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Abstract

Dynamic provisioning of physical resources to Virtual Machines (VMs) in virtualized environments can be achieved by (i) vertical
scaling-adding/removing attached resources from existing virtual machine and (ii) horizontal scaling-adding a new virtual machine
with additional resources. The live migration of virtual machines across different Physical Machines (PMs) is a vertical scaling
technique which facilitates resource hot-spot mitigation, server consolidation, load balancing and system level maintenance. It takes
significant amount of resources to iteratively copy memory pages. Hence during the migration there may be too much overload
which can affect the performance of applications running on the VMs on the physical server. It is better to predict the future
workload of applications running on physical server for early detection of overloads and trigger the migration at an appropriate
point where sufficient number of resources are available for all the applications so that there will not be performance degradation.
This paper presents an intelligent decision maker to trigger the migration by predicting the future workload and combining it with
predicted performance parameters of migration process. Experimental results shows that migration is triggered at an appropriate
point such that there are sufficient amount of resources available (15–20% more resources than high valued threshold method)
and no application performance degradation exists as compared to properly chosen threshold method for triggering the migration.
Prediction with support vector regression has got decent accuracy with MSE of 0.026. Also this system helps to improve resource
utilization as compared to safer threshold value for triggering migration by removing unnecessary migrations.
© 2015 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of organizing committee of the Eleventh International Multi-Conference on Information
Processing-2015 (IMCIP-2015).
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1. Introduction

Cloud computing is attracting the organizations to use virtualized resources in the cloud data centers as it enables
multiple applications to collocate with total isolation on a single physical machine. It also enables dynamic resource
provisioning through virtual machine resizing and live virtual machine migration to eliminate hotspot, consolidating
servers on fewer virtual machines and load balancing. These provisioning techniques are of two types i.e. vertical
scaling and horizontal scaling1. Vertical scaling allocates or de-allocates resources to or from existing virtual machine
and horizontal scaling adds or removes virtual machine instance. Virtual machine migration comes under vertical
scaling as resources are de-allocated from one and added to the newly created virtual machine at another physical
machine. Xen2 uses pre-copy mechanism as virtual machine migration technique in which memory pages are
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transferred iteratively due to page dirtying process. Pre-copy combines push and stop-and-copy phases. In push phase
the source VM continues running while certain pages are transferred to the destination. To ensure consistency, pages
modified during this process are resend. In stop-and-copy phase the source VM is stopped, remaining dirtied pages
are copied to the destination VM and then new VM is started at destination.

HotSpot handling and Server Consolidation are the two general scenarios that appears in data centers. HotSpot are
detected when a virtual machines load level increases. At this time it requires additional amount of resources and
additional allocation should be done to satisfy the required performance level. Server Consolidation is done when a
virtual machines load level decreases and results in under-utilization of allocated resources. Hence, the extra resources
can be removed and Virtual Machines (VMs) can be consolidated onto a fewer number of physical machines to reduce
power usage and maintenance cost. HotSpots can be handled by increasing the resources available on the physical
server or migrating the VM to less loaded physical server. Server consolidation is done with the help of Live virtual
machine migration. Performance of live virtual machine migration is measured in total migration time and downtime
during migration. The optimization goals of live virtual migration are to minimize total migration time, downtime
during which services are totally unavailable to the customer and ensure that migration process does not unnecessarily
disrupt active services through resource contention (e.g. CPU, n/w bandwidth) with migrating VM. Also it is important
to decide when to trigger the migration, which VM to migrate and where to migrate so that HotSpot is efficiently
resolved.

Virtual machine migration process itself takes significant amount of resources like CPU and network resources as
it is iteratively doing memory copying work. This can impact the performance of virtual machine under migration
as well as application running on other VMs. Many migration performance studies have been found in the literature
to predict the performance of migration and tried to avoid overload during migration itself. Generally the triggering
of migration is done based on predefined thresholds between 75–80%. VM migration is triggered if any particular
resource utilization goes beyond that predefined threshold. The VMs on the physical machine can face the resource
deficiency due to contention and may lead to performance degradation if there is rapid increase in resource demand.
If the threshold value is high then above scenario occurs and if less for safer side then resources may be underutilized.
Hence it is vital to predict the early detection of overloads and then triggering migration than doing prediction to avoid
overload during the migration itself. The former is a “real” application overload that needs to be addressed, while the
latter is a transient problem due to the migration process.

To address the early detection of application overloads using prediction for triggering VM migration, this paper
presents an intelligent VM migration triggering mechanism which uses support vector regression for future workload
prediction. In addition to this a model of actual migration process based on pre-copy mechanism is developed and
migration performance parameters are evaluated. These parameters are also considered in triggering the decision,
which identifies which VM to be migrated for better efficiency. With this, VM migration is triggered if it is predicted
that future load is increasing and it is going to exceed the maximum threshold. Thus at the time of migration sufficient
resources are available for all the processes and at other time resources are utilized efficiently due to maximum
threshold.

The rest of the paper is organised as follows: Section 2 deals with literature survey; Section 3 presents prediction
system architecture and design; Section 4 presents resource monitoring system; Section 5 presents overload/hotspot
detection system; Section 6 evaluate the system with experiments and results; finally Section 7 presents the conclusion
and future work.

2. Literature Review

Christopher Clark et al.1 demonstrated migration of an entire OS instance on a cluster with impressive performance
(service downtime as low as 60 ms). They introduced the concept of writable working set (WWS) and present the
design, implementation and evaluation of high performance VM migration built on the top of Xen VMM. Migration
performance evaluation is made on the page dirty rate and network bandwidth parameters. But the work did not
use prediction model for performance evaluation and triggering of migration is based on threshold. Sherif Akoush
et al.3 characterised that the parameters affecting live migration are migration link bandwidth and page dirty rate.
They presented a AVG (Average Page Dirty Rate) simulation model to predict the pre-copy migration performance
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giving all the parameters affecting it. It is assumed that page dirty record trace will approximately represent the
application. Page dirty trace collected from xen shadow page tables are used to simulate the model. The outlined
models are useful for planning and effectively schedule migrations. William Voorsluys et al.4 studied the effects of
live migration on performance of application running inside Xen VMs. They evaluated the performance degradation
of Web 2.0 application running inside VMs while they were being migrated. The objective they concerned is the SLA
violation rather than performance of migration. If less concurrent users then most stringent SLA can be met. Haikun
Liu et al.5 presented a model to quantitatively predict the migration performance(migration latency, downtime and
network traffic generated) and energy cost of each VM migration. It is based on statistical data analysis of data from
historical migration traces on xen platform. Energy consumption is proportional to network traffic generated due to
VM migration.

Previous work has also applied neural networks and stochastic models like autoregressive filters to predict the
resource demand. John Prevost et al.6 applied multi-layer neural network perceptrons to predict the future load of
applications in cloud data centers. The load is predicted by training the perceptrons in a supervised manner with
backpropogation algorithm. It is computationally efficient than control theory or reinforcement learning as prediction is
feed-forward but training process can be computationally expensive. It can be guaranteed to convergence to an optimal
solution. The auto-regressive family of predictors are also used by Sandpiper7, 8, where AR(n) uses n prior observations
to make a prediction. This is computationally efficient for low order models. The convergence is guaranteed and
minimizes mean square error. But it is not suitable for high order models. A. Ganapthi et al.9 used machine learning
approach (Kernel Canonical Correlation Analysis Algorithm) to predict multiple performance metric of both long
and short- running database queries. In addition to these techniques trace based resource management takes various
resource management decisions by considering historical application resource demands. Rolia et al.10 calculated burst
factor to perform dynamic resource allocation. The most recent resource demands are multiplied by burst factor to
predict future resource demand directly.

From the literature survey, it is observed optimization solution have been suggested to reduce that downtime and
total migration time. Also performance study has been carried out by predicting the VM migration performance. The
triggering of VM migration is executed with the help of predefined thresholds which are sufficiently high. Hence
load prediction is necessary for early detection of overloads and accordingly trigger the migration beforehand (before
crossing the threshold). Thus there will be enough resources for migration process and applications running on the
physical server.

3. System Architecture

The proposed system consist of central controller to which all the physical machines are connected. Every physical
machines are with Xen hypervisor having multiple virtual machines running on it. Resource monitoring system is
installed in Dom-0 of every physical machine which collects resource utilization of every virtual machines at regular
interval and send it to resource usage collector in controller. Dom-0 monitoring system collects resource statistics such
as CPU, memory and network bandwidth usage. The central controller consist of three components which are resource
usage collector, hotspot detector and migration manager as shown in Fig. 1.

The resource usage collector collects the usage of every VM on every physical machine. The monitoring system of
every physical machine send the resource usage to the usage collector. It adds the usage of all VMs of every physical
machine and store it as resource usage of a physical machine. Hotspot detector detects the hotspot by looking at current
resource usage of a physical machine and predicted workload. The Migration manager is responsible for triggering
actual migration of VM. It finds out the proper VM to be migrated and where to be migrated.

4. Resource Monitoring System

The management domain i.e. Dom-0 of every Xen hypervisor contains the resource monitoring system which
captures CPU, Memory and Network bandwidth utilized. This system collects and sends reports to Resource Usage
Collector in the time interval of 10 sec. The system stored 300 such usage reports of every resources.
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Fig. 1. Dynamic resource provisioning system design.

4.1 CPU monitoring

Dom-0 of Xen Virtual Machine Monitor (VMM) captures the CPU scheduling events. It is tracking the time when
the VM is scheduled to get CPU and when it is released from it. With this CPU resource utilization of all the VMs
running on the physical machine is captured. Dom-0 processes the I/O and Networking requests on behalf of VMs.
The CPU requirement for this is charged on individual VM depending on how many requests served for that VM. This
CPU monitoring is done with 10 sec time interval. Xenmon tool with Xen works on above specified principle. It is
modified to get the required results.

4.2 Network monitoring

Dom-0 in Xen implements Virtual Firewall Interface (VFR)1 interface which other domains access through clean
device abstraction. Each VM attaches one or more virtual interfaces to VFR. The networking statistics is gathered in
/proc/net/dev file which can be accessed and the network utilization is captured in the specified time interval which is
configured to 10 sec in our case.

4.3 Memory monitoring

Xen maintains shadow page tables7 to track memory accesses of guest VMs. It is translated from guest page table
on demand. It is specifically used by virtual machine migration algorithm to determine which pages are dirtied during
migration. But trapping each memory access adds significant overhead. Hence the memory usage is inferred as memory
pressure exists or not by tracking number of read/write to swap partitions on NFS disk. Xentop tool is used to get the
memory usage at 10 sec interval.

These readings are stored in two ways. First, time series of individual resource usage of individual VM, collective
load of individual resource of all VMs on one PM. Second, probability distribution of usage, in which histogram of all
observed usage of individual resource within a specific interval is computed which is normalized to get this distribution.

5. Overload/Hotspot Detection

If the resource usage goes beyond the safety threshold which is 50% in our case then the further workload is
predicted with the help of time series prediction with Auto-regressive models and support vector regression (SVR).
The time series prediction11 can be mathematically stated as

x̂(t + �t) = f (x(t − a), x(t − b), x(t − c), . . . ) (1)
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where x(t + �t) is predicted value of discrete tie series x value. The objective of time series prediction is to find a
function f (x) such that the predicted value at a future point at time t is unbiased and consistent. By using regression
analysis following equations defines prediction function for linear and non-linear data.

f (x) = (w · x) + b (2)

f (x) = (w · φ(x)) + b. (3)

If the data is non-linear in its input space, it is necessary to map the data x(t) to a higher dimension “feature” space
via this kernel function given in equation (3) and then perform a linear regression in high dimensional mapped values.
The goal is to find optimal weights w and threshold b.

5.1 Autoregressive modelling and prediction

Mathematically the Auto Regressive AR(p) model12 can be expressed as

x(n) =
p∑

i=1

a(i) ∗ x(n − i) + e(n) (4)

where x(n) is predicted linearly from its past p values x(n − 1), x(n − 2), . . . , x(n − p). The variable p is called as
order of prediction and model is called as p-order AR model. Prediction coefficients or model parameters a(i)s are
calculated with the help of Yule-Walker Method. e(n) is the mean error term.

5.2 Support vector regression

The goal of Support Vector Machine (SVM) is to minimize the regularized risk which is given by equation (5)

Rr ( f ) = Re( f ) + λ

2
‖w‖2 (5)

where

Re( f ) = 1

N

N−1∑
i=o

L(x(i), y(i), f (x(i),w)) (6)

and The scaling factor λ is called as regularization constant.
L(.) is loss or cost function to be defined. By using Least Square SVM the goal is to minimize equation (7)

1

2
‖w‖2 + C

N−1∑
i=o

L(x(i), y(i), f (x(i),w)) (7)

where

L(x(i), y(i), f (x(i),w)) =
{|y(i) − f (x(i),w)| − ε, if |y(i) − f (x(i),w)| ≥ ε

0, otherwise
(8)

The constant C in equation (7) includes the (1/N) summation normalization factor and ε is the tube size, referring
to the precision by which the function is to be approximated. Solving for the optimal weights and bias values is an
exercise in convex optimization, which is made much simpler by using Lagrange multipliers and forming the dual
optimization problem given by (9):

Maximize:

−1

2

N∑
i, j=1

(αi − α∗
i )(α j − α∗

j )〈x(i), x( j)〉 − ε

N∑
i=1

(αi − α∗
i ) +

N∑
i=1

y(i)(αi − α∗
i ) (9)
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subject to:
N∑

i−1

(αi − α∗
i ) = 0 : αi , α

∗
i ∈ [0, C] (10)

The approximation of function f (x) is given by the sum of optimal weights times the dot products between the data
points as

f (x) =
N∑

i=1

(αi − α∗
i )〈x, x(i)〉 + b (11)

To carry out non-linear regression using SVR it is necessary to map input space into feature space with following
kernel function

k(x, x ′) = 〈φ(x), φ(x ′)〉 (12)

which can be directly put in equation (11) and weights can be computed in feature space.

5.3 Migration manager

If hotspot is detected by the hotspot detection module then migration manager will find out which overloaded VM
is to be selected for migration and where to be migrated. It selects the VM such that migration overhead will be less
and total migration time will be less. VM can be overloaded on one or many of the three resource utilization readings
i.e. CPU, memory and network traffic. We will unify these readings in one metric called “load” as shown below

load = 1

1 − cpu
∗ 1

1 − nw
∗ 1

1 − mem
(13)

where cpu, nw and mem are utilization readings of CPU, network and memory normalized by max no. CPUs, max
network interfaces and max amount of memory allocated to VM respectively.

The model for actual migration process to predict the performance is described below. VM with smaller size of
memory image and smaller λ (ratio of memory dirty rate and memory transmission rate) would lead to less network
traffic and shorter migration latency, hence it should be the better candidate for migration5. The parameters needed
for modelling are VM size, workload memory dirty rate, N/w transmission rate3. All these are input parameters and
it is necessary to determine memory dirtying rate of an application. Every workload is having set of hot pages which
are dirtied again and again and are skipped during the iterative pre-copying procedure. This set of pages is called as
Writable Working Set (WWS). The memory dirtying rate can be calculated with dirty bit map using shadow page
tables1. Generally writable working set of most of the applications is approximately proportional to the pages dirtied
in each precopying round13. Hence,

W W Si = η · Vi (14)

where η is a variable correlating time duration of each iteration Ti and memory dirtying rate mdr.

η = α · Ti−1 + β · mdr + γ (15)

For a particular application multiple observations are taken for the number of pages dirtied in each iteration and
time duration of respective iteration to calculate η. By solvings these simultaneous linear equations model parameters
α, β and γ are calculated. The model for entire migration process is given in Algorithm 1. It iterates through the
memory copying process and come out when stop and copy conditions satisfied. Finally it gives Vmig (total network
traffic generated during migration process) and Tmig (total migration time required). Algorithm 2 gives the method
for selecting highly loaded VM from highly loaded server so that Vmig and Tmig are less. Following this algorithm
triggering of suitable VM is initiated. Algorithm 2 sorts the physical servers in decreasing order of their loads. Within
each PM, VMs are assumed to be ordered in decreasing order of load/VMsize. It considers first highest load/VMsize
valued VMs for which Vmig and Tmig are less. Then it is checked for whether it can be shifted to least loaded PM.
It can be done if sufficient resources are available on the destination PM. If not then next least loaded server is
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Algorithm 1. Model of VM migration

Algorithm 2. Selection of VM for migration

checked for the same. This is repeated until match is found for candidate VM. If no suitable PM is found then next
highest load/VMsize VM is selected for which Vmig and Tmig are less. This procedure is repeated until utilization of
all resources falls below thresholds. The Algorithm 2 next consider the next highly loaded PM which is experiencing
hot-spot and repeats the above process until all PMs left with no hot-spot.

6. Experimental Setup and Result Analysis

6.1 System description

The experimental setup consist of four Intel Core i7 machines with 4 GB RAM and connected with gigabit ethernet.
All these runs Linux 12.04 Server LTS with Xen 4.1.4. The VM images are stored on shared drive created with NFS
(Network File System) Server. Each VM on PM runs specific softwares application to create workload. These softwares
are selected so as to create different types of workloads such as CPU intensive, memory intensive and network
intensive workloads. Also these applications vary in their page dirtying rate. Every PM runs four VMs with different
applications running on it. Following softwares applications are used to generate load on VMs – (1) RUBiS14 – It is an
auction site prototype used to evaluate application design patterns and application servers performance scalability. PHP
implementation of RUBiS web server and MySQL database server are installed on different VMs, (2) File Server –
It is a vsftpd file transfer protocol storing files of different sizes. Client requests are generated to download these files
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Fig. 2. Actual and predicted CPU and network utilization.

Fig. 3. CPU utilization of PM1 with triggering based on threshold.

which will create a network workload, (3) CPU intensive PHP Scripts – The PHP scripts are written in such a way that
these will places a large CPU load on server with low client request rate, (4) httperf – It provides a flexible facility for
generating various HTTP requests with different rates and for measuring server performance.

6.2 Actual and predicted CPU and network usage

Time series prediction is done with both AR-p model prediction algorithm and with SVR (Support vector
regression). The implementation of these is carried out with machine learning Python Library (scikit-learn). The time
series values for all resources are given to the prediction module and future values at an interval of 120,180,240sec
are predicted. The actual values and predicted values are compared. The prediction performance for these intervals
are found suitable with SVR. Figure 2 shows the actual and predicted CPU and Network usage values by the SVR
prediction algorithm at time interval of 180 sec. The values shows that it has got decent MSE (mean squared error
value) of 0.026. With AR-p model we have got MSE of 0.184 for 150 sec interval. But for smaller duration of
10 sec i.e. next value in time series (First Order Prediction) and 30 sec we got very good MSE of 0.0427 and 0.0761
respectively. But it is necessary to predict the value at a large interval, it is decided to predict the values with SVR.

6.3 Resource provisioning with predefined thresholds

When the migration is triggered with predefined thresholds, the performance degradation may occur which is shown
by following experiment. As shown in Fig. 3 CPU resource usage was initially low on PM1. CPU intensive workload
is given at time 600 sec by running CPU intensive PHP script on VM1. When CPU usage goes beyond predefined
threshold of 75%, hot-spot is detected and migration is triggered. But now CPU usage is too high due to CPU usage
by other VMs and it becomes contention period where all are in need of CPU. Hence this migrations adds overhead on
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Fig. 4. (a) cpu utilization of PM1 and PM2; (b) network utilization; (c) network utilization of PM1 and PM3; (d) memory allocation for VM2 on
PM2.

other applications running on other VMs on this PM. Figure 3 shows that CPU usage reached to almost 100%. Here
in this case performance degradation is observed after time 810 sec.

In case of Network utilization, when network usage goes beyond predefined threshold of 75% migration is triggered.
But if network utilization further increases because of other VMs as well as migration process itself then there will be
contention for network resources and we observed the performance degradation on PM3 as shown in Fig. 4c.

6.4 Resource provisioning with predictions

When CPU resource goes beyond 50%, system predicts the future load and it concludes that further load is
increasing drastically at time t = 630 sec as shown in Fig. 4a. When usage goes around 60% then migration is
triggered at time 660 sec. Hence CPU availability is more for contention as compared to previous case where migration
is triggered at a point where CPU usage reached to 75%.

In case of Network Utilization as shown in Fig. 4b, when the network load goes beyond 60%, it is predicted that the
network load will increase upto time 450 sec and later it will decrease. Hence at this point migration is not triggered.
Thus unnecessary triggering of migrations due to small spikes of workload is also resolved. Figure 4c shows that there
is an increase in network utilization from time 400 sec when the resource usage is above 50%. The system predict that
future usage is increasing, hence migration for VM on PM3 is triggered at t = 430 sec. Hence resource availability in
both cases of CPU and Network increases by 15–20% during the case of high load which triggers the migration.

The overall time required to predict the hot-spot and start migration is around 30 sec. In case of memory utilization,
if the allocated memory is not sufficient then it is allocated in steps of 32 MB as shown in Fig. 4d. If memory is not
enough on that PM then the VM is migrated to other suitable PM. Here the migration is triggered when memory
demand reaches to 382 MB.

7. Conclusion

This paper presented an intelligent system which predicts future workload for early detection of overloads so as to
trigger migrations in such a way that possible system performance degradation is resolved. Also the actual migrating
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process of live virtual machine migration is modelled which determines the total network traffic generated and total
time required for migration. The migration is triggered based on these predictions and determined performance values
instead of triggering the migration based on predefined thresholds. The prediction accuracy received is decent. This
helps in resolving the degradation in the system due to overload on PM during migration by increasing the resource
availability through early triggering decision. It also removes unnecessary migrations which exists because of small
transient spikes in resource usage.
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