n log n). 0 

4. Concluding remarks 

We have presented a dense channel routing algorithm in TSM that solves any multi- 

terminal channel routing problem in a channel of width of at most d + 3. The obtained 

layout can be easily wired in four layers. 

To summarize, let us compare our result with those obtained for the other routing 

models, based on the channel width w, the number of layers, and the number of vias 

(Table 1). TSM compares favorably with MM and KK for the value of w, while, 

for the number of layers, MM and KK are instead superior. TSM compares favorably 

with DM too, except for the number of layers. However, with the advance in VLSI 

technology, utilization of more than two layers for routing has become feasible [7]. 

It makes TSM more interesting. For a k-terminal net, our routing algorithm introduce 
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Table I 
Comparison of different models (f is the flux and in order of fi where n is the number of nets. [I]) 

Routing model Layer Channel width 

TSM 

MM 

DM 

KK 

4 d+3 

2 3d/2 + O( e + f) 191 

2 5d + 12 [16] 

3 3d/2 + O( 6, [9] 

k + 1 vias. This number is optimal (up to a constant factor 1) in the Manhattan Model. 

Note that the algorithms of [9, 161 provide their values of w at a cost of high number 

of vias, due to the insertion of “doglegs” in many connections. In addition, our routing 

algorithm for TSM is simpler than those for MM, DM and KK. 

It is known that multiterminal channel routing is quite different from two-terminal 

one. While the later is quite understood, the former still poses the difficulty. In most 

routing models, the best upper bounds on channel width for multiterminal problems are 

twice worse than those for two-terminal ones. However, the situation in TSM is more 

favorable, as we have d + 3 for multiterminal case and [2d/31 + 2 for two-terminal 

case [19]. 

On Manhattan grids, many multilayer routing methods are proposed [7]. In order to 

reduce channel width, several wires may be assigned with the same horizontal track but 

placed in different layers. This produces a lot of overlaps in layouts, which increases 

the track capacitance and cross-talk. Instead, there are no overlaps among different 

layers in the layouts produced by our algorithm, which is distinct and favorable. 

Finally, we pose several questions on the wirability of general hexagonal routing. On 

the Manhattan grid, Lipski [l I] have shown that it is NP-complete to decide whether 

an arbitrary layout is 3-layer wirable, and Brady and Brown [3] have shown that any 

layout in the knock-knee mode is 4-layer wirable. Can these methods be generalized to 

the layouts on hexagonal grids, or can we obtain the similar results on the wirability of 

general hexagonal routing? On the other hand, Tollis [21] has shown that any layout 

on a tri-hexagonal grid can be wired using five layers. Our further investigation is 

being directed to these problems. 
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