
47

Chapter 3

Android Application
Development Processes
and Tool Chains for Intel®
Architecture

This chapter introduces Android† application development on Intel hardware
platforms. Developing Android system applications requires some special development,
debugging, and performance analysis tools, and the development environment and
object formats are different from those of general-purpose desktop computers. Before
developing Android applications, we need to learn about the development process of
Android system applications.

Android provides a whole set of tool chains (toolsets) for application development.
Early versions of the Android OS supported ARM hardware platforms and started supporting
Intel® Atom™ hardware platforms from Android 2.3 (Gingerbread). To support application
development on Intel Atom architecture, Intel has added important plug-ins, libraries, and
other auxiliary modules to work in conjunction with Android tool chains. In addition, to help
developers to get the performance advantages of Intel hardware, Intel has made available
development tools such as compilers and Intel® Graphic Performance Analyzer.

This chapter describes the general processes and methods for Android
application development on Intel Atom platforms. The methods to achieve optimized
performance and low energy consumption using special Intel tools will be introduced
in subsequent chapters.

Android Application Development
The following sections describe the development environment, development process,
debugging, and simulation of Android systems.

Chapter 3 ■ Android Application Development Processes and Tool Chains for Intel® Architecture

48

Development Environment of Android Applications
As we mentioned earlier, software development for general-purpose computers is always
achieved through native compilation or development. In general, embedded systems are
not compatible with the local development environment and so software development is
usually done with cross-development.

Cross-Development
The typical cross-development configuration is shown in Figure 3-1. The cross-
development environment is built on the development, or host, machine. Usually the
host machine is a general-purpose computer such as a PC. The corresponding embedded
system is called the target machine. Target machines can be any of the numerous kinds
of embedded devices such as mobile phones, tablets, and so on. They may also be
special evaluation boards or software-based emulators for development provided by
embedded system manufacturers. During development, cross-compilation, assembly,
and linking tools on the host machine are used to produce binary code that is executable
on the target machine; then the executable files are downloaded and run on the target
machine. The cross-development method is not only required for compilation but also
for debugging.

Figure 3-1.  Cross-development configuration of embedded systems

The main reason why cross-development was adopted for embedded systems
is that native compilation usually cannot be done effectively on the target machine.
First, the hardware of the target machine is often unavailable or unstable during the
development process. Second, there is a lack of complete native compilation tools on the
target machine platform. Third, the performance of the target machine is insufficient,
resulting in slow compilation. Software compilation on embedded systems is more time
consuming than on desktop computers because it requires not only compilation of
applications but also compilation of library dependencies and OS kernels. For example,
compiling a Linux† kernel on an Intel® Pentium® 4 processor-based PC takes more than
10 minutes. The main hardware factors determining the compiling speed include CPU
speed, memory capacity, and file system I/O speed. On these factors, embedded systems

Chapter 3 ■ Android Application Development Processes and Tool Chains for Intel® Architecture

49

usually perform worse than PCs. This results in low efficiency of native compilation
on target machines. The cross-development method is always adopted for embedded
systems, such as cross-compilation (including cross-linking) and cross-debugging.

Because of the differences between the host machine and the target machine in their
configurations, functions, system structure, and operating environments, they are usually
connected via serial port, parallel port, USB, or Ethernet connection cables. Toolsets,
including encoder, compiler, connector, debugging tool, and software configuration
management tool, are installed on the host machine.

Generally, the host machine and the target machine are different in the
following aspects:

Different structure: usually, the host machine is an Intel •	
architecture system while the target machine might be Intel or
non-Intel architecture system structure such as ARM or MIPS.

Different processing capacities: usually, the processing speed and •	
storage capacity of the host machine are better than those of the
target machine.

Different operating systems: usually, a general OS runs on the •	
host machine while an Android OS runs on the target machine.

Different output methods: compared with the host machine, the •	
input and output functions of the target machine are less capable.

For some Android systems, these characteristics may not exist or are insignificant.
Take the development of an Intel Atom system for example. The host machine and
the target machine use the same system Intel architecture structure. Of course, the
instruction sets might be different. For example, the host machine (such as the Intel®
Core™ 2 Duo processor) might be compatible with SSE4, while the Intel Atom processor
only supports SSE3 .We should consider the instruction set for the target machine
during compilation. Considering the limited resources of most Intel Atom systems, we
recommend the cross-development method.

Programming Languages
During the past four decades, dozens of programming languages have been developed
for general-purpose computer applications. From FORTRAN, C/C++, ADA, and Java†
to C#NET. Many factors determine a programming language’s suitability. Each has its
own characteristics, and comprehensive comparisons are impossible. Each language’s
performance depends on the execution environment. Considering multiple factors and
actual development status, the common languages for Android systems include
C/C++, Java, and Python†, and occasionally assembly language is used. A combination
of languages is needed for programming a sophisticated Android system. The common
programming languages are shown in Table 3-1.

Chapter 3 ■ Android Application Development Processes and Tool Chains for Intel® Architecture

50

Java, launched by Sun Microsystems in May 1995, is a cross-platform object-oriented
programming language and includes the Java programming language and Java platforms
(JavaSe, JavaEE, JavaME). Java’s style is very similar to that of C and C++. It is a pure
object-oriented programming language that has inherited the core contents of the
object-oriented C++ and abandoned the pointer (replaced by reference), operator
overloading, and multiple inheritance (replaced by interface) in the C++ language, which
caused frequent errors. The added Garbage Collector is used for collecting memory
occupied by unreferenced objects so the programmer does not need to worry about
memory management. In the Java 1.5 version, Sun added other language features such as
generic programming, type-safe enum class, variable-length augment, and autoboxing/
auto-unboxing.

Java is different from ordinary compilation and execution computer languages in
that it is an interpretive computer language. The Java compiler produces binary byte
code instead of machine code, which can be executed directly and locally. Compiled Java
programs are interpreted into directly executable machine code via Java virtual machine
(JVM). The JVM can interpret execution byte code on different platforms to realize the
cross-platform feature of “one-time compilation for all executions.” However, it takes
some time to interpret byte code, which will to some degree reduce the running efficiency
of Java programs. To reduce this burden, Google introduced Android Run Time (ART)
in 2014 as a Dalvik version 2, which first became available as a preview feature in KitKat
(Android 4.4). Future 64-bit Android will be based on ART. In general, Java is a simple,
object-oriented, distributed, interpretive, and stalwart. It is an implantable,
high-performance, multi-threaded and dynamic programming language. Considering
various advantages of Java, it is the first choice for Android application development.

Having chosen a language, you may not necessarily use all of its functions. Although
we have selected Java as the development tool for Android, the development process for
Android systems is different from traditional (desktop) Java SDK. The Android SDK uses
most of the Java SDK, but has abandoned some portions. For example, for the interface,
the java.awt package is only referenced by java.awt.font. If a Java game is migrated to the
Android platform, it might need to be ported.

We have mentioned that Java is a cross-platform interpretive computer language.
This feature has enabled the high migration capability regardless of platform, but it
also has some drawbacks, one of which is that the developer cannot use platform- or
architecture-related features or potential. But this can be achieved by machine-related

Table 3-1.  Commonly Selected Programming Languages

Level Common Programming Languages

Application software C/C++, Java, .NET, script, Python

OS level C/C++, Assembly

Driver program level C/C++, Assembly

Boot code, Hardware Abstract Layer (HAL) Assembly, C/C++

Chapter 3 ■ Android Application Development Processes and Tool Chains for Intel® Architecture

51

target code by compiling C/C++ and assembly languages. This is more obvious during
performance optimization. To use the features of the machine hardware and tap into
their performance potential, we usually need to use C/C++ and assembly languages for
writing optimized applications. Although such code accounts for a small proportion of all
code, the programming complexity is much higher than Java. Therefore, such code is only
used in some rare cases. We’ll see that Android application development has adopted
a mixed programming mode based mainly on improved Java and supported by C and
assembly languages.

We’re going to discuss this programming method in two parts. For developing
general functions of Android applications, we are going to use Java. But for performance
optimization, we’re going to use a mixed-language programming approach.

The Android Application Development Process
Generally speaking, developing Android software requires the same steps as general-
purpose software: designing, encoding, compiling, linking, packaging, deploying,
debugging, and optimizing. For some Android systems, testing and verification steps
are also required. In terms of process, it can be divided into five stages: encoding,
construction, deployment, debugging, and tuning. The typical development process is
shown in Figure 3-2.

Chapter 3 ■ Android Application Development Processes and Tool Chains for Intel® Architecture

52

Start

Write code

Cross compiling, linking

Packaging

Deployment

Running

Debugging &
optimization

End

Write source code

Use specialized compilers and
linkers to generate target code

Compress target code and
affiliated files into file packages

Install target files from host
machine to target device

Execute and check
the results of code

Debug programs and
optimize performance

Figure 3-2.  Development process for Android software

Encoding
Encoding is the first step in the software development process. Software source code can
be written using various editors. During Android development, this work is mainly editing
.java code and .xml source files.

Construction
The task during the construction stage is to convert code into executable programs
on Android hardware. This stage includes sub-steps such as compiling, linking, and
packaging as shown in Figure 3-3.

Chapter 3 ■ Android Application Development Processes and Tool Chains for Intel® Architecture

53

The first step of construction is the build, which means to translate all source code
files into target files. Some target files are machine-related such as C/C++ target files that
correspond to the execution instructions of the machine. But some are not specific to the
machine, such as Java target source code that is not machine-executable instructions.
During Android application development, these files usually have the suffix .class.
On Android, .classes are translated to .dex files.

The second step is packaging. The purpose of packaging is to combine and install all
target files and affiliated files into one folder on the target machine. As for Android, .dex
files and resource files are all packaged into an .apk file that can be stored outside the
target machine. The packaging operation is usually done with special packaging tools.

Deployment
Deployment, the last stage of software development, is where the installation package
is copied from the host machine, decompressed, and installed into the memory of the
Android device.

Android has adopted USB cable-based ISP deployment. As shown in Figure 3-4, the
host machine is connected to the target machine via USB cable. The Android OS runs
on the target machine while the Windows† or Linux OS runs on the host machine.
The file packages generated (.apk) are copied to one directory of the file system in the
target machine before being decompressed and installed to finish deployment. The
process can be done using command line terminals or the DDMS inside Eclipse.

Source program

Compiler & linker

Target files

Package maker

File package

Other affiliated files

Figure 3-3.  Software construction stage

Chapter 3 ■ Android Application Development Processes and Tool Chains for Intel® Architecture

54

Under the online programming model, the copying direction of the files between the
host machine and the target machine is different. And different terminologies are used for
file copying. For example, download/upload is called push/pull in Android. Push means
to copy files from the host machine to the target machine, while pull means copy files
from the target machine to the host machine.

Debugging and Optimizing Stage
This stage is mainly debugging and optimizing operations on software.

Even the most experienced software engineers cannot totally avoid mistakes in
their programs. Mastering debugging techniques is critical for software development.
Debugging Android software code is not very efficient because even if you only need
to change one line of code, you still need to go through all the build, packaging, and
deployment procedures. PC users might be okay with one crash per day. But just imagine
the severe consequences if a bug exists in the final Android system product on ATMs,
medical operation systems, or satellites.

There are many debugging technologies and techniques for Android software
discussed in subsequent sections. Many of the methods are rarely used in general-
purpose computer software.

The minimum target for a software product is to ensure its normal running. But this
target is not good enough for Android software, which is resource-constrained and has
more stringent space and performance requirements than desktop systems. To satisfy
these requirements, Android software has to ensure normal running in a performance-
optimized way. These goals might be contradictory and developers can hardly realize all
of them. So they make compromises usually highlighting the performance requirement.

Improving the performance of an application program is a time-consuming process.
It is usually not obvious which functions are consuming most of the execution time.
So we need to use specialized tools to analyze the code to accurately understand the
performance bottlenecks and advise us on improvements. This process is usually called
code profiling, and the tool used is called a profiler or performance analyzer.

The principle of using a profiler for improving performance is to optimize the
frequently called portions of the software. For example, if 50 percent of the time is spent
on string functions and we optimize such functions by 10 percent, then we can reduce the
execution time of the software by about 5 percent. By using a profiler you can accurately
measure the various portions of time spent during the execution process to understand

Figure 3-4.  Android application deployment

Chapter 3 ■ Android Application Development Processes and Tool Chains for Intel® Architecture

55

which areas can be optimized. Some profilers can bring about improvement suggestions
specific to the type of processor. For example, the Intel® Vtune™ Amplifier identifies
hotspots in the code that can be further optimized to improve overall performance.

Debugging and Simulation of Android Systems
Debugging Android software has some special challenges, so some methods and devices
have been developed to assist developers with the debugging procedure. The most
common debugging methods include those described in the following sections.

System Simulator
Early system simulators were realized with instruction set emulators, that is, the
technology of simulating a system architecture using software. In other words, software
is used to interpret machine codes to simulate a certain processor. Modern system
simulators include analog peripherals except CPU simulation. The analog peripherals
are used to achieve system simulation results. Some books call the simulator a virtual
machine or emulator.

Instruction set emulation includes homogenous emulation and heterogeneous
emulation. Homogenous emulation means using software on one processor to emulate
a virtualized machine that has the same architecture. At present, the common Microsoft
Virtual PC or VMware† emulates the execution of processors based on Intel architecture,
making it a type of homogenous emulation. Heterogeneous emulation means emulating
the execution of another processor on one processor. Most of the instruction set
emulators are types of heterogeneous emulation. For example, Device Emulator emulates
the execution of ARM processors on Intel architecture processors. Some common system
simulators are shown in Table 3-2.

Table 3-2.  Common System Simulators

Name of Emulator Simulated Target Platform Remarks

Microsoft Virtual PC/
Virtual Server

Intel® architecture

VMware Intel architecture Compatible with Windows,
Mac†, Linux

Bochs Intel architecture Open source projects

Device Emulator ARM Simulation of SMDK2410
development board

SkyEye ARM Made in China

VirtualBox Advance ARM Simulating Nintendo GBA
gamer

Oracle VM Virtualbox X86 and AMD64/Intel64
Virtualization

GPL license, and freely
available

Chapter 3 ■ Android Application Development Processes and Tool Chains for Intel® Architecture

56

When debugging programs on Android systems, the host machine (usually the PC)
runs the system simulator and the software of the target machine is run in the system
simulator, so no extra hardware is required. The host machine and the target machine
are realized on the same machine, which is known as “two uses on one machine.” Now
remember the cross-development environment mentioned previously? We said the target
machine is not necessarily a real device because it might be a software-based emulator.
The emulator replaces the actual target machine during cross-development. Emulators
not only save overhead on hardware but make debugging more convenient.

Android development tools bundles Android Virtual Device, a manager that is
used to create ARM and x86 emulators. Emulators mimic the hardware and software
configuration of a target device. Figure 3-5 shows a screenshot of an AVD running in
Windows.

Figure 3-5.  AVD (Android Virtual Device) interface

Chapter 3 ■ Android Application Development Processes and Tool Chains for Intel® Architecture

57

The Android emulator is also called goldfish. Each AVD simulates a set of mobile
devices that run the Android platform, which includes the kernel, system image, and data
partitioning as well as the SD card, user data, and the display. Android emulators are
based on Qemu, which is a popular open source virtualizer project. The source code for
Android emulators is under the external/qemu directory.

AVD simulates the common components of the target machine such as the CPU,
screen, keyboard, audio output, camera, and also sensors such as GPS, touch, and gravity
acceleration. For example, AVDs with Intel architecture include Intel x86 system images
corresponding to each API level. Of course compared to the real device, an AVD has
certain shortcomings, which include:

Inability to place or accept actual calls; but it can simulate phone •	
calls (incoming and outgoing) via control station

No USB connection•	

Inability to capture digital photos or videos•	

Inability to capture audio input, but does support output (replay)•	

Lack of support for extended earphones•	

Inability to determine the battery level or charging status of AC •	
power

Inability to determine whether an SD card has been inserted or •	
removed

Lack of support for Bluetooth†•	

In addition, AVD can simulate USB and network connections between the host
machine and the target machine. AVD uses the host machine as the default gateway and
NAT (address translator) to connect to the network. In other words, if you can access the
Internet on the host machine, you can also do so on the AVD-simulated target machine.

Other Debugging Tools
Android systems have other debugging tools besides system emulators. Although these
tools are not used in Android, you should have a basic understanding of them to get a
complete picture.

Cross-Debugging
When the OS supports cross-debugging Android applications, you should try to use this
method. Cross-debugging is similar to cross-compilation: the program being debugged
runs on the target machine while the display, monitor, and control of debugging are done
on the host machine.

Cross-debugging can only be performed in the online mode. The host machine
needs to be connected to the target machine by USB cable, network, or JTAG-ICE. A
debugging server is usually run on the target machine and is called a stub in the GNU

Chapter 3 ■ Android Application Development Processes and Tool Chains for Intel® Architecture

58

tool chain. The front end running the debugging procedure on the host machine is
actually the client. The front end interacts with the developer who makes requests to
debugging server. The debugging server receives the commands from the front end,
controls application execution, and sends the results to the front end for display, as
illustrated in Figure 3-6.

Host Machine Target Machine

Debugging Front End/Client

Host Machine OS

Serial port,
network, etc

Debugged Programs

Debugging Server/Proxy

Figure 3-6.  Software environment for cross-debugging

For example, if you set a breakpoint at the front end to observe the values of a variable,
the debugging server receives the breakpoint setup request and inserts an interruption at
corresponding place in the program. When the application reaches the breakpoint, the
debugging server takes over control, suspends the application, and sends back the values of
the corresponding variable to the front end, which then displays the value.

Many development tools support cross-debugging, such as, for example, GNU
debugger. Android Debug Bridge (adb), a common debugging tool, also supports
cross-debugging. The adb debugger is based on the client/server model. It works on
the principle that the local working platform serves as the debugging client while the
machine on which remote applications are installed serves the role of the debugging
server. When using adb, the debugging process of the remote applications (on the target
machine) may be different from local debugging. Adb manages the device, emulates
status, and carries out the following operations:

Fast code updating in the device and emulators, such as •	
applications or Android system updates

Running shell commands on the device•	

Managing predetermined ports of the devices or emulators•	

Copying or pasting files on the devices or emulators•	

Chapter 3 ■ Android Application Development Processes and Tool Chains for Intel® Architecture

59

Some common operations of adb include the following:

adb shell

This command allows you to enter the Linux shell environment of the device or emulator
where you can execute many Linux commands. If you want to execute just one shell
command, you can enter:

adb shell[command]

For [command], enter the particular command you want to execute, for example: adb
shell dmesg, which outputs the debugging information of the kernel. Note: the Linux shell
for Android adb has been simplified, so it is not compatible with many of the common
Linux commands. We’re going to discuss the command line in the subsequent sections.

Adb can be run independently in command line form or integrated as a plug-in into
your favorite IDE (integrated development environment) such as Eclipse†. Figure 3-7
shows a screenshot of debugging an Android application in Eclipse. Adb provides many
common debugging tools such as breakpoint setup, observing variables, single-step
execution, and checking debugging output. The debugging process is the same as the
debugging process for local applications. Many developers cannot even tell that the
application is running on the target machine and not the host machine.

Figure 3-7.  Android application debugging in Eclipse

Chapter 3 ■ Android Application Development Processes and Tool Chains for Intel® Architecture

60

In the next sections we’re going to show examples of using adb commands and
Eclipse debugging.

Typical Development Tool Chains
All stages of Android software development have corresponding tools to help developer
complete tasks. Groups of development tools are called tool chains, or toolsets. The typical
tool chains are listed in Table 3-3.

Table 3-3.  Typical Tool Chains for Android Software Development

Development Stage Function Description Typical Examples

Editing Writing and editing source code vi, Emacs, Windows
Notepad

Compiling and
linking

Compiling and linking source
programs into executable binary
files

gcc, icc (Intel Compiler)

Flashing Burning executable binary
programs into the Android
system’s ROM or flash to ensure
the system automatically starts up

J-fFlash, Sjflash

Debugging Dynamic follow-up on the
running status of the programs;
checking on execution of
programs and identifying causes
behind program errors

Gdb, adb, Kernel Debugger

Optimizing Analyzing program performance
and helping developers create
faster and more efficient programs
with little occupied space

gprof, Intel Vtune™
Amplifier

Testing Helping testing personnel to
identify mistakes in the programs
and reduce HR costs

CETK

Verifying Verifying logical correctness and
common errors of programs,
especially under harsh testing and
debugging environments

Application Verifier

Simulating/Emulating Simulating and emulating the
running environment of Android
hardware to help developers
develop and debug

Qemu, VirtualBox and
VMware Player

Chapter 3 ■ Android Application Development Processes and Tool Chains for Intel® Architecture

61

Many toolsets are available, provided by different companies and organizations,
each with its own characteristics. Icc, the Vtune Amplifier, and idb are provided by Intel,
while gcc, gdb, and gproof by the free software organization GNU; and CETK, Application
Verifier, Device Emulator are provided by Microsoft. Some of these tools are free like the
GNU toolsets. Others, such as the Microsoft toolsets, must be purchased. These tools run
on different platforms. For example, Jflash runs on the Linux platform while most of the
Microsoft tools are based on Windows (including desktop Windows OS and Android
OS-Windows CE/Mobile). And some are even cross-platform tools; for example, GNU
toolsets can run on multiple platforms such as Linux, Windows, and Mac operating systems.

The way in which these toolsets are used falls into two categories: one is command
line and the other is integrated development environment (IDE). Command line
toolsets are executed by single commands entered in their command lines. In the case
of IDEs, all functions are integrated into one tool, including editing, compiling, linking,
deploying, and debugging, so that the full development process can be performed
in one application. Most of the GNU tools run on command lines. Probably the most
widely used IDE is Microsoft Visual Studio†. Anjuta DevStudio is a Linux-based IDE. The
Android development tool, Eclipse, is an IDE that can run on multiple operating systems
including Windows and Linux. In this book, we’re going to use the Windows version.

GNU toolsets can run on multiple platforms; their openness, large usage scope, and
compatibility with other tools have made them a common choice for Android application
development.

Tip■■   GNU, GPL, and LGPL GNU is by far the largest, most famous, and influential free
software organization. It was created by Richard Stallman in 1985 who founded the Free
Software Foundation (FSF) to break away from commercial software. You must comply with
GNU software license before using GNU software.

GPL, short for GNU General Public License, is one of the GNU software licenses. GPL allows
the public to enjoy the freedom of running, copying, and sharing software, obtaining source
code, and improving the software and sharing it with the public. GPL also stipulates that as
long as one part or the entirety of the altered content comes from the programs complied
by GPL, then the sharing of the altered software must comply with GPL requirements,
which means that you need to publish the changed source code and refrain from adding
restrictions on the sharing of the improved software. GPL was the catalyst for developing
and publishing the Linux OS and related software.

LGPL, which means Lesser GPL, is also one of the GNU software licenses. It is a variant of
GPL. What’s different is that users enjoy private usage on LGPL-authorized free software.
And the new software developed can be proprietary instead of free. Before using the free
software, users must obtain LGPL or other variants of GPL. LGPL was initially used for some
GNU program libraries (software libraries). So it was called Library GPL. Mozilla and
OpenOffice.org are examples of software developed under LGPL.

Chapter 3 ■ Android Application Development Processes and Tool Chains for Intel® Architecture

62

GNU development tools are free. Anyone who agrees to GPL license can download
them. GNU has also provided complete tool chains for software development on Android
systems and Intel architecture systems. Such tools include compiler, assembly, linker, and
debugging tools. They can be run independently from command lines or integrated into
an IDE such as Eclipse. The GNU tool chains are listed in Table 3-4.

Table 3-4.  GNU Tool Chains

Function Component Description

Editing vi, Emacs, ed Text editor used for editing source code

Compiling & linking gcc A set of multi-programming language
compilers

Debugging gdb Debugger

Optimizing gproof Optimization tool for analyzing program
performance and helping developers to
create faster-running programs

Project Management make Auto management tool for software
compilation

System Building autotools All materials and files required for build
projects

The components are further explained below.

Editor
Any text editing tool can be used to write and edit source code. The Linux platform has
two categories of editors: one includes line editors such as ed and ex; the other includes
full-screen editors such as vi, Emacs, and gedit. Line editors can only operate on one
line, while full-screen editors can edit an entire screen of code and the edited files are
displayed, thus overcoming the shortcomings of line editing and making it easier to use.
Full-screen editors have a larger feature set than line editors.

In an IDE, editors are integrated into the tool and need not be used separately to
write source code.

Compiler and Linker
The editing process involves grammar, semantic, and lexical analyses, generation and
optimization of intermediate codes, symbol table management and error management.
The GNU editor is gcc. Gcc is considered the standard compiler of Linux.

Gcc was initially the C language editor of GNU. Now it supports C, C++, Object-C,
FORTRAN, Java, and ADA. To some degree, gcc is the combination of all GNU editors.
Gcc compiles source code and does the linking process. Users can choose the command
parameters to compile, link, and generate executable files.

Chapter 3 ■ Android Application Development Processes and Tool Chains for Intel® Architecture

63

Intel Compiler also optimized code paths to improve application performance on
Intel platforms. Intel Compiler is bundled with the tools offering from Intel called Intel
Integrated Native Developer Experience.

Debugger
A debugger makes it easier for programmers to debug programs. But it is not necessarily
a tool required for code execution. During the compilation process, the time spent on
debugging is more than the time on encoding. Therefore a full-featured debugger that’s
easy to use is necessary.

The GNU debugger is gdb (abbreviation of GNU Debugger). It is also open source
code and is a command line–based debugger. All debugging commands are realized
through the commands of the control station.

Build Manager
GNU provides one build manager called make, a tool for controlling compilation of
multiple software files. It is similar to Visual C++† project in Windows. In addition, it can
automatically manage the contents, means, and timing of software compilation to help
programmers so they can focus on coding instead of organizing compiling sequences.

Make can call gcc to compile and link source codes into executable files for the target
machine according to the makefile defined by the developer.

Makefile Auto Generation Tool
Makefile can help make to perform the target file generation task. But encoding a
makefile is not an easy job, especially for big projects. GNU provides a series of autotools
to make makefiles. Such tools are aware of system configuration issues to help developers
deal with migration issues. Autotools include aclocal, autoscan, autoconf, autoheader,
automake, and libtool.

Several methods are used for generating target files from source code as shown in
Figure 3-8.

Chapter 3 ■ Android Application Development Processes and Tool Chains for Intel® Architecture

64

Method 1: Use gcc (or Intel compiler ICC) to compile and link all •	
source code files to generate executable target files

Method 2: Use an IDE, such as Eclipse, to compile a makefile •	
and other configuration files and then use make to generate
executable target files

Method 3: Use system build tools-autotools to make makefile and •	
other configurations, and then use make to generate executable
target files

Optimizing Tools -- gprof
To help developers optimize their programs, GNU provides a performance analyzer,
gproof, one of the GNU binutils tools.

Gproof can measure the performance of programs and record the called times of
each function and corresponding execution time so that the optimization effort can be
centered on the most time-consuming portions. In addition, gproof can also generate
function call relations during programming execution, including number of called times,
to help programmers analyze how programs are executing. By relying on the function call
relations, developers do not need to go through all the details of a program’s execution,
improving their work efficiency. And this function is also helpful for maintaining old
code or analyzing open source projects. With the calling diagram, you can get a basic
understanding of the running framework and “skeleton” of the programs. Then analyzing
them is less difficult, especially for code and open source projects you may not be familiar
with.

User encoding

Autotools tools

Configuration
files

make
command

Call

gcc

Executable files

Separately call gcc

Figure 3-8.  Methods for generating target files using GNU tool chain

Chapter 3 ■ Android Application Development Processes and Tool Chains for Intel® Architecture

65

Overview, Installation, and Configuration of
Android Application Development Tool Chains on
Intel® Architecture
Android provides a complete set of tool chains (or toolsets) for application development.
Originally, Android ran only on ARM architecture hardware platforms. But now, to
support Android tool chains on the Intel Atom hardware platform, Intel has added
important plug-ins, libraries, and other auxiliary components. In addition, to give
better play to the performance advantages of Intel hardware, Intel has added special
development tools such as compilers and optimizers.

This chapter introduces the general processes and methods for Android application
development on the Intel Atom platform. In the subsequent sections, we’re going to
discuss the methods for using special Intel tools to achieve optimized performance and
low energy consumption.

The Android and GNU development tool chains and the functions corresponding to
Android cross development stages are shown in Table 3-5.

Table 3-5.  Comparison between GNU and Android Tool Chains

Stages of Cross Development GNU Tool Chains Android
Development
Tool Chains
for Intel®
Architecture

Remarks

Editing vi, Emacs, ed Eclipse, Android
SDK

Android
development
tools and
Intel related
plug-ins

Compiling and linking Gcc

Project management Make

Auto generation tool-makefile Autotools

Deployment \

Debugging gdb

Simulation/emulation \ Android Virtual
Device (AVD)

Optimization gprof Vtune™ analyzer Intel series of
tools

Chapter 3 ■ Android Application Development Processes and Tool Chains for Intel® Architecture

66

In addition to the differences with GNU tools shown above, Intel also provides some
special performance libraries, including Intel® Integrated Performance Primitives (Intel®
IPP), Intel® Math Kernel (Intel® MKL), and Intel® Threading Building Blocks (Intel® TBB).
Some of the libraries have already provided special services such as the C++ template
based threading services API in Intel TBB. Some of them use the Intel architecture
instruction potential to achieve optimized performance, such as, for example, the Fast
Fourier Transform (FFT) in Intel IPP. Some of the libraries still do not have direct Java
interfaces. We’re going to discuss them in subsequent sections.

Table 3-5 shows that the Android development tool chain for Intel architecture
basically includes two parts: one part is the Android development tools. The Intel tools
here include an Intel architecture emulator, development library, and other plug-ins.
The other part is the independent Intel tools. While the Android development tools
support most of the steps of application development such as editing, building,
packaging, deployment, and debugging, the Intel tools involve mainly optimization.

Android development tools mean the software environment consisting of JDK (Java
SE Development Kit), Android SDK (Software Development Kit), and an IDE (Integrated
Development Environment)—Eclipse. Android development tools can run on Linux,
OS X, and Windows systems. In this book, we’re going to discuss the Windows scenario.

The Android development tools can be run in command-line format or an IDE.
The general development process of the Android command line tool in the Android SDK
is shown in Figure 3-9. Eclipse, a graphic user interface tool, is typically the tool used
for IDE mode, integrating the functions of editing, compiling, linking, deployment, and
debugging. We’re going to discuss the method based on the IDE.

Figure 3-9.  Development process of the Android SDK command line

Chapter 3 ■ Android Application Development Processes and Tool Chains for Intel® Architecture

67

The directory structure of the Android SDK is shown below. It can be obtained by
running the tree command from the command line.

├─add-ons
│ └─addon-google_apis-google-16
├─docs
│ ├─about
│ ├─assets
│ ├─design
│ ├─develop
│ ├─distribute
│ ├─guide
│ ├─images
│ ├─intl
│ ├─live
│ ├─out
│ ├─reference
│ ├─resources
│ ├─samples
│ ├─sdk
│ ├─shareables
│ ├─tools
│ └─training
├─extras
│ ├─android
│ └─google
├─platform-tools
│ ├─api
│ ├─lib
│ └─renderscript
├─platforms
│ └─android-16
├─samples
│ └─android-16
├─sources
│ └─android-16
├─system-images
│ └─android-16
├─temp
└─tools
├─ant
├─apps
├─Jet
├─lib
├─proguard
├─support
├─systrace
└─templates

Chapter 3 ■ Android Application Development Processes and Tool Chains for Intel® Architecture

68

The main files you should notice are:

add-ons: API packages provided by Google, like Google Maps •	
APIs

docs: help and explanation documents•	

platforms: API packages nd some example files for each SDK •	
version

tools: some general tool files•	

usb_driver: AMD64 and Intel architecture driver files•	

The main files and their functions are described below.

 android.jar
This file is located under the directory of %android-sdk%\platforms, and each version of
Android has one android.jar. By looking at the .jar file you can understand the structure
and organization of internal API packages. The string %android-sdk% here is the install
directory of Android SDK while the corresponding directory for version 16 is android-16.
For example, the author’s android.jar is located in:
 
C:\Documents and Settings>dir D:\Android\
......
2012-07-08 20:02 18,325,478 android.jar
 

The android.jar is a standard zip package that contains compiled zipped files and all
APIs. You can use WinRAR, or other archiving tool, to view its internal structure as shown
in Figure 3-10. Its API kit is further divided into app, content, database, and so on.

Chapter 3 ■ Android Application Development Processes and Tool Chains for Intel® Architecture

69

Figure 3-10.  Content structure of android.jar

ddms.bat
The debugging monitor service ddms.bat, shown in Figure 3-11, is integrated in Dalvik
(the virtual device of the Android platform) and used for managing the processes of
emulators or devices and assisting debugging work. It can eliminate some processes and
choose one certain program for debugging, generate follow-up data, check threading
data, or take snapshots of emulators or devices.

Chapter 3 ■ Android Application Development Processes and Tool Chains for Intel® Architecture

70

adb.exe
Android Debug Bridge (adb) is a multipurpose tool that can help you manage the state
of devices or emulators. As mentioned before, this file is located under %android-
sdk%\platform-tools. For example, the author’s adb.exe is located in the C:\
android\adt-bundle-windows-x86_64-20131030\sdk\platform-tools directory, as
shown in Figure 3-12.

Figure 3-11.  The debugging monitor service ddms.bat

Chapter 3 ■ Android Application Development Processes and Tool Chains for Intel® Architecture

71

aapt.exe
With the Android resource packaging tool (aapt.exe), you can create .apk files that contain
binary files and resource files for Android applications. The file location is the same as
adb.exe.

aidl.exe
The Android interface description language (aidl.exe) is used for generating inter-process
interface codes. The file location is the same as adb.exe.

sqlite3.exe
Android can create and use SQLite3 database files. Developers and users can easily
access such SQLite data files. The file location is the same as ddms.bat.

dx.bat
Rewrite class byte code as Android byte code (saved in a dex file). The file location is the
same with that of adb.exe.

android.bat
The android.bat file is under the same directory as ddms.bat. This command is used for
displaying and creating the AVD.

Figure 3-12.  File location of the adb.exe tool

Chapter 3 ■ Android Application Development Processes and Tool Chains for Intel® Architecture

72

Figure 3-13.  The command shows that two target machine development libraries are
installed on the machine

Intel Environment Setup for Android (OS X Host)
The Environment Setup for Android (OS X Host) Integrates common Intel and third-party
tools into your preferred IDE for productivity-oriented designing, coding, and debugging.
Supported IDEs include Eclipse and Android Studio. This beta release, formerly known as
Beacon Mountain beta, will be part of the Intel® Integrated Native Developer Experience
(Intel® INDE) for OS X hosts and can be downloaded at https://software.intel.com/
en-us/inde/environment-setup-osx. Table 3-6 provides a list of what is included in the
Environment Setup for Android (OS-X Host).

https://software.intel.com/en-us/inde/environment-setup-osx
https://software.intel.com/en-us/inde/environment-setup-osx

Chapter 3 ■ Android Application Development Processes and Tool Chains for Intel® Architecture

73

Table 3-6.  Environment Setup for Android (OS-X Host)

Product Installs • Android Studio beta
• �Intel® Integrated Native Developer Experience

(Intel® INDE) native project template for Android Studio
• Android SDK
• Android NDK
• �Intel® Hardware Accelerated Execution Manager

(Intel® HAXM)
• Apache Ant
• Intel® INDE plugins for Eclipse

IDEs • Eclipse
• Android Studio beta

Host Support • OS X

Target Support • Android* 4.3 and up (based on ARM and Intel® architecture)

Android Development on Linux-based Host
Machines
The following Android development tools for Linux-based host machines are available for
download at:

Intel•	 ® Graphics Performance Analyzers
(https://software.intel.com/en-us/vcsource/tools/intel-gpa)

Intel•	 ® Hardware Accelerated Execution Manager (Intel® HAXM)
(https://software.intel.com/en-us/android/articles/
intel-hardware-accelerated-execution-manager/)

Intel•	 ® Threading Building Blocks (Intel® TBB)
(https://software.intel.com/en-us/intel-tbb)

Intel•	 ® C++ Compiler for Android
(https://software.intel.com/en-us/c-compiler-android/)

Intel•	 ® Integrated Performance Primitives (Intel® IPP)
(https://software.intel.com/en-us/intel-ipp)

Intel® Integrated Native Developer Experience beta
The Intel Integrated Native Developer Experience (Intel INDE) is a beta release of Intel’s
cross-platform development suite designed to quickly and easily create applications
targeting Android and Windows devices with native performance, outstanding battery-
life, and exposure to unique platform capabilities. INDE provides a complete and
consistent set of C++/Java tools, libraries, and samples for environment setup, code
creation, compilation, debugging, and analysis on Intel architecture-based devices and
select capabilities on ARM-based Android devices.

https://software.intel.com/en-us/vcsource/tools/intel-gpa
https://software.intel.com/en-us/android/articles/intel-hardware-accelerated-execution-manager/
https://software.intel.com/en-us/android/articles/intel-hardware-accelerated-execution-manager/
https://software.intel.com/en-us/intel-tbb
https://software.intel.com/en-us/c-compiler-android/
https://software.intel.com/en-us/intel-ipp

Chapter 3 ■ Android Application Development Processes and Tool Chains for Intel® Architecture

74

As a native cross-platform development suite, Intel INDE includes C++/Java native
tools and samples for Android and Microsoft Windows, integration of tools into popular
IDEs, and automatic updates to the latest tools and technology.

Tools and Libraries
Media: easily add visually compelling native video and audio extensions that work across
the latest popular Android phones and tablets. The Intel INDE Media Pack for Android
provides source code and samples to enhance apps with:

Camera and screen capture•	

Video editing•	

Video streaming•	

Audio fingerprinting•	

Support for Intel architecture and ARM-based Android devices •	
running 4.3 and up.

Threading: efficiently implement higher-level, task-based parallelism using the Intel
Threading Building Blocks (Intel TBB). Intel TBB is an award-winning C++ template
library for the development of higher-performance, scalable applications. Apps created
using the parallelism tool can run on Intel architecture and ARM processor-based
Android 4.3 and up devices, as well as Microsoft Windows 7–8.1 client.

Compiling: bring a heritage of industry-leading performance to your Android apps
with performance-oriented compiling with the Intel® C++ Compiler for Android. The
compiler is source-code compatible with GCC, enabling easy usage. The GNU C++
Compiler is also provided through the Android NDK, which is a customization option
in the Environment Setup component of Intel INDE. Apps created using the Intel C++
Compiler can run on Intel architecture-based devices running Android 4.3 and up.

Compute Code Builder: maximize performance with programmable graphics -
develop code that executes on computing devices beyond the CPU using the Compute
Code Builder. This tool assists with creating, compiling, debugging and analyzing
compute APIs like Google Renderscript† and OpenCL†. The compute code builder can
be used in standalone mode or integrated with Microsoft Visual Studio or Eclipse. Apps
created can run on Intel architecture-based Android 4.4 devices, as well as Microsoft
Windows 7–8.1 client. Visit Intel’s Getting Started Guide for more information.

Analyzing and Debugging: Use Analysis and optimization tools •	
suite includes the Intel Graphics Performance Analyzer (Intel
GPA) System Analyzer, Intel GPA Platform Analyzer, Intel GPA
Frame Analyzer, and Intel Frame Debugger. You can use them to
do the following:

Real-time trace analysis of code execution, CPU/GPU usage and •	
task data, and more

Frame-capture analysis and debugging•	

Platform-wide and application-specific GPU metric analysis and •	
graphics pipeline overrides

Chapter 3 ■ Android Application Development Processes and Tool Chains for Intel® Architecture

75

Figure 3-14.  Download screen for INDE

Apps created using the analysis and debugging tools can run on Intel architecture-
based devices running Microsoft Windows 7–8.1 or Android 4.4.

Setup
Setting up an environment for Intel INDE is easy. You can build your custom environment
in minutes instead of hours:

Selectively choose tools to install, allowing for a customized •	
environment.

Choose from the Google Android SDK (including Eclipse), •	
vs-Android plug-in for Microsoft Visual Studio, Android NDK,
Android Design, Apache Ant, and Intel HAXM.

Apps created using the environment setup can run on Intel architecture and ARM-
based targets running Android 4.3 and up.

Intel INDE Installation
The following sections describe the Intel INDE installation process.

Downloading Intel INDE
Go to https://software.intel.com/en-us/intel-inde, click the Download link, and
accept the license agreements. You will receive an e-mail with a download link, as shown
in Figure 3-14.

https://software.intel.com/en-us/intel-inde

Chapter 3 ■ Android Application Development Processes and Tool Chains for Intel® Architecture

76

Figure 3-16.  INDE setup complete

Installing Intel INDE
Run the downloaded file: IntelHubSetup.exe. An Intel INDE window displays license
terms and conditions, as shown in Figure 3-15.

Figure 3-15.  INDE install window

Check the box to agree to the license terms and conditions, and click Install. The
setup process starts, and several command-line windows flash. An Intel INDE icon and
an NDK.cmd icon are created on your desktop. When the process is complete, you are
ready to launch, as shown in Figure 3-16.

Chapter 3 ■ Android Application Development Processes and Tool Chains for Intel® Architecture

77

Figure 3-17.  Main window for INDE

Launching Intel INDE
Click the Launch icon, and the main Intel INDE window will start as shown in Figure 3-17.

Follow each tool and application to download the necessary software. You’re ready
to begin cross-platform development.

Configure Eclipse
1.	 Start Eclipse and select the Window menu, then Preferences,

as shown in Figure 3-18.

Chapter 3 ■ Android Application Development Processes and Tool Chains for Intel® Architecture

78

2.	 A Preferences dialog box will pop up. Select the Android
branch and then type the correct path in the SDK Location
box (usually this is auto-populated), as shown in Figure 3-19.
Note: After clicking the Android branch, a dialog box will pop
up. Click Proceed to continue.

Figure 3-18.  Startup page for configuring Eclipse

Chapter 3 ■ Android Application Development Processes and Tool Chains for Intel® Architecture

79

Figure 3-19.  Directory Location Setting of Android SDK

Create AVD (Emulator)
1.	 On the menu bar, select Window, then AVD Manager, as

shown in Figure 3-20.

Chapter 3 ■ Android Application Development Processes and Tool Chains for Intel® Architecture

80

2.	 The Android Virtual Device Manager dialog box will pop up,
as shown in Figure 3-21. Click the New button.

Figure 3-20.  Start menu for creating emulator

Chapter 3 ■ Android Application Development Processes and Tool Chains for Intel® Architecture

81

Figure 3-21.  Initial page of emulator list

3.	 When the Create new Android Virtual Device (AVD) dialog
box displays, as shown in Figure 3-22, type an appropriate
name and, for Target, select the version of Android you wish
to use. The CPU/ABI box will automatically display Intel
Atom(x86). The size field for the SD card is the amount of
space allocated for it on the hard disk (in this example, 1024
MB). If your target device has a larger SD card, enter the
correct size. When the settings are correct, click Create AVD to
close the dialog box.

Chapter 3 ■ Android Application Development Processes and Tool Chains for Intel® Architecture

82

4.	 The Android Virtual Device Manager will then display, as
shown in Figure 3-23, and you can see the newly added item in
the list. Click the close button (the x) to close the dialog box.

Figure 3-22.  Creation parameter setting for emulator

Chapter 3 ■ Android Application Development Processes and Tool Chains for Intel® Architecture

83

Figure 3-23.  Display of created list of emulator

Summary
So far, you have finished installing the development environment tools for an emulator
target machine. The next chapter discusses how, if your target machine is a real device
(for example, a smartphone or tablet), you need to install and configure the development
environment for developing and testing apps on that device.

	Chapter 3: Android Application Development Processes and Tool Chains for Intel® Architecture
	Android Application Development
	Development Environment of Android Applications
	Cross-Development
	Programming Languages

	The Android Application Development Process
	Encoding
	Construction
	Deployment
	Debugging and Optimizing Stage

	Debugging and Simulation of Android Systems
	System Simulator
	Other Debugging Tools
	Cross-Debugging
	adb shell
	adb shell[command]

	Typical Development Tool Chains
	Editor
	Compiler and Linker
	Debugger
	Build Manager
	Makefile Auto Generation Tool
	Optimizing Tools -- gprof

	Overview, Installation, and Configuration of Android Application Development Tool Chains on Intel® Architecture
	Sec24
	android.jar
	ddms.bat
	adb.exe
	aapt.exe
	aidl.exe
	sqlite3.exe
	dx.bat
	android.bat

	Intel Environment Setup for Android (OS X Host)
	Android Development on Linux-based Host Machines
	Intel® Integrated Native Developer Experience beta
	Tools and Libraries
	Setup
	Intel INDE Installation
	Downloading Intel INDE
	Installing Intel INDE
	Launching Intel INDE
	Configure Eclipse
	Create AVD (Emulator)

	Summary

