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Abstract 

Real-time embedded architectures consist of software 
and hardware parts. Meeting non-functional constraints 
(e.g., real-time constraints) greatly depends on the 
mappings from the system functionalities to software and 
hardware components. Thus, there is a strong demand 
for precise architecture and allocation modeling, 
amenable to performance analysis.  

The paper proposes a model-driven approach for the 
assessment of the quality of allocations of the system 
functionalities to the architecture. We consider two 
technical domains: the UML domain for the definition of 
the model elements, and a non functional property 
analysis domain, external to UML, used for formal 
verification. This paper focuses on 1) the specification of 
expected behavior by UML activities, specialized to 
support the synchronous paradigm, 2) the definition of 
an analysis model for temporal properties: the Modular 
and Hierarchical Time Petri Nets, 3) the transformation 
from the specification model to the analysis model. 

1. Introduction 

Real-time embedded architectures consist of software 
and hardware parts. Meeting non-functional constraints 
(e.g., real-time constraints) greatly depends on the 
mappings from the system functionalities to software 
and hardware components. Such a mapping—here called 
allocation—includes temporal scheduling as well as 
spatial partitioning and communication synthesis 
aspects. Thus, there is a strong demand for precise 
architecture and allocation modeling, amenable to 
performance analysis and that captures the 
heterogeneous nature of architectures and applications. 

Since its introduction in 1997, the Unified Modeling 
Language  [1] has become the de facto modeling 
language for software development. This is due to its 
standardized notation and its support for domain-specific 
extensions via the definition of profiles. The standard 
semantics of UML 2.0—such as explained by Selic 
 [2]—has been willingly kept very general and informal, 
even though there were some attempts to give a more 
precise semantics  [3]. When addressing a specific 

domain, a subset of UML is often sufficient but may 
require a formal semantics. For instance, in the UML 
specification, activities use an informal semantics 
inspired from Petri-Net. A formal definition of the 
semantics of the activities in terms of Petri-nets has been 
proposed  [4] by introducing one-to-one structural 
transformations. When considering real-time 
applications and time behavior, the model needs further 
extensions. The TURTLE (Timed UML and RT-LOTOS 
Environment) approach  [5] proposes the expression of 
temporal requirements through extended UML2.0 
interaction and sequence diagrams. TURTLE is specific 
to real-time embedded systems design and provides a 
formal framework based on the RT-LOTOS language. 
The automatic generation of RT-LOTOS code allows for 
formal analysis of this design by using the RTL tools.  

For real-time embedded applications—such as data 
and image processing, and automatic control—
functionality and expected behavior are often specified 
by data flow models. This justifies our choice of the 
UML 2.0 activities for behavioral modeling. In this 
paper, we attempt to define a mapping for a restricted-
class of activity diagrams to Time Petri Nets. We do not 
aim at specifying a full simulation semantic for the 
activities but rather to provide a support for verifying 
non functional properties—like deadline—on activities. 
Hence, we provide one-to-many transformation rules 
that only capture the temporal information extracted 
from the activity diagram and according to some 
allocation constraints. Other non functional properties 
would induce other transformation rules and are beyond 
the scope of this paper. The term allocation denotes the 
organized mapping of elements within the various 
structures and hierarchies of a user model. The 
Deployment concept supported by UML is a special case 
of allocation.   

The standardization of domain-specific extensions for 
UML has to follow a profile submission process. For 
instance, in the domain of real-time systems, the UML 
profile for ‘Schedulability, Performance and Time’ 
defines standard paradigms of use for modeling of time, 
schedulability and time-related aspects  [6]. This profile 
is being revised and should be merged into some future 
extensions  [7]. In this paper we do not attempt to 



formally define a UML profile, because there are quite 
tedious to read for non UML specialists, we rather focus 
on the structural transformations required to capture the 
allocation constraints and eventually verify temporal 
properties. 

The paper structure is as follows. Section 2 presents 
the application specification used to illustrate our 
transformations. The next section introduces specialized 
UML activities for the behavioral modeling and data 
flow representation. Section 4 defines our structural 
transformation rules to obtain a hierarchical modular 
Time Petri Net. Section 5 is devoted to an original 
property-checking technique: timing properties studied 
by the automatically derived Time Petri nets. 

2. Application Specification 

2.1. Algorithm/Architecture 
To illustrate our transformation process, we use a 

simple but typical example of control and signal 
processing applications. This example consists of 
complex atomic data processing parts (operations) driven 
by activation conditions (control). The specification is as 
the same abstraction level as a TLM (Transaction Level 
Model  [8]) description. An operation may be an IP 
(Intellectual Property) such as an FFT, a convolution, a 
filtering… Usually these applications are executed in a 
cyclic and periodic way. During a cycle, sensors are 
read, operations are performed and outputs are issued.  

This application is made of 4 input signals (M, A, B, 
C, from sensors), 3 output signals (W, Y, Z, to actuators) 
and 3 operations (oper1 to oper3). From the functional 
point of view, the system may operate in two modes 
(M1, M2) selected by the input M. Each mode is 
specified by a data flow model. A functional 
specification of the expected behavior is:  

  
The execution platform is given: 2 processors (P1 and 

P2) connected by a bidirectional channel.  
This example is often used as an illustration of the 

SynDEx AAA methodology  [9] that focuses on the 
adequation between algorithm and architecture 
(timeliness and optimization). Even though the goal is 
the same, our approach is different because the starting 
point is a UML activity and we obtain the result by 
applying systematic structural transformations while 
SynDEx use its own input format and its own scheduling 
algorithms. We rely on UML 2.0, existing profile 
(Schedulabitity, Performance, and Time specification: 
SPT  [6]) and forthcoming profiles (system engineering 
 [10], Marte  [7]). 

2.2. Non functional constraints 
Various non functional constraints are imposed. 

Deadline is such a constraint (a period of 40 time units, 
equal to the deadline): whatever the mode, all operations 

must be executed within this deadline. Other constraints 
are related to deployment: some processing elements 
have fixed location; others have to be mapped onto 
physical resources so that real-time constraints are met.  

 

Figure 1: Execution durations for processing 
elements. 

With the knowledge of the performances of the 
platform elements (processors and channels), a cost 
specification can be associated with pairs “processing, 
processor”, and “communication, channel”. For instance, 
the cost can be an execution time characterized by a time 
interval, possibly reduced to a singlevalue as in Figure 1. 
Additional allocation constraints can be specified such as 
uniqueness of deployment, expressed by the 
uniqueAllocation attribute. In our example, oper2 is 
potentially deployable on P1 or P2, but since 
uniqueAllocation is true, we may choose to allocate 
oper2 either on P1 or P2, but not both. 

Note that, in Figure 1 inpX (outpX) stands for the 
acquisition (actuation) processing of signal X. 

 

Figure 2: Execution durations for 
communication elements. 

Inter processor communications have a duration that 
depends on the type of transmitted data (Figure 2, left-
hand side). More generally, several channels (e.g., 
Ethernet and WiFi) may exist between two processors, 
associated with different costs (Figure 2, right-hand 
side). The communications may even be dissymmetric 
(e.g., ADSL where upstream and downstream 
communication costs are different). 

3. Data flow representation 

In UML 1.x activity graphs were just an informal 
specialization of state machines. Such a representation 
was not convenient for systems engineers. To address 
this issue, explicit representation of data and control 



flows has been introduced through activity diagrams. 
Now, in UML 2.0, activities are first class concepts with 
their own diagrams. The semantics of activities is large 
enough to cover several domain-specific interpretations 
 [2]. A more precise semantics can be given in profiles 
using the semantics variation points. In our case, the 
semantics is implied by systematic structural 
transformations that lead to a mathematically well-
founded model: the Time Petri nets.   

An activity is a UML behavior. It specifies a partial 
ordering of executions of subordinate behaviors, using 
control and data flow models. Activity diagrams support 
hierarchical description; subordinate behaviors are 
individual elements (actions) that can be invocation 
actions or structured activity nodes. The 
UML::Activities package consists of many packages. In 
order to provide automated transformations and to 
perform formal property verifications, we do not support 
all the activity model elements and constructs, but we 
require a precise semantics for the selected model 
elements. We use a synchronous semantics  [11], well 
adapted to the kind of applications we focus on. This 
restriction can be imposed by stereotyping. We define 
«SActivity», a stereotype of Activity that conforms to 
the synchronous reactive model of computation. This 
choice requires this approach to be restricted to 
applications with deterministic executions or at least to 
applications for which a valid deterministic behavior can 
be derived. A synchronous system evolves in a sequence 
of non overlapping reactions in a lock-step manner. A 
typical synchronous execution scheme consists of a read 
phase (input acquisitions), a computation phase, and 
finally, a write phase (actuation). The sequence of these 
three phases is called a reaction and must be performed 
in isolation (i.e., the computation is blind to environment 
changes). Moreover a synchronous execution demands 
finite executions; it is loop free—the related SActivity is 
a Directed Acyclic Graph or DAG—and deterministic. 
Details about synchronous execution semantics are 
beyond the scope of this paper (see  [12]).  

 

Figure 3: Activity Diagram (top-level). 

Figure 3 represents the application activity at the top 
level. In all figures we use the standard UML 2.0 
notation [1]. For pins, only a small rectangle is 
normative. We choose, as most UML tools, to place an 
arrow inside the rectangle to indicate whether it is an 
input or an output pin. Modes are selected by a 

DecisionNode. A DecisionInput is a behavior attached to 
a decision node, which selects one of its outgoing edges. 
The decision node is refined into an invocation action 
(decision), defined by its own activity diagram (not 
shown in this paper). Here, an action is a UML 
CallBehaviorAction that directly invokes a behavior. In 
our approach, a behavior is either elementary (e.g., 
isEqual, and thus specified by an elementary operation 
given in a table, see Figure 1) or further refined as an 
activity diagram (e.g. the M1 activity in Figure 3).  

Access to information demands special actions, which 
can be resource and time consuming. We explicitly 
represent these accesses using two stereotypes of 
CallBehaviorAction: CallReadData for inputs, represented 
on Figure 3 by the box icon with an outgoing arrow, and 
CallWriteData for outputs. The 'which' stereotype 
attribute refers to the entity that conveys the value. This 
is a constant reference, not implying any object flow, 
and assigned to a ValuePin. Figure 3 is interpreted as 
follows: a value (the object m) is read from the sensor M 
and is used to decide whether to run in mode M1 or M2. 
Actions M1 and M2 are call behavior actions, specified in 
separate activity diagrams. For instance, activity M1 is 
described in Figure 4. 

 

Figure 4: Activity Diagram (Mode M1). 

4. From Data flow to Petri Net  

Our main goal is to formally verify some non 
functional properties of the application. In this paper, we 
focus on time properties. For this purpose, we need to 
fulfill three requirements. First, give a formal semantics 
to each activity model element. Second, compose these 
semantics to derive the semantics of the SActivity. Third, 
take into account architectural constraints and non 
functional properties to be verified. 

4.1. Hierarchical and Modular Time Petri Nets 
To address the first requirement, Time Petri nets  [13] 

have been preferred to the UML State Machines and 
Activities. Petri nets have well-established mathematical 
foundations (semantics) and offer rich analysis 
capabilities. Contrary to UML state machines, Petri nets 
support true concurrency. As for UML2.0 activity 
diagrams, though they are inspired from Petri nets, they 
lack a formal semantics.  

We introduce Modular and Hierarchical Time Petri 
Nets (MHTPN) to meet the second requirement, making 
it possible to compose behaviors. The Petri Net 



community is working on a model generic enough to 
cover all Petri Net formats (namely, the Petri Net 
Markup Language, PNML  [14]). Our model, MHTPN, is 
specific to Time Petri nets, while PNML was designed to 
be completely generic. Thus, MHTPN is simpler and fits 
better our approach. It is organized in three packages. 
This hierarchical model (Figure 5) is built upon the 
classical flat model of Petri nets (Figure 6). In this latter 

model, timing information (a special kind of cost 
specification) is attached to transition (Time Petri Net). 
A third package, not presented here, defines graphical 
features.  

MHTPN modules, like PNML ones, compose through 
their interface, supporting both place and transition 
fusions. 

 

 

Figure 5: Modular Time Petri Net Model. 

 

Figure 6: Time Petri Net Core Model. 



 

Deriving MHTPNs from activity diagrams is driven 
by the structural transformations specified in Section  4.2. 
To satisfy the last requirement, we must take into 
account architectural constraints—distribution con-
straints that result in communications—and temporal 
constraints. Section  4.4 explains how the MHTPNs are 
augmented by dedicated transformation patterns to make 

communications explicit. Section  4.5 shows how 
temporal constraints are represented in the MHTPN. 

4.2. Structural Transformations  
The structural transformations from SActivity model 

elements to MHTPN model elements are summarized in 
Table 1. 

 
SActivity model element Condition MHTPN model element 

top level PetriNet 
SActivity 

other levels Module 
ActivityEdge  Arc 

InitialNode  Port 

top level Port +ProcessingElement* 
FinalNode 

other levels Port 
ForkNode  Fork* 
DecisionNode  Fork** 
JoinNode  Join* 

ControlNode 

MergeNode  Join** 
Pin  Node 

ObjectNode 
ActivityParameterNode  Port 

∈  processing element tables ProcessingElement* 
Action ∉  processing element tables ModuleInstance 

ActivityNode 

ExecutableNode 
StructuredActivityNode Not supported 

* ModuleInstance : instances of modules predefined in a library. 
** see the remark below. 

Table 1: Behavior Transformation from SActivity model elements to MHTPN model elements. 

Note that most of the SActivity model elements are 
transformed into module instances. We have defined a 
library of MHTPN modules suitable for expressing the 
temporal behavior. Figure 7 shows two examples: 
ProcessingElement and Join modules. The 
ProcessingElement module captures the temporal 
behavior of actions that represent elementary processing 
elements. In a module the grey-background part is the 
interface made of ports. The other part expresses the 
module behavior as a modular Petri net (i.e., it may use 
module instances as well). The central transition is fired 
when the processing element is executing, it takes inputs 
from the left hand-side place and produces outputs in the 
right hand-side place. This transition can only be fired 
when a resource is available; this resource is modeled by 
the place above the transition in the figure. This place, 
which is a ReferencePlace, may share—with another 
ProcessingElement—an actual place defined outside the 
module. With this first abstraction, the resource is 
released immediately. In section  4.4, we take duration 
into account through TimeIntervals associated with 
transitions. The Join MHTPN module is a very classical 
building block in Petri Nets. Nevertheless, it is important 
to note that the usage of such a module as a placeholder 
for an SActivity MergeNode is justified because we want 
to verify temporal properties. When several branches, 

which take time, execute in parallel, the overall time 
spent is the maximal time of all branches. Using a Join 
results in computing the maximum, while using a Merge 
would have resulted in choosing the branch with the 
shortest time. Had we chosen to model another non 
functional property, like power consumption, we would 
have been bound to define another module—a Merge or 
any other adapted module—to represent an SActivity 
MergeNode.  

 

Figure 7: Examples of modules from the 
MHTPN library. 

Activity diagram focuses on the execution with a 
strong flow flavor and applies well to engineering 
systems. An activity expresses what to do but little 
where to do it. The activity diagram (section  3) specifies 
the algorithmic part of the application (section  2.1). Non 
functional constraints and the architectural aspects are 



still to be captured. Distribution aspects and induced 
communications are also to be modeled. To this end, we 
introduce below two concepts—potential allocation and 
communication processing elements—and the associated 
transformations.  

4.3. Potential Allocation 
The processing and communication costs are related 

to a pair “elementary processing element, host”, which 
characterizes a potential allocation. A host is either a 
processor or a channel. An elementary processing 
element, associated with an elementary operation, is 
potentially deployed onto several targets (a set of hosts). 
For instance, oper3 can be deployed on processors P1 or 
P2. The respective costs are given in tables from Figure 
1. A non elementary processing element, whose behavior 
is described by an Activity, is associated with a set of 
allocations resulting from the allocations of the 
subordinate actions. The cost associated with an Activity 
results from a semantic transformation that propagates 
allocation information. This process is explained below. 

4.4. Communication processing element 
Given the potential allocations for all elementary 

operations, we derive all potential communications. 
Some SActivity model elements require adding explicit 
communications; this is the case for actions that 
represent elementary processing elements and for the 
final node of the top-level SActivity. Communications 
must explicitly appear when they may have a cost. To 
avoid duplication, communications are systematically 
inserted before each input port of every elementary 
processing element. The communication cost varies 
depending on the potential allocations of both the target 

and the source elementary processing elements. Since we 
are using a modular and hierarchical representation the 
source elementary processing elements may not be 
known when compiling the module. The source and its 
potential allocation will be discovered at elaboration 
time after connecting module instances. 

No communication is inserted for a user-defined 
Activity; its communication costs are eventually paid 
when used by an elementary processing element defined 
in the corresponding module.  

A FinalNode is always translated into an output port. 
The FinalNode of the top-level SActivity needs a special 
transformation; it can be interpreted as a form of 
distributed termination, and as such, it may imply a 
communication cost. Therefore, a potential 
communication is inserted before it. 

Alike elementary processing elements, 
communications take inputs, produce outputs, require a 
resource (i.e., communication media) and may take time. 
Therefore, both elementary processing elements and 
communications are represented with Processing-
Element module instances. 

4.5. Temporal constraints, architectural constraints 
and non-functional properties 

Table 2 summarizes how time constraints, 
architectural constraints and non-functional properties 
are modeled with the MHTPN modules. Execution 
durations from Figure 1 are integrated by associating a 
TimeInterval with the central transition of the 
corresponding ProcessingElement module instance (see 
Figure 7). 

 

 
 UML Models MHTPN Model elements 
Behavior See Table 1 
Allocation Allocation Cost (time) Time Interval 

 Place 
Resource 

Host 
 Concurrency 

Degree 
Token load or capacity 

NFP Deadline ObservingElement* 
* ModuleInstance : instances of modules predefined in a library. 

Table 2: Transformation rules. 

The resource is held during a given amount of time, 
thus preventing other processing elements from using it 
at the same time. The output tokens are released at the 
end of the execution. Similarly, execution durations of 
communications (Figure 2) are integrated by associating 
a TimeInterval with the central transition of the 
corresponding communication ProcessingElement 
module instance. This characterization by a time interval 
is only sensible for dedicated real-time networks. More 
general communications would require stochastic 
models, not supported by TINA and MHTPN. 

When a resource offers a concurrency degree higher 
than one, several tokens are put into the place that 
represents the resource, thus making the concurrent use 
of this resource possible.  

Finally the global deadline constraint is modeled 
using an ObservingElement module instance (Figure 8). 
This module is specifically designed for time properties. 
Had we chosen to verify another kind of non-functional 
property—like consumption for instance—we would 
have had to design another module.  

 



ObservingElement

Deadline

[0,0] [35,40]

disarm arm

 

Figure 8: ObservingElement MHTPN module. 

5. Time property analysis 

For the purpose of time property analysis we use the 
time Petri net analyzer (Tina)  [15], which supports both 
timed and untimed nets. However, Tina does not support 
hierarchical descriptions. We have built a tool that 
allows for graphical composition of MHTPN modules. It 
exports flattened modules into a Tina-compatible format. 
Section  5.1 shows how Tina is used to check time 
properties. Section  5.2 briefly describes the software 
environment we have built as a prototype to demonstrate 
the feasibility of our approach. 

5.1. Property checking 
In order to be analyzed, the MHTPN generated by 

model transformations is flattened into a Time Petri Net, 
which is a prerequisite for Tina. From a Time Petri Net, 
Tina generates various behavioral graphs, on which 
analyses can be conducted. The simplest exploration 
reports unbounded places and dead transitions. 
Behavioral graphs can be efficiently shared and 
exchanged as a Kripke Transition system for advanced 
analyses 

Tina offers a large choice of analysis methods dealing 
with various levels of abstraction. The exploration can 
be exhaustive, which is often the case for our acyclic 
Petri nets, or partial. The violation of safety properties 
can be detected on the fly (i.e., while generating the 
behavioral graph). Notice that deadline is a form of 
safety property, also known as ‘bounded liveness’. When 
a property is violated, a counter example is generated. 
Tina also allows the designer to express the expected 
properties in temporal logic formulas (Linear Time 
Logic—LTL—or Computational Tree Logic star—
CTL*—), which are then verified by model-checking 
techniques. 

Our MHTPN library modules are devised so as dead 
transitions reveal property violations or structural 
inconsistency. For example, we can identify impossible 
allocations, or check whether or not the deadline 

constraints are met. For the application of Section  2, 
using  LTL formulas, the analysis is able to assert the 
following properties:  

1. There is no valid allocation with a deadline 
constraint less than 38 time units.  

2. To meet the strong deadline of 38 time units, 
oper2, oper3 and outpY must be executed on P2, while 
inpC can be executed either on P1 or P2.  

3. To meet the weaker deadline constraint of 40 
time units, oper2 must be executed on P2 but there is no 
constraint for other potential allocations.  

5.2. Software environment  
We have started to implement a tool suite that 

supports the four steps of the transformation chain. The 
first step concerns the capture of the activity diagram, of 
architectural constraints and of non-functional 
properties. The second step is the transformation of 
SActivity diagrams into MHTPN. In the third step, the 
MHTPN is flattened and exported to Tina as explained 
in the previous section. Tina is used to perform the 
fourth step and the result provided is brought back inside 
our tool for interpretation.  

Concerning the actual implementation, the first two 
steps imply building a UML modeling tool and using a 
mature model transformation technology; they are still 
under development and the related actions were 
performed manually on the example presented. The third 
step has been implemented first because it involves the 
manipulation of hundreds of nodes even for small 
examples, while previous steps apply to more abstract 
models, making them simpler to handle. 

We have built an Eclipse plug-in that captures the 
MHTPN, flattens it and exports it in a format accepted 
by Tina. The MHTPN metamodels shown in Figure 5 
and Figure 6 have been captured using an EMF Ecore 
model. The EMF technology generates the business 
model code, XML generators and parser; it thus provides 
a support for making the models persistent. The XML 
files produced follow an XML schema also generated by 
EMF. Even though EMF also provides tree-based editors 
that follow the model description, we have found them 
not sufficiently user friendly for our application. Then, 
we have implemented upon the EMF-generated business 
model code, a graphical interface using the GEF 
methodology. More details about the Eclipse framework 
and the related EMF and GEF projects are available on 
the Eclipse web site  [16]. 

6. Conclusion 

This paper has shown a way to use UML and model 
transformations to derive an analysis model from a UML 
functional description. First, the functionality of the 
application is expressed as a stereotyped UML activity 
diagram tailored for synchronous reactive execution. 
Following the model-driven approach, this model passes 



through a series of transformations resulting in a model 
amenable to formal analyses. 

For property analysis, the semantics of UML 2.0 is 
not sufficiently precise (many semantic variation points, 
no formal definition). This is a deliberate choice made 
by the standard to be widely applicable. When a precise 
domain or fine property analyses are targeted, the 
semantics has to be strengthened within a profile. This is 
what we have done to model distributed control 
applications with several potential allocations of 
operations to hardware/software execution supports. The 
semantics of UML 2 activity diagrams has been revisited 
to remove variations points and introduce “synchronous” 
evolutions. Details about this profile are available in a 
technical report  [17]. For analysis, since this paper 
focuses on the temporal correctness of applications with 
concurrent evolutions, we have chosen Petri Nets as the 
analysis domain and especially, modular and hierarchical 
time Petri nets.  

Diagram interchanges and model transformations 
have been implemented in Java, within the Eclipse 
framework. Meta-models have been captured using an 
EMF Ecore model. Temporal properties are analyzed by 
Tina, a time Petri net analyzer. Reachability analysis 
tools of Tina establish the existence of a valid allocation 
meeting temporal constraints. More complex properties 
can be expressed as temporal logic formulas (LTL 
formulas) and formally analyzed by model-checking 
techniques. The Tina tool box provides the behavioral 
graph generator, facilities to specify temporal logic 
formulas, and connections to several model-checkers. 
For the example studied in the paper, with the given 
parameters, we have established that a given operation 
must necessarily be allocated to a given processor in 
order to meet the deadline. This leads to a reduction of 
the possible allocations to be explored. Once the 
adequate solutions are better characterized, we may 
export pertinent information, extracted from UML 
models, to other analysis tools. For instance, we could 
easily export the algorithm and architecture models to 
SynDEx  [9] for further optimization and generation of 
the real-time distributed code. 

 
This paper has illustrated how to associate time Petri 

nets with our library elements. We have used Petri net 
models as behavioral models. However, they cannot 
easily capture preemptive behaviors. We plan to use 
more expressive formalisms. In the future, to make the 
best of the underlying synchronous hypotheses, we 
intend to use the industrial synchronous language Esterel 
/Scade  [18] and its validation tools, or the Polychrony 
platform  [19]. 
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